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Abstract: We develop an extension to the spine theory of branching pro-
cesses, and use it to give a simple and intuitive identity for calculating additive
functionals of such processes, generalizing the well-known many-to-one lemma.

1 Introduction

1.1 The many-to-two lemma

Consider a branching Brownian motion (BBM): one particle starts at 0 and
moves like a Brownian motion until a random exponentially distributed time
with mean 1. It then dies and leaves in its place two new particles, which inde-
pendently follow, relative to their initial position, the same random behaviour
as their parent. Let N(t) be the set of particles alive at time ¢, and for a particle
u € N(t) let X, (t) be the position of particle u. Let B, t > 0 be a standard
Brownian motion, and f : R — R be some measurable function. The following
result is well-known:

Lemma 1 (Simple many-to-one lemma).

E| 3 f(Xut)| = ¢EIf(By)). (1)

u€N ()

The most useful aspect of this lemma is that it turns questions about a
system of many dependent particles into questions about a single Brownian
motion. For example, let A(z,t) = #{u € N(¢) : X,(¢) > z}, the number of
particles that are above z at time ¢. For which = and t is A(x,t) non-zero? (This
question is related to solutions of the FKPP equation.) Markov’s inequality and
the many-to-one lemma give us an easy upper bound:

et [e'e] 5
P(A(z,) > 1) <E[A@@,t)] =E | Y Lix,yse}| = / 2y
uweN(t) V2t Jy

For a lower bound, one would like to use a second-moment method, applying

E[A(z, t)]”

P(A(z,t) > 1) > Wa

but the many-to-one lemma does not tell us how to calculate E[A(x,t)?]. Instead
we should use a many-to-two lemma. Lemma 2 gives an example of a many-to-
two lemma for BBM.

Lemma 2 (Simple many-to-two lemma). For measurable f and g,

E| Y f(Xu(t) g(Xu(t) | = Ele" f(B)) g(B))] (2)
u,vEN (t)
where
, | Bt ift<T
YU Br+Wer ift>T

with T exponentially distributed with parameter 2 and Wy, t > 0 a standard
Brownian motion independent of B;.



The main result of this article will be the many-to-few lemma, Lemma 3,
which is a much more general version of Lemma 2. In fact we will be able to
calculate additive functionals not just of two particles, but of arbitrarily many
particles. We also incorporate the possibility of using a change of measure for
the motion of the particles to allow for easier calculation of the right-hand side
of the identity.

Results similar to Lemma 3 have existed for some time in various forms',
usually proved by arguments specific to the particular model or problem. Our
article provides several advantages over these previous results. Firstly, we state
Lemma 3 for a rather general model, and our methods are robust and may be
adapted for use with other branching processes. In addition the multiple spine
setup outlined in Section 2 gives an intuitive backdrop for understanding many-
to-few results. Thus we hope that this article will provide a general framework
that will allow the reader to quickly understand and construct a many-to-few
lemma for whichever branching process they wish to consider. Finally, to our
knowledge there is no existing work for any model that allows one to
change measure as part of the result. This technique can be extremely useful:
we give an example in Section 4.2.

There are already several applications of this theory underway. Aidékon
and Harris [1] use the k-particle (for general k) version to compute moments in
order to show that the number of particles hitting a certain level in a branching
Brownian motion with killing at the origin converges in distribution in the limit
approaching criticality. Doring and Roberts [6] calculate moments of numbers
of particles in a catalytic branching model, for which the multiple spine theory
gives an intuitive combinatorial derivation for a collection of constants which
otherwise appear abstractly from the analysis. Ortgiese and Roberts (work in
progress) also apply the k-particle version to the parabolic Anderson model to
show that the large-time behaviour of the underlying branching process is rather
different from that anticipated by its moments. Roberts [15] uses the full power
of our general many-to-two lemma, with a particular choice of measure change,
to give simple proofs of large-time asymptotics for the position of the extremal
particle in a branching Brownian motion.

1.2 The spine approach

Three articles [11, 13, 14| by Kurtz, Lyons, Pemantle and Peres — building on
work of Chauvin and Rouault [4] among others — gave the subject of branching
processes a new set of tools, known as spine methods. These techniques have
since been used by many authors to prove new results and to give intuitive new
proofs of old results.

