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Abstract 
In this paper we propose and analyze an efficient discretization scheme for 

the boundary reduction of the biharmonic Dirichlet problem on convex polygo-
nal domains. First we study mapping properties of biharmonic Poincare-Steklov 
operators. We show that the biharmonic Dirichlet problem can be reduced to the 
solution of a harmonic Dirichlet problem and of an equation with the restriction 
of the Poincare..Steklov operator. We then propose a mixed FE discretization 
(by linear elements) of this equation which admits efficient preconditioning and 
matrix compression resulting in the complexity loge-10(Nlogq N). Here N is 
the number of degrees of freedom on the underlying boundary, e > O is an error 
reduction factor, q = 2 or q = 3 for rectangular or polygonal boundaries, respec-
tively. As a consequence an asymptotically optimal iterative interface solver for 
boundary reductions of the biharmonic Dirichlet problem on convex polygonal 
domains is derived. A numerical example confirms the theory. 

1 Introduction 

In this paper we derive an efficient discretization method for solving the Dirichlet 
problem of the biharmonic equation 

.6. 2v = 0 in n ' 
vlr =</>Ir , 8nvlr = 8n<f>lr, 

(1.1) 

where n is a convex polygonal domain with boundary rand¢ is a sufficiently smooth 
function on a neighbourhood of r. We describe a fast interface solver with the com-
plexity of the order log e-1o(Nlogq N). Here N is the number of degrees of freedom 
on the underlying boundary, e > 0 is an error reduction factor, q = 2 in the case of a 
rectangle and q = 3 for a convex polygonal domain. The approach is based on asymp-
totically optimal algorithms for fast computations with the discrete Poincare-Steklov 
operators for the bi-Laplacian on convex polygons. 

There exists a large bibliography on approximation methods for biharmonic prob-
lems, here we mention only the papers [1, 2, 3, 5, 16, 18], where fast FD and FE 
domain solvers have been developed. Recently fast numerical algorithms for second 

.order equations based on nonoverlapping domain decomposition (DD) techniques and 
matrix compression for discrete harmonic Poincare-Steklov operators (using truncation 
by frequency cutting)·were developed in [13, 14]. Here we extend this approach to the 
case of the biharmonic equation. 

The paper is organized as follows: In Sections 2 and 3 we state some results on 
boundary integral and Poincare-Steklov operators for (1.1). It turns out that (1.1) is 
equivalent to the determination of .6.ulr, where u solves 

(1.2) 

and w is the harmonic function with the boundary value wlr =¢Ir. In Section 4 we see 
that for any biharmonic function u E H2(11)nHJ(11) the mapping S;.} : 8nulr -t .6.ulr 
(i.e. the restriction of the Poincare-Steklov operator to certain subspace) is a symmetric 
and positive definite operator in appropriate trace spaces and that the problem (1.2) 
is equivalent to the operator equation 
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Using a mixed FE formulation with piecewise linear functions in Section 5 we construct 
discretizations S 12,h of the operator S12 , which remain symmetric and positive definite. 
We show, that the approximate solutions converge with the order h112 j log hi to the 
exact one, where h = O(N-1 ). In order to solve the discretized equations iteratively we 
construct efficient spectrally equivalent preconditioners for the discrete operators S12,h. 

In Section 6 we adapt the idea of matrix compression for discrete harmonic Poincare-
Steklov operators to the efficient compression of the factorized stiffness matrix of S12,h 

related to rectangular boundaries. After that the extension to polygonal geometries is 
suggested based on successive inversion of harmonic interface operators. In this way 
the advanced tools of DD methods developed for second order elliptic equations may 
be directly adapted to the biharmonic problems as well. We conclude in Section 7 with 
some results of numerical experiments which confirm the theory. 

2 Boundary integral equations for the bi-Laplacian 

In this section we recall some results from [19] on boundary integral operators for 
the biharmonic Dirichlet problem on piecewise smooth boundaries. 

Let n a bounded polygonal domain in the plane (xi, x 2 ) with m corner points and 
m 

the boundary r = u ri' where ri are straight lines, and by en= JR.2\n we denote the 
i=l . 

exterior domain. The projections of the outward normal n onto the x1- and x2-axis 
are denoted by n 1 and n 2 , respectively. The differentiation with respect ton is denoted 
by Bn. For the sequel functions on r are identified with periodic functions depending 
on arc length s, the derivative 88 u is denoted by u1 

• 

We introduce the trace space 

equipped with the canonical norm and define the generalized trace 

Lemma 2.1 ([12]). The linear mapping 

is continuous and has a continuous right inverse 

The trace 1u E V(r) will be called the Dirichlet datum of u E Hz2oc(1R2 ) on r. In 
the following we denote by (V(r))' the dual space of V(r) with respect to the duality 
form 

(2.1) 
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where ( ·, · )r denotes the extension of the usual L2-scalar product on r. To define the 
Neumann datum of certain H2-functions we introduce the space 

H 2(n, Ll2) = {u E H2(n) : Ll2u E L2(n)} 
equipped with the graph norm. 

Lemma 2.2 For any u E H 2 (0, Ll2 ) the functional 

<Su: 'l/;-+ [8u,,,P] := j(flufl(T-,,p)-1-,,Pfl2u)dx 
n 

belongs to (V(r))' and coincides, if u is sufficiently smooth, with the functional 

5u= (~::u) := (a~~~~r). 
The linear operator 8: H 2 (n, !l2 ) -+ (V(r))' is continuous. 

If we define the continuous bilinear form on H 2(n) x H 2 (0,) 

an( u, v) := j flu flvdx , 
n 

then the first Green formula reads as 

an( u, v) - j v fl 2udx. = [<Su, 1v] = (83u, 1ov)r + (82u, 11v)r 
n 

for all u E H 2(n, fl2), v E H 2(n). 
Let us consider the variational form of the Dirichlet problem 

fl 2u = 0 in n' 1u = ,,P E V(r) , 
which can be written as 

Find u E H 2 ( n) with 1u = 'lj; such that 

an(u, z) = 0 ·for all z E H5(f2) := {u E H2 (n): 1u = O}. 

(2.2) 

(2.3) 

(2.4) 

Since an(u,v) is bounded and positive definite on H~(O) (see [8]) Lemma 2.1 implies 
the unique solvability of (2.3) in the weak sense. 

Lemma 2.3 The Dirichlet problem (2.3) has for any 'lj; E V(r) a unique weak solution 
u = T'lj; E H2 (0). The solution operator T: V(r)-+ H2 (0) is continuous. 

We now derive integral equations for the solution of the Dirichlet problem (2.3). The 
boundary integral operators for the bi-Laplacian fl2 are based on the fundamental 
solution 

1 
G ( x, y) : :-- 871" Ix - y I 2 log Ix - y I , x, y E 1R 2 

, 

satisfying 

Ll!G(x,y) = Ll!G(x,y) = c5(x -y). 

