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Abstra
t We give proofs of two results about the position of the extremal parti
lein a bran
hing Brownian motion, one 
on
erning the median position and another thealmost sure behaviour. Our methods are based on a many-to-two lemma whi
h allowsus to estimate the e�e
t of the bran
hing stru
ture on the system by 
onsidering twodependent Bessel pro
esses.1 Introdu
tion and main resultsKolmogorov et al. [13℄ proved that the extremal parti
le in a standard bran
hingBrownian motion sits near √2t at time t. Higher order 
orre
tions to this result weregiven by Bramson [3℄, and then almost sure �u
tuations were proved by Hu and Shi[10℄. These two remarkable papers, more than thirty years apart, provide results whi
hre�e
t an extremely deep understanding of the underlying bran
hing stru
ture. Thisarti
le grew out of a desire to know whether shorter or simpler proofs of these resultsexist.We 
onsider a bran
hing Brownian motion (BBM) beginning with one parti
le at 0,whi
h moves like a standard Brownian motion until an independent exponentiallydistributed time with parameter 1. At this time it dies and is repla
ed (in its 
urrentposition) by two new parti
les, whi
h � relative to their birth time and position �behave like independent 
opies of their parent, moving like Brownian motions andbran
hing at rate 1 into two 
opies of themselves. Let N(t) be the set of all parti
lesalive at time t, and if v ∈ N(t) then let Xv(t) be the position of v at time t. If v ∈ N(t)and s < t, then let Xv(s) be the position of the unique an
estor of v that was alive attime s. De�ne Mt = maxv∈N(t) Xv(t).1.1 Bramson's result on the distribution of MtDe�ne
u(t, x) = P (Mt ≤ x) .This fun
tion u satis�es the Fisher-Kolmogorov-Petrovski-Pis
ounov (FKPP) equation
ut =

1

2
uxx + u2 − u,(with Heaviside initial 
ondition) whi
h has been studied for many years both an-alyti
ally and probabilisti
ally: see for example Kolmogorov et al. [13℄, Fisher [5℄,Skorohod [18℄, M
Kean [15℄, Bramson [3, 4℄, Neveu [16℄, U
hiyama [19℄, Aronson andWeinburger [2℄, Karpelevi
h et al. [11℄, Harris [8℄, Kyprianou [14℄, Harris et al. [7℄. Inparti
ular (see [13℄) u 
onverges to a travelling wave: that is, there exist fun
tions mof t and w of x su
h that

u(t, m(t) + x) → w(x)uniformly in x as t → ∞.We would like to o�er a proof of the following result whi
h is mu
h shorter andsimpler than the original proof by Bramson [3℄:Theorem 1 (Bramson, 1978). The 
entering term m(t) satis�es
m(t) =

√
2t − 3

2
√

2
log t + O(1)as t → ∞. 1



As Bramson notes in [3℄, �an immediate frontal assault using moment estimates,but ignoring the bran
hing stru
ture of the pro
ess, will fail.� That is, let G(t) bethe number of parti
les near m(t) at time t. If some parti
le has large position attime s < t then many parti
les are likely to have large position at time t, and thismeans that the moments of G(t) are misleading. For this reason, instead of estimating
G(t) dire
tly, we estimate H(t), the number of parti
les near m(t) that have remainedbelow m(t)s/t for all times s < t. It is not di�
ult to guess that parti
les behaving inthis way look like Bessel-3 pro
esses below the line m(t)s/t, s ∈ [0, t]. Essentially ourproof simply takes advantage of this observation1.For the lower bound Bramson develops and applies very a

urate estimates forBrownian bridges to 
al
ulate the se
ond moment of the number of parti
les in someset (whi
h is something like a more 
ompli
ated version of H(t)). We instead use a
hange of measure whi
h allows us to apply basi
 estimates on Bessel pro
esses. Thisis only possible thanks to a general many-to-two lemma developed in [9℄.For the upper bound (Proposition 9) we apply the �rst moment method to thesame quantity H(t). However we must then estimate G(t) − H(t). Here we borrowthe outline of an idea from Bramson, whi
h we use to give a straightforward estimateof the probability that G(t) − H(t) is non-zero.1.2 Hu and Shi's result on the paths of MtHaving established Bramson's result on the 
entering term m(t), we move on to thealmost sure behaviour of Mt. We prove the following result, whi
h is the analogue ofa result for quite general bran
hing random walks given by Hu and Shi [10℄.Theorem 2. The maximum Mt satis�es

