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Abstract We give proofs of two results about the position of the extremal particle
in a branching Brownian motion, one concerning the median position and another the
almost sure behaviour. Our methods are based on a many-to-two lemma which allows
us to estimate the effect of the branching structure on the system by considering two
dependent Bessel processes.

1 Introduction and main results

Kolmogorov et al. [13] proved that the extremal particle in a standard branching
Brownian motion sits near /2t at time ¢. Higher order corrections to this result were
given by Bramson [3], and then almost sure fluctuations were proved by Hu and Shi
[10]. These two remarkable papers, more than thirty years apart, provide results which
reflect an extremely deep understanding of the underlying branching structure. This
article grew out of a desire to know whether shorter or simpler proofs of these results
exist.

We consider a branching Brownian motion (BBM) beginning with one particle at 0,
which moves like a standard Brownian motion until an independent exponentially
distributed time with parameter 1. At this time it dies and is replaced (in its current
position) by two new particles, which — relative to their birth time and position —
behave like independent copies of their parent, moving like Brownian motions and
branching at rate 1 into two copies of themselves. Let N(t) be the set of all particles
alive at time ¢, and if v € N(¢) then let X, () be the position of v at time ¢. If v € N(t)
and s < t, then let X, (s) be the position of the unique ancestor of v that was alive at
time s. Define My = max,en () Xo(t)-

1.1 Bramson’s result on the distribution of M,

Define
u(t,z) =P (M <z).

This function u satisfies the Fisher-Kolmogorov-Petrovski-Piscounov (FKPP) equation

Uy = lu +u?—u
t — 2 TT )
(with Heaviside initial condition) which has been studied for many years both an-
alytically and probabilistically: see for example Kolmogorov et al. [13], Fisher [5],
Skorohod [18], McKean [15], Bramson [3, 4], Neveu [16], Uchiyama [19], Aronson and
Weinburger [2], Karpelevich et al. [11], Harris [8], Kyprianou [14], Harris et al. [7]. In
particular (see [13]) u converges to a travelling wave: that is, there exist functions m
of t and w of x such that
u(t,m(t) + x) — w(x)
uniformly in x as t — oo.
We would like to offer a proof of the following result which is much shorter and
simpler than the original proof by Bramson [3]:

Theorem 1 (Bramson, 1978). The centering term m(t) satisfies

m(t) = V2t — 2i\/§ logt+ O(1)

as t — oo.



As Bramson notes in [3], “an immediate frontal assault using moment estimates,
but ignoring the branching structure of the process, will fail.” That is, let G(¢) be
the number of particles near m(t) at time ¢. If some particle has large position at
time s < t then many particles are likely to have large position at time ¢, and this
means that the moments of G(t) are misleading. For this reason, instead of estimating
G(t) directly, we estimate H(t), the number of particles near m(t) that have remained
below m(t)s/t for all times s < t. It is not difficult to guess that particles behaving in
this way look like Bessel-3 processes below the line m(t)s/t, s € [0,t]. Essentially our
proof simply takes advantage of this observation®.

For the lower bound Bramson develops and applies very accurate estimates for
Brownian bridges to calculate the second moment of the number of particles in some
set (which is something like a more complicated version of H(t)). We instead use a
change of measure which allows us to apply basic estimates on Bessel processes. This
is only possible thanks to a general many-to-two lemma developed in [9].

For the upper bound (Proposition 9) we apply the first moment method to the
same quantity H(t). However we must then estimate G(t) — H(t). Here we borrow
the outline of an idea from Bramson, which we use to give a straightforward estimate
of the probability that G(t) — H(¢) is non-zero.

1.2 Hu and Shi’s result on the paths of )M,

Having established Bramson’s result on the centering term m(t), we move on to the
almost sure behaviour of M;. We prove the following result, which is the analogue of
a result for quite general branching random walks given by Hu and Shi [10].

