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Abstract

A population balance system which models the synthesis of urea is studied in this

paper. The equations for the flow field, the mass and the energy balances are given in a

three-dimensional domain and the equation for the particle size distribution (PSD) in a four-

dimensional domain. This problem is convection-dominated and aggregation-driven. Both

features require the application of appropriate numerical methods. This paper presents a

numerical approach for simulating the population balance system which is based on finite

element schemes, a finite difference method and a modern method to evaluate convolu-

tion integrals that appear in the aggregation term. Two experiments are considered and the

numerical results are compared with experimental data. Unknown parameters in the ag-

gregation kernel have to be calibrated. For appropriately chosen parameters, good agree-

ments are achieved of the experimental data and the numerical results computed with the

proposed method. A detailed study of the computational results reveals the influence of

different parts of the aggregation kernel.
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2 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

1. INTRODUCTION

Many species in chemical or pharmaceutical processes are produced in particulate form. Rather

than the behaviour of each individual particle, averaged properties of the particles are of

interest in applications. Such averages can be described by particle size distributions (PSD)

and the behaviour of PSDs can be modelled by population balance systems. Population balance

systems describe, e.g., the nucleation, growth, aggregation, breakage and transport of particles.

These are coupled systems consisting of, e.g., the Navier–Stokes equations, equations for mass

and energy balances, and for the PSD. Whereas the flow field, concentrations of dissolved

species and temperature depend on time and space, the PSD depends also on properties of the

particles, the so-called internal coordinates. Altogether, a population balance system contains

equations which are defined in domains with different dimension.

In applications, the domain for the flow field etc. is three-dimensional and the domain for

the PSD at least four-dimensional. Of course, the accurate and efficient simulation of such

population balance systems poses a great challenge. There are still only few approaches for

the simulation of the equation for the PSD in the higher-dimensional domain [1, 2, 3, 4].

Currently more widely used are several proposals for model simplification, which replace the

higher-dimensional equation for the PSD by a system of equations in three dimensions. The

most popular approaches in this direction are the quadrature method of moments (QMOM)

[5] and the direct quadrature method of moments (DQMOM) [6]. These methods approximate

the first moments of the PSD. However, the reconstruction of a PSD from a finite number of

its moments is a severely ill-posed problem [7, 8].

In our opinion, an accurate simulation of population balance systems requires the treatment

of the coupled problem in three and four dimensions. It was already shown in [9, 10] that

even with this approach, the use of different numerical methods might lead to considerable

∗Correspondence to: volker.john@wias-berlin.de
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 3

differences in computed outputs of interest. For this reason, it is important to simulate problems

which allow the comparison of the computed results with experimental data.

This paper considers a laboratory experiment [11], a synthesis of urea particles, for which

measurement data are available. A model for this process is provided which takes into account

the transport, the growth and the aggregation of urea particles. From the point of view of

chemical engineering, it is clear that the behaviour of the particles is driven by aggregation.

Hence, the aggregation kernel is of utmost importance in the model. This kernel consists of

two parts, one describing aggregation by Brownian motion and the other one describing shear-

induced aggregation. A main goal of the numerical simulations was the calibration of two

unknown model parameters in this kernel by comparing numerical results with experimental

data.

An important aspect for reliable comparisons is the use of accurate numerical methods.

Thus, the flow field will be simulated by a higher-order finite element method, the equations

for the concentration of dissolved urea and for the temperature by one of the most accurate

stabilised finite element methods [12], and the aggregation integrals are computed by a modern

approach from [13, 14, 15]. Only the convective part of the equation for the PSD is discretised,

for efficiency reasons, with a rather simple scheme, which, however, has proven to give very

similar results to more complicated schemes in the presence of laminar flow fields [10]. With

these methods, parameters for the aggregation kernel could be identified for two experimental

setups which give results that agree well with the experimental data. Reasons for differences

of the optimal parameters between both examples are discussed. Detailed studies of the PSD

for different nodes of the grid at the outlet highlight the impact of the individual terms of the

aggregation kernel.

The paper is organised as follows. Section 2 introduces the population balance system which

models the urea synthesis. The numerical methods which are used in the simulations of the flow

field, the temperature, the concentration and the convective part of the equation for the PSD,

and the method that is used for computing the aggregation term are presented in Section 3.
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4 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

Then, Section 4 describes the incorporation of the experimental data into the simulations. The

main part of the paper is Section 5, which contains the numerical studies, the comparisons

with the experimental data and a discussion of the results. A summary and an outlook are

given in Section 6.

