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Abstract

Originally introduced in solid state physics to model amorphous materials and alloys ex-
hibiting disorder induced metal-insulator transitions, the Anderson model Hω = −∆+Vω

on l2(Zd) has become in mathematical physics as well as in probability theory a paradig-
matic example for the relevance of disorder effects. Here ∆ is the discrete Laplacian and
Vω = {Vω(x) : x ∈ Zd} is an i.i.d. random field taking values in R.
A popular model in probability theory is the parabolic Anderson model (PAM), i.e. the dis-
crete diffusion equation ∂tu(x, t) = −Hωu(x, t) on Zd × R+, u(x, 0) = 1, where
random sources and sinks are modelled by the Anderson Hamiltonian. A characteristic
property of the solutions of (PAM) is the occurrence of intermittency peaks in the large
time limit. These intermittency peaks determine the thermodynamic observables exten-
sively studied in the probabilistic literature using path integral methods and the theory of
large deviations.
The rigorous study of the relation between the probabilistic approach to the parabolic An-
derson model and the spectral theory of Anderson localization is at least mathematically
less developed. We see our publication as a step in this direction. In particular we will prove
an unified approach to the transition of the statistical moments 〈u(0, t)〉 and the integrated
density of states from classical to quantum regime using an effective medium approach.
As a by-product we will obtain a logarithmic correction in the traditional Lifshitz tail setting
when Vω satisfies a fat tail condition.

1 Introduction

The Anderson model is the family of discrete random Schrödinger operators {Hω} defined by

Hω = −∆ + Vω.

Here ∆ is the discrete Laplacian on l2(Zd)

[∆u](x) =
∑

|x−y|=1

[u(y)− u(x)].

The random potential {Vω(x)}x∈Zd is a field of independent and identically distributed random
variables with common distribution P0. Denoting the expectation value by 〈 . 〉 we assume

G(t) := log〈exp(−tVω(0))〉 < ∞ (1)

for all t ≥ 0 . {Hω} is an ergodic family of self adjoint operators on l2(Zd). In many concrete
situations exponential localization is proven at the bottom of the spectrum [15, 26, 30], i.e.
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� dense point spectrum close to inf σ(Hω),

� exponentially decaying eigenfunctions.

The spectral analysis of {Hω} is motivated by applications in solid state physics, e.g. local-
ization phenomena, electrical resistance, low temperature physics, ..... . We refer to [19] and
references therein.

The parabolic Anderson model (PAM) is the discrete diffusion equation with random sources
and sinks:

∂tu(x, t) = −Hωu(x, t) (x, t) ∈ Zd × [0,∞),

u(x, 0) = 1 x ∈ Zd.

Assuming (1) the parabolic Anderson model has a.s. an unique, nonnegative solution given by
the Feynman-Kac-representation [7]

u(x, t) = Ex

[
exp

(
−
∫ t

0

Vω(xs)ds

)]
. (2)

Here Ex[.] is the expectation value of the random walk in continuous time generated by −∆
starting in x. For t ≥ 0 the random field {u(x, t) : x ∈ Zd} is stationary, ergodic and mixing
under translations. The moments 〈u(0, t)p〉 and the correlation function are finite [7, 12].
Describing the large time diffusive behaviour of a classical particle in a random medium with
traps the applications of the parabolic Anderson model are numerous. (PAM) is used as a lin-
earised model of chemical reaction kinetics exhibiting macroscopic pattern formation in the
spatial distribution of reagents, has interpretations in polymer physics and is used to describe
population dynamics in an inhomogeneous environment modelling the availability of nutrients.
For a very recent application of (PAM) in this biological setting as well as for a comprehensive
summary of other interpretations, respectively interesting generalizations of (PAM) we refer to
[20] and references therein, see also [12, 7, 10, 25].
In the limit t→∞ the solution u(x, t) shows a.s. a very strong spatial inhomogenity caused by
very rare potential constellations. This phenomen is known in the probabilistic literature as in-
termittency and is described by asymptotic behaviour of the moments 〈u(0, t)p〉 [7]. Assuming
Vω(x) ≥ 0 the first moment 〈u(0, t)〉 can be interpreted as the survival probability of a particle
that is put randomly on Zd.

The intuitive link between the probabilistic and the spectral point of view is:

Shape of intermittency peaks ←→ Localized eigenfunctions,

Local killing rate ←→ Eigenvalues.

A quantity to formalize the intuitive link between the Anderson model and PAM is the the inte-
grated density of states measure ν ( [15, 17, 31] and references therein). Here we are interested
in the integrated density of states (IDS) N(E), i.e. the distribution function of ν

N(E) := ν((−∞, E]) = lim
|Λ|→∞

|Λ|−1]{eigenvalues of HD
Λ ≤ E} (3)
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with

HD
Λ = χΛHωχΛ. (4)

The integrated density of statesN(E) is the fundamental quantity to study the thermodynamical
properties of disordered systems. Moreover, N(E) is used to prove localization properties of
the system. In particular we are interested in Lifshitz tails, i.e. the behaviour of the IDS in the
limit E ↘ inf σ(Hω). Assuming (1) the Laplace transform

N̂(t) :=

∫
e−λt dν(λ) <∞ (t > 0) (5)

of ν exists [14] and has the Feynman–Kac representation ([4],[14])

N̂(t) = 〈E0

[
exp

(
−
∫ t

0

Vω(xs)ds

)
δ0(xt)

]
〉. (6)

The first proof of Lifshitz behavior (for the Poisson model ) was given by Donsker and Varadhan
[6]. Starting from the Feynman–Kac representation their estimate of N̂(t) in the limit t → ∞
relied on an investigation of the “Wiener sausage” and the machinery of large deviations for
Markov processes developed by these authors. To obtain information about the behavior of
N(E) for E ↘ inf σ(Hω) from the large t behavior of N̂(t) one uses Tauberian theorems [3],
see also Appendix 2. This technique was already used by Pastur [1, 27]. The behaviour of N̂(t)
in the limit t → ∞. is also closely related to the long time behaviour of the moments 〈u(t, 0)〉
of the parabolic Anderson model.

To formulate our main result Theorem 2, we remind the definition of regularly varying functions
and of the de Haan class [3], see also Appendix 1.

Definition 1.

(i) A function g > 0 defined on some neighbourhood [X,∞) of infinity satisfying

g(λt)/g(t)
t→∞
= λρ(1 + o(1))

for all λ ≥ 0 is called regularly varying of index ρ. We write g ∈ Rρ. If ρ = 0 then g
is said to be slowly varying. If g varies regularly with index ρ, we have g(t) = tρg0(t),
g0 ∈ R0.

(ii) For g ∈ Rρ and λ ∈ (0, 1] the de Haan class Πg is the class of functions H : R → R
satisfying

H(t)−H(λt)
t→∞
= cghρ(λ)g(t)(1 + o(1)),

where g ∈ Rρ is called the auxilary function and cg is the g-index.
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Our main result estimates the Laplace transform N̂(t) defined in (5) and the first moment
〈u(t, 0)〉 in terms of two variational functionals. Here u(t, 0) is the solution of the parabolic
Anderson model. The variational functional of the lower bound is given by

χ−` (t) := 4d sin2

(
π

2

1

`+ 1

)
+ cghρ(`

−d)g(t) ` ∈ N (7)

and

χ+
` (t) :=

max1/2≤h≤1 min
[
2d(1− 2

√
1− h), γ/2 + (1− h)cghρ(1− h)g(t)

]
` = 1,

γ sin2
(

π
2

1
`+1

)
+ 4−1cghρ(4`)

−d)g(t) ` > 1,

(8)

` ∈ N, γ > 0, is the corresponding variational functional of the upper bound.

Theorem 2. Suppose G(t) < ∞, t ≥ 0 and G(t)/t ∈ Πg with auxilary function g(t) ∈ Rρ,

ρ ∈ [−1,∞), g-index cg and tg(t) → ∞ in the limit t → ∞. Denote by N̂(t) the Laplace
transform of the integrated density of states and by 〈u(t, 0)〉 the first moment of the solution of
the parabolic Anderson model. Then with χ±` (t) as defined above

G(t)− t inf
`∈N

χ−` (t)(1 + o(1)) ≤ log N̂(t) ≤ log〈u(t, 0)〉 ≤ G(t)− t inf
`∈N

χ+
` (t)(1 + o(1)).

(9)

Remark 3. Due to 〈u(t, 0)u(s, 0)〉 = 〈u(t+s, 0)〉 [7] Theorem 2 can also be used to estimate
the higher moments of u(t, 0).