Theorem 2. The mazimum M; satisfies

M; — V2t 3 .
—————— — ——— in probability
logt 2v2
and
My — /2t 3
lim inf —* V2 =— almost surely. (1)
t—o00 1ogt 2\/§
However,
M, — /2t 1
lim sup = V2 =— almost surely. (2)
t—o0 1Ogt 2\/5

This result says that although the extremal particle looks like m(t) for most times
t, occasionally a particle will travel much further. Technically the theorem as stated
here is a new result as Hu and Shi considered only discrete-time branching random
walks, but it would not take too much effort to derive it from their work. We proceed
instead by applying the estimates developed in the proof of Theorem 1 along with
the Borel-Cantelli lemma and exponential tightness of Brownian motion. Only the
lower bound in (2) requires a significant amount of extra work, and for that we take
an approach similar to that of Hu and Shi in [10]. They noticed that although the
probability that a particle has position much bigger than m(t) at a fixed time ¢ is very
small, the probability that there exists a time s between (say) n and 2n such that a
particle has position much bigger than m(s) at time s is actually quite large.

IThe reader may deduce from this description that we shall, as part of our proof, calculate estimates
for branching Brownian motion with absorption. This model was originally studied by Kesten [12]
with the initial intention of investigating the maximal displacement in a BBM.



1.3 Extensions to other models

We note that although we consider only the simplest possible BBM, with binary
branching at fixed rate 1, our methods can be applied to rather more general models.
There is however one important necessary condition, that the mean and variance of
the number of particles born at a branching event must be finite. This is simply due to
the fact that we apply a second moment method.

Addario-Berry and Reed [1] (in their Theorem 3) proved an analogue of Bramson’s
result (our Theorem 1) for a wide class of branching random walks. It is possible
that our methods could be adapted to extend their result to the case where the birth
distribution is not almost surely bounded. Since the purpose of this paper is to provide
short and simple proofs to two sophisticated results, and the generality of branching
random walks introduces various technical complications, we do not carry out this
work here.

2 Bessel-3 processes

We recall some very basic properties of Bessel-3 processes, and then do much of the
dirty work of Theorem 1 and Proposition 13 (which is the most difficult part of The-
orem 2) by calculating the expectation of two functionals of two dependent Bessel-3
processes. These calculations, in Lemmas 3 and 4, are not motivated until later in the
article, but we include them here as they are simply facts about Bessel processes and
do not contribute a great deal to the main ideas of the proofs.

If W;, t > 0 is a Brownian motion in R3 then its modulus |[W;|, t > 0 is called a
Bessel-3 process (or simply a Bessel process). Suppose that B; is a Brownian motion in
R started from By = z under a probability measure P,; then X; := 271 B, LB, >0 vs<t}
is a non-negative unit-mean martingale under P,. We may change measure by X,
defining a new probability measure P, via

dP,
dP,

= Xt

t

(where F; is the natural filtration of the Brownian motion B;) and then B;,t > 0is a
Bessel process under P,.. The density of a Bessel process satisfies

A z 2 2
P.(B; € dz) = ( (z—w)%/2t _ —(z+=) /Qt) dz.
( t Z) _2 7 e e z

This and much more about Bessel processes can be found in many textbooks, for
example Revuz and Yor [17].
We now claim that

e*(Z*z)z/Qt _ e*(Zer)Q/Qt S ? \ x, 2 Z O7 t>0. (3)

Indeed the derivative of the left-hand side with respect to z is

% (67(z71)2/2t I 67(z+m)2/2t) T ; (ef(z+z)2/2t _ ef(zfz)2/2t) :

the first term above is no greater than 2x/t, while the second is negative whenever
z,z > 0.



We also choose and fix v € (0,v/2) such that
e’ —e % =2sinhd > V2§ forall &€ 0,27];

then )
Z (e—(z—m)2/2t _ e—(z+ac)2/2t> > o2 /2t—a?/2t _Z (4)

xV 21t - 3

whenever zz < ~t.
Now suppose that under P we have a time 7 € [0,00) and two Bessel processes Y;!
and Ytz, t > 0 such that

o« V) =Y7=1;
e V!=Y2foralt<mr
o (Y} —Y! t>r7)and (Y;2— Y2, t>7) are independent given 7 and Y.}.