Just like the many-to-one lemma, the spine methods retain one essential
theme: at large times the branching structure may be very complicated and we
may have very many particles, but one can understand much of this complicated

LAn even simpler form of Lemma 2 was given by Sawyer [17]. Kallenberg [10] proved a
version for discrete trees, which he calls a “backward tree formula”. Gorostiza and Wakolbinger
[7] extend Kallenberg’s formula to a class of continuous-time processes. Dawson and Perkins
generate what they call “extended Palm formulas” for historical processes (superprocesses
enriched with information on genealogy) in [5]. For the parabolic Anderson model with Weibull
upper tails, Albeverio et al. 2] gave a similar result by considering existence and uniqueness of
solutions to a Cauchy problem. Bansaye et al. [3] develop quite general many-to-two lemmas
for Markov branching processes, allowing particles to be born away from their parent.



behaviour to first order by carefully studying just one special particle. It is no
great surprise, then, that spine techniques allowed simple proofs of much more
general versions of the many-to-one lemma that would not have been accessible
otherwise.

We develop a theory of multiple spines in order to gain further information
about the system. This approach leads naturally to a quite simple proof of our
main result. However, just as general many-to-one theorems are far from the
only application of single-spine techniques, the detailed multiple-spine theory
that we develop in proving our results may also be useful in other ways.

This article is arranged as follows. In Section 2 we give a summary of the multi-
spine setup, and then state our main result in Section 3. Section 4 provides
some examples of how this result can be applied. Then in Section 5 we give
full constructions of the measures and filtrations used in the theory. Section
5 is rather technical and may be ignored by readers wishing only to apply our
methods. We prove the many-to-few lemma in Section 6. Finally, in Section 7
we state a discrete-time version of the many-to-few lemma.

2 Multiple spines

We state here the general continuous-time branching setup that we will study
in this paper.

We counsider a branching process starting with one particle at x under a
probability measure P,. This particle moves withing a measurable space (J, B)
according to a Markov process with generator C. When at position y, a particle
branches at rate R(y) (informally, in a period of time d¢ the particle branches
with probability R(y)dt), dying and giving birth to a random number of new
particles with distribution p,, (where for each y, p, has support on {0,1,2,...}).
Each of these particles then independently repeats the stochastic behaviour of
its parent from its starting point.

We label our particles using the Ulam-Harris scheme: the first particle is 0,
its [ children are labelled 1, 2, ..., [, the m children of particle 1 are labelled 11,
12, ..., 1m, and so on. We denote by N(¢) the set of all particles alive at time
t. For a particle v € N(t) we let o,, be the time of its birth and 7, the time of
its death, and define o, (t) = o, At and 7,(t) = 7, At. If u € N(t) then for all
s <t we write X,(s) for the position of the unique ancestor of u alive at time
s. If w has 0 children then we write X, (s) = A for all ¢t > 7, where A € J is a
graveyard state.

2.1 The k-spine measures P¥ and Q"

We define new measures PX and QX under which there are k distinguished lines of
descent which we call spines. The actual construction of P¥ is slightly technical,
and the construction of QF relies on a carefully chosen change of measure (see
Section 5), but we do not necessarily have to understand these constructions.
It is most important simply to understand the dynamics of the system under
these new measures.

Under P¥ particles behave as follows:



e We begin with one particle at position = which (as well as its position)
carries k marks 1,2,... k.

e All particles move as Markov processes with generator C, independently
of each other given their birth times and positions, just as under P,.

e We think of each of the marks 1,...,k as distinguishing a particular line
of descent or “spine”, and define & to be the position of whichever particle
carries mark 7 at time ¢.

e A particle at position y carrying j marks by < by < ... < b; at time ¢
branches at rate R(y), dying and being replaced by a random number of
particles with law j1,, independently of the rest of the system, just as under
P,.

e Given that a particles vq,...,v, are born at a branching event as above,
the j spines each choose a particle to follow independently and uniformly
at random from amongst the a available. Thus for each 1 <[ < a and
1 < i < j the probability that v; carries mark 4 just after the branching
event is 1/a, independently of all other marks.

o If a particle carrying j > 0 marks b1 < by < ... < b; dies and is replaced
by 0 particles, then its marks remain with it as it moves to the graveyard
state A.

In other words, under P¥ the system behaves exactly as under P,; the only
difference is that some particles carry extra marks showing the lines of descent
of k spines. We call the collection of particles that have carried at least one
spine up to time ¢ the skeleton at time ¢, and write skel(¢); see Figure 1. Of
course P¥ is not defined on the same o-algebra as P,. We let Ff be the filtration
containing all information about the system (including the & spines) up to time
t; then P* is defined on FX . This will be clarified in Section 5.

Figure 1: A realisation of the start of the process. Each particle in the skeleton
is a different colour, and particles not in the skeleton are drawn in grey. The
numbers show how many spines are carried by each particle in the skeleton.

