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Abstrat We give proofs of two results about the position of the extremal partilein a branhing Brownian motion, one onerning the median position and another thealmost sure behaviour. Our methods are based on a many-to-two lemma whih allowsus to estimate the e�et of the branhing struture on the system by onsidering twodependent Bessel proesses.1 Introdution and main resultsKolmogorov et al. [13℄ proved that the extremal partile in a standard branhingBrownian motion sits near √2t at time t. Higher order orretions to this result weregiven by Bramson [3℄, and then almost sure �utuations were proved by Hu and Shi[10℄. These two remarkable papers, more than thirty years apart, provide results whihre�et an extremely deep understanding of the underlying branhing struture. Thisartile grew out of a desire to know whether shorter or simpler proofs of these resultsexist.We onsider a branhing Brownian motion (BBM) beginning with one partile at 0,whih moves like a standard Brownian motion until an independent exponentiallydistributed time with parameter 1. At this time it dies and is replaed (in its urrentposition) by two new partiles, whih � relative to their birth time and position �behave like independent opies of their parent, moving like Brownian motions andbranhing at rate 1 into two opies of themselves. Let N(t) be the set of all partilesalive at time t, and if v ∈ N(t) then let Xv(t) be the position of v at time t. If v ∈ N(t)and s < t, then let Xv(s) be the position of the unique anestor of v that was alive attime s. De�ne Mt = maxv∈N(t) Xv(t).1.1 Bramson's result on the distribution of MtDe�ne
u(t, x) = P (Mt ≤ x) .This funtion u satis�es the Fisher-Kolmogorov-Petrovski-Pisounov (FKPP) equation
ut =

1

2
uxx + u2 − u,(with Heaviside initial ondition) whih has been studied for many years both an-alytially and probabilistially: see for example Kolmogorov et al. [13℄, Fisher [5℄,Skorohod [18℄, MKean [15℄, Bramson [3, 4℄, Neveu [16℄, Uhiyama [19℄, Aronson andWeinburger [2℄, Karpelevih et al. [11℄, Harris [8℄, Kyprianou [14℄, Harris et al. [7℄. Inpartiular (see [13℄) u onverges to a travelling wave: that is, there exist funtions mof t and w of x suh that

u(t, m(t) + x) → w(x)uniformly in x as t → ∞.We would like to o�er a proof of the following result whih is muh shorter andsimpler than the original proof by Bramson [3℄:Theorem 1 (Bramson, 1978). The entering term m(t) satis�es
m(t) =

√
2t − 3

2
√

2
log t + O(1)as t → ∞. 1



As Bramson notes in [3℄, �an immediate frontal assault using moment estimates,but ignoring the branhing struture of the proess, will fail.� That is, let G(t) bethe number of partiles near m(t) at time t. If some partile has large position attime s < t then many partiles are likely to have large position at time t, and thismeans that the moments of G(t) are misleading. For this reason, instead of estimating
G(t) diretly, we estimate H(t), the number of partiles near m(t) that have remainedbelow m(t)s/t for all times s < t. It is not di�ult to guess that partiles behaving inthis way look like Bessel-3 proesses below the line m(t)s/t, s ∈ [0, t]. Essentially ourproof simply takes advantage of this observation1.For the lower bound Bramson develops and applies very aurate estimates forBrownian bridges to alulate the seond moment of the number of partiles in someset (whih is something like a more ompliated version of H(t)). We instead use ahange of measure whih allows us to apply basi estimates on Bessel proesses. Thisis only possible thanks to a general many-to-two lemma developed in [9℄.For the upper bound (Proposition 9) we apply the �rst moment method to thesame quantity H(t). However we must then estimate G(t) − H(t). Here we borrowthe outline of an idea from Bramson, whih we use to give a straightforward estimateof the probability that G(t) − H(t) is non-zero.1.2 Hu and Shi's result on the paths of MtHaving established Bramson's result on the entering term m(t), we move on to thealmost sure behaviour of Mt. We prove the following result, whih is the analogue ofa result for quite general branhing random walks given by Hu and Shi [10℄.Theorem 2. The maximum Mt satis�es

Mt −
√

2t

log t
−→ − 3

2
√

2
in probabilityand

lim inf
t→∞

Mt −
√

2t

log t
= − 3

2
√

2
almost surely. (1)However,

lim sup
t→∞

Mt −
√

2t

log t
= − 1

2
√

2
almost surely. (2)This result says that although the extremal partile looks like m(t) for most times

t, oasionally a partile will travel muh further. Tehnially the theorem as statedhere is a new result as Hu and Shi onsidered only disrete-time branhing randomwalks, but it would not take too muh e�ort to derive it from their work. We proeedinstead by applying the estimates developed in the proof of Theorem 1 along withthe Borel-Cantelli lemma and exponential tightness of Brownian motion. Only thelower bound in (2) requires a signi�ant amount of extra work, and for that we takean approah similar to that of Hu and Shi in [10℄. They notied that although theprobability that a partile has position muh bigger than m(t) at a �xed time t is verysmall, the probability that there exists a time s between (say) n and 2n suh that apartile has position muh bigger than m(s) at time s is atually quite large.1The reader may dedue from this desription that we shall, as part of our proof, alulate estimatesfor branhing Brownian motion with absorption. This model was originally studied by Kesten [12℄with the initial intention of investigating the maximal displaement in a BBM.2