The following lemma does most of the hard work in proving the lower bound for
Theorem 1.

Lemma 3. Let 3 logt
0g Y
= 2———_*__,
p 202 t t

A ={1<Y} <2} and Ay={1<Y?<2}
For all large t and y € [0, /71,

t
~ __3logt . 1
/ P [}/Sle 2 5=hY ]]-AlﬁA2
0

T= s] ds < et™3

for some constant ¢ not depending on t or y.

Proof. The idea here is that the probability that a Bessel process is near the origin at
time ¢ is approximately t~3/2. If s is small, then we have two (almost) independent
Bessel processes which must both be near the origin at time ¢, giving ¢t 3. If s is large,
then we effectively have only one Bessel process, giving t=3/2, but the exp(2 1;’tgts) gives
us an extra t~3/2. It then remains to check when s is neither large or small, but the
above effects combine in the right way such that things turn out nicely then too. We
apply in each case the basic estimate (3) on the Bessel density.
We first check the small s case: for large ¢,

1 1
/ P [Yslefglgtg 575Y511A10A2 T= s] ds < / P(A; N Ag|r = s)ds
0 0

S Clp(A1)2 S Czt_B.
Similarly for the large s case:

t
/ P |:}/516731§"gt57ﬁysl]1,410,42 T = S:| ds S 03t73/2P(A1) S C4t73.
t—1




Finally the main case, when s € [1,¢ — 1]:

t—1
~ 1 _3logt, gyl
/ p{yse 2t ﬁs]lAlﬂAg
1

2
t—1 [eS) 3 2 2
z 3logt 2$
< L _e P / ————dr | dz ds
_/1 /0 53/2 ( 1 /27(t — s)3 >

_ 3logt
2t S

t—1 e [e’e)
<c —_— 23e"%dz ds
- 5/1 83/2(t—8)3/o

1-1/t  _—(2logt)u
< Cﬁt_7/2/ Ldu
e WP

T:S:|d8

and it is a simple task to check that the last integral above is bounded by /¢ times a
constant:

1-1/¢t 67(%logt)u
/ 3/2 zdu
1/t u3/2(1 —u)

1/2 1/2
< C7/ w32 du + cgt ™32 / s 3e(zlogt)s g
1/t 1/t

t—1/6 1/2
5736(%10gt)sd8+08t73/2/ 5736(%10gt)sd8

S Cgt1/2+013t73/2/
t+—1/6

t—1

t—1/6 vz
< cot'/? + clot_3/2/ s73ds + Cgt_l/4/ elzlogt)s g
+—1 t—1/6
<eptt/?
as required. O

Our next lemma is very similar; it estimates a slightly different functional, which
will appear in Proposition 13.

Lemma 4. Let as, = ﬁilogs — ﬁilofts. If e <s<t<2s, then

S
1logt A 1
_1logt, 1 -G,
/‘ezt P 1qa, ,415vi<an 42y Liacypcoy Ve P

0

< *%lngtS 1 + 1
= 52 T PRt s+ 1)32

for some constant ¢ not depending on s or t.

T:T}dT

Proof. We approximate just as we did for Lemma 3. Essentially the e=PY: term means
our initial Bessel process must be near the origin at time r; then two independent Bessel
processes started from time r must be near the origin at times s and ¢ respectively. This
will give us a contribution of r=3/2(s — ) =3/2(t —r)=3/2. Indeed for any r € [1,s — 1]
integrating out over Y!,

3

—BeY,

P |:]]'{as,t+1§Y51§as,t+2}]]'{1SY,51S2}}/T16 T:T:|

<c /00 26_6‘22—2 ! ! dz
=1 P32 (s— )32 (t—r)3/2
<o 32 (s — )2 (¢ — )72




For r < 1 we are effectively asking two independent Bessel processes to be near the
origin at times s and t, giving s~3/2¢t=3/2 and for r > s — 1 we have just one Bessel
process which must be near the origin at times s and ¢, giving 573/2(1% -5+ 1)’3/2.