2. THE POPULATION BALANCE MODEL OF THE UREA SYNTHESIS

The studied urea population is modelled by a system of equations describing the flow field

(velocity, pressure), the energy balance (temperature), the mass balance (concentration) and

the particle size distribution. The experimental setups, which were the basis of the numerical

simulations, led to steady-state flow fields.

The flow field obeys the incompressible Navier–Stokes equations

−µ∆u + ρ ((u · ∇)u) +∇p = ρg in Ω,

∇ · u = 0 in Ω,
(1)

where Ω = (0, 210)× (0, 1)× (0, 1)
[
cm3

]
is the flow domain, u [m/s] is the fluid velocity,

p [Pa] is the pressure, ρ = 789
[
kg/m3

]
is the density of ethanol, µ = 1.074 · 10−3 [kg/(m s)]

is the dynamic viscosity of ethanol (both at 298 K) and g [m/s2] is the gravitational

acceleration. In the experiments, the suspension is sufficiently dilute, the size of the particles

is sufficiently small and the temperature gradient is also small enough such that the influence

of all these aspects on the flow field can be neglected. The Navier–Stokes equations (1)

has to be closed with boundary conditions. The boundary Γ of Ω is the union of the

inlet boundary Γin = {0 cm} × (1/3 cm, 2/3 cm)× (1/3 cm, 2/3 cm), the outlet boundary

Γout = {210 cm} × (0 cm, 1 cm)× (0 cm, 1 cm) and the walls Γwall = Γ \ (Γin ∪ Γout). The

unit outer normal vector on the boundary is denoted by nΓ. The exact conditions at the

inlet Γin are not known, only the flow rates at the inlet. A simple approach would be the

application of plug flows (constant velocities) at the inlet that matches the given flow rates.

But this approach leads to jumps in the boundary condition. This is certainly not correct since

no-slip boundary conditions hold at the boundaries of the supply to the flow domain. For this
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 5

reason, an inlet boundary condition of the form

u(x) = Uin(Ψ(ξ, η), 0, 0)T , x ∈ Γin, (2)

was used, where the profile Ψ(ξ, η) of this condition is the solution of the two-dimensional

Poisson equation

−∆Ψ = 1 in Γin, Ψ = 0 on ∂Γin.

The parameter Uin was chosen to match the experimental inflow rates, see Section 4. The

boundary condition at the outlet Γout is the standard do-nothing condition

(µ∇(u)− pI) · nΓ = 0, x ∈ Γout, (3)

that is often used in numerical simulations [16]. A boundary condition at the outlet is not

known from the experiments. In particular, it is unclear how good this unknown boundary

condition corresponds to (3). For this reason, the length of the computational domain was

chosen larger than the length of the experimental domain (210 cm instead of 200 cm) such

that a possible slight incorrectness of the outflow boundary condition (3) does not possess

an influence on the computational results in the region that corresponds to the outlet of the

experimental domain. At all other boundaries (the walls), the no-slip condition

u(x) = 0, x ∈ Γwall, (4)

was applied.

The mass balance of the system is given by

∂c

∂t
−D∆c+ u · ∇c+

3ρdkV G(c, T )
mmol

∫ Lmax

Lmin

L2f dL = −ρ
dkV L

3
minBnuc

mmol
in (0, te)× Ω. (5)

In (5), c [mol/m3] is the concentration of urea in the suspension, D = 1.35 · 10−9
[
m2/s

]
is

the diffusion coefficient of urea in ethanol, ρd = 1323
[
kg/m3

]
is the density of urea (dispersed

phase), kV = π/6 [·] is the scaling factor from diameters to volume (where it is assumed

that all particles are balls), G(c, T ) [m/s] is the growth rate given below in (8), T [K] is the

temperature, mmol = 60.06 · 10−3 [kg/mol] is the molar mass of urea, Bnuc = 108 [1/(m3 s)] is
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6 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

a constant nucleation rate and te [s] is a final time. The diameter of the particles is denoted by