Mt −
√

2t

log t
−→ − 3

2
√

2
in probabilityand

lim inf
t→∞

Mt −
√

2t

log t
= − 3

2
√

2
almost surely. (1)However,

lim sup
t→∞

Mt −
√

2t

log t
= − 1

2
√

2
almost surely. (2)This result says that although the extremal parti
le looks like m(t) for most times

t, o

asionally a parti
le will travel mu
h further. Te
hni
ally the theorem as statedhere is a new result as Hu and Shi 
onsidered only dis
rete-time bran
hing randomwalks, but it would not take too mu
h e�ort to derive it from their work. We pro
eedinstead by applying the estimates developed in the proof of Theorem 1 along withthe Borel-Cantelli lemma and exponential tightness of Brownian motion. Only thelower bound in (2) requires a signi�
ant amount of extra work, and for that we takean approa
h similar to that of Hu and Shi in [10℄. They noti
ed that although theprobability that a parti
le has position mu
h bigger than m(t) at a �xed time t is verysmall, the probability that there exists a time s between (say) n and 2n su
h that aparti
le has position mu
h bigger than m(s) at time s is a
tually quite large.1The reader may dedu
e from this des
ription that we shall, as part of our proof, 
al
ulate estimatesfor bran
hing Brownian motion with absorption. This model was originally studied by Kesten [12℄with the initial intention of investigating the maximal displa
ement in a BBM.2



1.3 Extensions to other modelsWe note that although we 
onsider only the simplest possible BBM, with binarybran
hing at �xed rate 1, our methods 
an be applied to rather more general models.There is however one important ne
essary 
ondition, that the mean and varian
e ofthe number of parti
les born at a bran
hing event must be �nite. This is simply due tothe fa
t that we apply a se
ond moment method.Addario-Berry and Reed [1℄ (in their Theorem 3) proved an analogue of Bramson'sresult (our Theorem 1) for a wide 
lass of bran
hing random walks. It is possiblethat our methods 
ould be adapted to extend their result to the 
ase where the birthdistribution is not almost surely bounded. Sin
e the purpose of this paper is to provideshort and simple proofs to two sophisti
ated results, and the generality of bran
hingrandom walks introdu
es various te
hni
al 
ompli
ations, we do not 
arry out thiswork here.2 Bessel-3 pro
essesWe re
all some very basi
 properties of Bessel-3 pro
esses, and then do mu
h of thedirty work of Theorem 1 and Proposition 13 (whi
h is the most di�
ult part of The-orem 2) by 
al
ulating the expe
tation of two fun
tionals of two dependent Bessel-3pro
esses. These 
al
ulations, in Lemmas 3 and 4, are not motivated until later in thearti
le, but we in
lude them here as they are simply fa
ts about Bessel pro
esses anddo not 
ontribute a great deal to the main ideas of the proofs.If Wt, t ≥ 0 is a Brownian motion in R3 then its modulus |Wt|, t ≥ 0 is 
alled aBessel-3 pro
ess (or simply a Bessel pro
ess). Suppose that Bt is a Brownian motion in
R started from B0 = x under a probability measure Px; then Xt := x−1Bt1{Bs>0 ∀s≤t}is a non-negative unit-mean martingale under Px. We may 
hange measure by Xt,de�ning a new probability measure P̂x via

dP̂x

dPx

∣

∣

∣

∣

∣

Ft

:= Xt(where Ft is the natural �ltration of the Brownian motion Bt) and then Bt, t ≥ 0 is aBessel pro
ess under P̂x. The density of a Bessel pro
ess satis�es
P̂x(Bt ∈ dz) =

z

x
√

2πt

(

e−(z−x)2/2t − e−(z+x)2/2t
)

dz.This and mu
h more about Bessel pro
esses 
an be found in many textbooks, forexample Revuz and Yor [17℄.We now 
laim that
e−(z−x)2/2t − e−(z+x)2/2t ≤ 2xz

t
∀ x, z ≥ 0, t > 0. (3)Indeed the derivative of the left-hand side with respe
t to z is

x

t

(

e−(z−x)2/2t + e−(z+x)2/2t
)

+
z

t

(

e−(z+x)2/2t − e−(z−x)2/2t
)

;the �rst term above is no greater than 2x/t, while the se
ond is negative whenever
x, z ≥ 0. 3



We also 
hoose and �x γ ∈ (0,
√

2) su
h that
eδ − e−δ = 2 sinh δ ≥

√
2δ for all δ ∈ [0, 2γ];then

z

x
√

2πt

(

e−(z−x)2/2t − e−(z+x)2/2t
)

≥ e−z2/2t−x2/2t z2

√
πt3

(4)whenever zx ≤ γt.Now suppose that under P̂ we have a time τ ∈ [0,∞) and two Bessel pro
esses Y 1
tand Y 2

t , t ≥ 0 su
h that
• Y 1

0 = Y 2
0 = 1;

• Y 1
t = Y 2

t for all t ≤ τ ;
• (Y 1

t − Y 1
τ , t > τ) and (Y 2

t − Y 2
τ , t > τ) are independent given τ and Y 1

τ .The following lemma does most of the hard work in proving the lower bound forTheorem 1.Lemma 3. Let
β =