Thus (noting that log s > lofts provided s,t > e)

logt

S
_1logt, A 1,—B:Y,}
/ ez P[ﬂ{as,t+1sms%,t+2}]1{13Yt1§2}Yr6 o
0

T= r} dr
1logt

<3 s=1 e 3T J cse” 27 ¢
S B/apE T L r2(s — )RRt —pyez T $2(t — s 1 1)3/2

S

Since s and t are of the same order and e~ 3 & > s~ 1/2 it remains to estimate the
integral in the last line above  and we proceed again just as in Lemma 3, breaking
the integral into three parts. For large r,

log t

/5/2 i Ce
dr < ,
L T3/2(S — 3/2(15 _ T)s/z §3/2¢3/2

for small r,

llogt'S

. S d < e 27t
/ss/tw P2(s — )2t — )2 = TBR— s+ 1)32

and for intermediate r

s—s/tl/4 e—%bf%tr t3/4 S—s/t1/4 Llogt
dr < cg / e 2t "dr
Lo 7ot s ],
74 ) oa €10 _1logt,
< 9/26 7572 20t
which completes the proof. O

3 The many-to-one and many-to-two lemmas

We mentioned in the introduction that we will attempt to count the number of particles
remaining below a certain line and ending near m(¢), and that particles following such
paths must look like Bessel processes below a line. In this section we qualify that
heuristic.

3.1 The many-to-one lemma

It is well-known that the first moment of the number of particles in (a subset of)
a branching process can be estimated via a many-to-one lemma. For our branching
Brownian motion the number of particles at time ¢ is approximately ef, and to first
order they behave independently so that the expected number satisfying a certain
property is simply e? times the probability that one particle (i.e. one Brownian motion)
satisfies that property. More general formulations of this idea have been given over the
years, notably by Hardy and Harris [6]. For our particular needs the following form
will be most useful.



Let g:(-) be a measurable functional of (¢ and) the path of a particle up to time ¢;
so for example we might take

gt(v) _ t2ef(f Xv(s)ds'

Then
E

> gt(v)] = e'Elg:()]

vEN((t)

where &, t > 0 is just a standard Brownian motion under P. Now fixing o > 0 and
0 € R and defining

1 a2
= a(a + ft — ft)eﬁg’5 g t/2]1{§s<a+ﬁs Vs<t}s

¢(®)

the following lemma is a result of Girsanov’s theorem and the knowledge of Bessel
processes seen at the start of Section 2.

Lemma 5 (Many-to-one lemma).

E

> w(v)} — ' E[gi(&)] = €'Q [ .

——~9¢(§)
o ")

where under Q, a4+ Bt — &, t > 0 is a Bessel process.

3.2 The many-to-two lemma

We can use the many-to-one lemma to calculate expectations of numbers of particles
with certain properties. However, as outlined in the introduction, we would like to
apply second moment methods. Thus we will need a many-to-two lemma, which —
just as the many-to-one lemma reduces calculating first moments to the expectation
of functionals of just one particle — will reduce calculating second moments to the
expectation of functionals of two, necessarily dependent, particles. This is a natural
idea and has been around to some extent for many years; indeed Bramson uses a very
basic many-to-two lemma in [3]. However, just as we used a non-trivial measure change
in developing our many-to-one lemma above, we would like a more refined many-to-two
lemma involving Bessel processes. We will not give a proof here — as Bramson says,
“a rigorous verification of [even the most basic version] is quite messy”  and refer to
[9] which gives a quite general formulation, of which our lemma is a special case. The
idea is that calculating second moments is akin to choosing two “typical” particles at
random from a set; these particles followed the same path up to the death of their most
recent ancestor, and then evolved independently. The many-to-two lemma reflects this
heuristic.

Suppose that under Q, as well as the process & seen in Section 3.1, we have two
processes & and €2, ¢ > 0 and a time T € [0, 00) such that

o o+ (Bt — &} and a + Bt — €2 are Bessel processes started from o
o (= forallt <Tj

o (& — &kt >T) and (& — ¢4,t > T) are independent given T and &7



Define
¢'(t)
fori=1,2and ¢t > 0.