For x E 1R2\r the biharmonic single and double layer potentials are defined as 

X:ox(x) := [x,1G(x, ·)], 
7C1,,P(x) := [8G(x, ·),,,P], 

3 
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Lemma 2.4 ([19]) The mappings )(,0 : (V(r))' -+ H 2 (fl), )(,1 : V(r) -+ H 2 (fl) are 
continuous. If u E H 2 (fl) solves the biharmonic equation D.. 2u = 0 then for all x E fl 
there holds 

u(x) = K0 8u(x)-Knu(x). (2.5) 

For x E (V(r) )' and 'if; E V(r) we introduce the boundary integral operators 

Ax:= 1Kox , C'lj; := -1(K11/Jln) . 

Lemma 2.5 ((19]) The mappings A : (V(r))' -+ V(r) and C : V(r) -+ V(r) are 
continuous, A is symmetric and strongly elliptic, C 2 = C and CA= AC'. Furthermore, 
there exists a constant c > 0 such that for any x E l (r)l. the inequality 

[x, Ax] ~ c I lxl l(vcrn' 
holds, where l (r).L C (V(r) )' denotes the polar set of the space of traces of linear 
functions l (r) := {1(ao + aix1 + a2x2) : ao, ai, a2 E JR}. 

Note that the adjoint operators are taken with respect to the duality (2.1). 
Letting in (2.5) the point x E fl converge to the boundary r we obtain that any 

biharmonic function u E H 2 (fl) satisfies the relation 

A8u + C1u = 1u . 

Hence, if we consider the Dirichlet problem (2.3) then for given 1u ='if; the unknown 
x = 8u has to solve the equation 

Ax= (I -C)'if;. (2.6) 

Its unique solvability is subjected to the assumption 

Al: The exterior homogeneous Dirichlet problem 

D.. 2u = 0 in en ' . 1u = 0 ' 

has no nontrivial solution satisfying the "radiation condition". 

-Here the "radiation condition" means that u can be represented in the form u = Kox 
for suitable x E (V(r) )', which is equivalent to certain asymptotic behaviour at infinity 
(see [7], [~9]). 

Recently Costabel and Dauge proved in [9] that the assumption Al is satisfied for 
the scaled curves 

pI' = {px E JR.2, x E I'} , p > 0 

where r is a arbitrary general curve, if and only p fl. Sr and the set Sr of exceptional 
values has between 1 and 4 elements. 

Theorem 2.1 Suppose Al and let 'l/; E V(I') be given. Then the equation (2.6) has 
a unique solution x E (V(I'))' and the variational solution u E H 2(fl) of the Dirichlet 
problem (2.4) can be obtained from the formula 
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3 Biharmonic Poincare-Steklov operators 
Since A is a 2 x 2 matrix of integral operators the standard Galer kin m~thod applied 

to the equation (2.6) leads to a linear.algebraic system with a rather large and in general 
dense matrix. Moreover, the integral operator with the kernel function G( x, y) is of 
order 3 and thus the corresponding stiffness matrix possesses the condition number 
O(h-3 ). In absence of appropriate preconditioners we expect the complexity O(N3 ) 

for BEM-Galerkin method provided by direct solvers. Therefore it is very reasonable to 
look for some alternative efficient discretization methods to solve (2.3) or equivalently 
(2.6). 

To this end we start with the analysis of the biharmonic Poincare-Steklov operator 7 
which maps the Dirichlet data /U of a biharmonic function u E H2 (Q) to its Neumann 
data 8u. Due to Lemma 2.3 this operator can be defined as 

71/; := 8(T'lf;), 'lj; E V(r), 

and Lemma 2.2 implies that 7: V(r) -t (V(r))' is continuous. From Theorem 2.1 we 
see that under the assumption Al we have the equality 

(3.1) 

The mapping properties of the operator 7 can be derived using an appropriate splitting 
of the trace space. Since 

1 1 
flyG(x,y) = fl:z:G(x,y) = -2 log Ix -yl + -2 . 'Tr 'Tr 

for 'lj; = (:~) E V(r) we get from (2.1) the representation 

(3.2) 

showing that C is the well-known Calderon projection for the Laplacian on n. Hence, 
the conjugate projection I - C maps onto the traces of functions u harmonic on CQ 
which in view of (3.2) satisfy the condition 

u(x) = a(log lxl + 1) + O(lxl-1
) for some a E IR as lxl -too. (3.3) 

This leads together with Lemma 2.5 to the following assertions. 

Lemma 3.1 [19] The trace space V(r) is the direct sum V(r) =Vi + V2 of the closed 
subspaces 

Vi := im(J - C) = {1u : u E Hl:x:(CQ), flu= 0, u satisfies (3.3)}, 

V2 := im C = { /U : u E H 2 ( Q) , flu = 0} . 

The mapping A : 1'2 l. -t Vi is bijective. 

Thus the relation (3.1) holds even if the assumption Al is not valid. 
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Lemma 3.2 [19] The biharmonic Poincare-Steklov operator 7 is continuous, symmet-
ric and ker 7 = V2. The restriction to Vi is positive definite 

[T'lj;,'lj;] ~ cll1/Jll}cr), c > 0, V'lj; E Vi. 

r has a symmetric and continuous pseudoinverse s, i.e. rsr = r, which coincides 
with the restriction of A to V2 .L, 

S =A: V2.t-+ Vi c V(r) , 

and is positive definite on V2 .L, 

Let us denote by 1-£2 ( n) the closed subspace of H2 (fl) containing the harmonic 
functions on fl. Note that V2=1(1-£2 (0)). From Lemma 3.1 we derive 

Corollary 3.1 An element x E (V(r))' coincides with the Neumann datum 8u of a 
biharmonic function u E H 2 (fl) if and only if [x,1v] = 0 for any function v E 1-£2 (0). 

This result confirms the well-known fact that the Neumann problem 

8u = x E (V(r) )' 

is not solvable, in general. But it turns out that it makes sense.to consider Neumann-
type problems on certain subspaces of H 2 (0). Let WC H 2(fl) be some closed subspace 
and consider the problem: 

Given r = (~) E (V(r) )' find u E W such that for all z E W 

an(u,z) = [r,1z] = (r3,1oz)r + (r2,11z)r. 
(3.4) 

The bilinear form an( u;v) is positive definite on H~(n) for any domain n. In the 
following lemma we give some other subspaces of H 2(0) on which the bilinear form is 
positive definite if n is convex. 

Lemma 3.3 Suppose that the polygonal domain n is convex. Then the bilinear form 
an ( u, v) is Wi - elliptic where 

Wo := {u E H 2(n)/{l}: 11u = O}, 
W1 := H2 (n) n HJ(n) , 
W2 == H2 (n)/1-£2 (n) . 

Proof Let u E W1. Then u solves the equation 

b,.u = f inn, !oU = Q' 

(3.5) 
(3.6) 
(3.7) 

with f := b,.u E L2 (i1). The well-known regularity results for the solution of the 
Poisson equation in non-smooth convex domains imply 

(3.8) 
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which proves the assertion for (3.6). The same arguments apply also for (3.5). 
Suppose u E W2 and determine uo E W1 as the solution of 

/J.uo = /J.u m n, loUo = 0. 