1.3 Extensions to other modelsWe note that although we onsider only the simplest possible BBM, with binarybranhing at �xed rate 1, our methods an be applied to rather more general models.There is however one important neessary ondition, that the mean and variane ofthe number of partiles born at a branhing event must be �nite. This is simply due tothe fat that we apply a seond moment method.Addario-Berry and Reed [1℄ (in their Theorem 3) proved an analogue of Bramson'sresult (our Theorem 1) for a wide lass of branhing random walks. It is possiblethat our methods ould be adapted to extend their result to the ase where the birthdistribution is not almost surely bounded. Sine the purpose of this paper is to provideshort and simple proofs to two sophistiated results, and the generality of branhingrandom walks introdues various tehnial ompliations, we do not arry out thiswork here.2 Bessel-3 proessesWe reall some very basi properties of Bessel-3 proesses, and then do muh of thedirty work of Theorem 1 and Proposition 13 (whih is the most di�ult part of The-orem 2) by alulating the expetation of two funtionals of two dependent Bessel-3proesses. These alulations, in Lemmas 3 and 4, are not motivated until later in theartile, but we inlude them here as they are simply fats about Bessel proesses anddo not ontribute a great deal to the main ideas of the proofs.If Wt, t ≥ 0 is a Brownian motion in R3 then its modulus |Wt|, t ≥ 0 is alled aBessel-3 proess (or simply a Bessel proess). Suppose that Bt is a Brownian motion in
R started from B0 = x under a probability measure Px; then Xt := x−1Bt1{Bs>0 ∀s≤t}is a non-negative unit-mean martingale under Px. We may hange measure by Xt,de�ning a new probability measure P̂x via

dP̂x

dPx

∣

∣

∣

∣

∣

Ft

:= Xt(where Ft is the natural �ltration of the Brownian motion Bt) and then Bt, t ≥ 0 is aBessel proess under P̂x. The density of a Bessel proess satis�es
P̂x(Bt ∈ dz) =

z

x
√

2πt

(

e−(z−x)2/2t − e−(z+x)2/2t
)

dz.This and muh more about Bessel proesses an be found in many textbooks, forexample Revuz and Yor [17℄.We now laim that
e−(z−x)2/2t − e−(z+x)2/2t ≤ 2xz

t
∀ x, z ≥ 0, t > 0. (3)Indeed the derivative of the left-hand side with respet to z is

x

t

(

e−(z−x)2/2t + e−(z+x)2/2t
)

+
z

t

(

e−(z+x)2/2t − e−(z−x)2/2t
)

;the �rst term above is no greater than 2x/t, while the seond is negative whenever
x, z ≥ 0. 3



We also hoose and �x γ ∈ (0,
√

2) suh that
eδ − e−δ = 2 sinh δ ≥

√
2δ for all δ ∈ [0, 2γ];then

z

x
√

2πt

(

e−(z−x)2/2t − e−(z+x)2/2t
)

≥ e−z2/2t−x2/2t z2

√
πt3

(4)whenever zx ≤ γt.Now suppose that under P̂ we have a time τ ∈ [0,∞) and two Bessel proesses Y 1
tand Y 2

t , t ≥ 0 suh that
• Y 1

0 = Y 2
0 = 1;

• Y 1
t = Y 2

t for all t ≤ τ ;
• (Y 1

t − Y 1
τ , t > τ) and (Y 2

t − Y 2
τ , t > τ) are independent given τ and Y 1

τ .The following lemma does most of the hard work in proving the lower bound forTheorem 1.Lemma 3. Let
β =

√
2 − 3

2
√

2

log t

t
+

y

t
,

A1 = {1 ≤ Y 1
t ≤ 2} and A2 = {1 ≤ Y 2

t ≤ 2}.For all large t and y ∈ [0,
√

γt],
∫ t

0

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤ ct−3for some onstant c not depending on t or y.Proof. The idea here is that the probability that a Bessel proess is near the origin attime t is approximately t−3/2. If s is small, then we have two (almost) independentBessel proesses whih must both be near the origin at time t, giving t−3. If s is large,then we e�etively have only one Bessel proess, giving t−3/2, but the exp(3 log t
2t s) givesus an extra t−3/2. It then remains to hek when s is neither large or small, but theabove e�ets ombine in the right way suh that things turn out niely then too. Weapply in eah ase the basi estimate (3) on the Bessel density.We �rst hek the small s ase: for large t,

∫ 1

0

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤
∫ 1

0

P̂ (A1 ∩ A2|τ = s)ds

≤ c1P̂ (A1)
2 ≤ c2t

−3.Similarly for the large s ase:
∫ t

t−1

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤ c3t
−3/2P̂ (A1) ≤ c4t

−3.