√
2 − 3

2
√

2

log t

t
+

y

t
,

A1 = {1 ≤ Y 1
t ≤ 2} and A2 = {1 ≤ Y 2

t ≤ 2}.For all large t and y ∈ [0,
√

γt],
∫ t

0

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤ ct−3for some 
onstant c not depending on t or y.Proof. The idea here is that the probability that a Bessel pro
ess is near the origin attime t is approximately t−3/2. If s is small, then we have two (almost) independentBessel pro
esses whi
h must both be near the origin at time t, giving t−3. If s is large,then we e�e
tively have only one Bessel pro
ess, giving t−3/2, but the exp(3 log t
2t s) givesus an extra t−3/2. It then remains to 
he
k when s is neither large or small, but theabove e�e
ts 
ombine in the right way su
h that things turn out ni
ely then too. Weapply in ea
h 
ase the basi
 estimate (3) on the Bessel density.We �rst 
he
k the small s 
ase: for large t,

∫ 1

0

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤
∫ 1

0

P̂ (A1 ∩ A2|τ = s)ds

≤ c1P̂ (A1)
2 ≤ c2t

−3.Similarly for the large s 
ase:
∫ t

t−1

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds ≤ c3t
−3/2P̂ (A1) ≤ c4t

−3.

4



Finally the main 
ase, when s ∈ [1, t − 1]:
∫ t−1

1

P̂
[

Y 1
s e−

3 log t
2t s−βY 1

s 1A1∩A2

∣

∣

∣
τ = s

]

ds

≤
∫ t−1

1

∫ ∞

0

z3

s3/2
e−βz− 3 log t

2t s

(

∫ 2

1

2x2

√

2π(t − s)3
dx

)2

dz ds

≤ c5

∫ t−1

1

e−
3 log t

2t s

s3/2(t − s)3

∫ ∞

0

z3e−zdz ds

≤ c6t
−7/2

∫ 1−1/t

1/t

e−( 3
2

log t)u

u3/2(1 − u)3
duand it is a simple task to 
he
k that the last integral above is bounded by √

t times a
onstant:
∫ 1−1/t

1/t

e−( 3
2

log t)u

u3/2(1 − u)3
du

≤ c7

∫ 1/2

1/t

u−3/2du + c8t
−3/2

∫ 1/2

1/t

s−3e( 3
2

log t)sds

≤ c9t
1/2 + c13t

−3/2

∫ t−1/6

t−1

s−3e( 3
2

log t)sds + c8t
−3/2

∫ 1/2

t−1/6

s−3e( 3
2

log t)sds

≤ c9t
1/2 + c10t

−3/2

∫ t−1/6

t−1

s−3ds + c8t
−1/4

∫ 1/2

t−1/6

e( 3
2

log t)sds

≤ c11t
1/2as required.Our next lemma is very similar; it estimates a slightly di�erent fun
tional, whi
hwill appear in Proposition 13.Lemma 4. Let as,t = 1

2
√

2
log s − 1

2
√

2

log t
t s. If e ≤ s ≤ t ≤ 2s, then

∫ s

0

e−
1
2

log t
t rP̂

[1{as,t+1≤Y 1
s ≤as,t+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

dr

≤ ce−
1
2

log t
t s

(

1

t5/2
+

1

t3/2(t − s + 1)3/2

)for some 
onstant c not depending on s or t.Proof. We approximate just as we did for Lemma 3. Essentially the e−βtY
1

r term meansour initial Bessel pro
ess must be near the origin at time r; then two independent Besselpro
esses started from time r must be near the origin at times s and t respe
tively. Thiswill give us a 
ontribution of r−3/2(s− r)−3/2(t− r)−3/2. Indeed for any r ∈ [1, s− 1],integrating out over Y 1
r ,

P̂
[1{as,t+1≤Y 1

s ≤as,t+2}1{1≤Y 1
t ≤2}Y

1
r e−βtY

1
r

∣

∣

∣
τ = r

]

≤ c1

∫ ∞

0

ze−βtz
z2

r3/2
· 1

(s − r)3/2
· 1

(t − r)3/2
dz

≤ c2r
−3/2(s − r)−3/2(t − r)−3/2.5



For r ≤ 1 we are e�e
tively asking two independent Bessel pro
esses to be near theorigin at times s and t, giving s−3/2t−3/2, and for r ≥ s − 1 we have just one Besselpro
ess whi
h must be near the origin at times s and t, giving s−3/2(t − s + 1)−3/2.Thus (noting that log s ≥ log t
t s provided s, t ≥ e)

∫ s

0

e−
1
2

log t
t rP̂

[1{as,t+1≤Y 1
s ≤as,t+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

dr

≤ c3

s3/2t3/2
+ c4

∫ s−1

1

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr +

c5e
− 1

2

log t
t s

s3/2(t − s + 1)3/2
.Sin
e s and t are of the same order and e−

1
2

log t
t s ≥ s−1/2 it remains to estimate theintegral in the last line above � and we pro
eed again just as in Lemma 3, breakingthe integral into three parts. For large r,