1 i i 32
= a(a + B8t = &P i s vety

Lemma 6 (Many-to-two lemma). Let g:(-) and h:(-) be two measurable functionals of
t and the path of a particle up to time t, as in Section 3.1. Then

El Z gt(u)ht(v)l

u,vEN (t)

t 1 1 1 ' 2t—s ¢'(s) 1 2
= a@m(e)] + [ 20| S e
As mentioned above, the dependence between the two Bessel processes reflects the
dependence structure of the BBM: any pair of particles (u,v) in the BBM are entirely
dependent until their most recent common ancestor, and completely independent there-
after. The first term on the right-hand side of the many-to-two lemma takes account
of the possibility that the Bessel processes have not yet split (which corresponds to
the event that w and v are in fact the same particle) and otherwise the second term
integrates out the split time T of the two Bessel processes (which corresponds to in-
tegrating out the last time at which the most recent common ancestor of v and v was
alive).

T = s] ds.

4 Proof of Theorem 1

For ¢ > 0 set (as in Section 2)

Now define
H,(t)=#{ue N(t): Xu(s) <a+8s Vs<t, ft—1<X,(t) <pt}.

As outlined in the introduction, we shall show that the first two moments of H, (%)
give an accurate picture of the probability that there is a particle near 8t at time ¢.
We begin by calculating the first moment.

Fori=1,2,¢t>0and s >0, let

B;={ft—1<¢ < pt}
and recall that we defined
) 1 . |
¢'s) = ~(Bs +a—&)exp (ﬁﬁi - 5528) Liei<pria vr<s)
We write f(y,t) ~ g(y,t) if ¢f < g <[ for some strictly positive constants ¢ and ¢

not depending on any of the parameters ¢, y, a.

Lemma 7. For any o > 1,
E[H, (t)] ~ a%e V2

forallt> 1,y € R and a € [1,/71].



Proof. For large t,
E[Ho(1)] = ¢!Q | =1, | = etQ | =& -pet+s/2q
’ ¢he) Bt+a—& .
~ et—32t/2Q(Bl)
~ t3/2@7\/§y(@(04 < ﬂt +a— gt <a+ 1)

Now, [t + o — & is a Bessel process started from « under Q, so by (3) and (4)

2

a+1
z
Q(aﬁﬁt'f‘a—éﬁa-i-l)w/a tg,?dZNat?’/2

which gives the result. O
We now prove a lower bound for m(t) by calculating the second moment of Hi (¢).

Proposition 8. There ezist ty and a constant ¢ € (0,00) not depending on t or y such
that

P(Ju € N(t) : Xu(t) > V2t — —=logt +y) > ce™ V2

\/_
for all y € [0,/~t] and t > to.

Proof. We saw in Lemma 7 that E[H; (t)] > /e=V2; we shall now estimate the second
moment of Hy(t).

E[H()’]
_ it 1 t 2%—s Cl(S B
_6Q|:181<1—@:|+A 2e Q[lBlﬂBgcl(t)CQ()‘T—S]dS
= E[H.(t)]
t L 2
2t —s (Bs 41— &)efla—F"s/2 -
e 0 E (Bt +1 — &) (Bt + 1 — £2)ePei+BEE 0% I1p,nB,|T = s|ds
< E[H,(1)]
2 ' 1 2
+ 26216—5 t+2ﬁ/ e—SQ {(65 +1-— 5;)6555—5 8/2131032 T — S} ds
0
< E[H,(t)]
’ _ﬁ”/tQ[(ﬁerl glye=3 - T S} ds
t ’ — 2t _ -
+ cot’e ; 1

Under Q, (8s+1—¢&L s > 0) and (8s+ 1 — &2, s > 0) are Bessel processes starting
from 1 that are equal up to 7" and independent (given T" and £}) after T. Thus, taking
notation from Lemma 3 we have

ts— ﬁle

E[H, (t)%] < B[Hy(8)] + cot’e 2 / plyie
0

]lAlﬂAQ T = S} ds.

