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Abstra
t: We develop an extension to the spine theory of bran
hing pro-
esses, and use it to give a simple and intuitive identity for 
al
ulating additivefun
tionals of su
h pro
esses, generalizing the well-known many-to-one lemma.1 Introdu
tion1.1 The many-to-two lemmaConsider a bran
hing Brownian motion (BBM): one parti
le starts at 0 andmoves like a Brownian motion until a random exponentially distributed timewith mean 1. It then dies and leaves in its pla
e two new parti
les, whi
h inde-pendently follow, relative to their initial position, the same random behaviouras their parent. Let N(t) be the set of parti
les alive at time t, and for a parti
le
u ∈ N(t) let Xu(t) be the position of parti
le u. Let Bt, t ≥ 0 be a standardBrownian motion, and f : R → R be some measurable fun
tion. The followingresult is well-known:Lemma 1 (Simple many-to-one lemma).

E





∑

u∈N(t)

f(Xu(t))



 = etE[f(Bt)]. (1)The most useful aspe
t of this lemma is that it turns questions about asystem of many dependent parti
les into questions about a single Brownianmotion. For example, let A(x, t) = #{u ∈ N(t) : Xu(t) > x}, the number ofparti
les that are above x at time t. For whi
h x and t is A(x, t) non-zero? (Thisquestion is related to solutions of the FKPP equation.) Markov's inequality andthe many-to-one lemma give us an easy upper bound:
P(A(x, t) ≥ 1) ≤ E[A(x, t)] = E





∑

u∈N(t)

1{Xu(t)>x}



 =
et

√
2πt

∫ ∞

x

e−y2/2dy.For a lower bound, one would like to use a se
ond-moment method, applying
P(A(x, t) ≥ 1) ≥ E[A(x, t)]2

E[A(x, t)2]
,but the many-to-one lemma does not tell us how to 
al
ulate E[A(x, t)2]. Insteadwe should use a many-to-two lemma. Lemma 2 gives an example of a many-to-two lemma for BBM.Lemma 2 (Simple many-to-two lemma). For measurable f and g,

E





∑

u,v∈N(t)

f(Xu(t)) g(Xv(t))



 = e2tE[eT∧tf(Bt) g(B′
t)] (2)where

B′
t =

{

Bt if t < T

BT + Wt−T if t ≥ Twith T exponentially distributed with parameter 2 and Wt, t ≥ 0 a standardBrownian motion independent of Bt. 1



The main result of this arti
le will be the many-to-few lemma, Lemma 3,whi
h is a mu
h more general version of Lemma 2. In fa
t we will be able to
al
ulate additive fun
tionals not just of two parti
les, but of arbitrarily manyparti
les. We also in
orporate the possibility of using a 
hange of measure forthe motion of the parti
les to allow for easier 
al
ulation of the right-hand sideof the identity.Results similar to Lemma 3 have existed for some time in various forms1,usually proved by arguments spe
i�
 to the parti
ular model or problem. Ourarti
le provides several advantages over these previous results. Firstly, we stateLemma 3 for a rather general model, and our methods are robust and may beadapted for use with other bran
hing pro
esses. In addition the multiple spinesetup outlined in Se
tion 2 gives an intuitive ba
kdrop for understanding many-to-few results. Thus we hope that this arti
le will provide a general frameworkthat will allow the reader to qui
kly understand and 
onstru
t a many-to-fewlemma for whi
hever bran
hing pro
ess they wish to 
onsider. Finally, to ourknowledge there is no existing work � for any model � that allows one to
hange measure as part of the result. This te
hnique 
an be extremely useful:we give an example in Se
tion 4.2.There are already several appli
ations of this theory underway. Aïdékonand Harris [1℄ use the k-parti
le (for general k) version to 
ompute moments inorder to show that the number of parti
les hitting a 
ertain level in a bran
hingBrownian motion with killing at the origin 
onverges in distribution in the limitapproa
hing 
riti
ality. Döring and Roberts [6℄ 
al
ulate moments of numbersof parti
les in a 
atalyti
 bran
hing model, for whi
h the multiple spine theorygives an intuitive 
ombinatorial derivation for a 
olle
tion of 
onstants whi
hotherwise appear abstra
tly from the analysis. Ortgiese and Roberts (work inprogress) also apply the k-parti
le version to the paraboli
 Anderson model toshow that the large-time behaviour of the underlying bran
hing pro
ess is ratherdi�erent from that anti
ipated by its moments. Roberts [15℄ uses the full powerof our general many-to-two lemma, with a parti
ular 
hoi
e of measure 
hange,to give simple proofs of large-time asymptoti
s for the position of the extremalparti
le in a bran
hing Brownian motion.1.2 The spine approa
hThree arti
les [11, 13, 14℄ by Kurtz, Lyons, Pemantle and Peres � building onwork of Chauvin and Rouault [4℄ among others � gave the subje
t of bran
hingpro
esses a new set of tools, known as spine methods. These te
hniques havesin
e been used by many authors to prove new results and to give intuitive newproofs of old results.Just like the many-to-one lemma, the spine methods retain one essentialtheme: at large times the bran
hing stru
ture may be very 
ompli
ated and wemay have very many parti
les, but one 
an understand mu
h of this 
ompli
ated1An even simpler form of Lemma 2 was given by Sawyer [17℄. Kallenberg [10℄ proved aversion for dis
rete trees, whi
h he 
alls a �ba
kward tree formula�. Gorostiza and Wakolbinger[7℄ extend Kallenberg's formula to a 
lass of 
ontinuous-time pro
esses. Dawson and Perkinsgenerate what they 
all �extended Palm formulas� for histori
al pro
esses (superpro
essesenri
hed with information on genealogy) in [5℄. For the paraboli
 Anderson model with Weibullupper tails, Albeverio et al. [2℄ gave a similar result by 
onsidering existen
e and uniqueness ofsolutions to a Cau
hy problem. Bansaye et al. [3℄ develop quite general many-to-two lemmasfor Markov bran
hing pro
esses, allowing parti
les to be born away from their parent.2