∫ s/2

1

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c6

s3/2t3/2
,for small r,

∫ s−1

s−s/t1/4

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c7

e−
1
2

log t
t s

s3/2(t − s + 1)3/2
,and for intermediate r

∫ s−s/t1/4

s/2

e−
1
2

log t
t r

r3/2(s − r)3/2(t − r)3/2
dr ≤ c8

t3/4

s9/2

∫ s−s/t1/4

s/2

e−
1
2

log t
t rdr

≤ c9
t7/4

s9/2
e−

1
4

log t
t s ≤ c10

t5/2
e−

1
2

log t
t swhi
h 
ompletes the proof.3 The many-to-one and many-to-two lemmasWe mentioned in the introdu
tion that we will attempt to 
ount the number of parti
lesremaining below a 
ertain line and ending near m(t), and that parti
les following su
hpaths must look like Bessel pro
esses below a line. In this se
tion we qualify thatheuristi
.3.1 The many-to-one lemmaIt is well-known that the �rst moment of the number of parti
les in (a subset of)a bran
hing pro
ess 
an be estimated via a many-to-one lemma. For our bran
hingBrownian motion the number of parti
les at time t is approximately et, and to �rstorder they behave independently so that the expe
ted number satisfying a 
ertainproperty is simply et times the probability that one parti
le (i.e. one Brownian motion)satis�es that property. More general formulations of this idea have been given over theyears, notably by Hardy and Harris [6℄. For our parti
ular needs the following formwill be most useful. 6



Let gt(·) be a measurable fun
tional of (t and) the path of a parti
le up to time t;so for example we might take
gt(v) = t2e

R

t
0

Xv(s)ds.Then
E

[

∑

v∈N(t)

gt(v)

]

= etE[gt(ξ)]where ξt, t ≥ 0 is just a standard Brownian motion under P . Now �xing α > 0 and
β ∈ R and de�ning

ζ(t) =
1

α
(α + βt − ξt)e

βξt−β2t/21{ξs<α+βs ∀s≤t},the following lemma is a result of Girsanov's theorem and the knowledge of Besselpro
esses seen at the start of Se
tion 2.Lemma 5 (Many-to-one lemma).
E

[

∑

v∈N(t)

gt(v)

]

= etE[gt(ξ)] = etQ

[

1

ζ(t)
gt(ξ)

]where under Q, α + βt − ξt, t ≥ 0 is a Bessel pro
ess.3.2 The many-to-two lemmaWe 
an use the many-to-one lemma to 
al
ulate expe
tations of numbers of parti
leswith 
ertain properties. However, as outlined in the introdu
tion, we would like toapply se
ond moment methods. Thus we will need a many-to-two lemma, whi
h �just as the many-to-one lemma redu
es 
al
ulating �rst moments to the expe
tationof fun
tionals of just one parti
le � will redu
e 
al
ulating se
ond moments to theexpe
tation of fun
tionals of two, ne
essarily dependent, parti
les. This is a naturalidea and has been around to some extent for many years; indeed Bramson uses a verybasi
 many-to-two lemma in [3℄. However, just as we used a non-trivial measure 
hangein developing our many-to-one lemma above, we would like a more re�ned many-to-twolemma involving Bessel pro
esses. We will not give a proof here � as Bramson says,�a rigorous veri�
ation of [even the most basi
 version℄ is quite messy� � and refer to[9℄ whi
h gives a quite general formulation, of whi
h our lemma is a spe
ial 
ase. Theidea is that 
al
ulating se
ond moments is akin to 
hoosing two �typi
al� parti
les atrandom from a set; these parti
les followed the same path up to the death of their mostre
ent an
estor, and then evolved independently. The many-to-two lemma re�e
ts thisheuristi
.Suppose that under Q, as well as the pro
ess ξt seen in Se
tion 3.1, we have twopro
esses ξ1
t and ξ2

t , t ≥ 0 and a time T ∈ [0,∞) su
h that
• α + βt − ξ1

t and α + βt − ξ2
t are Bessel pro
esses started from α;

• ξ1
t = ξ2

t for all t ≤ T ;
• (ξ1

t − ξ1
T , t > T ) and (ξ2

t − ξ2
T , t > T ) are independent given T and ξ1

T .7



De�ne
ζi(t) =

1

α
(α + βt − ξi

t)e
βξi

t−β2t/21{ξi
s<α+βs ∀s≤t}for i = 1, 2 and t ≥ 0.Lemma 6 (Many-to-two lemma). Let gt(·) and ht(·) be two measurable fun
tionals of

t and the path of a parti
le up to time t, as in Se
tion 3.1. Then
E

[

∑

u,v∈N(t)

gt(u)ht(v)

]

= etQ

[

1

ζ1(t)
gt(ξ

1)ht(ξ
1)

]

+

∫ t

0

2e2t−sQ

[

ζ1(s)

ζ1(t)ζ2(t)
gt(ξ

1)ht(ξ
2)

∣

∣

∣

∣

T = s

]

ds.As mentioned above, the dependen
e between the two Bessel pro
esses re�e
ts thedependen
e stru
ture of the BBM: any pair of parti
les (u, v) in the BBM are entirelydependent until their most re
ent 
ommon an
estor, and 
ompletely independent there-after. The �rst term on the right-hand side of the many-to-two lemma takes a

ountof the possibility that the Bessel pro
esses have not yet split (whi
h 
orresponds tothe event that u and v are in fa
t the same parti
le) and otherwise the se
ond termintegrates out the split time T of the two Bessel pro
esses (whi
h 
orresponds to in-tegrating out the last time at whi
h the most re
ent 
ommon an
estor of u and v wasalive).4 Proof of Theorem 1For t > 0 set (as in Se
tion 2)
β =