L [m], where Lmin is the smallest diameter (nuclei size) and Lmax is an upper bound for the

largest diameter. The particle size distribution is f
[
1/m4

]
. The last term on the left hand

side of (5) models the decrease of dissolved urea due to the growth of particles and the term

on the right hand side describes the consumption of dissolved urea due to the nucleation of

particles. Equation (5) has to be equipped with initial and boundary conditions. The boundary

condition is given by 
c(t,x) = csat(Tin), x ∈ Γin,

D
∂c

∂nΓ
= 0, x ∈ Γout ∪ Γwall,

(6)

with the saturation concentration

csat(T ) =
35.364 + 1.305(T − 273.15)

mmol

[
mol
m3

]
. (7)

With this boundary condition, (5) without the coupling terms to the PSD is solved until a

steady state is reached. This steady state is used as initial condition c(0,x). The growth rate

is given by

G(c, T ) =


kg

(
c− csat(T )
csat(T )

)g

, if c > csat(T ),

0, else,

(8)

with the growth rate constant kg = 10−7 [m/s] and the growth rate power g = 0.5 [·].

Next, the energy balance is modelled by

−λ∆T + ρcp

(
∂T

∂t
+ u · ∇T

)
+ 3∆hcrystρ

dkV G(c, T )
∫ Lmax

Lmin

L2f dL

= −∆hcrystρ
dkV L

3
minBnuc in (0, te)× Ω, (9)

where cp = 2441.3 [J/(kg K)] is the specific heat capacity of ethanol, λ = 0.167 [J/(K m s)]

is its thermal conductivity and ∆hcryst = 2.1645 · 105[J/kg] is the heat of solution (enthalpy

change of solution). The boundary conditions are known from the experiments

T (t,x) = Tin, x ∈ Γin,

λ
∂T

∂nΓ
= 0, x ∈ Γout,

T (t,x) = Twall, x ∈ Γwall,

(10)
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 7

with Tin = 301.15 [K] and Twall = 291.15 [K]. Hence, the suspension is cooled at the wall. As

initial condition, a fully developed temperature field, based on the solution of a steady-state

equation without the coupling terms to the PSD, was chosen.

Last, the behaviour of the PSD has to be modelled. Currently, only a model is available

which is based on the idealisation that the particles are of spherical shape, such that they can

be prescribed completely by their diameter. In practice, the particles are rather needle-shaped.

With this idealisation, the equation for the PSD is given by

∂f

∂t
+G(c, T )

∂f

∂L
+ u · ∇f = A+ +A−, (11)

where A+ is the source of the aggregation model and A− is its sink. For modelling the

aggregation, the volume of the urea particles is considered. It is assumed that the volume

is proportional to the cube of the diameter V = kV L
3, with kV > 0. This means, all particles

are assumed to be of the same shape, e.g., balls or cubes. Then, the PSD with respect to the

volume is given by

fV (V ) = fV (kV L
3) =

f(L)
kV

1
3L2

[
1

m6

]
. (12)

The source term describes the amount of particles of volume V which are created by the

aggregation of two particles with volume V ′ and V − V ′, V ′ ∈ (0, V ). This is given by

A+,V =
1
2

∫ V

0

κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′. (13)

The factor 1/2 arises since there are two realisations of this event: the first particle has volume

V ′, the second has volume V − V ′, and vice versa. The sink term describes the amount of

particles of volume V that vanish because they are consumed by aggregations with other

particles of volume V ′ ∈ (0, Vmax)

A−,V = −
∫ Vmax

0

κagg(V, V ′)fV (V )fV (V ′) dV ′ = −fV (V )
∫ Vmax

0

κagg(V, V ′)fV (V ′) dV ′. (14)

The sum of A+,V and A−,V gives the change of particles of volume V due to the aggregation.

The change with respect to the diameter is then obtained by

A+ +A− = 3kV (A+,V +A−,V ) L2,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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8 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

compare (12). The aggregation kernel is the product of two factors

κagg(V, V ′) = pcol(V, V ′)peff(V, V ′)
[
m3

s

]
.

The first factor gives the probability of the collision of particles with volume V and V ′. The

efficiency of the collisions, i.e. the amount of collisions which actually lead to aggregations, is

described by the second factor. Due to the lack of models, this factor is chosen to be constant.

This constant can be included into scaling factors for the individual terms of the following

kernel, see [17, 18],

κagg(V, V ′) = Cbr
2kBT

3µ

(
3
√
V + 3

√
V ′

) (
1

3
√
V

+
1

3
√
V ′

)
+
Csh

kV

√
2∇u : ∇u

(
3
√
V + 3

√
V ′

)3
[
m3

s

]
, (15)

where kB = 1, 3806504 10−23 [J/K] is the Boltzmann constant and Cbr, Csh are constants that

have to be calibrated on the basis of the experimental data. The first term in (15) is Brownian-

motion-generated. It is important for small particles since in this case the last factor becomes

large. The second term is shear-induced [19] and it becomes important if both particles are

large.