Theorem 2 is motivated by the theory of critical phenomena in statistical physics. Looked at from
this angle the variational problem in (9) correponds to the minimization of the free energy. The
ground state energy of the Dirichlet-Laplacian on Λ` = Λ`(0) := {x ∈ Zd : |x|∞ ≤ `} given
by

sin2

(
π

2

1

`+ 1

)
≈ `−2

plays the role of an order parameter. The parameter ` corresponds to the extension of the Lif-
shitz ground state. The dependance on the random potential is encoded in the effective potential
G(λt)/λt, λ ∈ [0, 1], respectively the deviation

S(λ, t) := G(t)/t−G(λt)/λt ≥ 0 (10)

to the maximal effective potential value G(t)/t. Denoting by `∗(t) the optimal length defined by

χ±`∗(t)(t) = inf
`∈N

χ±` (t)

we can distinguish two qualitatively different regimes in dependence on the single site distribu-
tion [26].
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Quantum regime: If we assume that G(t)/t ∈ Πg with

g(t)
t→∞→ 0 (11)

the asymptotics of 〈u(t, 0)〉 and N̂(t) are dominated by the energy form of the Laplacian, i.e.
by the quantum kinetic energy, respectively the rate function of the occupation time measure in
large deviation theory. As a consequence `∗(t) will tend to infinity and from the physical point
of view Lifshitz tails are expected [22], i.e. an asymptotic behaviour of the IDS like

N(E) ∼ C1e
−C2(E−E0)−d/2

. (12)

The content of the next Corollary is that this is only approximately correct.

Corollary 4. Suppose G(t) < ∞, t ≥ 0 and G(t)/t ∈ Πg with auxilary function g(t) =
tρg0(t) ∈ Rρ, ρ ∈ [−1, 0], g-index cg and g0 ∈ R0 s.t.

g0(tg0(t)
1/ρ)/g0(t)

t→∞→ 1. (13)

Furthermore assume that g(t) → 0 and tg(t) → ∞ in the limit t → ∞. Then the asymptotic
optimal length is given by

`∗(t)
t→∞∼ g(t)1/(dρ−2)

and there exists constants C1, C2 > 0, s.t

− C1t`
∗(t)−2 ≤ log N̂(t) ≤ log〈u(t, 0)〉 ≤ −C2t`

∗(t)−2. (14)

Suppose that ρ ∈ [−1, 0). Then the integrated density of states satisfies

−C1E
− d

2
+1+ρ−1

g0

(
CE(2−dρ)/2ρ

)−1/ρ ≤ logN(E) ≤ −C2E
− d

2
+1+ρ−1

g0

(
CE(2−dρ)/2ρ

)−1/ρ
.

(15)

with C,C1, C2 > 0 and E ↘ 0.

Choosing for example the uniform distribution in [0, 1] we have

G(t)

t
− G(λt)

λt

t→∞∼ log t

λt
∈ R−1 (16)

and (15) becomes

C1E
− d

2 logE ≤ logN(E) ≤ C2E
− d

2 logE (17)

in the limit E ↘ 0. Comparing (17) and the estimate

lim
E↘0

log (− log(N(E)))

log(E)
= −d

2
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proven with spectral theorectic methods in [16, 29] assuming the fat tail condition

P[Vω(0) < E]
E↘0∼ CEk, k ∈ N0, (18)

we obtain a logarithmic correction predicted in the physics literature [23, 28].
Assuming ρ ∈ [1, 0) the assumptions of Corollary 4 corresponds in the probabilistic setting of
[4] to the existence of a non-decreasing function t 7→ αt ∈ (0,∞) and a function G̃ : [0,∞)→
(−∞, 0], G̃ 6≡ 0, such that

lim
t→∞

αd+2
t

t
G

(
t

αd
t

y

)
= G̃(y), y ≥ 0, (19)

uniformly on compact sets in (0,∞) (ρ = 0 is discused in [11]). Condition (19) is satisfied if

P[Vω(0) < E]
E↘0∼ exp(−C E− ρ+1

ρ ).

Using the Feynman-Kac-representaion (2) and the large deviation theory for path integrals it is
proven in [4] that

1

pt
log〈u(0, t)p〉 t→∞

=
G
(
pt α−d

pt

)
pt α−d

pt

− 1

α2
pt

(
χ+ o(1)

)
, (20)

with

χ = inf
g∈H1(Rd)
‖g‖2=1

{∫
Rd

|∇g(x)|2 dx− Cρ−1

∫
Rd

g(x)2(1+ρ) − g(x)2 dx
}
, (21)

An application of Tauber theory gives in the limit E ↘ 0

logN(E) = C(ρ, χ) E− d
2
+ 1+ρ

ρ
+o(1).

Finally let us discuss the almost bounded single site distributions, i.e.G(t)/t ∈ Πg with g ∈ R0,
limt→∞ g(t) = 0. This setting is again dominated by the kinetic energy and `∗(t) → ∞. The
probabilistic counterpart of (14)

1

pt
log〈u(t, 0)p〉 =

G
(
pt α−d

pt

)
pt α−d

pt

− 1

α2
pt

(
ρd(1− 1

2
log

ρ

π
) + o(1)

)
, (22)

as t→∞ is proven in [11]. Here the scale function αt is defined by the fixed point equation

g(tα−d
t ) = α−2

t . (23)

Furthermore we want to refer to [18], where in Theorem 1.5 for unbounded single site distribu-
tions satisfying G(t)/t ∈ Πg with g ∈ R0, limt→∞ g(t) = 0 the asymptotics of the IDS in the
limit E → −∞ is proven.

Classical regime: Let us now consider the classical regime, i.e. G(t)/t ∈ Πg with

lim inf
t→∞

g(t) > 0. (24)

Then the quantum kinetic energy/occupation time measure and the effective medium are on the
same scale, respectively g(t) dominates the energy form of the Laplacian. As a consequence
`∗(t) stays finite in the limit t→∞ and the IDS is given by the shifted rate function of the single
site potential. Let us first discuss the asymptotics of the statistical moments and of N̂(t).
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Corollary 5. Suppose G(t) < ∞, t ≥ 0, G(t)/t ∈ Πg with auxilary function g ∈ Rρ,
ρ ∈ [0,∞) and g-index cg, s.t. (24) is satisfied. With

χ∗−(t) :=

{
1 cgg(t) ≥ 2π2,

4cgg(t) + cgg(t) log (2π2/(cgg(t))) cgg(t) < 2π2

and

χ∗+(t) :=

{
1− 2(cgg(t))

−1/2 cgg(t) ≥ 2e2d + γπ2/2d,

min
[
γ/(4d), dcgg(t)

8
+ dcgg(t)

8
log
(

64γπ2

cgg(t)

)]
cgg(t) < 2e2d + γπ2/2d.

we have

G(t)− 2dtχ∗−(t)(1 + o(1)) ≤ log N̂(t) ≤ log〈u(t, 0)〉 ≤ G(t)− 2dtχ∗+(t)(1 + o(1)).
(25)

While g(t) dominates the variational functional for ρ > 0, the slowly varying functions define
the borderline between the quantum and the classical regime. The main objective of [8] is the
double exponential distribution

P[Vω(0) < E]
E→−∞∼ exp

(
−e−E/cg

)
(26)

withG(t) = cgt log(cgt)−cgt+o(t), respectively S(λ, t) = cg log(λ)+o(1). The probabilistic
approach obtain (20) with

χ = min
g : Zd→RP

g2=1

{1

2

∑
x,y∈Zd

|x−y|=1

(
g(x)− g(y)

)2 − ρ∑
x∈Zd

g2(x) log g2(x)
}
. (27)

and αt ∼ 1/
√
cg ∈ (0,∞), i.e. the intermittency peaks are finite but nontrivial. As a conse-

quence there are no Lifshitz tails. The IDS is the single site rate function

I(E) := inf
t>0

[Et+G(t)] (28)

shifted by the constants 2dχ∗± encoding the size of the intermittency peaks.

Corollary 6. Suppose G(t) = cgt log(cgt)− cgt+ o(t) and χ∗± as in Corollary 5. Then

−CI
(
E − 2dχ∗−

)
(1 + o(1)) ≤ logN(E) ≤ −I

(
E − 2dχ∗+

)
(1 + o(1)). (29)

Finally let us discuss single site distributions satisfying G(t)/t ∈ Πg with g ∈ Rρ, ρ > 0, i.e.
limt→∞ g(t) =∞. An example is the Weibull distribution

P[Vω(0) < E]
E→−∞∼ exp (−C(−E)α) ,

α > 1. The asymptotics of 〈u(t, 0)〉 and N̂(t) are dominated by g(t). As a consequence we
have `∗(t) = 1 and the asymptotic behaviour of the IDS is given by the maximal shifted single
site rate function.
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Corollary 7. Suppose G(t)/t ∈ Πg with g ∈ Rρ, ρ > 0. Then

logN(E) = −I (E − 2d) (1 + o(1)). (30)

Corollary 7 corresponds to the results obtained in [9, 18].

To prepare the discussion of our strategy to prove Theorem 2 let us mention the key ideas of
the spectral and the probabilistic argumentation.

