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Abstract

Spatiotemporal chaos and turbulence are universal concepts for the explanation of ir-

regular behavior in various physical systems. Recently, a remarkable new phenomenon,

called “chimera states”, has been described, where in a spatially homogeneous system

regions of irregular incoherent motion coexist with regular synchronized motion, forming a

self organized pattern in a population of nonlocally coupled oscillators. Whereas most of

the previous studies of chimera states focused their attention to the case of large numbers

of oscillators employing the thermodynamic limit of infinitely many oscillators, we investi-

gate here the properties of chimera states in populations of finite size using concepts from

deterministic chaos. Our calculations of the Lyapunov spectrum show that the incoherent

motion, which is described in the thermodynamic limit as a stationary behavior, in finite

size systems appears as weak spatially extensive chaos. Moreover, for sufficiently small

populations the chimera states reveal their transient nature: after a certain time-span we

observe a sudden collapse of the chimera pattern and a transition to the completely coher-

ent state. Our results indicate that chimera states can be considered as chaotic transients,

showing the same properties as type-II supertransients in coupled map lattices.

Since their first discovery by Kuramoto and his coauthors [1], chimera states have attracted
considerable attention [2, 3, 4, 5, 6, 7, 8]. After the notion of chimera states was introduced
by Abrams and Strogatz in [2] for spatially homogeneous systems of coupled oscillators in one
space dimension, later similar spatio-temporal patterns were found in various heterogeneous
systems [9, 10, 11, 12, 13, 14, 15] as well as two dimensional settings [16, 17]. The remark-
able new phenomenon in all these systems is the coexistence of synchronized regions and
regions with asynchronous motion, displaying together a self organized spatio-temporal pattern
of coherent and incoherent motion. This new paradigm of dynamical behavior can serve as a
prototype for various physical phenomena, e.g. coexistence of synchronous and asynchronous
neural activity [18, 19] or turbulent-laminar flow patterns [20].

Starting from the pioneering work of Kuramoto [1] the thermodynamic limit N → ∞, has
become the most important tool for the study of chimera states. Following the approach of
Pikovsky and Rosenblum [21], or alternatively Ott and Antonsen [22, 23], one can derive a
limiting system of dynamical equations for macroscopic quantities, where chimera states appear
as stable stationary patterns. However, in a similar way as Mirollo and Strogatz showed in [24]
for partially locked states in the continuum limit of the classical Kuramoto model, it has been
shown recently [25] that in the thermodynamic limit, chimera states are only neutrally stable,
having continuous spectrum on the imaginary axis.

Based on the understanding of the thermodynamic limit N → ∞, there appear the following
natural questions about the finite size effects for chimera states in the finite dimensional setting:
1. How long do the chimera states persist when the number of oscillators N decreases, and in
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which way do they finally disappear? 2. How can their incoherent motion be understood in terms
of classical deterministic chaos? At first glance, the finite size effects will manifest themselves
only as noisy fluctuations with respect to the mean values given by the stationary macroscopic
quantities obtained in the thermodynamic limit. However, due to the nonlinear nature of the sys-
tem, these fluctuations may also induce qualitatively new phenomena. A first important feature
of the finite dimensional chimera states that is not captured by the thermodynamic limit has been
reported in [26]: the irregular motion of the coherent and incoherent region (see also Fig. 4). A
second phenomenon resulting from finite size effects will be reported here: the collapse of the
chimera. In this paper we demonstrate that after a long time-span a sudden collapse of the
chimera pattern and a transition into the completely coherent state can be observed.