√
2 − 3

2
√

2

log t

t
+

y

t
.Now de�ne

Hα(t) = # {u ∈ N(t) : Xu(s) ≤ α + βs ∀s ≤ t, βt − 1 ≤ Xu(t) ≤ βt} .As outlined in the introdu
tion, we shall show that the �rst two moments of Hα(t)give an a

urate pi
ture of the probability that there is a parti
le near βt at time t.We begin by 
al
ulating the �rst moment.For i = 1, 2, t > 0 and s ≥ 0, let
Bi =

{

βt − 1 ≤ ξi
t ≤ βt

}and re
all that we de�ned
ζi(s) =

1

α
(βs + α − ξi

s) exp

(

βξi
s −

1

2
β2s

)1{ξi
r≤βr+α ∀r≤s}.We write f(y, t) ∼ g(y, t) if cf ≤ g ≤ c′f for some stri
tly positive 
onstants c and c′not depending on any of the parameters t, y, α.Lemma 7. For any α ≥ 1,

E[Hα(t)] ∼ α2e−
√

2yfor all t ≥ 1, y ∈ R and α ∈ [1,
√

γt]. 8



Proof. For large t,
E[Hα(t)] = etQ

[

1

ζ1(t)
1B1

]

= etQ

[

α

βt + α − ξt
e−βξ1

t +β2t/21B1

]

∼ et−β2t/2Q(B1)

∼ t3/2e−
√

2yQ(α ≤ βt + α − ξt ≤ α + 1).Now, βt + α − ξt is a Bessel pro
ess started from α under Q, so by (3) and (4)
Q(α ≤ βt + α − ξt ≤ α + 1) ∼

∫ α+1

α

z2

t3/2
dz ∼ α2t−3/2whi
h gives the result.We now prove a lower bound for m(t) by 
al
ulating the se
ond moment of H1(t).Proposition 8. There exist t0 and a 
onstant c ∈ (0,∞) not depending on t or y su
hthat

P(∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y) ≥ ce−

√
2yfor all y ∈ [0,

√
γt] and t ≥ t0.Proof. We saw in Lemma 7 that E[H1(t)] ≥ c′e−

√
2y; we shall now estimate the se
ondmoment of H1(t).

E[H1(t)
2]

= etQ

[1B1

1

ζ1(t)

]

+

∫ t

0

2e2t−sQ

[1B1∩B2

ζ1(s)

ζ1(t)ζ2(t)

∣

∣

∣

∣

T = s

]

ds

= E[H1(t)]

+ 2e2t

∫ t

0

e−sQ

[

(βs + 1 − ξs)e
βξs−β2s/2

(βt + 1 − ξ1
t )(βt + 1 − ξ2

t )eβξ1
t +βξ2

t−β2t
1B1∩B2

∣

∣

∣

∣

∣

T = s

]

ds

≤ E[H1(t)]

+ 2e2t−β2t+2β

∫ t

0

e−sQ

[

(βs + 1 − ξ1
s )eβξ1

s−β2s/21B1∩B2

∣

∣

∣
T = s

]

ds

≤ E[H1(t)]

+ c0t
3e−

√
2y

∫ t

0

Q

[

(βs + 1 − ξ1
s)e−

3
2

log t
t s−β(βs+1−ξ1

s)1B1∩B2

∣

∣

∣
T = s

]

ds.Under Q, (βs + 1 − ξ1
s , s ≥ 0) and (βs + 1 − ξ2

s , s ≥ 0) are Bessel pro
esses startingfrom 1 that are equal up to T and independent (given T and ξ1
T ) after T . Thus, takingnotation from Lemma 3 we have

E[H1(t)
2] ≤ E[H1(t)] + c0t

3e−
√

2y

∫ t

0

P̂
[

Y 1
s e−

3 log t
2t s−βtY

1
s 1A1∩A2

∣

∣

∣
τ = s

]

ds.But Lemma 3 tells us that the integral is at most a 
onstant times t−3, so for all large
t and y ∈ [0,

√
γt]

E[H1(t)
2] ≤ cE[H1(t)]9



for some 
onstant c not depending on y or t. We dedu
e that
P(H1(t) 6= 0) ≥ E[H1(t)]

2

E[H1(t)2]
≥ c′e−

√
2yas required.For the upper bound on m(t), we 
ombine the �rst moment method for Hα(t) withan estimate of the probability that a parti
le ever moves too far from the origin.Proposition 9. There exist t0 and and a 
onstant A ∈ (0,∞) not depending on t or

y su
h that
P

(

∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y

)

≤ A(y + 2)4e−
√

2yfor all y ∈ [0,
√

t] and t ≥ t0.Proof. Re
all from Lemma 7 that
P(Hα(t) 6= 0) ≤ E[Hα(t)] ∼ α2e−

√
2y.Thus it remains to estimate how large we must 
hoose α so that with high probabilityno parti
les ever go above βs + α for s ∈ [0, t]. To this end de�ne