But Lemma 3 tells us that the integral is at most a constant times t~3, so for all large

t and y € [0, /7]
E[H, (t)*] < cE[H1 ()]



for some constant ¢ not depending on y or t. We deduce that

E[H, (t)]*

Sl S dem VY
E[H\(t)%] ~

P(H:y(t) #0) >

as required. O

For the upper bound on m(t), we combine the first moment method for H,(t) with
an estimate of the probability that a particle ever moves too far from the origin.

Proposition 9. There exist tog and and a constant A € (0,00) not depending on t or
y such that

P (Hu € N(t): Xu(t) > V2t — % logt + y) < Ay +2)%e V2

for all y € [0,v/t] and t > t,.

Proof. Recall from Lemma 7 that
P(Hq(t) # 0) < E[H,(t)] ~ a?e V2.

Thus it remains to estimate how large we must choose « so that with high probability
no particles ever go above 8s + « for s € [0,¢]. To this end define

B={3ue N(t),s <t:Xu(s) > Ps+a}
and let
P=#{ue N(t): Xu(s)<a+fs+1 Vs <t ft—1<X,(t) <pt+a}.
By similar calculations to those in Lemma 7 we easily see that
E[[] < c(a + 1)tV
for some constant ¢ not depending on ¢, a or y. We claim that for o > y > 0,
E[l'|B] > ¢

for some constant ¢’ > 0 also not depending on ¢, a or y; essentially if a particle has
already reached y + (s then it has done the hard work, and the usual cost e~V of
reaching (Gt disappears. To see this, set

7 =1inf{s > 0: Ju € N(s) with X,(s) > a+ (s};

then

E[l'|B] = ﬁ/o E[l'|7 = s]P(r € ds)

so to establish our claim it suffices to show that E[I'|7 = s] is larger than a constant
not depending on s, t, a or y. On the event 7 = s, let v be the particle at position
o+ fBs at time 5. Let 3’ = /2 — 23—\/5 loft, and let N,(r) be the set of descendants of
particle v at time r, for r > s. Then, provided that a > y > 0, on the event 7 = s

I'>#{u e Ny(t): Xu(r) — Xu(s) <B'(r—s)+1 Vr e [s,t],
Bt —s)—1<X,(t)— Xu(s) B (t—9)}.

10



Thus by Lemma 7, if s <t — 1 then (applying the strong Markov property)
El|r=s]>¢.

If s > ¢t — 1 then E['|7 = s] is at least the probability that a single Brownian motion
B,,r > 0 remains within [—1,1] for all » € [0,1], and satisfies B; € [—1,0]. This
establishes our claim, so for a« >y > 0

El|B] > ¢ and E[l<c(a+ 1)46—\/21,'
But then for a >y > 0,

E[IP(B) _ E[N] _ ¢ v
P(B) < Fra,y ~ EmyE S 2@tV

Choosing @ = y + 1, we have

P (3u €N() : Xo(t) > V2t — ——logt + y) < E[H,41(t)] + P(B)

f
< Ay +2)*e V2

as required. O

Proof of Theorem 1. As mentioned in the introduction, Kolmogorov et al. [13] showed
that there exist functions m(t) and w(x) such that u(t,m(t) + ) — w(z) as t — oc.
Clearly u is increasing in . But we have shown that

ce VI <1 —u(t, V2t — 2= logt +y) < Ay +2)te V.

2\/_

We deduce that m(t) = v/2t — logt+ O(1). O

\f

5 Proof of Theorem 2

We proceed via a series of four results, each proving one of the upper or lower bounds
in one of the statements (1) or (2).

Lemma 10. The upper bound in (1) holds:

M, — /2t 3
lim inf —* V2 < — almost surely.

t—o0 logt 22
Proof. To rephrase the statement of the lemma, we show that for any € > 0, there are
arbitrarily large times such that there are no particles above v/2t — (3/2v/2 — ¢) log t.
Choose R > 2/e, let t; =1 and for n > 1 let ¢, = efitn—1 Define

E,={3u e N(t,) : Xult,) > V2t, — — (325 — ) logtn}

and
Fp = {|IN(tn)| < €, |Xu(t,)| < V2tp Yu € N(ty)}.