behaviour to �rst order by 
arefully studying just one spe
ial parti
le. It is nogreat surprise, then, that spine te
hniques allowed simple proofs of mu
h moregeneral versions of the many-to-one lemma that would not have been a

essibleotherwise.We develop a theory of multiple spines in order to gain further informationabout the system. This approa
h leads naturally to a quite simple proof of ourmain result. However, just as general many-to-one theorems are far from theonly appli
ation of single-spine te
hniques, the detailed multiple-spine theorythat we develop in proving our results may also be useful in other ways.This arti
le is arranged as follows. In Se
tion 2 we give a summary of the multi-spine setup, and then state our main result in Se
tion 3. Se
tion 4 providessome examples of how this result 
an be applied. Then in Se
tion 5 we givefull 
onstru
tions of the measures and �ltrations used in the theory. Se
tion5 is rather te
hni
al and may be ignored by readers wishing only to apply ourmethods. We prove the many-to-few lemma in Se
tion 6. Finally, in Se
tion 7we state a dis
rete-time version of the many-to-few lemma.2 Multiple spinesWe state here the general 
ontinuous-time bran
hing setup that we will studyin this paper.We 
onsider a bran
hing pro
ess starting with one parti
le at x under aprobability measure Px. This parti
le moves withing a measurable spa
e (J,B)a

ording to a Markov pro
ess with generator C. When at position y, a parti
lebran
hes at rate R(y) (informally, in a period of time dt the parti
le bran
heswith probability R(y)dt), dying and giving birth to a random number of newparti
les with distribution µy (where for ea
h y, µy has support on {0, 1, 2, . . .}).Ea
h of these parti
les then independently repeats the sto
hasti
 behaviour ofits parent from its starting point.We label our parti
les using the Ulam-Harris s
heme: the �rst parti
le is ∅,its l 
hildren are labelled 1, 2, . . . , l, the m 
hildren of parti
le 1 are labelled 11,
12, . . . , 1m, and so on. We denote by N(t) the set of all parti
les alive at time
t. For a parti
le u ∈ N(t) we let σu be the time of its birth and τu the time ofits death, and de�ne σu(t) = σu ∧ t and τu(t) = τu ∧ t. If u ∈ N(t) then for all
s ≤ t we write Xu(s) for the position of the unique an
estor of u alive at time
s. If u has 0 
hildren then we write Xu(s) = ∆ for all t ≥ τu, where ∆ 6∈ J is agraveyard state.2.1 The k-spine measures Pk and QkWe de�ne new measures Pk

x and Qk
x under whi
h there are k distinguished lines ofdes
ent whi
h we 
all spines. The a
tual 
onstru
tion of Pk

x is slightly te
hni
al,and the 
onstru
tion of Qk
x relies on a 
arefully 
hosen 
hange of measure (seeSe
tion 5), but we do not ne
essarily have to understand these 
onstru
tions.It is most important simply to understand the dynami
s of the system underthese new measures.Under Pk

x parti
les behave as follows:3



• We begin with one parti
le at position x whi
h (as well as its position)
arries k marks 1, 2, . . . , k.
• All parti
les move as Markov pro
esses with generator C, independentlyof ea
h other given their birth times and positions, just as under Px.
• We think of ea
h of the marks 1, . . . , k as distinguishing a parti
ular lineof des
ent or �spine�, and de�ne ξi

t to be the position of whi
hever parti
le
arries mark i at time t.
• A parti
le at position y 
arrying j marks b1 < b2 < . . . < bj at time tbran
hes at rate R(y), dying and being repla
ed by a random number ofparti
les with law µy independently of the rest of the system, just as under

Px.
• Given that a parti
les v1, . . . , va are born at a bran
hing event as above,the j spines ea
h 
hoose a parti
le to follow independently and uniformlyat random from amongst the a available. Thus for ea
h 1 ≤ l ≤ a and

1 ≤ i ≤ j the probability that vl 
arries mark i just after the bran
hingevent is 1/a, independently of all other marks.
• If a parti
le 
arrying j > 0 marks b1 < b2 < . . . < bj dies and is repla
edby 0 parti
les, then its marks remain with it as it moves to the graveyardstate ∆.In other words, under Pk

x the system behaves exa
tly as under Px; the onlydi�eren
e is that some parti
les 
arry extra marks showing the lines of des
entof k spines. We 
all the 
olle
tion of parti
les that have 
arried at least onespine up to time t the skeleton at time t, and write skel(t); see Figure 1. Of
ourse Pk
x is not de�ned on the same σ-algebra as Px. We let Fk

t be the �ltration
ontaining all information about the system (in
luding the k spines) up to time
t; then Pk

x is de�ned on Fk
∞. This will be 
lari�ed in Se
tion 5.