Optimal-Fluctuation Method The core of the spectral theoretic approach is a rare region effect
[32] predicted by Lifshitz [21, 22]. Let us assume that Vω ≥ 0 and inf σ(Hω) = 0. To find
an eigenvalue smaller than E > 0, the uncertainty principle forces the potential Vω to be
smaller than E on a large set whose volume is of order E−d/2. This is a very rare event and its
probability is approximately

P[]{x ∈ Λ : V (x) ≤ E} ≥ E−d/2] ≈ e−C E−d/2

. (31)

Applying Dirichlet-Neumann-bracketing, perturbation theory or periodic approximation the heuris-
tic argument above can be proven rigorously.

Path-integral and large deviation techniques The probabilistic methods combine the Feynman-
Kac-representation of 〈u(0, t)〉 and N̂(t) and large deviations techniques for path integrals.
Informally the key idea is to express 〈u(t, 0)〉 by means of local times of random walks on Zd

lt(x) :=

∫ t

0

1xs=xds x ∈ Zd, t ≥ 0, (32)

respectively the occupation time measure Lt := lt(x)/t and to average w.r.t. the random
potential

〈u(x, t)〉 = 〈Ex[exp(
∑
x∈Zd

Vω(x)lt(x))]〉

= Ex[exp(
∑
x∈Zd

G(lt(x)))]

= Ex[expG(t) + t
∑
x∈Zd

1

t
[G(Lt(x)t)− Lt(x)G(t)])].

The next step is to represent the expectation value above as a Laplace integral for the occupa-
tion time measure, to apply large deviation principles and Varadhan‘s Lemma to obtain

〈u(x, t)〉

= exp(G(t) + o(t))

∫
M1(Zd)

e−t
P

x∈Zd
1
t
[G(Lt(x)t)−Lt(x)G(t)] P0[LT ∈ dη]

= exp
(
G(t)− t α(t)−2χ(1 + o(1))

)
as t→∞. Nevertheless a rigorous implementation of the argument above is nontrivial (a good
guess of αt is necessary) and has to be proven in four steps:
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� making the space finite (but still time-dependent),

� using a Fourier expansion and scaling properties,

� removing the time-dependence of the box (compactification),

� applying the large deviation arguments.

As a consequence of the technical problems resulting from the mathematical implementation at
least up to now an unified approach treating all single site distributions at once does not exist.

The strategy used in the proof below combines ideas from spectral and probability theory. The
toehold proven in Section 4 is to restrict the estimates of 〈u(x, t)〉 and N̂(t) to a cube Λ = Λ(t)
of time-dependent side length L = L(t) and to study

〈exp
(
−t E1

(
HD

Λ

))
〉 = 〈 sup

p∈M1(Λ)

exp
(
−t
[(√

p| −∆D
Λ

√
p
)

+ (
√
p|Vω
√
p)
])
〉. (33)

with E1(H
D
Λ ) = inf σ(HD

Λ ) and the set of probability measures with support contained in Λ

M1(Λ) := {p ∈M1(Zd) : supp p ⊂ Λ}. (34)

In (33) two competing effects are coupled:

� High productivity in
(√

p|Vω
√
p
)

with respect to Vω

versus

Small probability of extreme productive values of the potential

� High productivity in
(√

p|Vω
√
p
)

with respect to p

versus

Small probability of the occupation time encoded in
(√

p| −∆D
Λ

√
p
)
.

To prove Theorem 2 we want to use, that the optimal p balancing between the two competing
effects above satisfies

� p is concentrated on a small cube Λ` ⊂ Λ,

� p is relatively uniform on Λ`.
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The proof of the lower bound of Theorem 2 in Section 2 is elementary. We can interchange
the supremum and the expectation value in (33) and obtain an effective medium problem. By
restricting to a subset D ⊂ M1(Λ) and optimizing with respect to D we obtain the lower
bound.
The upper bound of (33) proven in Section 3 is slightly more difficult. We have to control all
p ∈ M1(Λ) and it is not possible to interchange the supremum and the expectation value in
(33). The first step in the proof is the classification of p ∈ M1(Λ) in Definition 13 below. From
the spectral theoretic point of view Definition 13 corresponds to a classification with respect to
the kinetic energy while from the stochastic point of view the classification is a down to earth
variant of the contraction principle concerning the asymptotic probability of the occupation time
measure p. The problem is then to estimate

〈 sup
p∈F(`)

exp

(
t
∑
x∈Λ

p(x)V (x)

)
〉 (35)

solved by an effective medium theory. Finally in Section 4 we prove that all occuring error terms
are negligible compared to the first correction of G(t) given by t inf`∈N χ

±
` (t).

Let us summarize the current state of research. We discussed quite at lot of publications based
on probabilistic and on spectral theoretic methods. The spectral approach is close to the physical
intuition, but the assumptions are restrictive. Moreover important aspects of the phenomenol-
ogy get lost. This concerns the dependence of the IDS on the single site distribution, e.g. the
logarithmic correction for fat tail distributions. The probabilistic approach deals all single site
distributions and obtain sharp asymptotics. Nevertheless an unified approach systematically
explaining the relevant effects like the transition from the quantum to the classical regime does
not exist. Symptomatically the probabilistic publications are motivated by spectral theorectic
heuristics, while the goal of the formal proof consists in guessing a good scale function, s.t. a
large deviation principle can be applied. The intrinsic motivation of the scaling remains unclear.
While not obtaining the sharp asymptotics at least partially Theorem 2 resolves some of the
questions discussed above. The problem is discussed in an unified setting. The distinction be-
tween quantum and classical regime is a natural consequence of the variational description. The
elaborated large deviation techniques for path integral measures as well as the preparations to
apply them are avoided. Finally an important motivation for our approach is understanding the
structural relation between the probabilistic and spectral theoretic methods.

2 The lower bound

Assuming the hypotheses of Theorem 2 we want to prove in this section the following lower
bound.

Proposition 8. With S(., .) as in (10) we define

χ−` (t) = 4d sin2

(
π

2

1

`+ 1

)
+ S(`−d, t).
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Then

〈u(t, 0)〉 ≥ N̂(t) ≥ exp

(
G(t)− t inf

`∈N
χ−` (t)

)
(1 + o(1)).

Lemma 9 below is strongly influenced by the probabilistic strategy of commutating the expecta-
tion values of the random potential and of the random walk to obtain an effective description.

Lemma 9. Denote by E1(H
D
Λ ) = inf σ(HD

Λ ) the ground state energy of HD
Λ defined in (4),

Λ = Λl(0) := {x ∈ Zd : |x|∞ ≤ l}. Then

〈exp
(
−t E1

(
HD

Λ

))
〉 ≥ exp

(
G(t)− t inf

p∈M1(Λ)

(
(
√
p| −∆D

Λ

√
p) +

∑
x∈Λ

p(x)S(p(x), t)

))
.

Proof.

〈exp
(
−t E1

(
HD

Λ

))
〉

≥ sup
p∈M1(Λ)

〈exp
(
−t
(√

p| −∆D
Λ

√
p
)

+ (
√
p|Vω
√
p)
)
〉

= sup
p∈M1(Λ)

exp
(
−t
(√

p| −∆D
Λ

√
p
)) ∏

x∈Λ

〈exp (−tp(x)Vω(x))〉

= sup
p∈M1(Λ)

exp

(
−t (
√
p| −∆D

Λ

√
p) +

∑
x∈Λ

G(p(x)t)

)

= exp

(
G(t)− t inf

p∈M1(Λ)

(
(
√
p| −∆D

Λ

√
p) +

∑
x∈Λ

p(x)S(p(x), t)

))
.

The next problem is to distribute the probability mass ‖p‖1 = 1 of the occupation time measure
p ∈M1(Λ) s.t. the competition between diffusion and particle creation encoded in

(
√
p| −∆D

Λ

√
p) +

∑
x∈Λ

p(x)S(p(x), t) (36)

is minimized. We have to balance between:

� The energy form of the discrete Laplacian

(
√
p|∆D

Λ

√
p), (37)

i.e. the rate function of the occupation time measure encoded in p ∈ M1(Λ) [12]. If
t > 0 is large, it is much more likely that the local time is smeared over a large region
than being localized in small subset of Λ.

11



� The second term in (36) expresses the opposite effect. Due to convexity ofG(t) we have∑
x∈Λ

G(p(x)t) ≤
∑
x∈Λ

p(x)G(t) = G(t), (38)

respectively ∑
x∈Λ

p(x)S(p(x), t) ≥ 0 (39)

for general p ∈M1(Λ) and equality if there is a x ∈ Λ s.t. p = δx. The function S(λ, t)
measures the deviation of the productivity of p ∈ M1(Λ) compared to the maximal
productivity given by G(t).

To deal the competition between diffusion and particle creation s.t. the lower and upper bound
are in good agreement we restrict M1(Λ) to the subset D ⊂M1(Λ) defined below.