4



Finally the main ase, when s ∈ [1, t − 1]:
∫ t−1

1

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds

≤
∫ t−1

1

∫ ∞

0

z3

s3/2
e−βz− 3 log t

2t s

(

∫ 2

1

2x2

√

2π(t − s)3
dx

)2

dz ds

≤ c5

∫ t−1

1

e−
3 log t

2t s

s3/2(t − s)3

∫ ∞

0

z3e−zdz ds

≤ c6t
−7/2

∫ 1−1/t

1/t

e−( 3
2

log t)u

u3/2(1 − u)3
duand it is a simple task to hek that the last integral above is bounded by √

t times aonstant:
∫ 1−1/t

1/t

e−( 3
2

log t)u

u3/2(1 − u)3
du

≤ c7

∫ 1/2

1/t

u−3/2du + c8t
−3/2

∫ 1/2

1/t

s−3e( 3
2

log t)sds

≤ c9t
1/2 + c13t

−3/2

∫ t−1/6

t−1

s−3e( 3
2

log t)sds + c8t
−3/2

∫ 1/2

t−1/6

s−3e( 3
2

log t)sds

≤ c9t
1/2 + c10t

−3/2

∫ t−1/6

t−1

s−3ds + c8t
−1/4

∫ 1/2

t−1/6

e( 3
2

log t)sds

≤ c11t
1/2as required.Our next lemma is very similar; it estimates a slightly di�erent funtional, whihwill appear in Proposition 13.Lemma 4. Let as,t = 1

2
√

2
log s − 1

2
√

2

log t
t s. If e ≤ s ≤ t ≤ 2s, then

∫ s

0

e−
1
2

log t
t rP̂

[1{as,t+1≤Y 1
s ≤as,t+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

dr

≤ ce−
1
2

log t
t s

(

1

t5/2
+

1

t3/2(t − s + 1)3/2

)for some onstant c not depending on s or t.Proof. We approximate just as we did for Lemma 3. Essentially the e−βtY
1

r term meansour initial Bessel proess must be near the origin at time r; then two independent Besselproesses started from time r must be near the origin at times s and t respetively. Thiswill give us a ontribution of r−3/2(s− r)−3/2(t− r)−3/2. Indeed for any r ∈ [1, s− 1],integrating out over Y 1
r ,

P̂
[1{as,t+1≤Y 1

s ≤as,t+2}1{1≤Y 1
t ≤2}Y

1
r e−βtY

1
r

∣

∣

∣
τ = r

]

≤ c1

∫ ∞

0

ze−βtz
z2

r3/2
· 1

(s − r)3/2
· 1

(t − r)3/2
dz

≤ c2r
−3/2(s − r)−3/2(t − r)−3/2.5



For r ≤ 1 we are e�etively asking two independent Bessel proesses to be near theorigin at times s and t, giving s−3/2t−3/2, and for r ≥ s − 1 we have just one Besselproess whih must be near the origin at times s and t, giving s−3/2(t − s + 1)−3/2.Thus (noting that log s ≥ log t
t s provided s, t ≥ e)

∫ s

0

e−
1
2

log t
t rP̂

[1{as,t+1≤Y 1
s ≤as,t+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

dr

≤ c3

s3/2t3/2
+ c4

∫ s−1

1

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr +

c5e
− 1

2

log t
t s

s3/2(t − s + 1)3/2
.Sine s and t are of the same order and e−

1
2

log t
t s ≥ s−1/2 it remains to estimate theintegral in the last line above � and we proeed again just as in Lemma 3, breakingthe integral into three parts. For large r,