Figure 1: A realisation of the start of the pro
ess. Ea
h parti
le in the skeletonis a di�erent 
olour, and parti
les not in the skeleton are drawn in grey. Thenumbers show how many spines are 
arried by ea
h parti
le in the skeleton.Now, for ea
h n ≥ 0 and y ∈ R let
mn(y) =

∑

a

anµy(a),4



the nth moment of the o�spring distribution. Let
µn

y (a) =
anµy(a)

mn(y)
;

µn
y is 
alled the nth size-biased distribution with respe
t to µy. For 1 ≤ i, j ≤ kde�ne T (i, j) to be the �rst split time of the ith and jth spines, i.e. the �rst timeat whi
h marks i and j are 
arried by di�erent parti
les. Let D(v) be the totalnumber of marks 
arried by parti
le v.Suppose that ζ(X, t) is a fun
tional of a pro
ess (Xt, t ≥ 0) su
h that if

(Yt, t ≥ 0) is a Markov pro
ess with generator B then ζ(Y, t) is a unit-meanmartingale with respe
t to the natural �ltration of (Yt, t ≥ 0). For example if
Y is a Brownian motion on R then we might take

ζ(X, t) = eXt−t/2.Under Qk
x parti
les behave as follows:

• We begin with one parti
le at position x whi
h (as well as its position)
arries k marks 1, 2, . . . , k.
• Just as under Pk

x, we think of ea
h of the marks 1, . . . , k as a spine, with
ξi
t the position of whi
hever parti
le 
arries mark i at time t.

• A parti
le with mark i at time t moves as if under the 
hanged measure
Qi

x|G{i}
t

:= ζ(ξi, t)Pk
x|G{i}

t

.
• A parti
le at position y 
arrying j marks at time t bran
hes at rate

mj(y)R(y), dying and being repla
ed by a random number of parti
leswith law µj
y independently of the rest of the system.

• Given that a parti
les v1, . . . , va are born at su
h a bran
hing event, the
j spines ea
h 
hoose a parti
le to follow independently and uniformly atrandom, just as under Pk

x.
• Parti
les not in the skeleton (those 
arrying no marks) behave just asunder P, bran
hing at rate R(y) and giving birth to numbers of parti
leswith law µy when at y.In other words, under Qk spine parti
les move as if weighted by the martingale

ζ; they breed at an a

elerated rate; and they give birth to size-biased numbersof 
hildren.3 The many-to-few lemmaWe note here that if Y is measurable with respe
t to Fk
t , then it 
an be expressedas the sum

Y =
∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)1{ξ1
t =v1,...,ξk

t =vk}where ea
h Y (v1, . . . , vk) is Ft-measurable. To see this one 
an generalize theargument in [16℄. Sin
e this is a purely measure-theoreti
 argument and will be
lear for most Y of interest, we leave it as an exer
ise for the reader.We now state our main result in full.5



Lemma 3 (Many-to-few). For any k ≥ 1 and Fk
t -measurable Y as above,

P





∑

v1,...,vk∈N(t)

Y (v1, . . . , vk)





= Qk



Y
∏

v∈skel(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))
exp

(

∫ τv(t)

σv(t)

(

mD(v)(Xv(s)) − 1
)

R(Xv(s))ds

)



 .Note that this is mu
h more general than the simple version stated in Lemma2. As well as using the more general bran
hing setup and allowing us to 
al
ulateadditive fun
tionals of arbitrarily many parti
les rather than just two, we arealso able to use the martingales ζ(ξi, t) to 
hange the motion of the spines, whi
hin many situations will make 
al
ulation of the right-hand side easier. We alsostate a dis
rete-time version of Lemma 3 in Se
tion 7.4 Examples4.1 Simple appli
ations of Lemma 3The se
tion above states the many-to-few lemma in some generality. It may beenlightening to look instead at some parti
ular simple examples of bran
hingpro
esses and see how the result 
an easily be used to 
al
ulate moments ofpopulation numbers. We do this below.Example 1. The simplest possibility is to take Y ≡ 1, ea
h ζj ≡ 1, A ≡ 2(purely binary bran
hing, so mk ≡ 2k) and R ≡ 1. This 
ompletely ignores thespatial movement of the parti
les: we shall simply be 
al
ulating the momentsof the number of parti
les in a Yule tree (a 
ontinuous-time Galton-Watsonpro
ess with 2 
hildren at every bran
h point). Be
ause of the simpli
ity of thismodel there are many other ways of getting the same result.
E[|N(t)|2] = e2tQ2[eT (1,2)∧t]

= e2t

∫ t

0

esQ(T (1, 2) ∈ ds) + e2tQ(T (1, 2) > t)

= e2t

∫ t

0

2e−sds + et

= 2e2t − et.In order to 
al
ulate the kth moment let T = inf1≤i,j≤k T (i, j) be the �rsttime at whi
h any two spines split, and let Sj be the event that at time T , j ofthe spines follow the �rst 
hild and k − j follow the se
ond 
hild.
6



E
[

|N(t)|k
]

= Qk

[

∏

v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))

]

= Qk
[

e(2k−1)t1{T>t}

]

+
k−1
∑

j=1

∫ t

0

Qk

[

∏

v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))1{T∈ds}1Sj

]

= et +

k−1
∑

j=1

(

k

j

)
∫ t

0

esE
[

|N(t − s)|j
]

E
[

|N(t − s)|k−j
]

ds.Thus E[N(t)3] = 6e3t − 6e2t + et, E[N(t)4] = 24e4t − 36e3t + 14e2t + 3et, and soon.Example 2. A more interesting example is to take the same setup as in Ex-ample 1 above but with ea
h parti
le moving as a Brownian motion (so that wehave a standard bran
hing Brownian motion), and to attempt to 
al
ulate theprobability that a parti
le has position above λt at time t. The �rst momentmethod, with the many-to-one lemma, gives us an upper bound: setting
W = |{u ∈ N(t) : Xu(t) ≥ λt}|we have

P(∃u ∈ N(t) : Xu(t) ≥ λt) ≤ E[W ] = etP(ξt ≥ λt) ∼ et−λ2t/2where we use ∼ to indi
ate that we are ignoring terms of at most polynomialorder.For the lower bound we use the se
ond moment method with the many-to-two lemma. Let W = #{u ∈ N(t) : Xu(t) ≥ λt}; then
P(∃u ∈ N(t) : Xu(t) ≥ λt) ≥ E[W ]2