Definition 10. Denote by −∆D
Λ`

, 1 ≤ ` ≤ l, the restriction of the discrete Laplacian to the box
Λ` = Λ`(0) := {x ∈ Zd : |x|∞ ≤ `}, by

φ` : Λ` → [0,∞)

φ`(x) =
d∏

j=1

(
2

`+ 1

) 1
2

sin

(
xjπ

`+ 1

)
its ground state and by

E1

(
−∆D

Λ`

)
= 4d sin2

(
π

2

1

`+ 1

)
its ground state energy. Then,

D := {φ2
` : 1 ≤ ` ≤ l}.

The set D contains relatively uniformly distributed prototypes of occupation time measures
localized in a small volume. Inserting these intermittency peak candidates in Lemma 9 we obtain
the following estimate.

Proposition 11. Denote by E1(H
D
Λ ) = inf σ(HD

Λ ) the ground state energy of HD
Λ . Then,

〈exp
(
−t E1

(
HD

Λ

))
〉 ≥ exp

(
G(t)− t inf

1≤`≤l
χ−` (t)

)
.

Proof. Lemma 9 and Definition 10 yield that

〈exp
(
−t E1

(
HD

Λ

))
〉

≥ exp

(
G(t)− t inf

p∈D

(
(
√
p|∆D

Λ

√
p) +

∑
x∈Λ

p(x)S(p(x), t)

))
.

12



In particular choosing
√
p = φ` with φ` : Λ` → [0,∞) and E1

(
−∆D

Λ`

)
as in Definition 10,

we have

(φ`| −∆D
Λφ`) = E1

(
−∆D

`

)
‖φ`‖22 = 4d sin2

(
π

2

1

`+ 1

)
.

Furthermore due to the convexity of G(t) and Jensen inequality we can estimate for p ∈
M1(Λl)

∑
x∈Λ

p(x)S(p(x), t) ≤ G(t)/t− `dG

(
`−dt

∑
x∈Λ`

p(x)

)
/t = S(`−d, t),

respectively

〈exp
(
−t E1

(
HD

Λ

))
〉 ≥ exp

(
G(t)− t inf

1≤`≤l
χ−` (t)

)
.

Proof of Proposition 8. Combining the Feynman-Kac representation of 〈u(t, 0)〉 in (2) and N̂(t)

in (6) 〈u(t, 0) ≥ N̂(t) is obvious. With the hitting time defined by τΛ(xs) := infs≥0 [xs ∈ Λc] .
and averaging with respect to Λ due to ergodicity, we obtain the lower bound

N̂(t) ≥ |Λ|−1
∑
x∈Λ

〈 Ex

[
exp

(
−
∫ t

0

Vω(xs)ds

)
δx(xt) 1τΛ>t

]
〉

≥ |Λ|−1 〈 exp
(
−tE1

(
HD

Λ

))
〉.

Choosing l adequate and applying Proposition 11 we obtain

N̂(t) ≥ exp

(
G(t)− t inf

1≤`≤l
χ−` (t)(1 + o(1))

)
.

3 The upper bound on a box

In this Section we assume that the hypotheses of Theorem 2 are satisfied. We want to prove
the following upper bound.

Proposition 12. Denote by E1(H
D
Λ ) the principal eigenvalue of the Hamiltonian HD

Λ on Λ =
Λl(0), l ∈ N defined in (4). With the Faber-Krahn constant cFK , γ = cFK/(12π)2,

χ+
1 (t) := max

0.5<h≤1
min

[
2d(1− 2

√
1− h), γ/2 + (1− h)S((1− h), t))

]

13



and

χ+
` (t) = γ sin2

(
π

2

1

`+ 1

)
+ S((4`)−d, t)/4,

` ≥ 2, we have

〈exp(−t E1(H
D
Λ ))〉 ≤ exp

(
G(t)− t inf

`∈N
χ+

` (t) + C|Λ|
)
.

Trying to transfer the proof of Proposition 8 to Proposition 12 we observe two difficulties. We
have to control each p ∈ M1(Zd) and it is not possible to interchange in (33) the expectation
value and the supremum. To solve the first problem we restrict to the cube Λ = Λl(0) :=
{x ∈ Zd : |x|∞ ≤ l} with l ∈ N to be choosen in the next section and define the following
classification of p ∈M1(Λ).

Definition 13 (Classification of the occupation time measures ).
With γ as in Proposition 12 we define

F(1) :=
{
p ∈M1(Λ) : γ sin2

(π
4

)
<
(√

p| −∆D
Λ

√
p
)
≤ 2d

)
},

and, if ` ≥ 2,

F(`) :=

{
p ∈ F(1)c : γ sin2

(
π

2

1

`+ 1

)
<
(√

p| −∆D
Λ

√
p
)
≤ γ sin2

( π
2`

)}
.

The classification of p ∈ M1(Λ) in Definition 13 is reminiscent of the contraction principle in
large deviation theory [12]. The energy form of the Laplacian plays the role of the projection
map while F(`) correponds to the resulting value set.

We have to deal the case ` = 1 separately to prove the asymptotics for the classical regime,
i.e.

〈u(t, 0〉 = exp(G(t)− 2dt(1 + o(1))).

Moreover the argument below is prototypical for general `.

Definition 14. Fix 1 ≥ h > 0.5. We define

Fh(1) := {p ∈ F(1) : max
x∈Λ

p(x) ≥ h},

Fc
h(1) := F(1) \ Fh(1).

Let us first deal the situation when p ∈ F(1) is ”almost” a δ-peak.

Lemma 15.

〈 sup
p∈Fh(1)

exp
(
t [(
√
p |∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉 ≤ |Λ| exp

(
G(t)− 2dt(1− 2

√
1− h)

)
.

14



Proof. Define x1 by p(x1) = maxx∈Λ p(x). Then

(
√
p | −∆D

Λ

√
p ) ≥

∑
|x1−x|=1

(√
p(x1)−

√
p(x)

)2

≥ 2d(1− 2
√

1− h),

respectively

〈 sup
p∈Fh(1)

exp
(
−t [(

√
p |∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉 ≤ |Λ| exp

(
G(t)− 2dt(1− 2

√
1− h)

)
.

Lemma 16.

〈 sup
p∈Fc

h(1)

exp
(
−t [(

√
p |∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉

≤ exp (G(t)− γt/2− (1− h)tS((1− h), t))) .

Proof. Define x1, x2 by

Vω(x1) = min
x∈Λ

Vω(x),

Vω(x2) = min
x∈Λ\{x1}

Vω(x).

Then

〈 sup
p∈Fc

h(1)

exp

(
−
∑
x∈Λ

p(x)Vω(x)t

)
〉

≤
∑
y1∈Λ

〈 sup
p∈Fc

h(1)

exp

(
−Vω(y1)t−

∑
x∈Λ

p(x)t (Vω(x)− Vω(y1))

)
: y1 = x1〉

≤
∑
y1∈Λ

y2∈Λ\{y1}

〈 sup
p∈Fc

h(1)

exp (−Vω(y1)t− (1− p(y1))t (Vω(y2)− Vω(y1))) : yi = xi, i = 1, 2〉

≤
∑
y1∈Λ

y2∈Λ\{y1}

〈 exp (−hVω(y1)t− (1− h)tVω(y2))〉

≤ |Λ|2 exp(G(ht) +G((1− h)t))
≤ |Λ|2 exp(G(t)− (1− h)tS((1− h), t)),

respectively

〈 sup
p∈Fc

h(1)

exp
(
−t [(

√
p |∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉

≤ exp (−γt/2) 〈 sup
p∈Fc

h(1)

exp (−t (
√
p | Vω

√
p ))〉

≤ |Λ|2 exp (G(t)− γt/2− (1− h)tS((1− h), t))) .
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Combining Lemma 15 and 16 we have

Corollary 17. With χ+
1 (t) defined in Proposition 12 we have

〈 sup
p∈F(1)

exp
(
−t [(

√
p |∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉 ≤ |Λ|2 exp

(
G(t)− tχ+

1 (t)
)
.

We now discuss ` ≥ 2.

Definition 18. Let h > 0 and p ∈M1(Λ). The level set is denoted by

Uh(p) := {x ∈ Λ : p(x) ≥ h} .

For ` ≥ 2, n ∈ N0 we define

F(`, n) := {p ∈ F(`) : |Uh(p)| = n} .

The first step to prove an analogue of Corollary 17 for F(`, n) is the following generalization of∑
x∈Λ

p(x)W (x) ≥ min
x∈Λ

W (x)
∑
x∈Λ

p(x) = min
x∈Λ

W (x).

Lemma 19. Let {W (xj)}j=1,..,|Λ| be an arrangement of W : Λ → [0,∞) according to the
size, that is

W (x1) = min
x∈Λ

W (x),

W (xj) = min
x∈Λ\{x1,..xj−1}

W (x),

p ∈ F(`, n), and suppose that

bh−1‖pχUc
h(p)‖c := max{m ∈ N0 : m ≤ h−1‖pχUc

h(p)‖}.