Now, for each n > 0 and y € R let

m™(y) =Y a"py(a),



the nth moment of the offspring distribution. Let

a",uy(a) .

m™(y)

ty, is called the nth size-biased distribution with respect to u,. For 1 <4,5 <k
define T'(i, j) to be the first split time of the ith and jth spines, i.e. the first time
at which marks ¢ and j are carried by different particles. Let D(v) be the total
number of marks carried by particle v.

Suppose that ((X,t) is a functional of a process (X;,¢t > 0) such that if
(Yz,t > 0) is a Markov process with generator B then ((Y,t) is a unit-mean
martingale with respect to the natural filtration of (Y;,¢t > 0). For example if
Y is a Brownian motion on R then we might take

(X, t) =12,

iy (@) =

Under Q¥ particles behave as follows:

e We begin with one particle at position = which (as well as its position)
carries k marks 1,2,... k.

e Just as under P¥, we think of each of the marks 1,...,k as a spine, with

&} the position of whichever particle carries mark i at time ¢.

e A particle with mark 4 at time ¢ moves as if under the changed measure
sz|gt{i} = C(ﬁl,t)]fblﬂgt{i}.

e A particle at position y carrying j marks at time ¢ branches at rate
m? (y)R(y), dying and being replaced by a random number of particles
with law 7 independently of the rest of the system.

e Given that a particles vy,...,v, are born at such a branching event, the
7 spines each choose a particle to follow independently and uniformly at
random, just as under Pk,

e Particles not in the skeleton (those carrying no marks) behave just as
under P, branching at rate R(y) and giving birth to numbers of particles
with law p,, when at y.

In other words, under QF spine particles move as if weighted by the martingale
(; they breed at an accelerated rate; and they give birth to size-biased numbers
of children.

3 The many-to-few lemma

We note here that if Y is measurable with respect to FF, then it can be expressed
as the sum

Y = Z Y(vl""’vk)]l{é,}:vl,...éf:vk}
Ul,...,vkEN(t)U{A}

where each Y (v, ...,v) is Fr-measurable. To see this one can generalize the
argument in [16]. Since this is a purely measure-theoretic argument and will be
clear for most Y of interest, we leave it as an exercise for the reader.

We now state our main result in full.



Lemma 3 (Many-to-few). For any k > 1 and FF-measurable Y as above,

P Z Y(vi,...,vk)

V1,005 EN(t)

=Q* Mex 0 mD(U) s)) — s .
¢ YUEEM (X, (1)) p(/av(t)( (Xo(s)) I)R(Xv( ))d

Note that this is much more general than the simple version stated in Lemma
2. As well as using the more general branching setup and allowing us to calculate
additive functionals of arbitrarily many particles rather than just two, we are
also able to use the martingales ((£¢,¢) to change the motion of the spines, which
in many situations will make calculation of the right-hand side easier. We also
state a discrete-time version of Lemma 3 in Section 7.

4 Examples

4.1 Simple applications of Lemma 3

The section above states the many-to-few lemma in some generality. It may be
enlightening to look instead at some particular simple examples of branching
processes and see how the result can easily be used to calculate moments of
population numbers. We do this below.

Example 1. The simplest possibility is to take Y = 1, each ¢ =1, A = 2
(purely binary branching, so m* = 2¥) and R = 1. This completely ignores the
spatial movement of the particles: we shall simply be calculating the moments
of the number of particles in a Yule tree (a continuous-time Galton-Watson
process with 2 children at every branch point). Because of the simplicity of this
model there are many other ways of getting the same result.

EHN(f)lQ] — 62tQ2[6T(1’2)/\t]
t
= e”/ e*Q(T(1,2) € ds) + *'Q(T(1,2) > t)
0
¢
= e2t/ 2e 5ds + €'
0
= 2% — ¢t
In order to calculate the kth moment let T = infi<; j<x T'(¢,j) be the first

time at which any two spines split, and let S; be the event that at time 7', j of
the spines follow the first child and & — j follow the second child.



EUN(t)I’“]:@’“[ II e<2D<”—1><n<t>—ou<t>>]

veskel(t)

=Q" {6(2k71)t]1{:r>t}}

k—1 t

D) _1)(r -0
+Z/ @k[ [[ "m0, 1,
j=1"0

veskel(t)
k—1 t
. BN [ SR ING = ) — 5)[F=]ds
_ +JZ:1 (j)/o E[IN(t — )P |E[IN(t — s)|*~]ds.