∫ s/2

1

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c6

s3/2t3/2
,for small r,

∫ s−1

s−s/t1/4

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c7

e−
1
2

log t
t s

s3/2(t − s + 1)3/2
,and for intermediate r

∫ s−s/t1/4

s/2

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c8

t3/4

s9/2

∫ s−s/t1/4

s/2

e−
1
2

log t
t rdr

≤ c9
t7/4

s9/2
e−

1
4

log t
t s ≤ c10

t5/2
e−

1
2

log t
t swhih ompletes the proof.3 The many-to-one and many-to-two lemmasWe mentioned in the introdution that we will attempt to ount the number of partilesremaining below a ertain line and ending near m(t), and that partiles following suhpaths must look like Bessel proesses below a line. In this setion we qualify thatheuristi.3.1 The many-to-one lemmaIt is well-known that the �rst moment of the number of partiles in (a subset of)a branhing proess an be estimated via a many-to-one lemma. For our branhingBrownian motion the number of partiles at time t is approximately et, and to �rstorder they behave independently so that the expeted number satisfying a ertainproperty is simply et times the probability that one partile (i.e. one Brownian motion)satis�es that property. More general formulations of this idea have been given over theyears, notably by Hardy and Harris [6℄. For our partiular needs the following formwill be most useful. 6



Let gt(·) be a measurable funtional of (t and) the path of a partile up to time t;so for example we might take
gt(v) = t2e

R

t
0

Xv(s)ds.Then
E

[

∑

v∈N(t)

gt(v)

]

= etE[gt(ξ)]where ξt, t ≥ 0 is just a standard Brownian motion under P . Now �xing α > 0 and
β ∈ R and de�ning

ζ(t) =
1

α
(α + βt − ξt)e

βξt−β2t/21{ξs<α+βs ∀s≤t},the following lemma is a result of Girsanov's theorem and the knowledge of Besselproesses seen at the start of Setion 2.Lemma 5 (Many-to-one lemma).
E

[

∑

v∈N(t)

gt(v)

]

= etE[gt(ξ)] = etQ

[

1

ζ(t)
gt(ξ)

]where under Q, α + βt − ξt, t ≥ 0 is a Bessel proess.3.2 The many-to-two lemmaWe an use the many-to-one lemma to alulate expetations of numbers of partileswith ertain properties. However, as outlined in the introdution, we would like toapply seond moment methods. Thus we will need a many-to-two lemma, whih �just as the many-to-one lemma redues alulating �rst moments to the expetationof funtionals of just one partile � will redue alulating seond moments to theexpetation of funtionals of two, neessarily dependent, partiles. This is a naturalidea and has been around to some extent for many years; indeed Bramson uses a verybasi many-to-two lemma in [3℄. However, just as we used a non-trivial measure hangein developing our many-to-one lemma above, we would like a more re�ned many-to-twolemma involving Bessel proesses. We will not give a proof here � as Bramson says,�a rigorous veri�ation of [even the most basi version℄ is quite messy� � and refer to[9℄ whih gives a quite general formulation, of whih our lemma is a speial ase. Theidea is that alulating seond moments is akin to hoosing two �typial� partiles atrandom from a set; these partiles followed the same path up to the death of their mostreent anestor, and then evolved independently. The many-to-two lemma re�ets thisheuristi.Suppose that under Q, as well as the proess ξt seen in Setion 3.1, we have twoproesses ξ1
t and ξ2

t , t ≥ 0 and a time T ∈ [0,∞) suh that
• α + βt − ξ1

t and α + βt − ξ2
t are Bessel proesses started from α;

• ξ1
t = ξ2

t for all t ≤ T ;
• (ξ1

t − ξ1
T , t > T ) and (ξ2

t − ξ2
T , t > T ) are independent given T and ξ1

T .7



De�ne
ζi(t) =

1

α
(α + βt − ξi

t)e
βξi

t−β2t/21{ξi
s<α+βs ∀s≤t}for i = 1, 2 and t ≥ 0.Lemma 6 (Many-to-two lemma). Let gt(·) and ht(·) be two measurable funtionals of

t and the path of a partile up to time t, as in Setion 3.1. Then
E

[

∑

u,v∈N(t)

gt(u)ht(v)

]

= etQ

[

1

ζ1(t)
gt(ξ

1)ht(ξ
1)

]

+

∫ t

0

2e2t−sQ

[

ζ1(s)

ζ1(t)ζ2(t)
gt(ξ

1)ht(ξ
2)

∣

∣

∣

∣

T = s

]

ds.As mentioned above, the dependene between the two Bessel proesses re�ets thedependene struture of the BBM: any pair of partiles (u, v) in the BBM are entirelydependent until their most reent ommon anestor, and ompletely independent there-after. The �rst term on the right-hand side of the many-to-two lemma takes aountof the possibility that the Bessel proesses have not yet split (whih orresponds tothe event that u and v are in fat the same partile) and otherwise the seond termintegrates out the split time T of the two Bessel proesses (whih orresponds to in-tegrating out the last time at whih the most reent ommon anestor of u and v wasalive).4 Proof of Theorem 1For t > 0 set (as in Setion 2)
β =