We know that F),, happens for all large n, so it suffices to show that

P(ﬂ(EkﬂFk)) —0 asn— oo.

k>n

11



Now,
k-1

]P’( ﬂ(Ekka)) _Z\;iinooﬂP<EkﬂFk ﬂ(EjﬁFj)>

k>n k=n j=n

so we would like to show that the terms on the right-hand side are small. For a particle
u, let £ be the event that some descendant of u at time ¢,, has position larger than

\/_t —- —¢)logt,. Also let s, =t,, — t;,—1. Then
k—1
]P’(Ek NFe| () (&N Fj)>
j—n

| /\

(o)

IE”( U Ex ﬂ(Eijj)>

N(tg—1) ' j=n

< e2r- 1P(Hu € N(sk) : Xu(sp) > V28, — 725 log s, + 525 log(45=L) + e log )

" —3/2
< A(logty, +2)*)/ " <1 - %) t°

IN

k

where the last inequality used Proposition 9. Since we chose R > 2/e, this is much
smaller than 1 when k is large, as required. [l

Lemma 11. The upper bound in (2) holds:

5 — V2t P
imsu —
tﬂoop 10gt B 2\/5

almost surely.

Proof. We show that for large ¢ and any ¢ > 0, there are no particles above /2t —
(1/2v/2 — 2¢) logt. By Proposition 9,
P(3u € N(t) : X, (t) > V2t — (555 — ¢) log1)

—V2(-L log t+et)

< A(logt +2)%e e

< A(logt + 2)4 V2,
Thus for any lattice times t,, — oo, by Borel-Cantelli

P(3u € N(tn) : Xultn) > V2t, — (2\% —¢)logt, for infinitely many n) = 0.

It is now a simple exercise using the exponential tightness of Brownian motion and the
fact that we may choose the times ¢,, arbitrarily close together to make sure that no
particle can go above /2t — (2\/— 2¢) logt for any time t. O

Lemma 12. The lower bound in (1) holds:

M, — V2t

ht@,g}f Togt > —2\/5 almost surely.

12



Proof. We show that for large ¢ and any € > 0, there are always particles below
V2t — (%ﬁ + 2¢)logt. Let

Ay ={Bue N(t): Xu(t) > V2t = (335 + ) log t}

and

B, = {|N(logt)| > t'/2, X, (logt) > —v/2logt¥v € N(logt)}.
Define N(v;t) to be the set of descendants of particle v that are alive at time ¢. Let
l; =t —logt. Then for all large ¢,

P(A, N By)

<E| JI P(BueN(@t): Xu(t) > V2t = (55 + ) log t| Fiog 1) Lp,
LvEN (logt)

<E| JI P(BueNW):Xulls) > V2 - 325 logl; + 325 log & + elogt)1p,

Thus by Borel-Cantelli, for any lattice times t¢,, — oo,
P(A;, N By, infinitely often) = 0.

Since we know that almost surely for all large ¢, |[N(logt)| > ez!°8t = ¢1/2 and
X,(logt) > —v/2logt for all v € N(logt), we deduce that

P(A;, infinitely often) = 0.

Then it is again a simple task using the exponential tightness of Brownian motion to
check that no particles can move further than elogt between lattice times infinitely
often (provided that we choose t,, — t,,—1 small enough). O

Proposition 13. The lower bound in (2) holds:

. M, — V2t 1
lim sup > —
t—o0 1Ogt 2\/5

Proof. This is similar to the proof of the lower bound in Theorem 1; it is effectively
the same as the proof given by Hu and Shi [10], although again our Bessel changes of
measure ease the calculations.

We let

almost surely.