E[W 2]so to get asymptoti
 agreement with the upper bound, we require
E[W 2] . et−λ2t/2.Now, from Lemma 3, taking Y = 1{ξ1

t ≥λt,ξ2
t≥λt},

E[W 2] = e2tQ2[eT (1,2)∧t1{ξ1
t ≥λt,ξ2

t≥λt}]

= etP(ξt ≥ λt) + e2t

∫ t

0

es · 2e−2sQ2
(

ξ1
t ≥ λt, ξ2

t ≥ λt
∣

∣T (1, 2) = s
)

ds

∼ et−λ2t/2 + 2e2t

∫ t

0

e−2s

∫ ∞

−∞

1√
2πs

e−x2/2s

· Q2
(

ξ1
t ≥ λt, ξ2

t ≥ λt
∣

∣T (1, 2) = s, ξs = x
)

dx ds

∼ et−λ2t/2 + 2e2t

∫ t

0

e−2s

∫ ∞

−∞

1√
2πs

e−x2/2s−(λt−x)2/(t−s)dxds

= et−λ2t/2 + 2e2t

∫ t

0

e−2s

√

2π(t − s)

t + s
e−λ2t2/(t+s)ds.7



It is not di�
ult to see that if λ >
√

2 then
2s +

λ2t2

t + s
≥ t +

1

2
λ2t for s ∈ [0, t](expand out to get a quadrati
 in s; if λ ∈ (

√
2,
√

18) then there are no roots,and if λ ≥
√

18 then both roots are larger than t � the easiest way to 
he
kthis latter fa
t is to note that the equation is satis�ed for s = 0 and s = t, andhas negative derivative for s ∈ [0, t]). Thus
E[W 2] ∼ et−λ2t/2and we have proved that if λ >
√

2 then
lim

t→∞

1

t
log P(∃u ∈ N(t) : Xu(t) ≥ λt) = 1 − 1

2
λ2.Of 
ourse we 
ould have taken more 
are in the approximations above to gain amore detailed result, but we prefer to demonstrate a simple use of the many-to-two lemma without getting bogged down in 
arefully approximating integrals.For a more detailed appli
ation to a similar problem see Roberts [15℄.4.2 Large deviations for BBMA large deviations result for bran
hing Brownian motion was �rst proved byLee [12℄. Later a probabilisti
 proof was given by Hardy and Harris [8℄. In thisse
tion we give an outline of a proof using the many-to-two lemma, showing howa 
areful 
hoi
e of single-parti
le martingale 
an ease the required 
al
ulations.For A ⊆ C[0, 1], let

M(A, T ) = {u ∈ N(T ) : X(sT )/T = g(s) ∀s ∈ [0, 1] for some g ∈ A}and de�ne
H1 =

{

g ∈ C[0, 1] : g(0) = 0, ∃h ∈ L2[0, 1] with g(s) =

∫ t

0

h(s)ds ∀t ∈ [0, 1]

}

.Theorem 4. For any 
losed set F ⊆ C[0, 1],
lim sup
T→∞

1

T
log P(M(F, T ) 6= ∅) ≤ − inf

g∈F
J(g)and for any open set U ⊆ C[0, 1],

lim inf
T→∞

1

T
log P(M(U, T ) 6= ∅) ≥ − inf

g∈U
J(g)where

J(g) :=

{

supθ∈[0,1]

(

∫ θ

0
g′(s)2ds − θ

) if g ∈ H1

∞ otherwise.8



Proof. For a C2 fun
tion f : [0, T ] → R su
h that f(0) = 0 and t ∈ [0, T ] wede�ne
N̂(t) = #{u ∈ N(t) : |Xu(s) − f(s)| < εT ∀s ∈ [0, t]}where ε > 0 and T > 0 are �xed 
onstants (sometimes we shall write N̂ε(t)to indi
ate the dependen
e on ε). It�'s formula shows that if (Bt, t ≥ 0) is astandard Brownian motion, then

V (B, t) := e
R

t

0
f ′(s)dBs−

1
2

R

t

0
f ′(s)2ds+ π2t

8ε2T2 cos
( π

2εT
(Bt − f(t))

)is a lo
al martingale. The optional stopping theorem then tells us that
ζ(B, t) := V (B, t)1{|Bs−f(s)|<εT ∀s≤t}is a martingale. Applying the many-to-one lemma,

E[N̂(t)] = etQ1

[

1

ζ(ξ1, t)

]

≥ e
π2t

8ε2T
+t

Q1[e−
R

t

0
f ′(s)dξ1

s+ 1
2

R

t

0
f ′(s)2ds].Integration by parts tells us that

∫ t

0

f ′(s)dξ1
s −

∫ t

0

f ′(s)2ds

= f ′(t)ξ1
t −

∫ t

0

f ′′(s)ξ1
sds − f ′(t)f(t) +

∫ t

0

f(s)f ′′(s)ds

= f ′(t)(ξ1
t − f(t)) −

∫ t

0

f ′′(s)(ξ1
s − f(s))dsso that under Q1,

∣

∣

∣

∣

∫ t

0

f ′(s)dξ1
s −

∫ t

0

f ′(s)2ds

∣

∣

∣

∣

≤ εT |f ′(t)| + εT

∫ t

0

|f ′′(s)|ds.Thus
E[N̂(t)] ≥ et− 1

2

R

t

0
f ′(s)2ds−εT |f ′(t)|−εT

R

t

0
|f ′′(s)|ds.On the other hand, for δ < ε,

E[N̂δ(t)] = etQ1

[

1

ζ(ξ1, t)
1{|ξ1

s−f(s)|<δT ∀s≤t}

]

≤ e
π2t

8ε2T
+t

cos
(

πδ
2ε

)Q1[e−
R

t

0
f ′(s)dξ1

s+ 1
2

R

t

0
f ′(s)2ds]