Then,

∑
x∈Uc

h(p)

p(x)W (x) ≥

0 ‖pχUc
h(p)‖1 < h,

h
∑bh−1‖pχUc

h
(p)‖1c

j=1 W (xn+j) otherwise.

Proof. We only discuss ‖pχUc
h(p)‖1 ≥ h. With {xj} as defined above, ‖χUc

h(p)p‖1 ≤ h|U c
h(p)|

and J = n+ j we have

bh−1‖χUc
h
(p)p‖1c∑

j=1

h ≤ ‖χUc
h(p)p‖1 =

bh−1‖χUc
h
(p)p‖1c∑

j=1

p(xJ) +

|Uc
h(p)|∑

j=bh−1‖χUc
h
(p)p‖1c+1

p(xJ),

respectively

bh−1‖χUc
h
(p)p‖1c∑

j=1

(h− p(xJ)) ≤
|Uc

h(p)|∑
j=bh−1‖χUc

h
(p)p‖1c+1

p(xJ).
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As a consequence of W : Λ→ [0,∞) we have

bh−1‖χUc
h
(p)p‖1c∑

j=1

W (xJ) (h− p(xJ))

≤ W (xn+bh−1‖χUc
h
(p)p‖1c)

bh−1‖χUc
h
(p)p‖1c∑

j=1

(h− p(xJ))

≤ W (xn+bh−1‖χUc
h
(p)p‖1c)

|Uc
h(p)|∑

j=bh−1‖χUc
h
(p)p‖1c+1

p(xJ)

≤
|Uc

h(p)|∑
j=bh−1‖χUc

h
(p)p‖1c+1

p(xJ)W (xJ).

Thus, ∑
x∈Uc

h(p)

p(x)W (x)

= h

bh−1‖χUc
h
(p)p‖1c∑

j=1

W (xJ)

−
bh−1‖χUc

h
(p)p‖1c∑

j=1

W (xJ) (h− p(xJ)) +

|Uc
h(p)|∑

j=bh−1‖χUc
h
(p)p‖1c+1

p(xJ)W (xJ)

≥ h

bh−1‖χUc
h
(p)p‖1c∑

j=1

W (xJ).

The second ingredient to prove an analogue of Corollary 17 is a lower bound of ‖χUc
h(p)p‖1 for

p ∈ F(`, n) proven in Corollary 22. To attain this goal some intermediate steps are necessary.

Lemma 20. Suppose p ∈M1(Λ), h > 0. Define ph : Zd → R by

ph(x) :=

{
(
√
p(x)−

√
h)2 if x ∈ Uh(p),

0 otherwise.

Then (√
p| −∆D

Λ

√
p
)
≥
(√

ph| −∆D
Uh(p)

√
ph

)
.
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Proof. As a consequence of the definition of M1(Λ) in (34) we have(√
p| −∆D

Λ

√
p
)

=
1

2

∑
x,y∈Λ,
|x−y|=1

(
√
p(x)−

√
p(y))2 +

∑
x∈Λ

∑
y∈Λc,
|x−y|=1

(
√
p(x)−

√
p(y))2

≥ 1

2

∑
x,y∈Uh(p),
|x−y|=1

(
√
p(x)−

√
p(y))2 +

∑
x∈Uh(p)

∑
y∈Uc

h(p),
|x−y|=1

(
√
p(x)−

√
p(y))2

≥ 1

2

∑
x,y∈Uh(p),
|x−y|=1

(
√
ph(x)−

√
ph(y))

2 +
∑

x∈Uh(p)

∑
y∈Uc

h(p),
|x−y|=1

(
√
p(x)−

√
h)2

=
(√

ph| −∆D
Uh(p)

√
ph

)
.

Proposition 21 (Faber-Krahn-inequality[5]). Suppose U ⊂ Zd, |U | < ∞. Then there is a
constant 0 < cFK ≤ 2d, s.t. the principal eigenvalue E1(−∆D

U ) of the discrete Dirichlet-
Laplacian −∆D

U is bounded below by

E1(−∆D
U ) ≥ cFK |U |−2/d.

As a consequence of the Faber-Krahn-inequality we find a lower bound of the probability mass
outside the level set.

Corollary 22. Suppose that ` ≥ 2, p ∈ F(`, n) and γ = cFK/(12π)2 . Then

‖χUc
h(p)p‖1 ≥ 1−

((
γπ2

4cFK

)1/2

n1/d`−1 + (hn)1/2

)2

.

Proof. By Definition 13, Lemma 20 and Proposition 21 we have

γ sin2
( π

2`

)
≥
(√

p| −∆D
Λ

√
p
)

≥
(√

ph| −∆D
Uh(p)

√
ph

)
≥ E1(−∆D

Uh(p))‖
√
ph‖22

≥ cFKn
−2/d‖√ph‖22,

respectively

‖ph‖1 ≤
γ

cFK

n2/d sin2
( π

2`

)
≤ γπ2

4cFK

`−2n2/d
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and

‖χUh(p)p‖1 ≤ ‖χUh(p)[
√
p−
√
h+
√
h]‖22

≤
(
‖χUh(p)[

√
p−
√
h]‖2 + ‖χUh(p)

√
h]‖2

)2

≤

((
γπ2

4cFK

)1/2

n1/d`−1 + (hn)1/2

)2

,

respectively

‖χUc
h(p)p‖1 = 1− ‖χUh(p)p‖1 ≥ 1−

((
γπ2

4cFK

)1/2

n1/d`−1 + (hn)1/2

)2

.

In the next Lemma we choose the height h in dependance on `.

Lemma 23. Suppose that ` ≥ 2, h = (4`)−d and p ∈ F(`, n), n ≤ h−1 = (4`)d . Then

2 ≤ N` := (4`)d/2− 1 ≤ n+ bh−1‖χUc
h(p)p‖1c,

and

h(N` − 1) ≥ 1/4.

Proof. First observe

h(N` − 1) = 1/2− 2h ≥ 1/4.

and nh = 4−dn`−d ≤ 1, respectively n1/d`−1 ≤ 4. Combining the assumptions of Lemma
23, Corollary 22 and γ = cFK/(12π)2 defined in Proposition 12 we get

nh+ hdh−1‖χUc
h(p)p‖1e ≥ nh+ ‖χUc

h(p)p‖1

≥ 1−

((
γπ2

4cFK

)1/2

n1/d`−1 + (hn)1/2

)2

+ nh

≥ 1− γπ2

4cFK

n2/d`−2 − 2

(
γπ2

4cFK

)1/2

n1/d`−1

≥ 1− γπ2

cFK

4− 4

(
γπ2

cFK

)1/2

≥ 1/2,

respectively

n+ bh−1‖χUc
h(p)p‖1c ≥ N` ≥ 2.
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The next proposition generalizes the argument given in the proof of Lemma 16.

Proposition 24. Suppose ` ≥ 2 and N` as defined in Lemma 23. Then

〈 sup
p∈F(`,n)

exp

(
−t
∑
x∈Λ

p(x)Vω(x)

)
〉 ≤ |Λ|

(
|Λ|

N` − 1

)
exp

(
G(t)− 4−1tS((4`)−d, t)

)
.

Proof. Assume {V ∗
j }j=1,..,|Λ| is an arrangement of V : Λ→ R according to the size, that is

V ∗
1 = Vω(x1) = min

x∈Λ
Vω(x),

V ∗
j = Vω(xj) = min

x∈Λ\{x1,..xj−1}
Vω(x).

and {p∗i }i=1,..,|Λ| is defined by

p∗1 = p(y1) = max
y∈Λ

p(y),

p∗i = p(yi) = max
y∈Λ\{y1,..yi−1}

p(y).

An elementary induction argument gives

∑
x∈Λ

p(x)Vω(x) ≥
|Λ|∑
j=1

p∗jV
∗
j ,

respectively

〈 sup
p∈F(`,n)

exp

(
−t
∑
x∈Λ

p(x)Vω(x)

)
〉 ≤ 〈 sup

p∈F(`,n)

exp

−t |Λ|∑
j=1

p∗jV
∗
j

〉.
Suppose h = (4`)−d and N` ≥ 2 as in Lemma 23. Observing V ∗

j − V ∗
1 ≥ 0, p∗j ≥ h,

j = 1, .., n, Lemma 19 and Lemma 23 give for p ∈ F(`, n)

|Λ|∑
j=1

p∗jV
∗
j = V ∗

1 +
n∑

j=1

p∗j(V
∗
j − V ∗

1 ) +

|Λ|∑
j=n+1

p∗j(V
∗
j − V ∗

1 )

≥ V ∗
1 + h

n+bh−1‖χUc
h
(p)p‖1c∑

j=1

(V ∗
j − V ∗

1 )

≥ V ∗
1 + h

N∑̀
j=1

(V ∗
j − V ∗

1 )

= (1− h(N` − 1))V ∗
1 + h

N∑̀
j=2

V ∗
j ,
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respectively with Lemma 23

〈 sup
p∈F(`,n)

exp

(
−t
∑
x∈Λ

p(x)Vω(x)

)
〉

≤ 〈 exp(−(1− h(N` − 1))V ∗
1 − h

N∑̀
j=2

V ∗
j )〉.