Again we have 
lluollH2{n) :::; c ll!J.ulbcn) = can(u,u)1

/
2

• 

Since u1 = u0 - u E H2(!1) is harmonic we obtain 

Corollary 3.2 For any r E (V(r))' and i = 0, 1, 2 the variational problem (3.4) has a 
unique solution u E Wi. 

Let us introduce the spaces Zi :=I Wi, i = 0, 1. It is clear that the decomposition 
V(r) = Z1 + Z2 , which holds for a domain with smooth boundary r, is no longer true 
for polygonal domains. However, if the domain is convex then any 'ljJ E V(r) can be 
represented in the form · 

1/J = 1/Jo + 1/J1 + 1/J2 , 
where 1/Ji E Zi, i = 0, 1, and 1/J2 E V2 = 1(1-l2(f!)). 

For example, examining the proof of Lemma 3.3 we obtain the splitting 

given by u = u1 + w , where 

m n, 
m n, 

such that for 1/J = "'fU in (3.9) we have 1/Jo = 0, 1/J1 = "'{U1, 1/J2 = "'fW. 

(3.9) 

(3.10) 

Hence the Dirichlet problem (2.4) with 'ljJ = (:~) E V(r) can be reduced to the 
Dirichlet problems for the Laplace and the biharmonic equation inn 

"'{oW =<po , 

"'{oW = 0 , "'{1 U1 = <p1 - 8nw . 
(3.11) 

Another splitting of V(r) can be derived in the following way. Denote by U the 
solution of the Poisson equation 

D,.U = 1 m n, 10U = 0, 

set u = "Y-1/J and determine the constant c such that (t1u - ct1U, l)r = 0. Then 

with 

1/Jo = "'{Uo , where D,.uo = /J.u - c , "Y1 uo = 0 , 

1/J2 = "'{W, where /J.w = 0, 11w = "'{1U - ct1U. 
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Hence for convex n we get also the splitting 

V(r) = Z0 + span { --yU} + V2 . (3.12) 

Thus the Dirichlet problem (2.4) can be reduced to a Dirichlet problem for the bi-
harmonic equation with boundary data v0 E Z0 and simpler Neumann and Dirichlet 
problems for the Laplace and Poisson equation on n. 

At the end of this section we give a characterization of the spaces Zi which follows 
from Lemma 2.1 and is valid for any polygonal domain. As usual ulri E H 1l2(ri) 
means that the extension by zero of ulri to r belongs to H 1l2(r). 

Lemma 3.4 
m 

v E Zo if and only if -yov E Yo:= {u E H1(r)/{l} : u' E II H1l2(ri)}, 
i=l 

m 

v E Z1 if and only if 11 v E Yi := II H 1l 2(ri) . 
i=l 

Moreover, for v E Zi, i = 0, 1, the norms llvllv(r) and llfivllYi are equivalent. 

4 Poincare-Steklov operators on subspaces 

The approximation schemes corresponding to Dirichlet data from the subspaces Zi, 
i = 0, 1, admit some special efficient solvers which will be derived in Sections 5 and 6. 
Here we consider the restrictions Sal and S121 of the operator T to the ~ubspaces Z0 

and Z1. 
Let us consider the Dirichlet problem (2.4) with boundary data from Z0 or Z1 . For 

Vo= (O';) and v1 = (~) we introduce the mappings · 

Saa1 
: uo-+ 5aTvo, 

S:;:} : u1 -+ 82Tv1 , 

which can be described variationally as follows. Let Vi, i = 0, 1, be the weak solutions 
of (2.4) corresponding to the boundary values Vi E zi. The first Green formula yields 

. the equations 

and 

lFrom the Lemmas 2.1, 2.2, 3.3 and 3.4 we obtain the following assertion. 

Theorem 4.1 Let n be a convex domain. Then the operators 

Saa1 
: Yo-+ Y~ and 8121 

: Yi-+ Y; 

(4.1) 

(4.2) 

are both continuous, symmetric and positive definite (spd) with respect to the duality 
form(·, ·)r. 
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Remark 4.1 If u E W0 , l:!:,.2u = 0 and l:!:,.u E H 1(0) then 

SQ.}1ou := -11(1:!:,.u) . 

If u E W1, l:!:,.2u = 0 and l:!:,.u E H1l2+e(n), e > 0, then 

s;:}11u := 10(1:!:,.u) . 

By 803 : Y~ -7 Yo· and S12 : Y{ -7 Yi we denote the inverse of the operators S!-l 
and s031

, respectively, which are both spd. 

Proposition 4.1 For any r2 E Y{ the function u1 = S12r2 is given by u1 = 11u, where 
u E W1 solves the Neumann-type problem 

(4.3) 

For any T3 E Y~ the element uo = So3T3 E Yo is given by uo = 10u, where u E W0 solves 
the Neumann-type problem 

an(u,z) = (r3,1oz)r, V z E Wo. (4.4) 

Note that in the case of a smooth bpundary r the operators S031, S!21 and their 
inverses have been considered for example in [11], [17]. 
· In the previous section we have seen that the Dirichlet problem (2.4) can be reduced 
to simple problems for the Laplace and Poisson equation and to one of the operator 
equations 

So3T3 = uo, 
S12r2 = u1 , 

(4.5) 
(4.6) 

where the actions of the operators S03 and S12 are carried out by solving the problems 
according to Proposition 4.1. In the sequel we choose the equation ( 4.6). In the next 
section we will construct an efficient mixed FE approximation of the operator S12. 

Let us deduce some consequences of Theorem 4.1, Proposition 4.1 and Corollary 3.2. 
We consider the problem: 

Given r E Y{, find u E W1 = H 2 (fl) n HJ(n) such that 

an(u, z) = J l:!:,.u f),.zdx = (r, 11z)r, V z E W1 . 
n 

If we set <P := l:!:,,.u E L2 (fl) then the equation ( 4. 7) can be written as 

(4.7) 

- j "Vu· "\lzdx = j cpzdx, Vz E HJ(n), and 1ou = 0, (4.8) 
n n 

j ¢ l:!:,.zdx = (r, 11z)r , V z E H2(fl) n HJ(fl) . ( 4.9) 
n 

Since n is convex the solution u E HJ(fl) of ( 4.8) belongs also to H2 (fl), thus the system 
( 4.8), ( 4.9) is equivalent to ( 4. 7). On the other hand, equation ( 4.9) is a very week 
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formulation of the Dirichlet problem for the Laplace equation (cf. [10]). If r E H 1l2(r) 
then the solution <f; of ( 4.9) is the usual variational solution satisfying 

ro<P = r and j \l<f; · \lzdx = 0, 
n 

V z E HJ(i1). ( 4.10) 

Therefore the solution operator of (4.9) defined by A(r) = <f; is bounded from H 1l2(r) 
into H 1(11). By applying Lemmas 2.1 and 3.4 and density arguments this operator 
can be extended to a bounded mapping A : Y{ -+ L 2 ( n) . 