The observation of very long irregular transients dates back to the seminal paper of Grebogi,
Ott, and Yorke [27] who discovered them in the vicinity of a bifurcation of a chaotic attractor in a
low dimensional system. Later, so called supertransients have been found in spatially extended
systems, where the length of the transients can grow exponentially with the system size (for
recent surveys, see [28, 29]). While the first examples were based on coupled map lattices [30,
31], later also examples with both continuous time and space variable have been reported, see
e.g. [32, 33, 34]. Possible applications of this general concept range here from fluid dynamics
to chemical reaction kinetics and biological systems. Investigating the statistical properties of
the collapse events for chimera states, we show that the average length of the transients grows
exponentially with the system size, given by the number of oscillators. We complete this paper by
starting with a study of the corresponding Lyapunov spectra, which turn out to be weakly chaotic
and to remain stationary until the collapse. Based on these facts, we can conclude that chimera
states are type-II supertransients in the sense of [30]. In this way, we can give an answer to the
two questions raised above: We provide numerical evidence that finite size chimera states can
be considered indeed as chaotic transients. For decreasing system size they disappear not in
some kind of bifurcation, but are observed on shorter and shorter time scales.

Our model is an array of N identical non-locally coupled phase oscillators with phases ~Ψ =
(Ψ1, . . . , ΨN) evolving according to

Ψ̇k(t) = ω −
1

2R

k+R
∑

j=k−R

sin(Ψk(t) − Ψj(t) + α). (1)

The indices have to be considered modulo N , inducing a ring structure on the array. With ω,
we denote the natural frequency of the oscillators that can be set to zero, and α ∈ (0, π/2) is
Sakaguchi’s phase lag parameter [35]. The coupling range R should satisfy R > 1, excluding
the trivial case of local (next-neighbor) coupling, and R < (N − 1)/2, excluding also the
case of global coupling. A typical chimera solution for model (1) with N = 40 and R = 14 is
shown in Figure 1. Even for this rather small number of oscillators, we can clearly distinguish
between oscillators with coherent and incoherent motion. Taking the time averages of the phase
velocities, see Fig. 1(b), we still obtain a rather continuous inhomogeneous profile, similar as in
the thermodynamic limit (cf. [25]).
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Figure 1: (a) Phase snapshot of a chimera state observed in system (1); (b) time-averaged
frequencies. Parameters: N = 40, R = 14, and α = 1.46.

1 The chaotic nature of the finite size chimera

In this section we show that the incoherent motion of a finite size chimera carries the char-
acteristics of weak spatially extended deterministic chaos. We present our calculations of the
Lyapunov spectra of chimera states focusing our attention here on the spectra of chimera states
in systems with a comparatively small number of oscillators N .

A detailed investigation of the behavior of the Lyapunov spectra for large N can be found in [25].
In particular the limit N → ∞ has been studied there. It has been shown that within the inco-
herent region the chaos has a spatially extensive nature and that the corresponding exponents
tend to zero for N → ∞; the Lyapunov dimension is given asymptotically by the number of
incoherent oscillators. Corresponding to the coherent region there is a stable part of the spec-
trum that has a negative limit; moreover, both parts of the limiting spectrum can be calculated
explicitly as the continuous spectrum of the linearized evolution operator for the thermodynamic
limit system.
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Figure 2: Lyapunov spectra computed for chimera trajectories of (1).

For our numerical computations we used the common fourth-order Runge-Kutta scheme with
fixed time step dt = 0.01 to integrate system (1) together with the standard algorithm for Lya-
punov exponents using continuous Gram-Schmidt orthonormalization [36]. In Figure 2, we show
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the complete Lyapunov spectra for chimera states with three different values of N . Note, that
we have rescaled here the exponent index by the system size N in order to demonstrate the
extensive nature of the chaos. Moreover, it can be seen that the positive exponents decay for
increasing N . Note that with changing N , we adapted also the coupling range R in order to
obtain an approximately fixed ratio between these quantities. Figure 3 indicates that the posi-
tive exponents stabilize nicely after a computation over 15000 time units. However, it was not
possible to extend the time span of our calculations of the Lyapunov spectra arbitrarily, since
for these values of N we could not find chimera trajectories that persist over an arbitrarily long
time.
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Figure 3: Stabilization of the leading three finite-time Lyapunov exponents calculated along
chimera trajectories of increasing lengths. Parameters: N = 30, R = 10, and α = 1.46.