=
∑
x∈Λ

∑
W⊂Λ,

|W |=N`−1

〈 exp(−(1− h(N` − 1))Vω(x)− h
∑
y∈W

Vω(y)) : x = x∗1,W = {x∗2, .., x∗N`
}〉.

≤
∑
x∈Λ

∑
W⊂Λ,

|W |=N`−1

〈 exp(−(1− h(N` − 1))Vω(x)− h
∑
y∈W

Vω(y))〉.

= |Λ|
(
|Λ|

N` − 1

)
〈 exp(−(1− h(N` − 1))tVω(0))〉

N∏̀
j=2

〈exp(−htVω(0))〉.

Integration with respect to the single site potential and Lemma 23 give

〈 sup
p∈F(`,n)

exp

(
−t
∑
x∈Λ

p(x)Vω(x)

)
〉

≤ |Λ|
(
|Λ|

N` − 1

)
exp (G((1− h(N` − 1))t) + (N` − 1)G(th))

≤ |Λ|
(
|Λ|

N` − 1

)
exp (G(t)− h(N` − 1)tS(h, t))

≤ |Λ|
(
|Λ|

N` − 1

)
exp (G(t)− tS(h, t)/4) .

Proof of Proposition 12. As a consequence of the Faber-Krahn-inequality exists l̃ = cl s.t.

M1(Λ) ⊂
⋃l̃

`=1 F(`). Choosing h = (4`)−d as in Proposition 24 we observe |Uh(p)| ≤
(4`)d ≤ (4l̃)d. Corollary 17 gives

〈exp(−t E1(H
D
Λ ))〉

≤ 〈 sup
p∈F(1)

exp
(
−t [(

√
p | −∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉

+
l̃∑

`=2

(4`)d∑
n=0

〈 sup
p∈F(`,n)

exp
(
−t [(

√
p | −∆D

Λ

√
p ) + (

√
p | Vω

√
p )]
)
〉

≤ |Λ|2 exp
(
G(t)− tχ+

1 (t)
)

+
l̃∑

`=2

exp

(
−γ sin2

(
π

2

1

`+ 1

)) (4`)d∑
n=0

〈 sup
p∈F(`,n)

exp(−t (
√
p | Vω

√
p ))〉.
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As a consequence of Proposition 24 we obtain

〈exp(−t E1(H
D
Λ,ω))〉

≤ |Λ|2 exp
(
G(t)− tχ+

1 (t)
)

+ C|Λ|
l̃∑

`=2

(
|Λ|

N` − 1

)
exp

(
G(t)− tχ+

` (t)
)

≤ |Λ|2 exp
(
G(t)− tχ+

1 (t)
)

+ |Λ|2 exp

(
G(t)− t inf

`≥2
χ+

` (t)

) l̃∑
`=2

(
|Λ|

N` − 1

)

≤ exp

(
G(t)− t inf

`∈N
χ+

` (t) + C|Λ|
)
.

4 The proof of Theorem 2

To prove Theorem 2 we have to choose the side length l = l(t) of the cube Λ = Λl(0) s.t. the
error in Proposition 12 and the error resulting from boundary conditions are negligible, that is

C1l(t)
d + C2tl(t)

−2 t→∞
= o

(
t inf

`∈N
χ+

` (t)

)
.

To solve this problem we have to compute inf`∈N χ
+
` (t) in dependance on the single site distri-

bution, respectively the corresponding cumulant generating function. In Theorem 2 we assume
G(t) <∞, t ≥ 0 and G(t)/t ∈ Πg with auxilary function g ∈ Rρ, ρ ∈ [−1,∞) and g-index
cg, i.e. we have

S(λ, t) =
G(t)

t
− G(λt)

λt
t→∞
= cghρ(λ)g(t)(1 + o(1)),

λ ∈ (0, 1]. As discussed in [3], p. 128, hρ(λ), λ ∈ (0, 1] has the representation

hρ(λ) =

∫ 1

λ

uρ−1du+ o(1) =

{
− log(λ) ρ = 0,

(1− λρ)/ρ ρ 6= 0,
(40)

i.e. to estimate inf`∈N χ
+
` (t) we have to distinguish three cases. Let us first discuss single site

distributions exhibiting Lifshitz tail behaviour.

Lemma 25. Suppose G(t) < ∞, t ≥ 0 and G(t)/t ∈ Πg with auxilary function g ∈ Rρ,
ρ ∈ [−1, 0) and tg(t)→∞ in the limit t→∞. Denote the optimal length by

`∗(t) := g(t)1/(dρ−2).

Then

C1`
∗(t)−2 ≤ inf

`∈N
χ+

` (t) ≤ inf
`∈N

χ−` (t) ≤ C2`
∗(t)−2,

C1, C2 > 0, t sufficiently large.
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Proof. To prove the lower bound compute the corresponding continuous minimization problem.
As a consequence of `∗(t)→∞ the upper bound is given by

inf
`∈N

χ−` (t) ≤ 4d sin2

(
π

2

1

d`∗(t)e+ 1

)
+ S(d`∗(t)e−d, t) ≤ C2`

∗(t)−2.

In the next lemma we discuss ρ = 0 defining the borderline between the classical and the
quantum regime. It contains the single peak case (`∗(t) = 1), the double exponential distribu-
tion (`∗(t) ∼ 1/

√
cg) and the almost bounded single site distributions (`∗(t)→∞, t→∞).

Lemma 26. SupposeG(t) <∞, t ≥ 0 andG(t)/t ∈ Πg with auxilary function g ∈ R0. Then

inf
`∈N

χ−` (t) ≤

{
2d cgg(t) ≥ 2π2,

8dcgg(t) + 2dcgg(t) log (2π2/(cgg(t))) cgg(t) < 2π2
(41)

and

inf
`∈N

χ+
` (t) ≥

{
2d− 4d(cgg(t))

−1/2 cgg(t) ≥ 2e2d + γπ2/2d,

min
[
γ/2, dcgg(t)

8
+ dcgg(t)

8
log
(

64γπ2

cgg(t)

)]
cgg(t) < 2e2d + γπ2/2d.

(42)

Proof. Approximating sin(x) and choosing

`∗(t) = max

[
1,

(
2π2

cgg(t)

)1/2
]

we obtain (41). The starting point to prove (42) is

inf
`∈N

χ+
` (t) ≥ min

(
χ+

1 (t), inf
`∈[2,∞)

[
π2γ

10
`−2 +

d

4
cgg(t) log(4`)

])
. (43)

Computing the infinum with

`∗(t) = max

[
2,

(
4π2γ

5dcgg(t)

)1/2
]
, (44)

the lower bound (42) is then a consequence of some elementary, but painful calculations.

Finally let us discuss the one-peak case

Lemma 27. Suppose G(t) < ∞, t ≥ 0, G(t)/t ∈ Πg with auxilary function g ∈ Rρ,
ρ ∈ (0,∞). Then `∗(t) = 1 and

2d = inf
`∈N

χ−` (t) ≥ inf
`∈N

χ+
` (t) ≥ 2d

(
1− 2g(t)−1/2

)
(45)

for t sufficiently large.
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Proof. By assumption we have

S(λ, t) = cgρ
−1(1− λρ)g(t) + o(1)

t→∞→ ∞.

Choosing h = 1− 1/g(t) ≥ 1/2 we obtain (45).

Corollary 28. Suppose G(t) < ∞, t ≥ 0 and G(t)/t ∈ Πg with auxilary function g(t) =
tρg0(t) ∈ Rρ, ρ ∈ [−1,∞), g0 ∈ R0 and g-index cg. Furthermore if ρ = −1 we assume that

g0(t)
t→∞→ ∞. Defining l = l(t) := dα(t)`∗(t)e with `∗(t) as Lemma 25 -27 and

α(t) =


g0(t)

1
d(d+2) ρ = −1,

t−
1+ρ

d(dρ−2) ρ ∈ (−1, 0),

t1/2d ρ ∈ [0,∞)

we have

K1l
d +K2tl

−2 = o

(
t inf

`∈N
χ+

` (t)

)
. (46)

Proof. As a consequence of inf`∈N χ
+
` (t) ≥ 0 we can estimate

0 ≤
∣∣∣∣K1l

d +K2tl
−2

t inf`∈N χ
+
` (t)

∣∣∣∣ ≤ K1l
d +K2tl

−2

C1t`∗(t)−2
≤ Kα(t)dt−1`∗(t)d+2 +Kα(t)−2.