≤ et− 1
2

R

t

0
f ′(s)2ds+εT |f ′(t)|+εT

R

t

0
|f ′′(s)|ds+ π2

8ε2T

cos
(

πδ
2ε

)Similarly, setting
R(T ) =

e3εT supu≤T |f ′(u)|+3εT
R

T

0
|f ′′(u)|du+ π2

8ε2T

cos
(

πδ
2ε

)9



we have
E[N̂δ(t)

2] = etQ2

[

1

ζ(ξ1, t)
1{|ξ1

s−f(s)|<δT ∀s≤t}

]

+

∫ t

0

Q

[

2e2t−sζ(ξ1, s)

ζ(ξ1, t)ζ(ξ2, t)

∣

∣

∣

∣

T = s

]

≤ R(T )et− 1
2

R

t

0
f ′(s)2ds + R(T )

∫ t

0

e2t−s+ 1
2

R

s

0
f ′(u)2du−

R

t

0
f ′(u)2duds

≤ R(T )et− 1
2

R

t

0
f ′(s)2ds + R(T )te2t−

R

t

0
f ′(s)2ds sup

r∈[0,t]

e
1
2

R

r

0
f ′(s)2ds−r.Choosing τ su
h that

e
1
2

R

τ

0
f ′(s)2ds−τ = sup

r∈[0,T ]

e
1
2

R

r

0
f ′(s)2ds−rwe see that

E[N̂δ(t)
2] ≤ R(T )(T + 1)e2t−

R

t

0
f ′(s)2ds+ 1

2

R

τ

0
f ′(s)2ds−τ .Putting our estimates for the �rst and se
ond moments together,

P(N̂(T ) ≥ 1) ≤ P(N̂(τ) ≥ 1)

≤ E[N̂(τ)] ≤ eτ− 1
2

R

τ

0
f ′(s)2ds+2εT |f ′(τ)|+2εT

R

τ

0
|f ′′(s)|ds+ π2

32ε2T

cos
(

π
4

)and
P(N̂ε(T ) ≥ 1) ≥ P(N̂δ(T ) ≥ 1) ≥ E[N̂δ(T )]2

E[N̂δ(T )2]
≥ eτ− 1

2

R

τ

0
f ′(s)2ds

R(T )(T + 1)e2εT |f ′(T )|+2ε
R

T

0
|f ′′(s)|ds

.Now setting g(t) = f(tT )/T and θ = τ/T , we obtain
1

T
log P(N̂(T ) ≥ 1) ≤ θ − 1

2

∫ θ

0

g′(s)2ds + 2ε|g′(θ)| + 2ε

∫ 1

0

|g′′(s)|ds + o(1)and
1

T
log P(N̂(T ) ≥ 1) ≥ θ− 1

2

∫ θ

0

g′(s)2ds−5ε sup
s∈[0,1]

|g′(s)|−5ε

∫ 1

0

|g′′(s)|ds+o(1).This establishes the required estimates for balls about smooth fun
tions, towithin an error whi
h goes to zero with the radius of the ball. It remains toapply te
hniques from large deviations theory. For the lower bound it su�
es to
hoose ε small. For the upper bound we must rule out the possibility of parti
lesfollowing extreme paths, so that we are left with a 
ompa
t set; then use uppersemi
ontinuity of the rate fun
tion to 
he
k that we may 
hoose an appropriate
ε. These details are 
arried out fully in [8℄, and are similar to those in the proofof S
hilder's theorem for one Brownian motion (see [18℄ for example).5 Multiple spines and 
hanges of measureOur main aim in this se
tion is to give full details of the setup introdu
ed inSe
tion 2. We take, more or less, the route laid out by Hardy and Harris [9℄ fora single spine. 10



5.1 TreesWe use the Ulam-Harris labelling system: de�ne a set of labels
Ω := {∅} ∪

⋃

n∈N

Nn(as usual N = {1, 2, 3, . . .}).We often 
all the elements of Ω parti
les. We think of ∅ as our �initalan
estor�, and a label (3, 2, 7) (for example) as representing �the seventh 
hildof the se
ond 
hild of the third 
hild of the initial an
estor�. For a parti
le u ∈ Ωwe de�ne |u|, the generation of u, to be the length of u (so if u ∈ Nn then |u| = n,and |∅| = 0). For two labels u, v ∈ Ω we write uv for the 
on
atenation of u and
v, so for example (3, 2, 7)(1, 5, 4) := (3, 2, 7, 1, 5, 4) (and we take ∅u = u∅ = u).We write u ≤ v and say that u is an an
estor of v if there exists w ∈ Ω su
hthat uw = v.We de�ne a tree to be a subset τ ⊆ Ω su
h that

• ∅ ∈ τ : the initial an
estor is part of τ ;
• for all u, v ∈ Ω, uv ∈ τ ⇒ u ∈ τ : if τ 
ontains a parti
le then it 
ontainsall the an
estors of that parti
le;
• for ea
h u ∈ τ , there exists Au ∈ {0, 1, 2, . . .} su
h that for j ∈ N, uj ∈ τ ifand only if 1 ≤ j ≤ Au: ea
h parti
le in τ has a �nite number of 
hildren.We let T be the set of all su
h trees.5.2 Marked treesSin
e we wish to have a parti
ular view of trees, as systems evolving in time andspa
e, we de�ne a marked tree to be a set T of triples of the form (u, lu, Xu)su
h that u ∈ Ω, the settree(T ) := {u : ∃ lu, Xu su
h that (u, lu, Xu) ∈ T }forms a tree, lu ∈ [0,∞) is the lifetime of u, and, setting σu :=