B = {∃u ∈ N(t), s ≤ t : Xu(s) > βs + α}and let
Γ = #{u ∈ N(t) : Xu(s) < α + βs + 1 ∀s ≤ t, βt − 1 ≤ Xu(t) ≤ βt + α}.By similar 
al
ulations to those in Lemma 7 we easily see that

E[Γ] ≤ c(α + 1)4e−
√

2yfor some 
onstant c not depending on t, α or y. We 
laim that for α ≥ y ≥ 0,
E[Γ|B] ≥ c′for some 
onstant c′ > 0 also not depending on t, α or y; essentially if a parti
le hasalready rea
hed y + βs then it has done the hard work, and the usual 
ost e−

√
2y ofrea
hing βt disappears. To see this, set

τ = inf{s > 0 : ∃u ∈ N(s) with Xu(s) > α + βs};then
E[Γ|B] =

1

P(B)

∫ t

0

E[Γ|τ = s]P(τ ∈ ds)so to establish our 
laim it su�
es to show that E[Γ|τ = s] is larger than a 
onstantnot depending on s, t, α or y. On the event τ = s, let v be the parti
le at position
α + βs at time s. Let β′ =

√
2 − 3

2
√

2

log t
t , and let Nv(r) be the set of des
endants ofparti
le v at time r, for r ≥ s. Then, provided that α ≥ y ≥ 0, on the event τ = s

Γ ≥ #{u ∈ Nv(t) : Xu(r) − Xu(s) ≤ β′(r − s) + 1 ∀r ∈ [s, t],

β′(t − s) − 1 ≤ Xu(t) − Xu(s) ≤ β′(t − s)}.10



Thus by Lemma 7, if s ≤ t − 1 then (applying the strong Markov property)
E[Γ|τ = s] ≥ c′.If s > t − 1 then E[Γ|τ = s] is at least the probability that a single Brownian motion

Br, r ≥ 0 remains within [−1, 1] for all r ∈ [0, 1], and satis�es B1 ∈ [−1, 0]. Thisestablishes our 
laim, so for α ≥ y ≥ 0

E[Γ|B] ≥ c′ and E[Γ] ≤ c(α + 1)4e−
√

2y.But then for α ≥ y ≥ 0,
P(B) ≤ E[Γ]P(B)

E[Γ1B]
=

E[Γ]

E[Γ|B]
≤ c

c′
(α + 1)4e−

√
2y.Choosing α = y + 1, we have

P

(

∃u ∈ N(t) : Xu(t) ≥
√

2t − 3

2
√

2
log t + y

)

≤ E[Hy+1(t)] + P(B)

≤ A(y + 2)4e−
√

2yas required.Proof of Theorem 1. As mentioned in the introdu
tion, Kolmogorov et al. [13℄ showedthat there exist fun
tions m(t) and w(x) su
h that u(t, m(t) + x) → w(x) as t → ∞.Clearly u is in
reasing in x. But we have shown that
ce−

√
2y ≤ 1 − u(t,

√
2t − 3

2
√

2
log t + y) ≤ A(y + 2)4e−

√
2y.We dedu
e that m(t) =

√
2t − 3

2
√

2
log t + O(1).5 Proof of Theorem 2We pro
eed via a series of four results, ea
h proving one of the upper or lower boundsin one of the statements (1) or (2).Lemma 10. The upper bound in (1) holds:

lim inf
t→∞

Mt −
√

2t

log t
≤ − 3

2
√

2
almost surely.Proof. To rephrase the statement of the lemma, we show that for any ε > 0, there arearbitrarily large times su
h that there are no parti
les above √2t − (3/2

√
2 − ε) log t.Choose R > 2/ε, let t1 = 1 and for n > 1 let tn = eRtn−1 . De�ne

En = {∃u ∈ N(tn) : Xu(tn) >
√

2tn − ( 3
2
√

2
− ε) log tn}and

Fn = {|N(tn)| ≤ e2tn , |Xu(tn)| ≤
√

2tk ∀u ∈ N(tk)}.We know that Fn happens for all large n, so it su�
es to show that
P

(

⋂

k≥n

(Ek ∩ Fk)

)

→ 0 as n → ∞.11



Now,
P

(

⋂

k≥n

(Ek ∩ Fk)

)

= lim
N→∞

N
∏

k=n

P

(

Ek ∩ Fk

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)so we would like to show that the terms on the right-hand side are small. For a parti
le
u, let Eu

n be the event that some des
endant of u at time tn has position larger than√
2tn − 3

2
√

2
− ε) log tn. Also let sn = tn − tn−1. Then

P

(

Ek ∩ Fk

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ P

(

Ek

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ P

(

⋃

u∈N(tk−1)

Eu
k

∣

∣

∣

∣

k−1
⋂

j=n

(Ej ∩ Fj)

)