√
2 − 3

2
√

2

log t

t
+

y

t
.Now de�ne

Hα(t) = # {u ∈ N(t) : Xu(s) ≤ α + βs ∀s ≤ t, βt − 1 ≤ Xu(t) ≤ βt} .As outlined in the introdution, we shall show that the �rst two moments of Hα(t)give an aurate piture of the probability that there is a partile near βt at time t.We begin by alulating the �rst moment.For i = 1, 2, t > 0 and s ≥ 0, let
Bi =

{

βt − 1 ≤ ξi
t ≤ βt

}and reall that we de�ned
ζi(s) =

1

α
(βs + α − ξi

s) exp

(

βξi
s −

1

2
β2s

)1{ξi
r≤βr+α ∀r≤s}.We write f(y, t) ∼ g(y, t) if cf ≤ g ≤ c′f for some stritly positive onstants c and c′not depending on any of the parameters t, y, α.Lemma 7. For any α ≥ 1,

E[Hα(t)] ∼ α2e−
√

2yfor all t ≥ 1, y ∈ R and α ∈ [1,
√

γt]. 8



Proof. For large t,
E[Hα(t)] = etQ

[

1

ζ1(t)
1B1

]

= etQ

[

α

βt + α − ξt
e−βξ1

t +β2t/21B1

]

∼ et−β2t/2Q(B1)

∼ t3/2e−
√

2yQ(α ≤ βt + α − ξt ≤ α + 1).Now, βt + α − ξt is a Bessel proess started from α under Q, so by (3) and (4)
Q(α ≤ βt + α − ξt ≤ α + 1) ∼

∫ α+1

α

z2

t3/2
dz ∼ α2t−3/2whih gives the result.We now prove a lower bound for m(t) by alulating the seond moment of H1(t).Proposition 8. There exist t0 and a onstant c ∈ (0,∞) not depending on t or y suhthat

P(∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y) ≥ ce−

√
2yfor all y ∈ [0,

√
γt] and t ≥ t0.Proof. We saw in Lemma 7 that E[H1(t)] ≥ c′e−

√
2y; we shall now estimate the seondmoment of H1(t).

E[H1(t)
2]

= etQ

[1B1

1

ζ1(t)

]

+

∫ t

0

2e2t−sQ

[1B1∩B2

ζ1(s)

ζ1(t)ζ2(t)

∣

∣

∣

∣

T = s

]

ds

= E[H1(t)]

+ 2e2t

∫ t

0

e−sQ

[

(βs + 1 − ξs)e
βξs−β2s/2

(βt + 1 − ξ1
t )(βt + 1 − ξ2

t )eβξ1
t +βξ2

t−β2t
1B1∩B2

∣

∣

∣

∣

∣

T = s

]

ds

≤ E[H1(t)]

+ 2e2t−β2t+2β

∫ t

0

e−sQ

[

(βs + 1 − ξ1
s )eβξ1

s−β2s/21B1∩B2

∣

∣

∣
T = s

]

ds

≤ E[H1(t)]

+ c0t
3e−

√
2y

∫ t

0

Q

[

(βs + 1 − ξ1
s)e−

3
2

log t
t s−β(βs+1−ξ1

s)1B1∩B2

∣

∣

∣
T = s

]

ds.Under Q, (βs + 1 − ξ1
s , s ≥ 0) and (βs + 1 − ξ2

s , s ≥ 0) are Bessel proesses startingfrom 1 that are equal up to T and independent (given T and ξ1
T ) after T . Thus, takingnotation from Lemma 3 we have

E[H1(t)
2] ≤ E[H1(t)] + c0t

3e−
√

2y

∫ t

0

P̂
[

Y 1
s e−

3 log t
2t s−βtY

1
s 1A1∩A2

∣

∣

∣
τ = s

]

ds.But Lemma 3 tells us that the integral is at most a onstant times t−3, so for all large
t and y ∈ [0,

√
γt]

E[H1(t)
2] ≤ cE[H1(t)]9



for some onstant c not depending on y or t. We dedue that
P(H1(t) 6= 0) ≥ E[H1(t)]

2

E[H1(t)2]
≥ c′e−

√
2yas required.For the upper bound on m(t), we ombine the �rst moment method for Hα(t) withan estimate of the probability that a partile ever moves too far from the origin.Proposition 9. There exist t0 and and a onstant A ∈ (0,∞) not depending on t or

y suh that
P

(

∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y

)

≤ A(y + 2)4e−
√

2yfor all y ∈ [0,
√

t] and t ≥ t0.Proof. Reall from Lemma 7 that
P(Hα(t) 6= 0) ≤ E[Hα(t)] ∼ α2e−

√
2y.Thus it remains to estimate how large we must hoose α so that with high probabilityno partiles ever go above βs + α for s ∈ [0, t]. To this end de�ne