The case ρ ∈ [0,∞) is obvious. Suppose ρ ∈ [−1, 0). With α(t) → ∞ and `∗(t) =
g(t)1/(dρ−2) we have

0 ≤
∣∣∣∣K1l

d +K2tl
−2

t inf`∈N χ
+
` (t)

∣∣∣∣ ≤ Kα(t)dt−
d+2

dρ−2
−1g0(t)

d+2
dρ−2 +Kα(t)−2 → 0.

The next lemma is a slight modification of Proposition 4.4 in [4] to deal the bounded and the
unbounded setting simultaneously.

Lemma 29. Suppose L := L(t) = dt log(t)e. Then

〈exp
(
−tE1

(
HD

ΛL

))
〉 ≤ exp

(
G(t)− t inf

`∈N
χ+

` (t)(1 + o(1))

)
.

Proof. Lemma 4.6 in [4] says, there is a constant C > 0 such that for every l ∈ N, there is a
function φl : Zd → [0,∞) with the following properties:

(i) φl is l-periodic in every component,

(ii) ‖φl‖∞ ≤ C/l2,
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(iii) For any potential V : Zd → [0,∞) and any L > l/2 we can estimate

E1

(
(−∆ + V + φl)

D
ΛL

)
≥ min

x∈ΛL+l

E1

(
(−∆ + V )D

Λl(x)

)
.

We define

Ṽω : Zd → [0,∞),

Ṽω(x) =

{
Vω(x)−minx∈Λ2L

Vω(x) x ∈ Λ2L,

0 otherwise.

With H̃ω := −∆ + Ṽω + φl we obtain as a consequence of the result above

E1

(
HD

ΛL

)
= inf

f∈l2(ΛL)

‖f‖2=1

[
(f |H̃D

ΛL
f)− (f |φ`f)

]
+ min

x∈Λ2L

Vω(x)

≥ E1

(
H̃D

ΛL

)
− Cl−2 + min

x∈Λ2L

Vω(x),

respectively

〈exp
(
−t E1

(
HD

ΛL

))
〉

≤ exp(Cl−2t)〈exp

(
−tE1

(
H̃D

ΛL

)
− t min

x∈Λ2L

Vω(x)

)
〉

≤ exp(Cl−2t)〈 max
x∈ΛL+l

exp
(
−t E1

(
HD

Λl(x)

))
〉

≤ exp(Cl−2t)
∑

x∈ΛL+l

〈exp
(
−t E1

(
HD

Λl(x)

))
〉

≤ 2d|ΛL| exp(Cl−2t)〈exp
(
−t E1

(
HD

Λl(0)

))
〉.

Choosing l = l(t) = dα(t)`∗(t)e as in Corollary 28 we have l(t)/2 < L(t) for t sufficiently
large. An application of Proposition 12 gives

〈exp
(
−t E1

(
HD

ΛL

))
〉 ≤ 3d|ΛL| exp

(
G(t)− t inf

`∈N
χ+

` (t) + C1l(t)
d + C2tl(t)

−2

)
.

Lemma 29 is now a consequence of Corollary 28.

Proof of the upper bound of Theorem 2: Choose L = dt log(t)e. Then

〈u(t, 0)〉 = 〈E0

[
exp

(
−
∫ t

0

Vω(xs)ds

)]
〉

= 〈E0

[
exp

(
−
∫ t

0

Vω(xs)ds

)
1τΛL

≤t

]
〉+ 〈E0

[
exp

(
−
∫ t

0

Vω(xs)ds

)
1τΛL

>t

]
〉.
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The second term can be estimated by

〈E0

[
exp

(∫ t

0

Vω(xs)ds

)
1τΛL

>t

]
〉 ≤ |Λ|〈exp

(
−t E1

(
HD

ΛL

))
〉.

Applying the estimate of the hitting probability

P [τL(xt) ≤ t] ≤ 2d+1 exp (−L (log (L/(td))− 1))

([8], Lemma 2.5) we have

〈E0

[
exp

(∫ t

0

Vω(xs)ds

)
1τΛL

≤t

]
〉 ≤ exp (G(t)) P[τΛL

≤ t]

≤ 2d+1 exp (G(t)− t log(t) (log (log(t)/d)− 1)) .

Finally as a consequence of Lemma 29 we have

〈u(t, 0)〉 ≤ exp

(
G(t)− t inf

`∈N
χ+

` (t)(1 + o(1))

)
in the limit t→∞.

Proof of Corollary 4 . Combining Theorem 2 and Lemma 25 we obtain

−C1tg(t)
−2

dρ−2 ≤ log N̂(t) ≤ log〈u(t, 0)〉 ≤ −C2tg(t)
−2

dρ−2 .

Applying Corollary 31, i.e. the limit of oscillation version of de Bruijn’s Tauberian theorem in
Appendix 2, we obtain upper and lower bounds of the IDS in the limit E ↘ 0

C1 inf
t>0

[Et− tg(t)
−2

dρ−2 ](1 + o(1)) ≤ logN(E) ≤ C2 inf
t>0

[Et− tg(t)
−2

dρ−2 ](1 + o(1)).

(47)

Observing that

d

dt
g(t)

t→∞∼ ρg(t)/t, (48)

([3], p.44) the minimizing time t∗ of the Legendre transform satisfies with C > 1

g(t∗) = (t∗)ρg0(t
∗)

E↘0∼ CE(2−dρ)/2. (49)

As a consequence of (13) we can apply the inversion formula for regularly varying functions
stated at the end of Appendix 1 and obtain

t∗
E↘0∼ CE(2−dρ)/2ρg0

(
CE(2−dρ)/2ρ

)−1/ρ
,

respectively

inf
t>0

[
Et− tg(t)

−2
dρ−2

]
E↘0∼ CE(2−dρ)/2ρg0

(
CE(2−dρ)/2ρ

)−1/ρ
(E − g(t∗)

−2
dρ−2 )

= −(C − 1)E− d
2
+1+ρ−1

g0

(
CE(2−dρ)/2ρ

)−1/ρ
.
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Proof of Corollary 5 -7 . Combining Theorem 2, Lemma 26 and Lemma 27 gives Corollary 5,
i.e. the estimate

G(t)− 2dtχ∗−(t)(1 + o(1)) ≤ log N̂(t) ≤ log〈u(t, 0)〉 ≤ G(t)− 2dtχ∗+(t)(1 + o(1))
(50)

with

χ∗−(t) =

{
1 cgg(t) ≥ 2π2,

4cgg(t) + cgg(t) log (2π2/(cgg(t))) cgg(t) < 2π2

and

χ∗+(t) =

{
1− 2(cgg(t))

−1/2 cgg(t) ≥ 2e2d + γπ2/2d,

min
[
γ/(4d), dcgg(t)

8
+ dcgg(t)

8
log
(

64γπ2

cgg(t)

)]
cgg(t) < 2e2d + γπ2/2d.

Suppose now ρ > 0. Then we have g(t) → ∞ and 1 = χ∗−(t) ≥ χ∗+(t) = 1 − o(1) in
the limit t → ∞. Applying Corollary 33 in Appendix 2, that is the limit of oscillation version of
Kasahara’s Tauberian theorem, we obtain in the limit E → −∞

logN(E) = inf
t>0

[(E − 2d)t+G(t)](1 + o(1)) = −I(E − 2d)(1 + o(1)). (51)

In the double exponential setting we have cgg(t)→ cg and χ∗−(t) as well as χ∗+(t) converge to
constants. Corollary 6 follows now from the analogue of Corollary 33 in the double exponential
case proven in [24] (see also Appendix 2).

Appendix 1: Regular varying functions

Regularly varying functions as introduced in Definition 1 are a generalization of g(t) = tρ. Their
characteristic trait is

g(λt)/g(t)
t→∞
= λρ(1 + o(1))

for all λ ≥ 0. Sometimes it is convenient to transfer attention from infinity to the origin. Thus if
g > 0,

g(λE)/g(E)
E↘0
= λρ(1 + o(1)),

we say g is regularly varying at the origin with index ρ, g ∈ Rρ(0+). This is equivalent to
g(1/E) ∈ R−ρ, [3], p.18. If ρ = 0, then g is said to be slowly varying. Regularly varying
functions are a generalization of g(t) = tρ in the sense that g ∈ Rρ implies g(t) = tρg0(t)
with g0 ∈ R0 [3], Theorem 1.4.1.
One problem is the inversion of regularly varying functions. Theorem 1.5.12 in [3] says, if g ∈ Rρ

with ρ > 0, then exists an asymptotic inverse g−1 ∈ R1/ρ with

g(g−1(t)) ∼ g−1(g(t)) ∼ t.
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Up to asymptotic equivalence g−1 is unique. A corresponding result in the case ρ < 0 with
g−1 ∈ R1/ρ(0+) can be deduced from Theorem 1.5.12. To obtain an explicit expression for the

asymptotic inverse, we introduce the de Bruijn conjungate g#
0 ([3], p. 29), i.e the slowly varying

functions g0 ∈ R0 satisfying

g0(t)g
#
0 (tg0(t))

t→∞→ 1, g#
0 (t)g0(tg

#
0 (t))

t→∞→ 1.