The initial condition is given by

f(0,x, L) = 0 in Ω× (Lmin, Lmax),

i.e. there are no particles in the flow domain. Boundary conditions are necessary at the closure

of the inflow boundaries

f(t,x, L) =


fin(t,x, L), x ∈ Γin

Bnuc

G(c, T )
, at L = Lmin, if G(c, T ) > 0.

The PSD at Γin is given by experimental data, see Section 4.

Numerical simulations are based on dimensionless equations. For their derivation, the

following reference quantities were used: a reference velocity u∞ [m/s], a reference length scale

l∞ [m], a reference concentration c∞ [mol/m3], a reference temperature T∞ [K], a reference

value for the PSD f∞ [1/m4] and a reference diameter of the particles L∞ [m]. The reference

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 9

pressure was defined by p∞ = ρu2
∞ [Pa] and the reference time by t∞ = l∞/u∞ [s]. The

derivation of the dimensionless equations with these reference values proceeds in a standard

way.

3. THE NUMERICAL METHODS

A schematic sketch of the couplings in the considered population balance system is presented

in Fig. 1. All spatial discretisation were performed on a hexahedral grid. The flow field, the

initial temperature distribution and the initial concentration were computed in a preprocessing

step.

Figure 1. Couplings of the equations in the population balance system for the urea synthesis.

The computation of the flow field requires only a discretisation in space. For this purpose,

the inf-sup stable Q2/P
disc
1 finite element was used. This finite element is a popular choice [20]

as it combines a high accuracy and the possibility of solving the arising saddle point problems

efficiently [21, 22].

The equations for concentration, temperature and PSD form a coupled system. This was

solved iteratively, where a step of the iteration started with solving the equation for the

temperature, followed by solving the equation for the concentration and finished with the

equation for the PSD. Different discretisations were used for the equations defined on the three-

dimensional domain Ω (concentration, temperature) and the equation for the PSD, which is

given on a four-dimensional domain.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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10 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

The temperature and the concentration are governed by convection-dominated equations.

These equations were discretised in time with the Crank–Nicolson scheme. In space, a stabilised

finite element method, based on the Q1 finite element, was applied. As stabilisation, the linear

FEM-FCT scheme was used [12]. This scheme has been proven to be among the best performing

stabilised finite element methods for time-dependent convection-dominated scalar equations

in [23, 24]. In particular, it does not lead to under- and overshoots of the computed solutions.

Equation (11) for the PSD is a linear convection-dominated integro partial differential

equation that is defined for each discrete time in a four-dimensional domain. In [10], several

schemes were explored for solving this kind of equation. It was found that for laminar flow

fields, simple and inexpensive schemes give similar results for quantities of interest compared

with more accurate and expensive schemes. In particular, finite element schemes are rather

expensive because of the costs for assembling the matrices (the number of quadrature points

scales exponentially with the dimension). Based on our experience, a forward Euler upwind

finite difference method (FWE-FDM) was applied for the discretisation of (11).

In the discretisation of the individual equations of the coupled system, always the latest

values of the other unknowns were used to evaluate the coupling terms. The iteration for

solving the coupled system was stopped if the sum of the Euclidian norms of the residual

vectors for concentration and temperature was below a prescribed tolerance.

Much more small particles were contained in the fluid than large particles. Therefore, it is

natural to use a grid for the PSD, with respect to the volume of the particles, that is refined

towards the smallest particles. For the algorithm, which is used for evaluating the aggregation

integrals, it is essential that this local refinement is not arbitrary but that the locally refined

grid can be decomposed into uniform grids at each level as it is illustrated in Fig. 2. The ansatz

space S for the PSD was chosen to consist of piecewise linear functions.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 11

Vmin Vmax

l = 0

l = 1

l = 2

l = 3

Figure 2. Decomposition of the locally refined grid for the PSD.

Note that both terms in the considered aggregation kernel have separable structure, i.e. the

aggregation kernel can be written in the form

κagg(V, V ′) =
k∑

i=1

ai(V )bi(V ′).