B = {∃u ∈ N(t), s ≤ t : Xu(s) > βs + α}and let
Γ = #{u ∈ N(t) : Xu(s) < α + βs + 1 ∀s ≤ t, βt − 1 ≤ Xu(t) ≤ βt + α}.By similar alulations to those in Lemma 7 we easily see that

E[Γ] ≤ c(α + 1)4e−
√

2yfor some onstant c not depending on t, α or y. We laim that for α ≥ y ≥ 0,
E[Γ|B] ≥ c′for some onstant c′ > 0 also not depending on t, α or y; essentially if a partile hasalready reahed y + βs then it has done the hard work, and the usual ost e−

√
2y ofreahing βt disappears. To see this, set

τ = inf{s > 0 : ∃u ∈ N(s) with Xu(s) > α + βs};then
E[Γ|B] =

1

P(B)

∫ t

0

E[Γ|τ = s]P(τ ∈ ds)so to establish our laim it su�es to show that E[Γ|τ = s] is larger than a onstantnot depending on s, t, α or y. On the event τ = s, let v be the partile at position
α + βs at time s. Let β′ =

√
2 − 3

2
√

2

log t
t , and let Nv(r) be the set of desendants ofpartile v at time r, for r ≥ s. Then, provided that α ≥ y ≥ 0, on the event τ = s

Γ ≥ #{u ∈ Nv(t) : Xu(r) − Xu(s) ≤ β′(r − s) + 1 ∀r ∈ [s, t],

β′(t − s) − 1 ≤ Xu(t) − Xu(s) ≤ β′(t − s)}.10



Thus by Lemma 7, if s ≤ t − 1 then (applying the strong Markov property)
E[Γ|τ = s] ≥ c′.If s > t − 1 then E[Γ|τ = s] is at least the probability that a single Brownian motion

Br, r ≥ 0 remains within [−1, 1] for all r ∈ [0, 1], and satis�es B1 ∈ [−1, 0]. Thisestablishes our laim, so for α ≥ y ≥ 0

E[Γ|B] ≥ c′ and E[Γ] ≤ c(α + 1)4e−
√

2y.But then for α ≥ y ≥ 0,
P(B) ≤ E[Γ]P(B)

E[Γ1B]
=

E[Γ]

E[Γ|B]
≤ c

c′
(α + 1)4e−

√
2y.Choosing α = y + 1, we have

P

(

∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y

)

≤ E[Hy+1(t)] + P(B)

≤ A(y + 2)4e−
√

2yas required.Proof of Theorem 1. As mentioned in the introdution, Kolmogorov et al. [13℄ showedthat there exist funtions m(t) and w(x) suh that u(t, m(t) + x) → w(x) as t → ∞.Clearly u is inreasing in x. But we have shown that
ce−

√
2y ≤ 1 − u(t,

√
2t − 3

2
√

2
log t + y) ≤ A(y + 2)4e−

√
2y.We dedue that m(t) =

√
2t − 3

2
√

2
log t + O(1).5 Proof of Theorem 2We proeed via a series of four results, eah proving one of the upper or lower boundsin one of the statements (1) or (2).Lemma 10. The upper bound in (1) holds:

lim inf
t→∞

Mt −
√

2t

log t
≤ − 3

2
√

2
almost surely.Proof. To rephrase the statement of the lemma, we show that for any ε > 0, there arearbitrarily large times suh that there are no partiles above √2t − (3/2

√
2 − ε) log t.Choose R > 2/ε, let t1 = 1 and for n > 1 let tn = eRtn−1 . De�ne

En = {∃u ∈ N(tn) : Xu(tn) >
√

2tn − ( 3
2
√

2
− ε) log tn}and

Fn = {|N(tn)| ≤ e2tn , |Xu(tn)| ≤
√

2tk ∀u ∈ N(tk)}.We know that Fn happens for all large n, so it su�es to show that
P

(

⋂

k≥n

(Ek ∩ Fk)

)

→ 0 as n → ∞.11



Now,
P

(

⋂

k≥n

(Ek ∩ Fk)

)

= lim
N→∞

N
∏

k=n

P

(

Ek ∩ Fk

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)so we would like to show that the terms on the right-hand side are small. For a partile
u, let Eu

n be the event that some desendant of u at time tn has position larger than√
2tn − 3

2
√

2
− ε) log tn. Also let sn = tn − tn−1. Then

P

(

Ek ∩ Fk

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ P

(

Ek

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ P

(

⋃

u∈N(tk−1)

Eu
k

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ e2tk−1P
(

∃u ∈ N(sk) : Xu(sk) >
√

2sk − 3
2
√

2
log sk + 3

2
√

2
log(

tk−tk−1

tk
) + ε log tk

)