∑

v<u lv and
τu :=

∑

v≤u lu,
Xu : [σu, τu) → Jis the position fun
tion of u. We think of Xu(t) as des
ribing the spatial positionof the parti
le u at time t. To paint the pi
ture more 
learly, we think of theinital an
estor ∅ moving around in spa
e a

ording to its position fun
tion X∅until just before time l∅. At this time it disappears and a number A∅ of newparti
les appear; ea
h of these then moves around in spa
e a

ording to itsposition fun
tion for a period of time equal to its lifetime, before being repla
edby a number of new parti
les; and so on.We let T be the set of all marked trees, and for T ∈ T we de�ne the set ofparti
les alive at time t to be

N(t) := {u ∈ tree(T ) : σu ≤ t < τu}.11



For 
onvenien
e, we extend the position path of a parti
le v to all times t ∈
[0, τv), to in
lude the paths of all its an
estors:

Xv(t) :=

{

Xv(t) if σv ≤ t < τv

Xu(t) if u < v and σu ≤ t < τuand if Av = 0 then we write Xv(t) = ∆ ∀t ≥ τv.5.3 Marked trees with spinesWe now enlarge our state spa
e further to in
lude the notion of spines. Wede�ne a spine to be a single maximal distinguished line of des
ent. That is, aspine ξ on a marked tree τ is a subset of tree(τ) su
h that
• ∅ ∈ ξ;
• ξ ∩ (N(t) ∪ {∆}) 
ontains exa
tly one parti
le for ea
h t;
• if v ∈ ξ and u < v then u ∈ ξ;
• if v ∈ ξ and Av > 0, then ∃j ∈ {1, . . . , Av} su
h that vj ∈ ξ; otherwise

ξ ∩ N(t) = ∅ ∀t ≥ τv.If v ∈ ξ ∩ N(t) then we de�ne ξt := Xv(t), the position of the spine at time t.At 
ertain points we shall also use the notation ξt to mean the parti
le v itself� beyond this introdu
tion it should always be 
lear from the 
ontext whi
hmeaning is intended, and so this should not lead to any ambiguity. For 
laritywithin this se
tion we will use the less 
on
ise notation node(ξt) to denote theparti
le v itself � that is, the unique v ∈ N(t) ∩ ξ. We say that a marked treewith spines is a sequen
e (τ, ξ1, ξ2, ξ3, . . .) where τ ∈ T is a marked tree and ξ1,
ξ2, . . . are spines on τ . We let T̃ be the set of all marked trees with spines.5.4 FiltrationsWe now work ex
lusively on the spa
e T̃ of marked trees with spines, and use dif-ferent �ltrations on this spa
e to en
apsulate di�erent amounts of information.We give des
riptions of these �ltrations below; formal de�nitions are similar tothose in [16℄ and are left to the reader.The �ltration (Ft, t ≥ 0)We de�ne (Ft, t ≥ 0) to be the natural �ltration of the bran
hing pro
ess - itdoes not know anything about the spines.The �ltrations (Fk

t , t ≥ 0)For ea
h k ≥ 1 we de�ne (Fk
t , t ≥ 0) to be the natural �ltration for the bran
h-ing pro
ess and the �rst k spines. It does not know anything about spines ξk+1,

ξk+2, . . . , but knows everything about the bran
hing pro
ess and spines ξ1, . . . ,
ξk.The �ltrations (Gj

t , t ≥ 0)For ea
h j we de�ne
Gj

t := σ
(

ξj
s , s ∈ [0, t]

)12



where ξj
s represents the position of the jth spine at time s. Gj

t 
ontains just thespatial information about the jth spine up to time t (and whether or not it hasdied), but does not know whi
h nodes of the tree a
tually make up that spine.The �ltrations (G̃{i1,...,ij}
t , t ≥ 0)For ea
h j-tuple i1, . . . , ij we de�ne

G̃{i1,...,ij}
t := σ

(

Gk
t ∪ Ak

t ∪ Ck
t , k ∈ {i1, . . . , ij}

)

.where
Ak

t = {{u = node(ξk
s )} : u ∈ Ω, s ∈ [0, t]}and

Ck
t = {{u < node(ξk

t ), Au = a, σu ≤ σ} : u ∈ Ω, a ≥ 2, σ ∈ [0,∞)}.

G̃{i1,...,ij}
t 
ontains all the information about the relevant 
olle
tion of spines upto time t: whi
h nodes make up the spines, their positions, and for all spinenodes not in N(t) (so all the stri
t an
estors of the spines at time t) their life-times and number of 
hildren.The �ltration (G̃k

t , t ≥ 0)We use the shorthand
G̃k

t = G̃{1,...,k}
tso that G̃k

t knows everything about the �rst k spines up to time t. Thus G̃k
t isdi�erent from G̃{k}

t .5.5 Probability measuresWe may now take a probability measure Px on T̃ su
h that under Px, thesystem evolves as a bran
hing pro
ess starting with one parti
le at x, ea
hparti
le moves as a Markov pro
ess with generator C independently of all othersgiven its birth time and position, and a parti
le at position y bran
hes at rate
R(y) into a random number of parti
les with distribution µy. This is the systemdes
ribed in Se
tion 2. This measure, however, has no knowledge of the spines(sin
e it sees only the �ltration Ft). We would like to extend this to a measureon ea
h of the �ner �ltrations F̃k

t . To do this, we imagine ea
h spine, at ea
h�ssion event, 
hoosing uniformly from the available 
hildren. Then it is easy tosee that, for any parti
le u in a marked tree T and any j ≥ 1, we would likeProb(u ∈ ξj) =
∏

v<u

1

Av
.We re
all from Se
tion 2 that if Y is an F̃k

t -measurable random variable thenwe 
an write:
Y =

∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)1{ξ1
t =v1,...,ξk

t =vk} (3)where ea
h Y (v1, . . . , vk) is Ft-measurable. (Here when we write ξj
t we aretalking really about the parti
le node(ξj

t ) rather than its position.)13



De�nition 5. We de�ne the probability measure Pk
x on (T̃ , F̃∞), by setting

Pk
x[Y ] = Px





∑

v1,...,vk∈N(t)∪{∆}

Y (v1, . . . , vk)
k
∏

j=1

∏

u<vj

1

Au



 (4)for ea
h Fk
t -measurable Y with representation (3).Remark. The measure P̃x is an extension of Px in that Px = P̃x|F∞ , sin
e