Then, the integral term A(V ) becomes

A(V ) = A+(V ) +A−(V ) =

=
1
2

∫ V

0

κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′ − fV (V )
∫ ∞

0

κagg(V, V ′)fV (V ′) dV ′

=
k∑

i=1

[
1
2

∫ V

0

ai(V − V ′)bi(V ′)fV (V − V ′)fV (V ′)dV ′

−fV (V )ai(V )
∫ ∞

0

bi(V ′)fV (V ′) dV ′
]
.

The evaluation of the sink term is not difficult since only one-dimensional integrals have

to be computed. The source term in this formulation is the sum of convolutions ϕi ∗ ψi,

where ϕi = aif and ψi = bif . The functions ai(V ) and bi(V ) were approximated by piecewise

constants on the same grid as fV (V ). Legendre polynomials were used as an orthonormal

basis of S. Thanks to some known facts about Legendre polynomials, the convolution can be

computed with the complexity O(n log n), where n is the number of grid points. In essence, it

turns out that some discrete convolutions have to be computed, which can be easily performed

using the fast Fourier transform (FFT ). For details of the rather involved algorithm, the

reader is referred to [13, 14, 15].

The exact convolution ωexact =
∑k

i=1 ϕi ∗ ψi does not belong to the ansatz space S. In the

simulations, the L2 projection ωcomp of ωexact into the ansatz space was used. An issue in using

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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12 W. HACKBUSCH, V. JOHN, A. KHACHATRYAN, C. SUCIU

an approximation of ωexact might be mass conservation. However, since ωexact − ωcomp is L2

orthogonal to all piecewise linear functions, one obtains for all intervals [Vi, Vi+1]

massi(ωexact) =
∫ Vi+1

Vi

V ′ωexact(V ′) dV ′ =
∫ Vi+1

Vi

V ′ωcomp(V ′) dV ′ = massi(ωcomp),

i.e. the mass (volume) is locally preserved. The only change in total mass that might occur

comes from the fact that the support of the convolution is larger than the support of the

convolved functions. In the case of aggregation, only non-negative contributions will be

neglected by not considering the complete support of the convolution such that the mass

will always decrease. This might be crucial for long time simulations. To avoid the decrease of

mass, a correction to the aggregation term is computed as follows

A(V ) := A(V )−mass(A(V ))
2

V 2
max − V 2

min

,

where Vmin and Vmax are the smallest and largest volume of the particles, respectively. Then,

although the local mass conservation is violated, the total mass of the computed aggregation

term is zero, which is in accordance with the modelling of this term.

A different correction would be the L2 projection of A(V ) into the space of mass-conserved

functions {B(V ) :
∫ Vmax

Vmin
V ′B(V ′) dV ′ = 0}, which has the form

A(V ) := A(V )−mass(A(V ))
3V

V 3
max − V 3

min

.

Due to the factor V in the correction part, mainly the values A(V ) for large volumes will be

affected. For the aggregation term, these values will increase to compensate the loss of mass

due to cutting the support of the convolution. We could observe that this might result in

unnaturally large values for the aggregation term and then for the PSD, in the last interval for

the internal coordinate. The same happened with the strategy proposed in [14], which applies

a correction only in the last interval. Hence, we do not recommend these approaches.
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SIMULATION OF AN AGGREGATION-DRIVEN POPULATION BALANCE SYSTEM 13

4. THE EXPERIMENTAL DATA AND THEIR INCORPORATION INTO THE

SIMULATIONS

The experiments which will be considered are described in [11]. Data for space-time-averaged

normalised volume fractions are provided, which were obtained by measurements using a

microscope with a flow-through cell.

In the experiments, the flow rate at the inlet Vr [ml/min] = Vr/60 [cm3/s] was prescribed.

This data has to be matched by the flow rate of the used boundary condition at the inlet (2)

Uin

∫
Γin

(Ψ(ξ, η), 0, 0)T dξdη

[
cm3

s

]
.

It follows

Uin =
Vr

60
∫
Γin

(Ψ(ξ, η), 0, 0)T dξdη
,

where the integral in the nominator can be approximated by numerical quadrature.

The boundary conditions for the temperature are provided from the experiments as given

in (10). Also the inlet condition of the concentration is controlled as given in (6).