Thus E[N (¢)3] = 6e3t — 6e? +et, E[N(t)*] = 24e*" — 363 + 14e2! + 3et, and so
on.

Example 2. A more interesting example is to take the same setup as in Ex-
ample 1 above but with each particle moving as a Brownian motion (so that we
have a standard branching Brownian motion), and to attempt to calculate the
probability that a particle has position above At at time ¢. The first moment
method, with the many-to-one lemma, gives us an upper bound: setting

W ={u € N(t) : Xu(t) > At}
we have
P(Fu € N(t): X, (t) > Xt) < E[W] = e'P(& > M) ~ ol =At/2

where we use ~ to indicate that we are ignoring terms of at most polynomial
order.

For the lower bound we use the second moment method with the many-to-
two lemma. Let W = #{u € N(t) : X,,(t) > At}; then

P(Ju e N(t): Xyu(t) > At) > %

so to get asymptotic agreement with the upper bound, we require
E[WQ] < etf)\zt/Q'
I\IOW7 from Lemma 3, taklng Y = l{gngt*E?ZAt}7

E[W2] _ 62tQ2[€T(1’2)/\t]1{5t1 Zkt,ifzkt}]

t
=e'P(& > \t) + e%/ e® - 2e72°Q% (& = A, & > M| T(1,2) = s) ds
0

t [e%e}
1 2
Netf)\zt/2+2e2t/ 6725/ e t%/2s
0 —co V 27s
Q* (& > AL > M| T(1,2) = 5,6 =) da ds

t o)
t—22t/2 2t/ —25/ L 225 (M—)?/(t—s)
~e + 2e e e dxds
0 oo V278

— t=Nt/2 4262t /te—zs 2m(t — 8)6—A2t2/(t+s)d8'
0 t+s




Tt is not difficult to see that if A > /2 then

242

1
>t+ 5)\2t for s€0,t]

2
s+t+5 =

(expand out to get a quadratic in s; if A € (v/2,/18) then there are no roots,
and if A > /18 then both roots are larger than t the easiest way to check
this latter fact is to note that the equation is satisfied for s = 0 and s = t, and
has negative derivative for s € [0,¢]). Thus

E[W2] ~ et—)\2t/2

and we have proved that if A > V2 then
1 1.,
thm n logP(Fu € N(t) : Xu(t) > M) =1— 5)\ .

Of course we could have taken more care in the approximations above to gain a
more detailed result, but we prefer to demonstrate a simple use of the many-to-
two lemma without getting bogged down in carefully approximating integrals.
For a more detailed application to a similar problem see Roberts [15].

4.2 Large deviations for BBM

A large deviations result for branching Brownian motion was first proved by
Lee [12]. Later a probabilistic proof was given by Hardy and Harris [8]. In this
section we give an outline of a proof using the many-to-two lemma, showing how
a careful choice of single-particle martingale can ease the required calculations.

For A C C[0,1], let
M(A,T)={ue N(T): X(sT)/T = g(s) Vs €[0,1] for some g € A}

and define
t
H, = {g € C[0,1] : g(0) = 0, I € L*[0,1] with g(s) = / h(s)ds ¥Vt € [0, 1]}
0
Theorem 4. For any closed set F C C]0,1],

1
lim sup T logP(M(F,T) #0) < — ;Ielg J(g)

T—o00

and for any open set U C C[0,1],

lim inf % logP(M (U, T) # 0) > — inf J(g)

T—o0 geU

where ,
J(g) == SUPge|o,1] (fo g'(s)?ds — 9) if g € Hy
00 otherwise.



Proof. For a C? function f : [0,7] — R such that f(0) = 0 and t € [0,T] we
define
N(t)=#{ue N(t):|X,(s) — f(s)| <eT Vs € [0,t]}

where ¢ > 0 and T > 0 are fixed constants (sometimes we shall write N (t)
to indicate the dependence on €). Itd’s formula shows that if (B, t > 0) is a
standard Brownian motion, then

V(B t) _ efo (s)dBs—3 fo I'(s) ds+852T2 COs (2 T(Bt f( )))

is a local martingale. The optional stopping theorem then tells us that

C(Ba t) = V(Bv t)]l{|BS—f(s)\<aT Vs<t}

is a martingale. Applying the many-to-one lemma,

E[N(t)] = e'Q! { ] > esirntQl o= I £/ ()dl+3 Ji £ (5)%as),

b
¢(&h,1)

Integration by parts tells us that
/ )il / tf’(s)st
(el - /f“ elds — f /f 7
— P - (1) - / £ (s)(€! — £(5))ds

so that under Q,

(et~ [ ' (s)2ds

E[N(t)] > ¢!~ Jo £'()ds—eTI (O =<T Jg 1" (s)]ds

<eT|f'(t)] +5T/O [f"(s)|ds.