∑

v1,...,vk∈N(t)∪∆

k
∏

j=1

∏

u<vj

1

Au
= 1.In summary, parti
les 
arrying spines behave just as they would under Px,and when su
h a parti
le bran
hes, ea
h spine makes an independent 
hoi
euniformly from amongst the available 
hildren.5.6 Martingales and a 
hange of measureAs in Se
tion 2 de�ne T (i, j) := inf{t ≥ 0 : ξi

t 6= ξj
t }, and suppose that we aregiven a fun
tional ζ(·, t), t ≥ 0, su
h that ζ(Y, t) is a unit-mean martingale withrespe
t to the natural �ltration of the Markov pro
ess (Yt, t ≥ 0) with generator

C. We 
all ζ the single-parti
le martingale.Re
all that we de�ned skel(t) = skelk(t) (often the k will be impli
it), theskeleton, to be the subtree up to time t generated by those parti
les 
arrying atleast one spine,
skel(t) = {u ∈ Ω : ∃s ≤ t, j ≤ k su
h that node(ξj

s) = u}.We also set
D(v) = #{j : ∃t with v = ξj

t }to be the number of spines following parti
le v, and de�ne
E(v, t) = exp

(

−
∫ τv(t)

σv(t)

(

mD(v)(Xv(s)) − 1
)

R(Xv(s))ds

)

.Sin
e we will not always know whi
h parti
les are the spines (when we areworking on Ft for example), it will sometimes be helpful to have the above
on
epts de�ned for a general skeleton of k parti
les u1, . . . , uk instead of thespines. For this reason we de�ne
skelu1,...,uk

(t) = {v ∈ Ω : σv ≤ t, ∃j with v ≤ uj},

Du1,...,uk
(v) = #{j : v ≤ uj},and

Eu1,...,uk
(v, t) = exp

(

−
∫ τv(t)

σv(t)

(

mDu1,...,uk
(v)(Xv(s)) − 1

)

R(Xv(s))ds

)so that
skel(t) = skelξ1

t ,...,ξk
t
(t), D(v) = Dξ1

σv
,...,ξk

σv
(v) and E(v, t) := Eξ1

σv
,...,ξk

σv
(v, t).14



Remark. We note that, with the notation given above,
Pk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft) =

∏

v∈skelu1,...,uk
(t)\N(t)

A
Du1,...,uk

(v)
v .De�nition 6. We de�ne an F̃k

t -adapted (and, in fa
t, G̃k
t -adapted) pro
ess

ζ̃k(t), t ≥ 0 by
ζ̃k(t) =

∏

v∈skel(t)

(

ζ(Xv, τv(t))

ζ(Xv, σv(t))
E(v, t)

)

∏

v∈skel(t)\N(t)

ADv
v(if Av = 0, that is to say that v has no 
hildren, then we may arbitrarily de�ne

ζ(Xv, τv(t)) = 0) and an Ft-adapted pro
ess Zk(t), t ≥ 0 by
Zk(t) =

∑

u1,...,uk∈N(t)

k
∏

j=1

∏

v≤uj

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t).Again we will often supress the dependen
e on k.We remark here that Z and ζ(ξj , ·) are, in fa
t, simply the proje
tions of ζ̃onto the relevant �ltrations:
• Z(t) = P̃[ζ̃(t)|Ft]

• ζ(ξj , t) = P̃[ζ̃(t)|G{j}
t ].Lemma 7. The pro
ess ζ̃(t), t ≥ 0 is a martingale with respe
t to the �ltrations

G̃k
t and F̃k

t .Proof. Let χ = (v1, v2, . . .) be a single line of des
ent (so in parti
ular v1 < v2 <
. . .), with χt representing the position of the unique vi that is alive at time t.The births along χ form a Cox pro
ess driven by χt with rate fun
tion R. Thusfor any j ≥ 0,

P

[

∏

v<χt

Aj
v

∣

∣

∣

∣

χs, s ∈ [0, t]

]

= exp

(
∫ t

0

(mj(χs) − 1)R(χs)ds

)

.De
omposing the pro
ess ζ̃(t) a

ording to the splitting times of the k spines andrepeatedly applying the above fa
t together with the optional stopping theoremand the Markov bran
hing property (whi
h ensures that di�erent bran
hes ofthe skeleton are independent given the information up to their split) gives theresult.De�nition 8. We de�ne the measure Qk
x by

dQk
x

dPk
x

∣

∣

∣

∣

Fk
t

= ζ̃(t).The proof that Qk
x behaves as 
laimed in Se
tion 2.1 is just the same as theoriginal proof (for one spine) given by Chauvin and Rouault [4℄, applied to ea
hbran
h of the skeleton independently. 15



6 Proof of the many-to-few lemmaWe �rst need to 
al
ulate the probability that a k-tuple of parti
les (u1, . . . , uk)makes up the skeleton at time t.Lemma 9 (Gibbs-Boltzmann weights for Qk). For any u1, . . . uk ∈ N(t)∪{∆},
Qk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft) =

1

Z(t)

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t).Proof. By the fa
t that Pk[ζ̃(t)|Ft] = Z(t) and standard properties of 
ondi-tional expe
tation,
Qk(ξ1

t = u1, . . . , ξ
k
t = uk|Ft)

=
Pk[ζ̃(t)1{ξ1

t =u1,...,ξk
t =uk}|Ft]

Pk[ζ̃(t)|Ft]

=
1

Z(t)

(

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t)

)

·
(

∏

v∈skelu1,...,uk
(t)\N(t)

A
Du1,...,uk

(v)
v

)

Pk(ξ1
t = u1, . . . , ξ

k
t = uk|Ft)

=
1

Z(t)

∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv, σv(t))
Eu1,...,uk

(v, t)as required.The proof of the many-to-few lemma is now straightforward.