≤ A(log tk + 2)4t
2/R
k

(

1 − tk−1

tk

)−3/2

t−ε
kwhere the last inequality used Proposition 9. Sine we hose R > 2/ε, this is muhsmaller than 1 when k is large, as required.Lemma 11. The upper bound in (2) holds:

lim sup
t→∞

Mt −
√

2t

log t
≤ − 1

2
√

2
almost surely.Proof. We show that for large t and any ε > 0, there are no partiles above √

2t −
(1/2

√
2 − 2ε) log t. By Proposition 9,

P(∃u ∈ N(t) : Xu(t) >
√

2t − ( 1
2
√

2
− ε) log t)

≤ A(log t + 2)4e
−
√

2( 1
√

2
log t+εt)

≤ A(log t + 2)4t−1−ε
√

2.Thus for any lattie times tn → ∞, by Borel-Cantelli
P(∃u ∈ N(tn) : Xu(tn) >

√
2tn − ( 1

2
√

2
− ε) log tn for in�nitely many n) = 0.It is now a simple exerise using the exponential tightness of Brownian motion and thefat that we may hoose the times tn arbitrarily lose together to make sure that nopartile an go above √2t − ( 1

2
√

2
− 2ε) log t for any time t.Lemma 12. The lower bound in (1) holds:

lim inf
t→∞

Mt −
√

2t

log t
≥ − 3

2
√

2
almost surely.12



Proof. We show that for large t and any ε > 0, there are always partiles below√
2t − ( 3

2
√

2
+ 2ε) log t. Let

At = {6 ∃u ∈ N(t) : Xu(t) >
√

2t − ( 3
2
√

2
+ ε) log t}and

Bt = {|N(log t)| ≥ t1/2, Xv(log t) ≥ −
√

2 log t∀v ∈ N(log t)}.De�ne N(v; t) to be the set of desendants of partile v that are alive at time t. Let
lt = t − log t. Then for all large t,
P(At ∩ Bt)

≤ E





∏

v∈N(log t)

P(6 ∃u ∈ N(v; t) : Xu(t) >
√

2t − ( 3
2
√

2
+ ε) log t|Flog t)1Bt





≤ E





∏

u∈N(log t)

P(6 ∃u ∈ N(lt) : Xu(lt) >
√

2lt − 3
2
√

2
log lt + 3

2
√

2
log lt

t + ε log t)1Bt





≤ c
√

t.Thus by Borel-Cantelli, for any lattie times tn → ∞,
P(Atn ∩ Btn in�nitely often) = 0.Sine we know that almost surely for all large t, |N(log t)| ≥ e

1
2

log t = t1/2 and
Xv(log t) ≥ −

√
2 log t for all v ∈ N(log t), we dedue that

P(Atn in�nitely often) = 0.Then it is again a simple task using the exponential tightness of Brownian motion tohek that no partiles an move further than ε log t between lattie times in�nitelyoften (provided that we hoose tn − tn−1 small enough).Proposition 13. The lower bound in (2) holds:
lim sup

t→∞

Mt −
√

2t

log t
≥ − 1

2
√

2
almost surely.Proof. This is similar to the proof of the lower bound in Theorem 1; it is e�etivelythe same as the proof given by Hu and Shi [10℄, although again our Bessel hanges ofmeasure ease the alulations.We let

βt =
√

2 − 1

2
√

2

log t

tand
V (t) = {v ∈ N(t) : Xv(r) < βtr + 1 ∀r ≤ t, βtt − 1 ≤ Xv(t) ≤ βtt}and de�ne

In =

∫ 2n

n

1{V (t) 6=∅}dt.13



We estimate the �rst two moments of In. Immediately from our earlier lower boundon P(H1(t) 6= 0) (from the proof of Proposition 8, taking y = 1√
2

log t) we get
E[In] =

∫ 2n

n

P(V (t) 6= ∅)dt ≥ c

∫ 2n

n

e
−
√

2· 1
√

2
log t

dt = c′.Now,
E[I2

n] = E

[
∫ 2n

n

∫ 2n

n

1{V (s) 6=∅}1{V (t) 6=∅} ds dt

]

= 2

∫ 2n

n

∫ t

n

P(V (s) 6= ∅, V (t) 6= ∅) ds dt.But whenever s ≤ t,
P(V (s) 6= ∅, V (t) 6= ∅) ≤ E

[

|V (s)||V (t)|
]

= E
[

|V (s)|E
[

|V (t)|
∣

∣Fs

]] (5)and letting N(u; t) be the set of desendants of partile u that are alive at time t,
E
[

|V (t)|
∣

∣Fs

]

=
∑

u∈N(s)

E





∑

v∈N(u;t)

1{v∈V (t)}

∣

∣

∣

∣

∣

∣

Fs



 .Now for any s, t > 0 let
At(s) = {u ∈ N(s) : Xu(r) < βtr + 1∀r ≤ s}and
Bt(s) = {u ∈ N(s) : βts − 1 ≤ Xu(s) ≤ βts}.Applying the many-to-one lemma, we have