Thus

On the other hand, for § < ¢,

- 1
E[N5(t)] = 'Q' [m Ljer—pis)| <ot Vs<t}:|

2t t
O e Ji F(5)AEL+ [ 1 (5)ds
— 7o Q [ ° 0 ]
cos (32)
etfl L (s)2ds+eT|f' (t) \JrsTfo [£7( s)|ds+ ”
<
B cos (57)
Similarly, setting
3T supy < | (w)|+3eT [ | (w)|dut gZrr o
R(T) =
") cos (52)



we have

R 1 t 9 2t—s 1,
EINs(1)7] = ¢'Q” C(&ht) et -sei<or ngt}} +/o © [Cé%ﬂ?é%g = S}

t
< R(T)etf%fot f'(s)3ds + R(T)/ €2tfs+%fos f’(u)zduffot f’(u)zduds

0
< R(T)et—% fot f/(s)2ds + R(T)tezt_f(f f’(s)2ds sup 6% f[}" f/(8)2ds—r'
ref0,t]
Choosing 7 such that
3 ISP ds=T _ gy o 5 () ds

rel0,T]
we see that
E[Ns(t)2] < R(T)(T + 1)e2t—Jo /() dstg [T 1 (9)%ds—
Putting our estimates for the first and second moments together,
P(N(T) > 1) < P(N(7) > 1)
T J7 ()2 ds 2T (7)|422T [T 11 (5)|ds+ 0

EIN(r 32¢2T
<E[N(r)] < ey

and

; N E[N5(T)]* _ T3 7 £'(5)%ds

Y]

P(Ne(T) 21) 2 B(Ns(T) 2 1) E[N5(T)?] ~ R(T)(T + 1)e2 T (Dl+2¢ [ 11" (s)lds

Now setting g(t) = f(tT)/T and 6 = 7/T, we obtain

1 - 1 /[? 1
T logP(N(T) > 1) <6 — 5 / g’ (s)%ds + 2¢|g'(0)| + 25/ lg" (s)|ds + o(1)
0 0
and
1 Y 1 ¢ /()2 / ! "
—logP(N(T)>1)>60—= [ ¢'(s)?ds—5e sup |¢g'(s)|—5c [ |g"(s)|ds+o(1).
T 2Jo s€(0,1] 0

This establishes the required estimates for balls about smooth functions, to
within an error which goes to zero with the radius of the ball. It remains to
apply techniques from large deviations theory. For the lower bound it suffices to
choose € small. For the upper bound we must rule out the possibility of particles
following extreme paths, so that we are left with a compact set; then use upper
semicontinuity of the rate function to check that we may choose an appropriate
. These details are carried out fully in [8], and are similar to those in the proof
of Schilder’s theorem for one Brownian motion (see [18] for example). O

5 Multiple spines and changes of measure
Our main aim in this section is to give full details of the setup introduced in

Section 2. We take, more or less, the route laid out by Hardy and Harris [9] for
a single spine.

10



5.1 Trees

We use the Ulam-Harris labelling system: define a set of labels

Q:={0}u UN”

neN

(as usual N={1,2,3,...}).

We often call the elements of Q) particles. We think of ) as our “inital
ancestor”, and a label (3,2,7) (for example) as representing “the seventh child
of the second child of the third child of the initial ancestor”. For a particle u € )
we define |u|, the generation of u, to be the length of u (so if u € N™ then |u| = n,
and || = 0). For two labels u, v € £ we write uv for the concatenation of u and
v, so for example (3,2,7)(1,5,4) := (3,2,7,1,5,4) (and we take fu = ud) = u).
We write v < v and say that u is an ancestor of v if there exists w €  such
that uw = v.

We define a tree to be a subset 7 C € such that

e () € 7: the initial ancestor is part of 7;

e for all u,v € Q, wv € 7 = u € 7: if 7 contains a particle then it contains
all the ancestors of that particle;

e for each u € 7, there exists A, € {0,1,2,...} such that for j € N, uj € 7 if
and only if 1 < j < A,: each particle in 7 has a finite number of children.

We let T be the set of all such trees.