Concerning the inlet condition of the PSD, particles were injected into the channel only in

the time interval [0, tinj] s with tinj = 5 s. From the experiments, a space-time-averaged inlet

condition is provided, such that a boundary condition of the form

fin(t,x, L) =


finj(L) for t ∈ [0, tinj] s, x ∈ Γin,

0 else,

can be applied. The particles were contained in a solution with volume Vinj [m3], which was

injected into the domain in [0, tinj], i.e.

Vinj =
∫ tinj

0

Vr dt =
tinjVr

60 · 106
[m3].

It follows that the total number of particles which were injected is given by∫
Vinj

∫ Lmax

Lmin

finj(L) dL dx = Vinj

∫ Lmax

Lmin

finj(L) dL =
∫ Lmax

Lmin

tinjVr

6 · 107
finj(L) dL. (16)

The experiments provide the distribution of the number of particles per diameter

fL,seed(L) [1/m] in Vinj. This number was identical in all experiments, see Fig. 3 for a
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presentation of this curve. Integration of fL,seed(L) gives the total number of particles, i.e., to

obtain the same total number of particles as given in (16)

fL,seed(L) =
tinjVr

6 · 107
finj(L) =⇒ finj(L) =

6 · 107

tinjVr
fL,seed(L) L ∈ [Lmin, Lmas],

should hold. This expression gives the required value for the boundary condition of the PSD

at the inlet of the domain.

The experiments provide space-time-averaged evaluations of the volume fraction of the PSD.

Let x ∈ Ω, then the volume fraction is defined by

q3(t,x, L) =
L3f(t,x, L)∫ Lmax

Lmin
L3f(t,x, L) dL

.

The normalised volume fraction of the inlet condition for the PSD is given in Fig. 3. Similarly

derived profiles are provided at the outlet of the experimental domain (x = 200 cm) for different

flow rates. These profiles will be used in the comparison with the numerical results.

Figure 3. fL,seed(L) at the inlet (left) and the normalised volume fraction of the PSD at the inlet

(right).

5. NUMERICAL STUDIES

5.1. The general setup

Experimental data were available for two setups differing in the flow rate at the inlet. Both

setups will be considered in the numerical studies. An important goal was the calibration of
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the unknown model parameters in the aggregation kernel (15) in such a way that a good

agreement to the experimental data was obtained. This data consists of a space-time-averaged

normalised volume fraction at the outlet. A second important aspect of the numerical studies

was the investigation of the PSD at different points at the outlet. It will be shown that, e.g.,

the PSD in the centre of the channel possesses a considerably different form compared with

the PSDs in points which are closer to the walls.

In the numerical simulations, the following reference values were used

l∞ = 0.01 m, u∞ = 0.01
m
s
, T∞ = 1 K, c∞ = 1000

mol
m3

,

L∞ = 5 · 10−3 m, f∞ = 1013 1
m4

, L̃min = 2.5 10−6 m, L̃max = 5 · 10−3 m.

The flow domain is very long compared with its thickness and there is a preferred direction

of the flow. This enables the use of an a priori adapted grid with anisotropic grid cells, see

Fig. 4. In this figure, the y- and z–coordinates are scaled for a better presentation. The aspect

ratio (ratio of largest edge and smallest edge) of the mesh cells is small at the inlet to resolve

the recirculation zone. It becomes larger towards the outlet. At the end of the flow domain,

the mesh cells have an aspect ratio of 30.

Figure 4. The computational grid, flow domain not to scale (scaled up by factor 40 in y- and z-

direction).
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TheQ2/Q
disc
1 discretisation of the stationary Navier–Stokes equations (1) – (4) led to 496 875

velocity degrees of freedom (d.o.f.) and to 76 032 pressure d.o.f. on the grid presented in Fig. 4.

As mentioned already above, for both flow rates from the experiments, the Navier–Stokes

equations have to be solved only once in a preprocessing step.

The number of d.o.f. for the concentration of dissolved urea and for the temperature on the

grid from Fig. 4 was 22 477.

Especially small particles were injected into the fluid, see Fig. 3. For this reason, the grid

for the internal coordinate is locally refined for small diameters. As explained in Section 3,

the computation of the aggregation integrals is based on a grid with respect to the mass of

the particles which has to possess certain properties. This issue was taken into account in the

construction of the grid with respect to the diameter, see Fig. 5 for both grids. The grid with

respect to the mass is piecewise equidistant. It possesses 94 nodes which leads to 2 112 838

d.o.f. for the PSD.