≤ e2tk−1P
(

∃u ∈ N(sk) : Xu(sk) >
√

2sk − 3
2
√

2
log sk + 3

2
√

2
log(

tk−tk−1

tk
) + ε log tk

)

≤ A(log tk + 2)4t
2/R
k

(

1 − tk−1

tk

)−3/2

t−ε
kwhere the last inequality used Proposition 9. Sin
e we 
hose R > 2/ε, this is mu
hsmaller than 1 when k is large, as required.Lemma 11. The upper bound in (2) holds:

lim sup
t→∞

Mt −
√

2t

log t
≤ − 1

2
√

2
almost surely.Proof. We show that for large t and any ε > 0, there are no parti
les above √

2t −
(1/2

√
2 − 2ε) log t. By Proposition 9,

P(∃u ∈ N(t) : Xu(t) >
√

2t − ( 1
2
√

2
− ε) log t)

≤ A(log t + 2)4e
−
√

2( 1
√

2
log t+εt)

≤ A(log t + 2)4t−1−ε
√

2.Thus for any latti
e times tn → ∞, by Borel-Cantelli
P(∃u ∈ N(tn) : Xu(tn) >

√
2tn − ( 1

2
√

2
− ε) log tn for in�nitely many n) = 0.It is now a simple exer
ise using the exponential tightness of Brownian motion and thefa
t that we may 
hoose the times tn arbitrarily 
lose together to make sure that noparti
le 
an go above √2t − ( 1

2
√

2
− 2ε) log t for any time t.Lemma 12. The lower bound in (1) holds:

lim inf
t→∞

Mt −
√

2t

log t
≥ − 3

2
√

2
almost surely.12



Proof. We show that for large t and any ε > 0, there are always parti
les below√
2t − ( 3

2
√

2
+ 2ε) log t. Let

At = {6 ∃u ∈ N(t) : Xu(t) >
√

2t − ( 3
2
√

2
+ ε) log t}and

Bt = {|N(log t)| ≥ t1/2, Xv(log t) ≥ −
√

2 log t∀v ∈ N(log t)}.De�ne N(v; t) to be the set of des
endants of parti
le v that are alive at time t. Let
lt = t − log t. Then for all large t,
P(At ∩ Bt)

≤ E





∏

v∈N(log t)

P(6 ∃u ∈ N(v; t) : Xu(t) >
√

2t − ( 3
2
√

2
+ ε) log t|Flog t)1Bt





≤ E





∏

u∈N(log t)

P(6 ∃u ∈ N(lt) : Xu(lt) >
√

2lt − 3
2
√

2
log lt + 3

2
√

2
log lt

t + ε log t)1Bt





≤ c
√

t.Thus by Borel-Cantelli, for any latti
e times tn → ∞,
P(Atn ∩ Btn in�nitely often) = 0.Sin
e we know that almost surely for all large t, |N(log t)| ≥ e

1
2

log t = t1/2 and
Xv(log t) ≥ −

√
2 log t for all v ∈ N(log t), we dedu
e that

P(Atn in�nitely often) = 0.Then it is again a simple task using the exponential tightness of Brownian motion to
he
k that no parti
les 
an move further than ε log t between latti
e times in�nitelyoften (provided that we 
hoose tn − tn−1 small enough).Proposition 13. The lower bound in (2) holds:
lim sup

t→∞

Mt −
√

2t

log t
≥ − 1

2
√

2
almost surely.Proof. This is similar to the proof of the lower bound in Theorem 1; it is e�e
tivelythe same as the proof given by Hu and Shi [10℄, although again our Bessel 
hanges ofmeasure ease the 
al
ulations.We let

βt =
√

2 − 1

2
√

2

log t

tand
V (t) = {v ∈ N(t) : Xv(r) < βtr + 1 ∀r ≤ t, βtt − 1 ≤ Xv(t) ≤ βtt}and de�ne

In =

∫ 2n

n

1{V (t) 6=∅}dt.13



We estimate the �rst two moments of In. Immediately from our earlier lower boundon P(H1(t) 6= 0) (from the proof of Proposition 8, taking y = 1√
2

log t) we get
E[In] =

∫ 2n

n

P(V (t) 6= ∅)dt ≥ c

∫ 2n

n

e
−
√

2· 1
√

2
log t

dt = c′.Now,
E[I2

n] = E

[
∫ 2n

n

∫ 2n

n

1{V (s) 6=∅}1{V (t) 6=∅} ds dt

]

= 2

∫ 2n

n

∫ t

n

P(V (s) 6= ∅, V (t) 6= ∅) ds dt.But whenever s ≤ t,
P(V (s) 6= ∅, V (t) 6= ∅) ≤ E

[

|V (s)||V (t)|
]

= E
[

|V (s)|E
[

|V (t)|
∣

∣Fs

]] (5)and letting N(u; t) be the set of des
endants of parti
le u that are alive at time t,
E
[

|V (t)|
∣

∣Fs

]

=
∑

u∈N(s)

E





∑

v∈N(u;t)