Again, up to asymptotic equivalence g#
0 is unique. Suppose now that

g0(tg0(t)
1/ρ)/g0(t)

t→∞→ 1 (52)

holds for some ρ 6= 0. As a consequence of Corollary 2.3.4 in [3] we have (g
1/ρ
0 )# ∼ g

−1/ρ
0

and if E ∼ tρg0(t) then t ∼ E1/ρg0(E
1/ρ)−1/ρ in the limit t, E → ∞ if ρ > 0, respectively

t→∞, E ↘ 0, ρ < 0. An example satisfying (52) is given by g0(t) = log(t). The interested
reader is encouraged to control the statements above for g(t) = tρ log(t).

Appendix 2: Tauber theory for Laplace transforms

In Appendix 2 we collect some results about Tauberian theorems. Given the asymptotic be-
haviour of the Laplace transform

N̂(t) :=

∫
e−λt dν(λ) <∞ (53)

in the limit t → ∞, the problem is to reconstruct the behaviour of the distribution function
v(E) = ν[E0, E] in the limit E ↘ E0 = sup{E : v(E) = 0}. This is a very common
problem in statistical physics, respectively probability theory, and the aim is a characterization
of the asymptotics in terms of the Legendre transform.

log (v(E))
E↘E0∼ inf

t>0

[
Et+ log(N̂(t))

]
(54)

(e.g. [26], Thm. 9.7). If the exponent of the Laplace transfrom is a regularly varying function, very
explicit statements are possible. In the bounded setting one has de Bruijn’s Tauberian theorem
([3], Thm. 4.12.9). The corresponding result in the unbounded setting is Kasahara’s Tauberian
theorem ([3], Thm. 4.12.7).
To apply de Bruijn’s, respectively Kasahara’s Tauberian theorem one has to know the exact
asymptotics of N̂(t). Sometimes this is a practical problem, because only upper and lower
bounds of the Laplace transform are available. But if these bounds are in good agreement, we
can apply the so called limit of oscillation theorems. We start by discussing the limit-of-oscillation
version of de Bruijn’s Tauberian theorem ([2], Thm. 0)

Theorem 30. Let υ be a measure on (0,∞) whose Laplace transform N̂(t) satifies (53). By
v(E) we denote the distribution function of υ. If α < −1, ψ ∈ Rα(0+), put φ(λ) := λψ(λ) ∈
Rα+1(0+). Suppose

−B1 ≤ lim inf
λ↘0

λ log N̂(ψ(λ)) ≤ lim sup
λ↘0

λ log N̂(ψ(λ)) ≤ −B2 (55)
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for B1, B2 > 0. Then

−C1 ≤ lim inf
λ↘0

λv(1/φ(λ)) ≤ lim sup
λ↘0

λv(1/φ(λ)) ≤ −C2 (56)

with C1, C2 > 0.

Corollary 31. Let υ be a measure on (0,∞) whose Laplace transform N̂(t) satifies (53) and
denote by v(E) its distribution function. Suppose f ∈ Rρ, 0 < ρ < 1 and

−B1f(t)(1 + o(1)) ≤ log(N̂(t))) ≤ −B2f(t)(1 + o(1)) (t→∞) (57)

for B1, B2 > 0. Then

C1 inf
t>0

[Et− f(t)](1 + o(1)) ≤ log (v(E)) ≤ C2 inf
t>0

[Et− f(t)](1 + o(1)) (E ↘ 0).

(58)

with C1, C2 > 0.

Proof. Again we encourage the interested reader to control the statements below for the special
case f̃(t) = tρ, ρ ∈ (0, 1). With ψ−1(t) = 1/f(t) ∈ R−ρ inequality (57) becomes

−B1 ≤ lim inf
t→∞

ψ−1(t) log N̂(t) ≤ lim sup
t→∞

ψ−1(t) log N̂(t) ≤ −B2,

respectively with λ = 1/t and ψ(λ) ∈ R−1/ρ(0+)

−B1 ≤ lim sup
λ↘0

λ log N̂(ψ(λ)) ≤ lim inf
λ↘0

λ log N̂(ψ(λ)) ≤ −B2..

As a consequence of Theorem 30 and φ(λ) = λψ(λ) ∈ R ρ−1
ρ

(0+) we have

−C1 ≤ lim inf
λ↘0

λv(1/φ(λ)) ≤ lim sup
λ↘0

λv(1/φ(λ)) ≤ −C2. (59)

Setting E = 1/φ(λ) we obtain

−C1/φ
−1(1/E)(1 + o(1)) ≤ log (v(E)) ≤ − C2/φ

−1(1/E)(1 + o(1)). (60)

Let us now prove (58). Without restriction we can choose a differentiable version of f(t) [3].
Starting with

t∗ =
ρ

E

1

φ−1 (ρ/E)

we have

ρ/E ∼ φ
( ρ

Et∗

)
= ψ

( ρ

Et∗

) ρ

Et∗
. (61)
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Inversion of ψ gives ψ−1(t∗) = ρ/(Et∗), respectively

0 = E − ρ

t∗ψ−1(t∗)
= E − ρf(t∗)/t∗

E↘0∼ E − d

dt
f(t) |t=t∗ . (62)

We obtain

inf
t>0

[Et− f(t)] = E
ρ

E

1

φ−1 (ρ/E)
− 1

φ−1 (ρ/E)

E↘0∼ −(1− ρ)ρ ρ/(1−ρ)/φ−1(1/E).

(63)

Combining (60) and (63) we end up with

C1ρ
ρ/(ρ−1)

1− ρ
inf
t>0

[Et− f(t)](1 + o(1)) ≤ log (v(E)) ≤ C2ρ
ρ/(ρ−1)

1− ρ
inf
t>0

[Et− f(t)](1 + o(1)).

The corresponding result in the unbounded setting is the limit-of-oscillation version of Kasa-
hara’s Tauberian theorem, ([13], Thm. 1(ii)).

Theorem 32. Let υ be a measure on R whose Laplace transform N̂(t) satifies (53) and denote
by v(E) its distribution function. If 0 < α < 1, ψ ∈ Rα, put φ(t) = t/ψ(t) ∈ R1−α. Suppose

B1 ≤ lim inf
t→∞

t−1 log N̂(ψ(t)) ≤ lim sup
t→∞

t−1 log N̂(ψ(t)) ≤ B2

for B1, B2 > 0. Then

C1 ≤ lim inf
E→−∞

E−1 log v(−φ(−E)) ≤ lim sup
E→−∞

E−1 log v(−φ(−E)) ≤ C2

with C1, C2 > 0.

Corollary 33. Let υ be a measure on R whose Laplace transform N̂(t) satifies (53). Denote
by v(E) the distribution function of υ. Suppose f ∈ Rρ, ρ > 1 and

B1f(t)(1 + o(1)) ≤ log(N̂(t))) ≤ B2f(t)(1 + o(1)) (t→∞) (64)

for B1, B2 > 0. Then

C1 inf
t>0

[Et+ f(t)](1 + o(1)) ≤ log (v(E)) ≤ C2 inf
t>0

[Et+ f(t)](1 + o(1)) (E → −∞).

(65)

Proof. Corollary 33 may be proved by a method closely analogous to that used in Corollary
31.

Remark 34.
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(i) The constants C1, C2 > 0 in the results above are explicetly computable. As a con-
sequence if B1 = B2 then C1 = C2, i.e. we obtain de Bruijn’s ([3], Thm. 4.12.9),
respectively Kasahara’s Tauberian theorem ([3], Thm. 4.12.7).

(ii) The key idea linking Laplace and Legendre transform is the concept of the relevant energy
interval. In the asymptotic limit for every time t exists an energy E = E(t), s.t. the
behaviour of the Laplace transform is determined by a small energy interval around E.
Using the Cramér-transform ([12], p.7) the idea above is used in [4] to prove de Bruijn’s
Tauberian theorem, repectively in [24] not aware of [13] and [2] to prove the corresponding
limit of oscillation versions.

(iii) While in general no Tauber theorem exists if N̂(t) ∈ R1 it is possible to transfer the limit
of oscillation argument via Cramér-transform discussed in (ii) to the double exponential
regime [24]. Suppose B1, B2 > 0, f(t) = cgt log(cgt)− cgt and

B1f(t) ≤ log N̂(t) ≤ B2f(t).

Then exists C1.C2 > 0 s.t

C1 inf
t>0

[Et+ f(t)] (1 + o(1)) ≤ log v(E) ≤ C2 inf
t>0

[Et+ f(t)] (1 + o(1)). (66)
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