E





∑

v∈N(u;t)

1{v∈V (t)}

∣

∣

∣

∣

∣

∣

Fs





= 1{u∈At(s)}EXu(s)−βts





∑

v∈N(t−s)

1{v∈At(t−s)∩Bt(t−s)}





= 1{u∈At(s)}e
t−sQXu(s)−βts

[

(−ξ0 + 1)1{ξt−s∈Bt(t−s)}
(βt(t − s) − ξt−s + 1)eβt(ξt−s−ξ0)−β2

t (t−s)/2

]

≤ 1{u∈At(s)}e
t−s(βts − Xu(s) + 1)eβtXu(s)−β2

t sQXu(s)−βts

[ 1{ξt−s∈Bt(t−s)}
eβ2

t (t−s)−βt−β2
t (t−s)/2

]

≤ e−2st1/2e
1
2

log t
t s1{u∈At(s)}(βts − Xu(s) + 1)eβtXu(s)Q (ξt ∈ Bt(t)| ξs = Xu(s))where for the last equality we used the fat that Bessel proesses satisfy the Markov

14



property. Substituting bak into (5) and applying the many-to-two lemma we get
P(V (s) 6= ∅, V (t) 6= ∅)

≤ E

[

∑

u,v∈N(s)

1{u∈V (s)}e
−2st1/2e

1
2

log t
t s1{v∈At(s)}(βts − Xv(s) + 1)eβtXv(s)

· Q (ξt ∈ Bt(t)| ξs = Xv(s))

]

= esQ

[

1

ζ1(s)
1{ξ1

s∈Bs(s)}e
−2st1/2e

1
2

log t
t sζ1(s)eβ2

t s/2Q
(

ξ1
t ∈ Bt(t)

∣

∣ ξ1
s

)

]

+

∫ s

0

2e2s−rQ

[

ζ1(r)

ζ1(s)ζ2(s)
1{ξ1

s∈Bs(s)}e
−2st1/2e

1
2

log t
t sζ2(s)eβ2

t s/2

· Q
(

ξ2
t ∈ Bt(t)

∣

∣ ξ2
s

)

∣

∣

∣

∣

∣

T (1, 2) = r

]

dr

= t1/2Q
(

ξ1
s ∈ Bs(s), ξ1

t ∈ Bt(t)
)

+ 2t1/2

∫ s

0

Q

[

e−r (βtr − ξ1
r + 1)eβtξ

1
r−β2

t r/2

(βts − ξ1
s + 1)eβtξ1

s−β2
t s/2

es1{ξ1
s∈Bs(s), ξ2

t ∈Bt(t)}

∣

∣

∣

∣

∣

T (1, 2) = r

]

dr

≤ t1/2Q
(

ξ1
s ∈ Bs(s), ξ1

t ∈ Bt(t)
)

+ 2e
√

2t1/2e
1
2

log t
t s

∫ s

0

e−
1
2

log t
t rQ

[

(βtr − ξ1
r + 1)e−βt(βtr−ξ1

r+1)

· 1{ξ1
s∈Bs(s), ξ2

t∈Bt(t)}

∣

∣

∣
T (1, 2) = r

]

dr.We must now estimate the last line above. The Q(·) part of the �rst term is theprobability that a Bessel proess is near the origin at time s, and then again at time
t; so the �rst term is no bigger than a onstant times t1/2s−3/2(t − s + 1)−3/2. Thenusing notation from Setion 2, the expetation Q[·] in the seond term is

P̂
[1{ 1

2
√

2
log s− 1

2
√

2

log t
t s+1≤Y 1

s ≤ 1

2
√

2
log s− 1

2
√

2

log t
t s+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

.Thus by Lemma 4,
P(V (s) 6= ∅, V (t) 6= ∅) ≤ c1(t

−2 + t−1(t − s + 1)3/2)and hene
E[I2

n] ≤ 2c1

∫ 2n

n

∫ t

n

(t−2 + t−1(t − s + 1)3/2) ds dt ≤ c2,so
P(In > 0) ≥ P(In ≥ E[In]/2) ≥ E[In]2

4E[I2
n]

≥ c3 > 0.When n is large, at time 2δ log n there are at least nδ partiles, all of whih haveposition at least −2
√

2δ log n. By the above, the probability that none of these has adesendant that goes above √2s− 1
2
√

2
log s−2

√
2δ log n for any s between 2δ log n+nand 2δ log n + 2n is no larger than

(1 − c3)
nδ

.The result follows by the Borel-Cantelli lemma sine ∑n(1 − c3)
nδ

< ∞.15
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