Using Proposition 4.1 and (4.9) we see that for r, w E Yi there holds 

(S12r,w)r = j A(r) A(w) dx, 
n 

whereas in the case w E H 112(r) Green's formula yields the representation 

(4.11) 

(S12r,w)r = j <f;w dx + j \Ju· \lw dx, where w E H1(11) with 1ow = w. (4.12) 
n n 

In particular, from (4.11) and Theorem 4.1 we obtain. that for any convex polygonal 
domain and any Dirichlet data r E Y{ there holds the e.quivalence of norms 

( 4.13) 

5 Mixed FE approximations of 812 

We now propose some alternative fast algorithms for solving the discrete counter-
parts of equation ( 4.6) corresponding to a mixed FE approximation of the underlying 
operator. Consider the boundary reduction of the Dirichlet problem for v1 E Z1 

f:: • .2u = 0 on n ' 'You= 0, 11u = u , (5.1) 

n is a convex polygonal domain, which is equivalent to the solution of the boundary 
equation 

m 

r = t52u E Yi = II n-1l2(ri) . (5.2) 
i=l 

In view of the decomposition (3.11) it is quite reasonable to make the following 
assumptions. Let the Dirichlet datum 1/J = (:~) E V(r) in (2.4) be the generalized trace 
of a sufficiently smooth function. Accordingly to (3.11) we have to solve equation (5.2) 
with O' = 'Pl -8nw' where the harmonic in n function w has the trace 'YoW = <po. Due 
to the convexity of i1 there holds w E H 2+e(i1) with e = (7r-a)/a > 0, a denotes the 

m 

largest interior angle at the corner points of n, such that in general O' E II H 1/2+e(ri) 
i=l 

and the solution of (5.1) u E H 2+e(n). But on the other hand, since the solution of 
(2.4) belongs to H 3+"'(i1) for someµ > 0 (see [6]) we obtain <f; = f::.u E H 1+"'(i1) and 
therefore the solution r = <52u = <Plr of (5.2) satisfies r E H 1/2+µ(r). Note that for a 

m 

rectangular domain n the boundary condition 'Yo'U = 0 implies even r E II H 1
/

2+"'(ri)· 
i=l 
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Let us consider the formal approximate solution of equation (5.2) by a Galerkin 
boundary element method. This means we have finite dimensional spaces sh· c Y{ of 
functions given on r and determine rh E Sh such that 

(5.3) 

Due to Theorem 4.1 the discrete systems (5.3) are uniquely solvable for any hand the 
quasioptimal estimate 

(5.4) 

holds. It is clear that this approximation method is only of theoretical interest. To 
derive a more practical method we use the fact that for the given u the solution of (5.1) 
satisfies ¢ = flu E H 1+'"'(0). Therefore (u, ¢) is a solution of the mixed formulation: 
find u E HJ(O), ¢ E H 1(0) satisfying the equations 

j Vu· Vzdx + j ¢zdx = j uroZ ds, V z E H1(0), 
n n r 

jv<P-yzdx - 0 ' Vz E HJ(O). 
(5.5) 

n 

Since any solution of this system satisfies 

j ¢2 dx = j U'Yo<f>ds , j1Vul 2 dx+ j ¢udx=O 
n r n n 

we get from ( 4.13) the inequalities 

hence ( u, flu) is the unique solution of (5.5). 
Now we introduce the simplest FE solution of (5.5). Let be given a family of regular 

triangulations Th of n of size h and spaces Xh c H 1 (0) of piecewise linear functions 
related to Th and denote Xh,r := Xhlr and Xoh := Xh n HJ(O). These spaces satisfy 

. the following approximation and inverse properties: 
For u E H 8 (0) , 1 ~ s ~ 2, there holds 

(5.6) 

There exists c > 0, independent of hand rh E Xh,r, such that 

(5.7) 

The mixed finite element ~pproximation (uh, ¢h) E Xoh x Xh of (5.1) is given as the 
unique solution of the system 

j 'Vuh · 'Vzhdx + j </>hzhdx 
n n 

j V</>h · '\Jzhdx 
n 

= j u 'YoZh ds , 
r 

= 0' 

11 
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Let us denote by A(Th) E xh the discrete harmonic extension of Th E Xh,r ton, i.e. 

')'oA( Th) =Th and J 'l ).(Th) . 'l Zh dx = 0 ' 
n 

and define the operator S12,h by 

(S12,hTh, wh)r = j ).(Th) wh dx + j 'luh · 'lwh dx , 
n n 

(5.9) 

(5.10) 

where Th' Wh E Xh,r, Wh E xh with ')'oWh = Wh' and Uh E Xoh solves the equation 

- j \/uh· \Jzhdx = j A(Th) zhdx, 
n n 

Then obviously the system (5.8) can be written as the equation 

(S12,hTh, wh)r = (a, wh)r , 't/ wh E Xh,r , 

providing the solution Th = ')'o</Jh E Xh,r· 

(5.11) 

(5.12) 

Note that the definition of S12,h admits two specific forms important for further 
developments. Choosing in (5.10) Wh = ).(wh) we have the equality 

(S12,hTh, wh)r = j ).(Th) ).(wh) dx . 
n 

(5.13) 

On the other hand, let us choose in ( 5.10) Wh E xh in such a way that Wh = 0 for any 
interior node of the triangulation Y h· Then we obtain 

(S12,hTh, wh)r = j ).(Th) wh dx + j \/uh · 'lwh dx , (5.14) 
rh rh 

where rh c n denotes the union of all elements of the triangulation y h bordering on r. 
We shall use (5.13) to study the mapping properties of the operator S12,h, while (5.14) 
is important for constructing a fast matrix times vector multiplication algorithm for 
the corresponding stiffness matrix. 

Let us denote by x~,r the dual space of Xh,r equipped with the norm II· llY1. 
Theorem 5.1 The operator S12,h: Xh,r --+ x~,r is (spd) and for any Th E Xh,r there 

2 • . 
holds (S12,hTh, Th)r x llThllYi'' i.e. 

C1 "Th"~' ~ (S12,hTh, Th}r ~ c2 llThll~1 ' (5.15) 
1 1 

with constants not depending on h. 

The proof follows immediately from (5.13) and 

Lemma 5.1 If the polygonal domain n is convex then there exist constants not de-
pending on h such that for any Th E Xh,r the estimate 

is valid. 
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Proof. Since A( Th) is the FE-approximation of A( Th) after applying usual error esti-
mates and the inverse property (5.7) we get 

llA(Th)llL2(n) ::; llA(Th)llL2{n) + llA(Th) - A(Th)llL2(n)::; llThllYi' +ch llA(Th)llH1(n) 

::; llThllY: +ch llThllH1/2(r) ::; c2 llThll~1 • 

To prove the other direction we show that 

I j Th cp dsl ::; c l!A(Th)llL2(n) ll'PllY1 , V cp E Yi . (5.16) 
r 

For given cp E Yi we solve the Dirichlet problem for the biharmonic equation 

in f2 , /oV = 0 , /1 V = cp . 