1{v∈V (t)}

∣

∣

∣

∣

∣

∣

Fs



 .Now for any s, t > 0 let
At(s) = {u ∈ N(s) : Xu(r) < βtr + 1∀r ≤ s}and
Bt(s) = {u ∈ N(s) : βts − 1 ≤ Xu(s) ≤ βts}.Applying the many-to-one lemma, we have

E





∑

v∈N(u;t)

1{v∈V (t)}

∣

∣

∣

∣

∣

∣

Fs





= 1{u∈At(s)}EXu(s)−βts





∑

v∈N(t−s)

1{v∈At(t−s)∩Bt(t−s)}





= 1{u∈At(s)}e
t−sQXu(s)−βts

[

(−ξ0 + 1)1{ξt−s∈Bt(t−s)}
(βt(t − s) − ξt−s + 1)eβt(ξt−s−ξ0)−β2

t (t−s)/2

]

≤ 1{u∈At(s)}e
t−s(βts − Xu(s) + 1)eβtXu(s)−β2

t sQXu(s)−βts

[ 1{ξt−s∈Bt(t−s)}
eβ2

t (t−s)−βt−β2
t (t−s)/2

]

≤ e−2st1/2e
1
2

log t
t s1{u∈At(s)}(βts − Xu(s) + 1)eβtXu(s)Q (ξt ∈ Bt(t)| ξs = Xu(s))where for the last equality we used the fa
t that Bessel pro
esses satisfy the Markov

14



property. Substituting ba
k into (5) and applying the many-to-two lemma we get
P(V (s) 6= ∅, V (t) 6= ∅)

≤ E

[

∑

u,v∈N(s)

1{u∈V (s)}e
−2st1/2e

1
2

log t
t s1{v∈At(s)}(βts − Xv(s) + 1)eβtXv(s)

· Q (ξt ∈ Bt(t)| ξs = Xv(s))

]

= esQ

[

1

ζ1(s)
1{ξ1

s∈Bs(s)}e
−2st1/2e

1
2

log t
t sζ1(s)eβ2

t s/2Q
(

ξ1
t ∈ Bt(t)

∣

∣ ξ1
s

)

]

+

∫ s

0

2e2s−rQ

[

ζ1(r)

ζ1(s)ζ2(s)
1{ξ1

s∈Bs(s)}e
−2st1/2e

1
2

log t
t sζ2(s)eβ2

t s/2

· Q
(

ξ2
t ∈ Bt(t)

∣

∣ ξ2
s

)

∣

∣

∣

∣

∣

T (1, 2) = r

]

dr

= t1/2Q
(

ξ1
s ∈ Bs(s), ξ1

t ∈ Bt(t)
)

+ 2t1/2

∫ s

0

Q

[

e−r (βtr − ξ1
r + 1)eβtξ

1
r−β2

t r/2

(βts − ξ1
s + 1)eβtξ1

s−β2
t s/2

es1{ξ1
s∈Bs(s), ξ2

t ∈Bt(t)}

∣

∣

∣

∣

∣

T (1, 2) = r

]

dr

≤ t1/2Q
(

ξ1
s ∈ Bs(s), ξ1

t ∈ Bt(t)
)

+ 2e
√

2t1/2e
1
2

log t
t s

∫ s

0

e−
1
2

log t
t rQ

[

(βtr − ξ1
r + 1)e−βt(βtr−ξ1

r+1)

· 1{ξ1
s∈Bs(s), ξ2

t∈Bt(t)}

∣

∣

∣
T (1, 2) = r

]

dr.We must now estimate the last line above. The Q(·) part of the �rst term is theprobability that a Bessel pro
ess is near the origin at time s, and then again at time
t; so the �rst term is no bigger than a 
onstant times t1/2s−3/2(t − s + 1)−3/2. Thenusing notation from Se
tion 2, the expe
tation Q[·] in the se
ond term is

P̂
[1{ 1

2
√

2
log s− 1

2
√

2

log t
t s+1≤Y 1

s ≤ 1

2
√

2
log s− 1

2
√

2

log t
t s+2}1{1≤Y 1

t ≤2}Y
1
r e−βtY

1
r

∣

∣

∣
τ = r

]

.Thus by Lemma 4,
P(V (s) 6= ∅, V (t) 6= ∅) ≤ c1(t

−2 + t−1(t − s + 1)3/2)and hen
e
E[I2

n] ≤ 2c1

∫ 2n

n

∫ t

n

(t−2 + t−1(t − s + 1)3/2) ds dt ≤ c2,so
P(In > 0) ≥ P(In ≥ E[In]/2) ≥ E[In]2

4E[I2
n]

≥ c3 > 0.When n is large, at time 2δ log n there are at least nδ parti
les, all of whi
h haveposition at least −2
√

2δ log n. By the above, the probability that none of these has ades
endant that goes above √2s− 1
2
√

2
log s−2

√
2δ log n for any s between 2δ log n+nand 2δ log n + 2n is no larger than

(1 − c3)
nδ

.The result follows by the Borel-Cantelli lemma sin
e ∑n(1 − c3)
nδ

< ∞.15



Proof of Theorem 2. The 
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