2 The chimera’s collapse

In our numerical simulations of Eq. (1) with N . 40, we discovered a surprising phenomenon:
The collapse of the chimera. After an apparently stable existence for a quite long time span, the
chimera state disappears suddenly and the system changes over to completely coherent motion
(see Fig. 4). Note that for such small values of N the irregular motion of the coherent region
described in [26] is also very pronounced. The moment τ of the collapse shows a sensitive
dependence on the initial data. We used simulations with slightly varying initial conditions to
investigate the statistical properties of the collapse events. In Fig. 5, we show a histogram of
collapse times τ that we obtained from 2000 trajectories with initial data obtained by small
random perturbations (with the amplitude 10−3) of the reference solution in Fig. 4. The collapse
event can be easily detected from the global mean field

Z(t) :=

∣

∣

∣

∣

∣

1

N

N
∑

j=1

eiΨj(t)

∣

∣

∣

∣

∣

,

that for t > τ suddenly stabilizes at Z(t) = 1 (cf. Fig 4). We clearly see that the distribution of
the collapse times ρ(τ) follows an exponential law

ρ(τ) = λe−λτ ,
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Figure 4: The chimera’s collapse: (a) space time plot of averaged phase velocities and global
mean field Z(t) for a chimera trajectory that collapses after approx. 4600 time units to the com-
pletely coherent state (dark region: slow coherent motion). Panels (b) and (c) show a magnifi-
cation of segments well before the collapse and directly at the collapse. Parameters: N = 40,
R = 14, and α = 1.46.

with a constant collapse rate λ and the average lifetime

Tc := 〈τ〉 = λ−1.

In this way, for a given set of parameters the collapse rate and the average lifetime of the chimera
state can be obtained by a straightforward fitting procedure.

Varying now the number of oscillators N and extracting the average lifetime Tc(N) in the way
described above, we observe an exponential growth Tc(N) ∼ eκN , see Figure 6. In our exam-
ple with α = 1.46 and R/N ≈ 0.35, we observed an exponential rate κ = 0.23. Due to the
exponential growth, a numerical evaluation of the collapse statistics for 2000 collapse events
was only possible for a system size up to N = 45. For N > 60 it is already very unlikely to ob-
serve even a single collapse event within a time span that is amenable to numerical simulation.
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Figure 5: Histogram of collapse times (circles) in natural (left panel) and logarithmic (right panel)
scale with fitted exponential distribution (solid line). Parameters as in Fig. 4.
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Figure 6: Average lifetimes of chimera states for increasing N from numerical simulations (cir-
cles); fitted exponential growth (solid line). Parameters: R/N ≈ 0.35, and α = 1.46.

Regardless, we can conclude that for all values of N the chimera states will eventually collapse
to the completely coherent state, and hence have to be considered chaotic transients.

3 Conclusions

The observed exponential growth of the transient time with the system size together with the
chaotic Lyapunov spectrum is typical for type-II supertransients in spatially extended systems.
In contrast to all earlier examples, the collapsing spatiotemporal chaos appears here together
with a regular pattern in space. A further striking difference is the completely trivial dynamics
of the single elements, being identical phase oscillators. A key role for the both the appearance
of the incoherent motion and the spatial pattern is played by the non-local coupling structure
that seems to be essential for the chimera phenomenon. Their transient nature shows that they
constitute a large chaotic saddle, introducing a fractal structure at the basin boundary of the
completely coherent state.

Our conclusions are based on system (1), which we have chosen as the simplest equation
where chimera states can be observed. However, our results seem not to depend on our specific
choices, such as the piecewise constant coupling function, the identical natural frequencies, or
the coupling of Kuramoto–Sakaguchi type. Instead, we have some indications, that our main
findings — the collapse and the weakly chaotic Lyapunov spectra — can be observed similarly
in other systems that exhibit the chimera phenomenon.
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Based on the thermodynamic limit N = ∞, several authors have already calculated stability
boundaries, e.g. saddle-node bifurcations, for chimera states. It seems to be an open question,
how these results should now be interpreted for finite N chimeras, keeping in mind their tran-
sient nature. In particular, the behavior of the average lifetime when approaching the stability
boundary is an interesting open problem and will be addressed in a forthcoming paper.

Acknowledgments. We thank Y. Maistrenko, A. Pikovsky, and A. Torcini for fruitful discussions.
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