Due to the Lemmas 2.3 and 3.4 we have llvllw(n) ::; c ll'PllYi and Green's formula yields 

j Th cp ds = j A( Th) ~v dx + j \7 A( Th) · \7 v dx . 
r n n 

Now (5.16) follows immediately from 

j j ri.rpdsl ~ I j >.(ri.) t..vdxj + .,,i~1.J j \7>.(ri.) · 'V(v -wi.) dxj 
r n n 

In contrast to the Galerkin method (5.4) the solutions Th of (5.12) corresponding to 
the mixed formulation do not converge quasioptimal to the exact solution. However, 
using results of Scholz [20] and the assumptions mentioned above we get the following 
estimates. 

Theorem 5.2 If the given u in (5.1) is such that the solution satisfies ~u E Hl+"'(O), 
µ > 0, then the mixed finite element approximation provides the estimate 

where (Uh, </>h) E Xoh x xh is the solution of (5.8). Moreover, for Th = ro</>h E Xh,r 
there holds 

ll'Yo~u - ThllY{ ::; c h112 l log hi ll~ul!Hi+µ(n)> 
with some constant not depending on h. 

(5.18) 

Proof. Since (5.17) can be proven quite similar to Theorem 1 in [20] we consider only· 
the estimate (5.18). Let us denote by Ph E Xh,r the Galerkin approximation of T, i.e. 

providing the estimate (see (5.4)) 

llT - PhllYi' ::; chl+"'llTllH1/2+µ(r) · (5.19) 
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lFrom (5.5) and (5.8) we know that 

j V(uh-vh) · Vzhdx + j(¢h-A(ph))zhdx = 0, (5.20) 
n n 

where vh E H 2(0) n HJ(O) solves the equation Livh = A(ph)· Now we use the Ritz· 
projection Phvh E Xoh, defined by 

j V(vh- Phvh) · Vzhdx = 0, 
n 

V Zh E Xoh, 

to estimate 

ll.-\(rh) - .-\(ph)lli2(n) = j (.A(rh) - .A(ph))2 dx + j V(uh - Phvh) · V(.A(rh) - .A(ph)) dx. 
n n 

Here the second integral vanishes due to the definition of the discrete harmonic exten-
sion .A. Noting that ¢h = .A( rh) we obtain from (5.20) that 

11.A(rh) - .A(ph)llL(n) = j(A(ph) - .A(ph))(.A(rh) - .A(ph)) dx 
n 

+ j V(vh - Phvh) · V(.A(rh) - .A(ph)) dx. 
n 

Now we use that for any Zh E xh 

I j V(vh- Phvh) · Vzhdxl ~ ch1
/

2 lloghl llLivhllL00 (n) llzhllL2(n), 
n. 

as proved in [20]. Thus we get 

Since (5.19) and the properties of piecewise linear functions imply that 

we have 

uniformly in h. Hence 

II .A( rh) - .A(ph) llL2(n) < c h112 I log hi llrllH1 / 2+µ(r) , 

proving (5.18) by applying Lemma 5.1. 11 

lFrom Theorem 5.1 it is dear that equation (5.12) is suited for iterative solution 
methods. As main ingredients of an efficient solver we underline the following issues: 

(i) easily invertible spectrally close preconditioners for the operator S12,h; 

(ii) a fast matrix-vector multiplication procedure for the stiffness matrix of the op-
erator S12,h on a polygonal boundary. 
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The item (ii) will be considered in Section 6. The item (i) is important since in view 
of Theorem 5.1 the operator 812,h possesses a condition number estimate 

requiring an efficient preconditioning in order to construct asymptotically optimal it-
erative solvers for equation (5.12). We notice that due to (5.15) any easily invertible 
spd operator Bh : Xh,r -+ X~,r providing the equivalence 

(5.21) 

gives an appropriate preconditioner. Let us construct the stiffness matrix of such an 
operator. We first split the space Xh,r in the form 

(5.22) 

and the m-dimensional space Xh,cor is spanned by the hat functions corresponding 
to the corner points t;. of n, i.e. the piecewise linear functions cp;., i = 1, .. , m, with 
minimal support such that cp;.(t;.) =/- 0. It can be easily seen that the norm equivalence 

lluc + uhllY,.1 X llucllY,.' + lluhllYi' , V Uc E Xh,cor, Uh E Xh,r 
holds. Indeed, we can choose a regular triangulation of n with the property that at most 
two triangles meet at any corner point and the piecewise linear functions supported on 
these triangles are discrete harmonic. By using (5.13) and Theorem 5.1 the inequality 

m 

follows. Hence we obtain for Uc= E a;.cp;. E Xh,cor 
i=l 

and moreover 

(812,h( Uc+ uh), Uc+ uh)r x llucll~' + lluhll}: ' v Uc E Xh,cor, Uh E Xh,r . 

Thus we choose the operator Bh from (5.21) in the form Bh = Be + Bh with respect 
to the splitting (5.22), where Be is am-dimensional scalar operator defined by 
Bcuc =hue. To define Bh we note that the operators 

( - !2r'2 = H112(r,)-+ H-112(r,J 

are symmetric and positive definite. Hence if we define the discrete mapping 

(Dhuh, vh)r := (u~, v~)r , V uh, vh E Xh,r , (5.23) 

then Di/2 possesses similar mapping properties. Thus the matrix representation Bh for 
a preconditioner Eh realizing the norm equivalence 

(Fhuh, ii.h)r x llii.hll}, , V uh E Xh,r , 
1 

can be given by Bh = Mhv·1/l2 Mh, where Mh is the mass matrix corresponding to 
the nodal basis {w1c} C Xh,r and 1Jh is the stiffness matrix of the operator Dh from 
(5.23) 
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Theorem 5.3 The relation of spectral equivalence 

(S12,huh, uh)r ~ (Bcuc, uc)r + (Mh1J"h 112 MhUh, Uh) 

holds uniformly in h > 0 for any Uh= Uc+ Uh with Uc E Xh,ccr-, Uh E Xh,r, where uh 
is the vector representation of uh in the nodal basis and Bcuc =hue. 

Note that the matrix-vector multiplication for Bh1 = M"h1V!'2 M"h 1 which appears 
in corresponding PCG iterations for solving the equation (5.12) costs :E O(ndogni) 

i 
operations since the stiffness matrix of the operator Dh from (5.23) has a tridiagonal 
form providing the Fourier eigenbasis. 

6 Matrix compression and fast iterative boundary 
solvers 

In this section we propose and analyze an efficient matrix times vector multiplication 
algorithm for the operator S12,h with complexity of the order O(Nr log2 Nr) in the case 
of a rectangle, where Nr is the number of the degrees of freedom on the underlying 
boundary r = uj=1 ri. After that we extend the proposed technique to the case of right 
triangles and to convex polygons applying the well-developed iterative substructuring 
interface solvers for the Laplace .equation. 