5.2 Marked trees

Since we wish to have a particular view of trees, as systems evolving in time and
space, we define a marked tree to be a set T of triples of the form (u,l,, X.)
such that u € Q, the set

tree(T") := {w: 3 I, Xy, such that (u,l,, X,) € T}

forms a tree, l,, € [0,00) is the lifetime of u, and, setting o, := > _, 1, and

Ty = ngu lu,

v<u

Xu i owTu) — J

is the position function of u. We think of X, (t) as describing the spatial position
of the particle u at time ¢. To paint the picture more clearly, we think of the
inital ancestor ) moving around in space according to its position function Xj
until just before time ly. At this time it disappears and a number Ay of new
particles appear; each of these then moves around in space according to its
position function for a period of time equal to its lifetime, before being replaced
by a number of new particles; and so on.

We let 7 be the set of all marked trees, and for T' € 7 we define the set of
particles alive at time ¢ to be

N(t):={u € tree(T) : o, <t < 7, }.

11



For convenience, we extend the position path of a particle v to all times ¢ €
[0,7,), to include the paths of all its ancestors:

X ifo,<t<T,
Xo(t) == { Xu(t) ifu<vando, <t <y

and if A, = 0 then we write X, (t) = A Vt > 7,,.

5.3 Marked trees with spines

We now enlarge our state space further to include the notion of spines. We
define a spine to be a single maximal distinguished line of descent. That is, a
spine £ on a marked tree 7 is a subset of tree(r) such that

e e
e (N (N(t) U{A}) contains exactly one particle for each ¢
o if v €& and u < v then u € &

e ifveand A, > 0, then 35 € {1,...,A,} such that vj € &; otherwise
EAN®E) =0Vt > 7.

If v € £N N(t) then we define & := X, (¢), the position of the spine at time ¢.
At certain points we shall also use the notation & to mean the particle v itself

beyond this introduction it should always be clear from the context which
meaning is intended, and so this should not lead to any ambiguity. For clarity
within this section we will use the less concise notation node({;) to denote the
particle v itself — that is, the unique v € N(t) N{. We say that a marked tree
with spines is a sequence (7,&,£2,€3,...) where 7 € 7 is a marked tree and ¢!,
&2, ... are spines on 7. We let T be the set of all marked trees with spines.

5.4 Filtrations

We now work exclusively on the space 7 of marked trees with spines, and use dif-
ferent filtrations on this space to encapsulate different amounts of information.
We give descriptions of these filtrations below; formal definitions are similar to
those in [16] and are left to the reader.

The filtration (F;,t > 0)
We define (F;,t > 0) to be the natural filtration of the branching process - it
does not know anything about the spines.

The filtrations (FF,t > 0)

For each k > 1 we define (FF,t > 0) to be the natural filtration for the branch-
ing process and the first k spines. It does not know anything about spines ¢++1,
£k+2 ., but knows everything about the branching process and spines ¢', ...,

&*.
The filtrations (G/,t > 0)

For each j we define

gg :zo( Is¢€ [O,t])

12



where £J represents the position of the jth spine at time s. Qf contains just the
spatial information about the jth spine up to time ¢ (and whether or not it has
died), but does not know which nodes of the tree actually make up that spine.

The filtrations (~;{i1""’ij},t >0)
For each j-tuple iy,...,%; we define

Gl = o (GFUAF UCH K € {ir,....i}).

where

AF = {{u=node(¢")} :u e Q,s € [0,1]}

and

CF = {{u < node(&F), Ay = a,0, <o} :u€Qa>2,0¢c0,00)}
C;,;{il""’ij} contains all the information about the relevant collection of spines up
to time ¢: which nodes make up the spines, their positions, and for all spine

nodes not in N (t) (so all the strict ancestors of the spines at time t) their life-
times and number of children.

The filtration (GF,t > 0)

We use the shorthand
5k A{1,....k}
g9 =6,

so that _C';tk knows everything about the first k£ spines up to time ¢. Thus QNt’“ is
different from _C';fk}.

5.5 Probability measures

We may now take a probability measure P, on T such that under P,, the
system evolves as a branching process starting with one particle at x, each
particle moves as a Markov process with generator C independently of all others
given its birth time and position, and a particle at position y branches at rate
R(y) into a random number of particles with distribution g, . This is the system
described in Section 2. This measure, however, has no knowledge of the spines
(since it sees only the filtration F;). We would like to extend this to a measure
on each of the finer filtrations .7:}’“ To do this, we imagine each spine, at each
fission event, choosing uniformly from the available children. Then it is easy to
see that, for any particle u in a marked tree T" and any 7 > 1, we would like

Prob(u € &) = H AL
v<u Y

We recall from Section 2 that if Y is an F}-measurable random variable then
we can write:

Y = > Y (vr, o ) Der by (3)
v1,..., 0, EN(L)U{A}

where each Y (vy,...,v;) is Fi-measurable. (Here when we write 5;? we are
talking really about the particle node(¢]) rather than its position.)