Figure 5. The grid with respect to the internal coordinate, diameter (top) and mass (bottom).

As noted in Section 2, the initial temperature and the initial concentration were computed

in a preprocessing step. The time step was set to be ∆t = 0.1 s. Because of the somewhat

explosive start at the beginning of the simulations, a smaller length of the time step was

applied in [0, 10] s. All simulations were performed with the code MooNMD [25].

It was checked that with smaller time steps the results practically do not change. For the

sake of brevity, these studies are not included here.
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5.2. Experiment with flow rate Ṽr = 30 ml/min

First, an experiment was studied that was conducted with a flow rate of Ṽr = 30 ml/min. The

Reynolds number based on the integral mean velocity at the inlet U = 4.5 cm/s, the diameter

of the channel L = 1 cm and the kinematic viscosity of ethanol ν = µ/ρ = 1.3612 10−6 m2/s

is given by Re ≈ 331. The stationary flow field at the inlet of the channel is shown in Fig. 6.

Figure 6. Experiment with flow rate Ṽr = 30 ml/min; cut of the stationary velocity field at the inlet

of the channel.

Based on the residence time of the particles, the data at the outlet of the experimental

domain at x = 200 cm were studied in the interval [200, 300] s. For each grid point at the outlet,

the PSD was added and then a time-average was computed. After this, a spatial averaging was

calculated and from this the normalised volume fraction for these space-time-averaged values

was derived. This normalised volume fraction was utilised for the calibration of the unknown

parameters Cbr and Csh in the aggregation kernel (15). Results for different values of the

parameters are presented in Fig. 7. Comparing the experimental data at the outlet with those

at the inlet, Fig. 3, one can observe that the curve of the normalised volume fraction moves

to the right. The increase of the number of larger particles due to aggregation and growth is

clearly visible. A rather good agreement of the experimental and the numerical data could be

obtained with Cbr ' 2 · 105 and Csh ' 0.01.

For these parameters, the PSD at the outlet was studied in more detail. Fig. 8 presents the

time-averaged PSD which left the domain at different nodes in the outlet plane and Fig. 9

shows the corresponding normalised volume fractions. Nodes on a line between the wall and

the centre of the channel which is parallel to the plane z = 0 and nodes on a line between a
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Figure 7. Flow rate Ṽr = 30 ml/min; space-time-averaged normalised volume fraction at the outlet for

different parameters Cbr and Csh.

corner of the outlet and the centre of the channel were considered. First, it can be seen that

the most particles could be found in the centre of the channel, i.e. the bulk of the particles

followed the flow very well. The closer the node is to the wall, the less particles were observed.

In particular, the number of particles in the nodes with a distance less or equal than 1/6 cm

to one of the walls was negligible (green and cyan curves).

Figure 8. Flow rate Ṽr = 30 ml/min; time-averaged PSD at the outlet for different nodes, Cbr = 2 · 105

and Csh = 0.01.

The distribution of the particles with respect to the diameter was very different for different

nodes. In the centre of the channel, most of the small particles were observed but only very

few large particles. The majority of the large particles could be found in regions that are

1/4− 1/3 cm away from the centre of the channel. This different behaviour can be seen also

well in the normalised volume fractions in Fig. 9. The results for the individual nodes illustrate
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Figure 9. Flow rate Ṽr = 30 ml/min; time-averaged normalised volume fraction at the outlet for

different nodes, Cbr = 2 · 105 and Csh = 0.01.

in a good way the effect of the different parts of the aggregation kernel (15). In the centre of

the channel, the shear of the flow field was comparatively small. For this reason, the second

term in (15), which is of importance for the aggregation of large particles, did not possess much

impact. Away from the centre, the shear was larger. Hence, the second term of (15) became

dominant in the kernel and larger particles were generated by the aggregation.

5.3. Experiment with flow rate Ṽr = 90 ml/min

A second experiment was conducted with the flow rate Ṽr = 90 ml/min. Also this flow rate

led to a stationary flow field, see Fig. 10, with Re ≈ 992 based on the same reference values

as for the first example.

Since the flow is considerably faster for Ṽr = 90 ml/min than in the first experiment, the

residence time of the particles is shorter. In particular, there will be less time to build large

particles by aggregation and growth compared with the first experiment.