Let n be the rectangular domain which we assume, to simplify the exposition, to be 
the unit square. Consider the approximate solution of the problem 

tl2u = 0, 1ou = 0, llulr1 = cp E H1l 2(r1), llulr\r1 = 0 

related to the mixed FE scheme. Let cp have the Fourier expansion 
n-1 

cp(:z;) = L ck sink7r:z:, :z; E [O, 1]. 
k=l 

(6.1) 

The idea of our method is based on the discrete counterpart of the representation 
n-1 

u(x,y) = L 2ckk E(k,y) sink7r:z: 
k=l 7r 

(6.2) 

for the corresponding solution of (6.1), where 
e?rky + e-?rky e'lrk + e-7r'lc e7rkv - e-?rky 

E(k, y) = y. e?rk - e-?rk - e'lrlc - e-d: • e?rk - e-?rk 

Since E(k, y) behaves like e-k'lr(l-y) as y --+ 0 the expansion (6.2) exhibits fast expo-
nential decay in y--+ 0 for the high frequency components of the solution u, see Fig. 1 
and 2. · 

The point is that this property can be extended to the mixed FE discretization of 
( 6.1) related to uniform meshes. Let Xh be the space of piecewise linear finite elements 
defined for the uniform triangulation Th of !l with mesh size h = n-1 = 2-p, p E JN. 
To apply the representation (5.14) with 

cp( :z;) ' 
0 
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-E(l,y) -E(lO,y) 

Figure 1: Graphs of E(k,y) vs. y fork= 1andk=10. 

we have to compute the solution uh on the near boundary grid layer only. 
Let the vector representation cp = { cpi}?:::"l of the given function cp E Xh,r17 where 

Xh r· := Xh rlr·, have the Fourier expansion 
I 3 I 3 

n-1 · 

'Pi = 2: Cle sin k7r _:, 
le=l n 

i = 1, ... ,n -1. 

Then the solution ¢h of (5.8) has the vector representation 

n-1 ( A~ - x;;i ) . i 
( ¢h)i; = 2: Cle An_ A-n Slll k1r- , 

le=l le le n 
i,j E [O, n] , (6.3) 

with 
' • 2 k1r . k1r 1 . 2 k1r 
Ale = 1 + 2 sm 2n + 2 sm 2n + sm 2n . 

Substituting (6.3) in (5.11) one obtains 

where we denote 

Computations with (6.4) on the grid-lines j = 1 and j = n - 1 may be performed by 
FFT with the complexity O(nlogn). Furthermore, for the grid-line i = 1 (the same 
for i = n - 1) we get 

n-1 · 

u; = u1; = L:: Cle a1c U!- u1(k,j) - u1(k, n) u2(k,j)) , 
k=l n 

(6.5) 
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-E(lOO,y) -E(SOO,y) 

Figure 2: Graphs of E(k, y) vs. y fork= 100 and k = 500. 

Thus the vector U1 = ( Uj r;;t admits the representation 

where Vo and :Fn are diagonal and FFT matrices, respectively. The dense matrix 
Z = { Zjk}i,k~l with 

Zjk = J_a1(k,j)- a1(k,n)a2(k,j) 
n 

may be approximated with given accuracy O(n-a), a> 0, by the sparse matrix 

Z l { l }n-1 = Zjk j,k=l> 
l { Zjk , 

zjk = 0 
' 

k ~ -Z(j) 
k > l(j) 

with indices l(j), j = 1, ... , n -1, satisfying the estimate 

n-1 L l(j) = O(nlog2 n) . 
i=l 

Theorem 6.1 With given c = O(n-a), a> 0, let l(j) ~ ei log(be;), where 

n e; = a(n + 1 - j) ' j = 1, ... n - 1' 

a= log(3 + 2v'2) and b = ll'PllL2(ri) · O(c). Then the estimate 

m~ lui - (Z1 Vo :Fn cp)il ~ c 
1 

n-1 
holds, where the number of nonzero entries in Z 1 is E l(j) = 0( n log2 n). 

j=l 

18 

(6.6) 



Proof. The proof is based on the estimate [4], 

Ak ~exp( a· k · n-1 ) 

applied to both terms in the right-hand side of (6.5) with summation over k ~ l(j) + 1 
only. 1111 

4 

Since for a rectangle the exact solution r E II H 1
/

2+"'(ri) it suffices to choose Xh,r c 
i=l 

Xh,r· as the space of test and trial functions. The compressed operator Sf2,h (related 
4 -to S12,h) being defined on the subspace IT Xh,ri now admits the factorized matrix form 

i=l 

:Fn1Jl z 1v3 :Fn1J2 z 1v3 :Fn 0 

Sl rv z 1v3 :Fn1Jl z 1v3 :Fn1J2 :Fn (6.7) 12h = :Fn1J2 z 1v3 :Fn1Jl z 11J3 :Fn , 

z 1v3 :Fn1J2 z 1v3 :Fn1Jl 0 :Fn 

where 1Ji, i = 1, 2, 3, are diagonal matrices and zt is the truncated matrix defined by 
(6.6). Here "rv" means the representation up to some permutation transform. 

Now one can solve the equation 

(S~2,hrh, vh)r =(er, vh)r , Vvh E Xh,r , 

~pproximating (5.12) for the unit square n by the iterative PCG method using the 
spectrally equivalent preconditioner Bh = Mh1J"h 112 Mh for the related stiffness matrix 
Sf2 ,h (see Theorem 5.3). In the case of a rectangle the proposed algorithm has the 
complexity 0( n log2 n) · log c:-1 . Here e > 0 is the reduction factor in the stopping 
criteria of the iterative process. 

n = 8, h = 1/n 

Figure 3: Decompositions of right triangular and polygonal domains. 

Now we consider a convex polygonal domain n composed of M matching rectangles 
~ and K regular right triangles Ti, such that fi = (Uf;1~) U (uf:!t-~1 ~.n) (see Fig.3). 
We do not discuss here the geometrical problem of producing such a decomposition 
for an arbitrary convex polygon. Let i h be the piecewise uniform triangulation of n 
aligned with the skeleton r,,k = uiri, ri = 8~ or ri = 8Ti, including r =an. Assume 
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the triangulation of any subdomain R,. or T;, to be uniform. Starting with the above 
coarse decomposition of n we introduce a more refined one assuming that any triangle 
T;, is composed of n;, - 1 rectangles and n;, triangles of size O(h), as proposed in [13], 
see Fig. 3. This produces the so-called refined skeleton r~k ::::> r sic which defines the 
resultant decomposition of n into M' rectangles R,. and K' triangles T;, (we use just the 
same notations for corresponding subdomains as in the case of coarse decomposition). 