13



Definition 5. We define the probability measure P¥ on (’j', o0); by setting

k
PElY] =P, > Y(vl,...,vk)H II Ai (4)

for each FF-measurable Y with representation (3).
Remark. The measure ]fl’m is an extension of P, in that P, = ]sz|_7:oo, since
b 1
> IIz-v
, Ay
VL yeeey Vg GN(t)UA j=1u<v;

In summary, particles carrying spines behave just as they would under P,
and when such a particle branches, each spine makes an independent choice
uniformly from amongst the available children.

5.6 Martingales and a change of measure

As in Section 2 define T'(i, ) := inf{t > 0: & # &/}, and suppose that we are
given a functional {(-,t), t > 0, such that {(Y,t) is a unit-mean martingale with
respect to the natural filtration of the Markov process (Y, t > 0) with generator
C. We call ( the single-particle martingale.

Recall that we defined skel(t) = skel®(t) (often the & will be implicit), the
skeleton, to be the subtree up to time ¢ generated by those particles carrying at
least one spine,

skel(t) = {u € Q: 3s < t,j < k such that node(&?) = u}.

We also set ‘
D(v) = #{j : 3t with v = &/}

to be the number of spines following particle v, and define

E(v,t) = exp (— /UT(Z) (mD<v> (Xo(s)) — 1) R(Xv(s))ds> :

Since we will not always know which particles are the spines (when we are
working on F; for example), it will sometimes be helpful to have the above
concepts defined for a general skeleton of k£ particles uq, ..., ux instead of the
spines. For this reason we define

skely,, . (t) ={veQ:0, <t 3j with v < wu;},

Du17~~~;uk (U) = #{j tv < U‘j}7

and
Ty (t)
Bupon (0st) =exp (= [ (mPsn (X, () - 1) ROX, (5))ds
oy (t)
so that

skel(t) = skelg1  ¢x(t), D(v) = De

""""""
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Remark. We note that, with the notation given above,

Du U v
Pk(giﬁl:ulv"'aff:udft): H Ay ’k().

veskelu,,...,uy, (1) \N(t)

Definition 6. We define an Fh-adapted (and, in fact, GF-adapted) process
¢F(t), t >0 by

= C X’U; T’U t
Fo- 11 (Seiewn) I ar
veskel(t) ¢(Xo, 00 (1)) veskel(t)\N ()
(if A, =0, that is to say that v has no children, then we may arbitrarily define
¢(Xy,7y(t)) = 0) and an F-adapted process Z¥(t), t > 0 by

AICEIEDY H H g i))Eul """ e (0, ):

U,...,up €N (t) =1 v<u;

Again we will often supress the dependence on k. ~
We remark here that Z and ((¢7,-) are, in fact, simply the projections of ¢
onto the relevant filtrations:

o Z(t) = P[C(t)| 7]

o ((&7,1) = PL(t)IG).

Lemma 7. The process C(t), t > 0 is a martingale with respect to the filtrations
GF and FF.

Proof. Let x = (v1,v2,...) be a single line of descent (so in particular v; < vy <

..), with x; representing the position of the unique v; that is alive at time ¢.
The births along x form a Cox process driven by x; with rate function R. Thus
for any j >0,

P[HA{,

v<Xt

Xs,8 € [O,t]] = exp </Ot(mj(xs) - I)R(xs)ds) .

Decomposing the process f(t) according to the splitting times of the k spines and
repeatedly applying the above fact together with the optional stopping theorem
and the Markov branching property (which ensures that different branches of
the skeleton are independent given the information up to their split) gives the
result. O

Definition 8. We define the measure Q¥ by

dQ* z
= ((t).
s |, =0

The proof that QF behaves as claimed in Section 2.1 is just the same as the
original proof (for one spine) given by Chauvin and Rouault [4], applied to each
branch of the skeleton independently.
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6 Proof of the many-to-few lemma

We first need to calculate the probability that a k-tuple of particles (uq, ..., ug)
makes up the skeleton at time t.