Numerical results for space-time-averaged normalised volume fractions at the outlet are

presented in Fig. 11. Time-averaging of the PSD was performed in [60− 110] s. Again,

it was possible to calibrate the parameters in the aggregation kernel in such a way that

a good agreement with the experimental data could be obtained. Appropriate parameters

are Cbr ' 3 · 105 and Csh ' 0.004. These parameters differ somewhat from the parameters

obtained for the first example, but they are of the same order of magnitude.
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Figure 10. Experiment with flow rate Ṽr = 90 ml/min; cut of the stationary velocity field at the inlet

of the channel.

Figure 11. Flow rate Ṽr = 90 ml/min; space-time-averaged normalised volume fraction at the outlet

for different parameters Cbr and Csh.

More detailed studies of the PSD at the outlet are presented in Figs. 12 and 13. The principal

behaviour is the same as for the first example. Most of the small particles but almost no large

particles can be observed in the centre of the channel. The large particles arrive away from

the centre. In the points which are too close to the walls, the amount of particles is negligible.

In contrast to the first example, the amount of very large particles is much smaller, compare

the scalings. This is due to the shorter residence time.

5.4. Discussion of the results and further aspects of the simulations

For both experimental setups, it was possible to identify model parameters Cbr and Csh

such that a very good agreement with the experimental data (space-time-averaged normalised

volume fraction at the outlet) could be obtained. The optimal values for Cbr and Csh differ

somewhat but they are of the same order of magnitude. We think that these differences are
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Figure 12. Flow rate Ṽr = 90 ml/min; time-averaged PSD at the outlet for different nodes, Cbr =

3 · 105 and Csh = 0.004.

Figure 13. Flow rate Ṽr = 90 ml/min; time-averaged normalised volume fraction at the outlet for

different nodes, Cbr = 3 · 105 and Csh = 0.004.

caused by the following reasons. First, as already discussed in Section 2, the idealisation of

spherical particles was used in modelling the equation for the PSD. Second, the observed sizes

of the diameters in the measurements were not diameters of three-dimensional particles but

diameters of projections of real particles into a plane. Both issues led of course to some errors

in the measurements. The calibration of Cbr and Csh could compensate these errors quite well

for each experiment. But this compensation led to somewhat different values for Cbr and Csh.

And last, (15) is only a model with an unknown modelling error.

The impact of both parts of the aggregation kernel (15) could be observed well in detailed

studies of the PSD in the nodes at the outlet. The numerical results correspond completely to

the expectations.
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The simulations were performed on HP BL2x220c computers with 2933 MHz Xeon

processors. Simulating one time step took around 45 – 60 seconds, including the calculation of

all data for evaluating the numerical simulations. The most expensive part was the computation

of the aggregation which needed around 75 % of this time.

6. SUMMARY AND OUTLOOK

This paper presented a numerical method for solving a population balance system consisting

of equations defined in a three-dimensional domain (Navier–Stokes equations, convection-

diffusion equations for mass and energy balances) and an equation defined in a four-dimensional

domain (PSD). The considered process of urea synthesis is aggregation-dominated. To our best

knowledge, the presented method is among the few approaches for solving a coupled population

balance system with aggregation which is defined in domains with three and four dimensions.

Two experimental setups were considered. For both, it was possible with the proposed

method to calibrate unknown model parameters in the aggregation kernel in such a way that

good agreements to available experimental data were achieved. The obtained values of the

parameters for both experiments are of the same order of magnitude. Several possible reasons

for the observed differences were pointed out: the idealised assumption of spherical particles in

the modelling, the observations of projections of particles in the experiments and the modelling

error of the kernel itself.

The crucial next step will be the extension of the model to needle-shaped particles as they are

occur in practice. This is a challenge for modelling, measurements and numerical simulations

as well. To describe needle-shaped particles, two internal coordinates are necessary, e.g., the

length and the diameter of the cross-section of the particles. The equation for the corresponding

PSD will be defined in a five-dimensional domain.

Considering the same flow domain as in the present paper, the five-dimensional domain

will be a tensor product of intervals. Then, the extension of the forward Euler upwind finite

difference method for discretising the convective part of the PSD equation is straightforward.
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However, in future it is intended to use more accurate schemes for this part, like ENO finite

difference methods, see [26] for promising studies of such methods. Another important task

will be the extension of the algorithm for computing the aggregation integrals. The simulation

of coupled population balance systems with two internal coordinates, including aggregation,

without applying any model simplification to obtain moment-based methods, would provide

new contributions to the understanding of population balanced processes.
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