The strategy for the construction of a compressed operator approximating S12,h is 
based on the fast computation of the biharmonic Poincar6-Steklov operators S12,;, on 
each subdomain R,. and T;, producing r~/c and on the asymptotically optimal interface 
solvers [13, 15] of the complexity 

M M+K 
log e-1 c~= O(n;, log2 n;,) + E O(n;,log3 n;,)) 

i=l i=M+l 

to invert the discrete harmonic interface operator Sr' defined on the skeleton r~1c by 
ale 

M'+K' 
(Sr~,. u, v)r~,. = E (Sr/u;,, v;,)ri , 

i=l 

Here Sr/ denote the FE discretization of the local harmonic Poincare-Steklov operators 
related to R,. or to T;,, while u;, = ulro v;, = vlri· 

First we note that for the smallest subdomains !l;,, which produce the refined skele-
ton r~k' i.e. all triangles T;, and the rectangles containing two triangles of Th, the 
computation of S12,;,r, r E Xhb, follows simply from formula (5.13), since .A(r)lni 
coincides with the only element of Xh lni having r as boundary value on r;,. Since the 
number of these smallest sub domains !l;, is proportional to N, the number of degrees 
of freedom on r, the matrix times vector. multiplication for these operators S12,;, has 
the complexity of the order O(N). 

In the case of all other rectangular subdomains R,. we apply the compression tech-
nique described at the beginning of this section, where we denote by Sb,;, the com-
pressed biharmonic Poincar6-Steklov operator related R,. and to the matrices Z 1, chosen 
in accordance with Theorem 6.1. 

We propose the following algorithm for the computation of uh= Sf2 hrh on r, where 
now Sf2,h denotes the 'truncated' operator of S12,h corresponding to ,~he choice (6. 7) 
of truncated matrices Sf2,;,. We introduce Yoh = Xohlr~,. and denote by Sf2,;, also the 
biharmonic Poincar6-Steklov operator related to the smallest subdomains !l;,, described 
above. 

Algorithm 1. Given rh E Xh,r, 
1) Solve for ¢h E Yh the Dirichlet interface problem on the skeleton I'~1c 

</Jhlr = rh and (Sr~,. ¢h, v)r = 0 , V v E Yoh ; 

2) For all i ~ M' + K' compute the elements 

u;, = sf 2,i<Pi ' where ¢;, = (<Ph) lri ; 

3) Solve for uh E Yoh the Dirichlet interface problem on the skeleton I'~1c 

M'+K' 
(Sr~,. uh, v)r = E (u;,, v;,)ri , V v E Yoh; 

i=l 

20 



4) Compute for any index i ~ M' + K' such that ri n r =f:. 0 

O"hlrinr = ( O"i + S~1iflh) lrinr;. 

· Lemma 6.1 Algorithm 1 has the complexity 

M M+K 
log c:-1 

• (~:: o( ndog2 ni) + :E o( ndog3 ni)) . 
i=l i=M+l 

Here c: > 0 is the reduction factor in the stopping criteria of the iterative process for 
performing steps 1) and 3) of Algorithm 1. 

Similar to the case of the unit square one can solve the equation 

(Sf2,hrh, vh)r = (u, vh)r , Vvh E Xh,r , 

approximating (5.12) for the polygonal domain n by the iterative PCG method using 
the spectrally equivalent preconditioner described in Theorem 5.3. 

Remind that the case of general Dirichlet data with 'You =f:. 0 is reduced to the just 
considered case 'You = 0 by computing beforehand the discrete harmonic Dirichlet-
Neumann mapping on r providing the complexity O(Nlogq N) with q = 2 or q = 3 in 
the case of rectangular or polygonal boundaries, respectively. 

Finally we emphasize that the proposed approach can be carried out also for equation 
( 4.5) involving the Poincar6-Steklov operator S03 • An important issue on this way is 
again an e~cient preconditioning for the corresponding mixed FE discretization of S03 • 

7 Numerical example 

Here we provide the results of numerical experiments confirming the asymptotic 
almost optimal performance of the proposed algorithms in the case of rectangular 

. boundary. Note that the iterative substructuring solvers for the interface reductions of 
the second order elliptic problems used in Algorithm 1 are rather standard tools. So we 
further restrict ourselves to examine the matrix generation and the matrix times vector 
multiplication procedures for the operator Sf 2,h, which actually present the principal 
part of our algorithm. The results of numerical experiments with fast solvers of the 
complexity O(nlog2 n) for the second order elliptic interface problems may be found 
in [14, 13]. 

Consider the problem (6.1) on n = [O, 1] x [O, 1] with the exact solution u* cor-
responding to the given function cp = sin k7r:v, k E 1N. Table 1 gives the numer-
ical results for k = 1 on a sequence of five grids with ni = 2H5 , i = 1, ... , 5. 
The number of degrees of freedom on r for the finest grid is 4n5 = 4096. Here 
C:rel = llr1u* - Si2,hrllLoo(r/llr1u*llLoo(r) is the relative £ 00-error on r and r is the 
extension of cp by zero to r. Ne is the number of nonzero entries in the sparse off-
diagonal blocks of the compressed matrix Sf2,h of the form (6. 7), while N1ui1 is the 
dimension of the corresponding dense non truncated blocks. T matr and T mult are the 
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ni Crel Ne N1u1z Tmatr Tmu1t 
64 2.2-10-4 286 4096 0.061 0.049 

128 3.5·10-5 759 16384 0.16 0.11 
256 l.4·10-5 1963 65536 0.5 0.27 
512 3.4·10-6 4930 262144 1.37 0.6 
1024 8.6·10-7 12034 1048576 4.23 1.32 

Table 1: Implementation of Sf 2 h for rectangular boundary. 
I 

times (in sec) exhibited for computations of nonzero matrix entries and for matrix-
vector multiplication, respectively, related to Sf2 h· We use the cutting parameter 
e = O(h2 ), see Theorem 6.1, estimating from belo~ the actual approximation error. 

The presented runs were performed on IBM PC 486/66. The actual compression 
rate achieved on the finest grid is about 1.2%. These results indicate almost optimal, 
i.e. linear, growth of computing time (up to logarithmic terms) with respect to the 
number of degrees of freedom on the boundary r as in the case of second order elliptic 
equations. It is expected that the algorithm shows the same performance for general 
convex polygons. 

Acknowledgement: The authors want to thank Dr. E.G. Nikonov (JINR, Dubna) 
for his assistance with the computations. 

References 
[1] 0. Axelsson and I. Gustafsson. An iterative solver for a mixed variable variational formulation 

of the (first) biharmonic problem. Comput. Methods Appl. Mech. Eng. 20, 9-16, 1979. 

[2] D. Bahlmann and U. Langer. A fast solver for the first biharmonic boundary value problem. 
Numer. Math. 63, 297-313 (1992). 

[3] D. Bahlmann and V. G. Korneev. The method of boundary potentials for solving the clamped 
plate bending problem in rectangle. Preprint Nr. 236 /7.Jg./ TU Chemnitz, 1993. 