Lemma 9 (Gibbs-Boltzmann weights for Q). For any uy,...us, € N(t)U{A},

C(X’Uu Ty (t))

1
t (Kot 1)

W = =wlF) = 5 1
veskely, ..., ug, ()

Proof. By the fact that P*[C(t)|F;] = Z(t) and standard properties of condi-
tional expectation,
Q (& = w1, & = up|F)

_ Pk [é(t)]l{gg —unyelimu} [ ]
PRIC(t)] )

1 C(Xo, 70(t)) v
Tt)( S e “’*’”)

’UESkelul ,,,,, up (t)

AU ,,,,, uk(v)>Pk(§tl:u17--'7§f:uk|]:t)

,,,,,

_ L (X, 70(t)) v
RGN SR o

veskely, ..., up, (t)
as required. O

The proof of the many-to-few lemma is now straightforward.
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Proof of Lemma 3. We begin with the right-hand side.

C(Xvaav(t)) 1
o L ) ey

Z Y(ug,...,ug)

ul,...,ukeN(t)U{A}

veskel(t)

=QF

C(vao'v(t)) 1
H C(XU,TU(t)) Eu1 vvvvv un (U,t) 1{5}_u17~~~;5f_uk}1

C(Xvaav(t)) 1
H C(Xo, (1) Buy,.opur (0,1)

1
70 Z Y(ul,...,uk)]

uy,..., up EN(1)

:]P’kl Z Y(ul,...,uk)]

»»»»» ur €N (L)

G =, 6 ukm)]

where for the last step we used the fact that % = Z(t). O

Ft

7 Many-to-few in discrete time

We state here a version of the many-to-few lemma for discrete-time processes.
We shall not prove this result, as it is very similar to the continuous-time version
studied above.

7.1 A discrete-time branching process

We begin with one particle in generation 0 located at x € J. Any particle at
position y has children whose number and positions are decided according to
a finite point process D, on J. The children of particles in generation n make
up generation n + 1. We define N(n) to be the total number of particles in
generation n, and X, to be the position of particle v. We set

m? (y) = By[N(1)’]
to be the jth moment of the number of particles created by the point process

D,. Write |v] to be the generation of particle v. For a particle v in generation
n > 1, let p(v) be its parent in generation n — 1. For any line of descent

Vg, U1, V2, . .. such that |v,| = n and p(v,11) = v, for each n > 0, we note that
KXoy Xvyy Xugy - - - 18 a Markov chain with some generator C’ not depending on
the choice of vy, v1, . ... Suppose that ((X,n), n > 0 is a functional of a process

(Xn,n > 0) such that if (X,,n > 0) is a Markov process with generator C’
then ((X,n), n > 0 is a martingale with respect to the natural filtration of

(Xn,n >0).
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7.2 The skeleton and the measure QF

We have k distinguished lines of descent just as in the continuous-time case,
which we call spines. Under P, if a particle carrying j marks (i.e. the particle is
part of j spines) in generation n has [ children in generation n + 1, then each of
its 7 marks chooses a particle to follow in generation n + 1 uniformly at random
from the [ children. We let ¢! be the position of the ith spine in generation n
and define skel(n) to be the set of all particles of generation at most n which
are part of at least one spine. Set D, to be the number of marks carried by
particle v.
Under QF particles behave as follows:

e We begin with one particle at position = which (as well as its position)
carries k marks 1,2,... k.

e Just as under P*, we think of each of the marks 1,...,k as a spine, with
& the position of whichever particle carries mark ¢ at time n.

e A particle at position y carrying j marks has children whose number and
positions are decided by a point process such that:

— for each j and [ > 0, QJ(N (1) =1) = VP, (N (1) = 1)/Py[N(1)7] (the
number of children is j-size biased);

— for each i, the sequence XEE;),XQ,X%-,... is a Markov chain dis-
tributed as if under the changed measure th|g{i} = ((&, n)]P”ﬂg{i}.

e Given that a particles vq,...,v, are born at such a branching event, the
7 spines each choose a particle to follow independently and uniformly at
random, just as under P*.

e Particles not in the skeleton (those carrying no marks) have children ac-
cording to the point process D, when at position y, just as under P.

In other words, under Q” spine particles move as if weighted by the martingale

¢, and they give birth to size-biased numbers of children.

7.3 The main result in discrete time

Lemma 10 (Many-to-few in discrete time). For any k > 1 and FF-measurable
Y such that

Y = Z Y(vla-"avk)]-{E}L:vl,...,gﬁ:vk}
V1,...,v5 EN(n)U{A}

we have

P Z Y(vi,...,00)| =Q" |Y H Mmf’pm(}%(v))

V1,506 EN (1) vEskel(n) ¢(v, [ol)

The proof of this result is similar to that of Lemma 3.
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