1 logt
:\/5———
B ol

and
V(t) = {v S N(t) : XU(T) <Ber+1Vr<t, Bit—1< Xv(t) < 5tt}

and define )
InZ/ Liv 2oy dt-

13



We estimate the first two moments of I,,. Immediately from our earlier lower bound
on P(H;(t) # 0) (from the proof of Proposition 8, taking y = % logt) we get

2n

2n '
E[l,] = / P(V (t) # 0)dt > c/ e VEURIBt g = ¢

Now,

2n 2n
E[I;] = [/ / Lv )20 Liv 20y dsdt}

2n
_2/ / $) # 0,V (1) # 0) ds dt.
But whenever s < t,

P(V(s) # 0,V (t) #0) <E[[V(s)[V(O)] = E[[V(s)[E[[V ()] 7] (5)

and letting N (u;t) be the set of descendants of particle u that are alive at time ¢,

[ H]: Z E Z ]l{vev(t)} Fs

ueEN (s) vEN (u;t)
Now for any s,t > 0 let
Ai(s) ={ue N(s) : Xy(r) < Byr + 1Vr < s}

and
Bi(s)={ue N(s): Bis—1< X,(s) < Gis}.

Applying the many-to-one lemma, we have

E| Y lwevay|F

vEN (u;t)

= Luea ()1 Ex, ()i Z Live A, (t—s)nB,(t—s)}

vEN (t—s)
=1 A et*SQX _ (_50 + 1)]]'{£t—seBt(t—s)}
{ucAi(s)} u(s)—PBts (Be(t —s) — &—s + 1)654&,5750)753@,5)/2
S)— 28 ]]' gtfs Bt t—s
< Lpueay@ye’ " (Bis = Xu(s) + DO Qy (g, Lﬁ?@{ggté?(t)}s)/z

< 22T e, 0y (Bes — Xuls) + 1P OQ (& € Bi(h)] & = Xu(s)

where for the last equality we used the fact that Bessel processes satisfy the Markov

14



property. Substituting back into (5) and applying the many-to-two lemma we get
P(V(s) # 0, V(£) # 0)

1 ogt s
Y Lpuevipe Pt2eT T iea, 91 (Bes — Xo(s) + 1))
u,vEN(s)

<E

Q (ft € Bt(t)| gs = Xv(s))‘|

1 llogt 2
=e’Q |:<1—(S)]1{§;€Bs(s)}e tl/2e27 0 (3)65‘5/2@(&1 € Bt(t)‘fsl)]

s 1
+ 2e2577Q C(T) Liciep (ane —2541/2, llogt, .o s)ebis/2
Cl {€1eBs(s)}
0

(5)¢*(s)
Q (& e Bi(t)|€2)|T(1,2) = ’”] dr
— 1/2Q (€} € By(s), & € By(1))
+ 2151/2 l g:;:i i BZZ:; Z:;ze LigreB.(s), @enny| T(1,2) = T] "
<112 (5 € Bi(s), & € Bi(t))

\/_t1/2 1 lotgt / _1 logtrQ |:(ﬁt7a _ 6; + 1)€—Bt(ﬁt7‘_£i+l)
0

s, s, 5?eBt<t>}’T(1v 2) = 7“} dr.

We must now estimate the last line above. The Q(-) part of the first term is the
probability that a Bessel process is near the origin at time s, and then again at time
t; so the first term is no bigger than a constant times t'/2573/2(t — s 4+ 1)73/2. Then
using notation from Section 2, the expectation Q[-] in the second term is

1
P[]l{ flogsf%lof's+l<Y51§2flog57ﬁ¥5+2}1{1gytlg2}y;e

Thus by Lemma 4,
P(V(s) £ 0,V () £0) < ea(t72 +171(t — s+ 1))

B = r} .

and hence o
Elln) < 201/ / (2t (= s+ 1)) ds dt < e

S0 B
P(1,, > 0) > P(I, > E[,,]/2) >

When n is large, at time 2§logn there are at least n® particles, all of which have
position at least —2v/20 logn. By the above, the probability that none of these has a
descendant that goes above v/2s — ﬁ log s — 2v/26 log n for any s between 26 logn+n
and 26 logn + 2n is no larger than

s

(1 — Cg)n

The result follows by the Borel-Cantelli lemma since ) (1 — 03)"6 < 0. O
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Proof of Theorem 2. The convergence in probability is a trivial consequence of Theo-
rem 1. The almost sure statements are given by combining Lemmas 10, 11 and 12 and

Proposition 13. O
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