[4] N.S. Bakhvalov and M.Yu. Orekhov. On fast methods for the solution of Poisson equation. Zh. 
Vychisl. Mat. Mat. Fiz., vol.22, No. 6, 1982, 1386-1392 (in Russian). 

[5] P. Bjorstad, Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. 
Numer. Anal. 20, 1983, 59-71. 

[6] H. Blum and R. Rannacher. On the boundary value problem of the biharmonic operator on 
domains with angular corners. Math. Meth. Appl. Sci., 2 (1980), 556-581. 

[7] S. Christiansen and P. Hougaard. An investigation of a pair of integral equations for the bihar-
monic problem. J.Inst.Maths.Applics 22, 1978, 15-27. 

[8] P.G.Ciarlet. The finite element method for elliptic problems. Amsterdam: North-Holland, 1978. 

[9] M. Costabel and M. Dauge. Invertibility of the biharmonic single layer potential operator, Institut 
de Recherche Mathematique de Rennes, Prepublication 95-13, Rennes 1995. 

[10] D.A. French and J.T. King. Approximation of an elliptic control problem by the finite element 
method, Num.Funk.Anal.Opt., 12 {1991), 299-314. 

[11] R. Glowinski and 0. Pironneau, Sur la resolution numerique du probleme de Dirichlet pour 
l'operateur biharmonique par une methode "quasi-directe". Comptes rendus, 282, serie A, 223-
226, 1976. 

22 



[12] G. N. Jakovlev. Boundary properties of functions of the class wJt> on domains with corners, 
Dokl. Akad. Nauk SSSR 140 (1961), No. 1, 73-76 (in Russian). 

[13] B. N. Khoromskij. On fast computations with the inverse to harmonic potential operators via 
domain decomposition. Preprint Nr. 233/6.Jg./TU Chemnitz, 1992; Numer. Lin. Alg. with Appl., 
1994 (to appear). 

[14] B. N. Khoromskij, G. E. Mazurkevich and E. G. Nikonov. Cost-effective computations with 
boundary interface operators in elliptic problems. Preprint JINR, Ell-163-93, Dubna, 1993; 
Numer. Math. (submitted). 

[15] B. N. Khoromskij and S. Proessdorf. Multilevel preconditioning on the refined interface and opti-
mal boundary solvers for the Laplace equation. Preprint No. 150, WIAS, Berlin, 1995; Advances 
in Comp. Math. (submitted). 

[16] U. Langer. A fast iterative method for the solution of the first boundary value problem for the 
biharmonic operator. Zh. Vychisl. Mat. i Mat. Fiz. 28, 209-223, 1988 (in Russian). 

[17] V. I. Lebedev. Composition method. Dept. Num. Math., Acad. Sci.USSR , Moscow, 1986 (in 
Russian). 

[18] P. Oswald. Multilevel preconditioners for discretizations of the biharmonic equations by rectan-
gular finite elements. Numer. Lin. Alg. with Appl., vol.1(1), 1-7 (1993). 

[19] G. Schmidt and B. N. Khoromskij. Boundary integral equations for the biharmonic Dirichlet 
problem in non-smooth domains. Preprint No. 129, WIAS, Berlin, 1994; Math. Methods in the 
Applied Sciences (submitted). 

[20] R. Scholz, A mixed method for 4th order problems using linear finite elements, R.A.I.R.O. 12 
(1978), 1, 85-90. 

23 





Recent publications of the 
Weierstraf3-lnstitut fiir Angewandte Analysis und Stochastik 

Preprints 1994 

133. Ingo Bremer: Waveform iteration and one-sided Lipschitz conditions. 

134. Herbert Gajewski, Klaus Zacharias: A mathematical model of emulsion poly-
merization. 

135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of inter-
acting diffusions and an application to their ergodic theory. 

136. Andreas Juhl: Secondary Euler characteristics of locally symmetric spaces. 
Results and Conjectures. 

137. Nikolai N. Nefedov, Klaus R. Schneider, Andreas Schuppert: Jumping beha-
vior in singularly perturbed systems modelling bimolecular reactions. 

138. Roger Tribe, Wolfgang Wagner: Asymptotic properties of stochastic particle 
systems with Boltzmann type interaction. 

Preprints 1995 

139. Werner Horn, Jan Sokolowski, Jurgen Sprekels: Control problems with state 
constraints for the Penrose-Fife phase-field modei. · 

140. Hans Babovsky: Simulation of kinetic boundary layers. 

141. Ralf Kornhuber: A posteriori error estimates for elliptic variational inequali-
ties. 

142. Johannes Elschner, Youngmok Jeon, Ian H. Sloan, Ernst P. Stephan: The 
collocation method for mixed boundary value problems on domains with 
curved polygonal boundaries. 

143. Johannes Elschner, Ernst P. Stephan: A discrete collocation method for 
Symm's integral equation on curves with corners. 

144. Dietmar Hornberg: A numerical simulation of the Jominy end-quench test. 

145. Sabine Hengst: On the existence of classical solutions for a two phase .flow 
through saturated porous media. 

146. Anton Bovier, Veronique Gayrard: An almost sure large deviation principle 
for the Hopfield model. 



14 7. Hans Babovsky: Limit theorems for deterministic Knudsen flows between two 
plates. 

148. Bjorn Sandstede: Stability of multiple-pulse solutions. 

149. Bjorn Sandstede: Constructing dynamical systems possessing homoclinic bi-
furcation points of codimension two. 

150. Boris N. Khoromskij, Siegfried Prossdorf: Multilevel preconditioning on the 
refined interface and optimal boundary solvers for the Laplace equation. 

151. Anton Bevier, Christo£ Kiilske: There are no nice interfaces in 2+1 dimen-
sional SOS-models in random media. 

152. Ilja Schmelzer: Covariant geometry description. 

153. Alexander Korostelev, Michael Nussbaum: Density estimation in the uniform 
norm and white noise approximation. 

154. Peter Hall, Michael Nussbaum, Steven E. Stern: On the estimation of a sup-
port curve of indeterminate sharpness. 

155. Lev D. Pustyl'nikov: On the stability of solutions and absence of Arnol'd 
diffusion in a nonintegrable Hamiltonian system of a general form with three 
degrees of freedom. 

156. Ralf Kornhuber: Adaptive monotone multigrid methods for some non-smooth 
optimization problems. 

157. Sergej Rjasanow, Wolfgang Wagner: A generalized collision mechanism for 
stochastic particle schemes approximating Boltzmann type equations. 

158. Nikolai Nefedov, Klaus Schneider: Singularly perturbed systems: Case of ex-
change of stability. 

159. Rainer Dahlhaus, Michael H. Neumann, Rainer von Sachs: Nonlinear wavelet 
estimation of time-varying autoregressive processes. 

160. Henri Schurz: Numerical regularization for SDEs: Construction of nonnega-
tive solutions. 

161. Anton Bevier, Veronique Gayrard: The retrieval phase of the Hopfield model: 
A rigorous analysis of the overlap distribution. 