16



Proof of Lemma 3. We begin with the right-hand side.
Qk



Y
∏

v∈skel(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

E(v, t)





= Qk

[

∑

u1,...,uk∈N(t)∪{∆}

Y (u1, . . . , uk)

·
∏

v∈skelu1,...,uk
(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

Eu1,...,uk
(v, t)

1{ξ1
t =u1,...,ξk

t =uk}

]

= Qk

[

∑

u1,...,uk∈N(t)∪{∆}

Y (u1, . . . , uk)

·
∏

v∈skelu1,...,uk
(t)

ζ(Xv, σv(t))

ζ(Xv, τv(t))

1

Eu1,...,uk
(v, t)

Qk(ξ1
t = u1, . . . , ξ

k
t = uk|Ft)

]

= Qk

[

1

Z(t)

∑

u1,...,uk∈N(t)

Y (u1, . . . , uk)

]

= Pk

[

∑

u1,...,uk∈N(t)

Y (u1, . . . , uk)

]where for the last step we used the fa
t that dPk

dQk

∣

∣

∣

Ft

= Z(t).7 Many-to-few in dis
rete timeWe state here a version of the many-to-few lemma for dis
rete-time pro
esses.We shall not prove this result, as it is very similar to the 
ontinuous-time versionstudied above.7.1 A dis
rete-time bran
hing pro
essWe begin with one parti
le in generation 0 lo
ated at x ∈ J . Any parti
le atposition y has 
hildren whose number and positions are de
ided a

ording toa �nite point pro
ess Dy on J . The 
hildren of parti
les in generation n makeup generation n + 1. We de�ne N(n) to be the total number of parti
les ingeneration n, and Xv to be the position of parti
le v. We set
mj(y) = Py[N(1)j ]to be the jth moment of the number of parti
les 
reated by the point pro
ess

Dy. Write |v| to be the generation of parti
le v. For a parti
le v in generation
n ≥ 1, let p(v) be its parent in generation n − 1. For any line of des
ent
v0, v1, v2, . . . su
h that |vn| = n and p(vn+1) = vn for ea
h n ≥ 0, we note that
Xv0 , Xv1 , Xv2 , . . . is a Markov 
hain with some generator C′ not depending onthe 
hoi
e of v0, v1, . . .. Suppose that ζ(X, n), n ≥ 0 is a fun
tional of a pro
ess
(Xn, n ≥ 0) su
h that if (Xn, n ≥ 0) is a Markov pro
ess with generator C′then ζ(X, n), n ≥ 0 is a martingale with respe
t to the natural �ltration of
(Xn, n ≥ 0). 17



7.2 The skeleton and the measure QkWe have k distinguished lines of des
ent just as in the 
ontinuous-time 
ase,whi
h we 
all spines. Under P, if a parti
le 
arrying j marks (i.e. the parti
le ispart of j spines) in generation n has l 
hildren in generation n + 1, then ea
h ofits j marks 
hooses a parti
le to follow in generation n+1 uniformly at randomfrom the l 
hildren. We let ξi
n be the position of the ith spine in generation nand de�ne skel(n) to be the set of all parti
les of generation at most n whi
hare part of at least one spine. Set Dv to be the number of marks 
arried byparti
le v.Under Qk

x parti
les behave as follows:
• We begin with one parti
le at position x whi
h (as well as its position)
arries k marks 1, 2, . . . , k.
• Just as under Pk, we think of ea
h of the marks 1, . . . , k as a spine, with

ξi
n the position of whi
hever parti
le 
arries mark i at time n.

• A parti
le at position y 
arrying j marks has 
hildren whose number andpositions are de
ided by a point pro
ess su
h that:� for ea
h j and l ≥ 0, Qj
y(N(1) = l) = ljPy(N(1) = l)/Py[N(1)j ] (thenumber of 
hildren is j-size biased);� for ea
h i, the sequen
e Xξi

0
, Xξi

1
, Xξi

2
, . . . is a Markov 
hain dis-tributed as if under the 
hanged measure Qi

x|G{i}
n

:= ζ(ξi, n)Pk
x|G{i}

n
.

• Given that a parti
les v1, . . . , va are born at su
h a bran
hing event, the
j spines ea
h 
hoose a parti
le to follow independently and uniformly atrandom, just as under Pk.

• Parti
les not in the skeleton (those 
arrying no marks) have 
hildren a
-
ording to the point pro
ess Dy when at position y, just as under P.In other words, under Qk spine parti
les move as if weighted by the martingale
ζ, and they give birth to size-biased numbers of 
hildren.7.3 The main result in dis
rete timeLemma 10 (Many-to-few in dis
rete time). For any k ≥ 1 and Fk

n-measurable
Y su
h that

Y =
∑

v1,...,vk∈N(n)∪{∆}

Y (v1, . . . , vk)1{ξ1
n=v1,...,ξk

n=vk}we have
P





∑

v1,...,vk∈N(n)

Y (v1, . . . , vk)



 = Qk



Y
∏

v∈skel(n)

ζ(p(v), |v| − 1)

ζ(v, |v|) mDp(v)(Xp(v))



 .The proof of this result is similar to that of Lemma 3.18
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