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Abstract

The LIBOR market model is very popular for pricing interest rate derivatives, but is known to
have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the
drift term is growing exponentially fast (as a function of the tenor length). In this work, we consider a
Lévy-driven LIBOR model and aim at developing accurate and efficient log-Lévy approximations for
the dynamics of the rates. The approximations are based on truncation of the drift term and Picard
approximation of suitable processes. Numerical experiments for FRAs, caps and swaptions show
that the approximations perform very well. In addition, we also consider the log-Lévy approximation
of annuities, which offers good approximations for high volatility regimes.

1 Introduction

The LIBOR market model (LMM) has become a standard model for the pricing of interest rate derivatives
in recent years, because the evolution of discretely compounded, market-observable forward rates is
modeled directly and not deduced from the evolution of unobservable factors, as is the case in short rate
and forward rate (HJM) models. See Miltersen et al. (1997), Brace et al. (1997) and Jamshidian (1997)
for the seminal papers in LIBOR modeling. In addition, the lognormal LIBOR model provides a theoretical
justification to the market practice of pricing caps according to Black’s formula (cf. Black 1976). However,
despite its apparent popularity, the LIBOR market model has certain well-known pitfalls.

An interest rate model is typically calibrated to the implied volatility surface from the cap market and the
correlation structure of at-the-money swaptions. The implied volatility from caplets has a “smile” shape as
a function of strike, while its term structure is typically decreasing. The standard lognormal LMM cannot
be calibrated adequately to the observed market data. Therefore, several extensions of the LMM have
been proposed in the literature using jump-diffusions, Lévy processes or general semimartingales as
the driving motion (cf. e.g. Glasserman and Kou 2003, Eberlein and Özkan 2005, Jamshidian 1999), or
incorporating stochastic volatility effects (cf. e.g. Andersen and Brotherton-Ratcliffe 2005, Wu and Zhang
2006, Belomestny, Mathew, and Schoenmakers 2009).

The dynamics of LIBOR models are typically not tractable under different forward measures, due to the
random terms that enter the dynamics of LIBOR rates. In particular, LIBOR rates are tractable under
their corresponding forward measure only in the lognormal setting or simple perturbations thereof, for
example displaced diffusion, CEV or extended with an uncorrelated volatility process. If the driving pro-
cess is a general diffusion process or semimartingale, then the dynamics of LIBOR rates are usually not
tractable even under their own forward measures. Consequently, even caplets cannot be priced exactly in
“closed form” (meaning, e.g. by Fourier methods), let alone swaptions and other multi-LIBOR products.
In order to calibrate the model, closed form solutions are necessary, and these are typically involving
approximations.

The standard approximation is the so-called “frozen drift” approximation; it was first proposed by Brace
et al. (1997) for the pricing of swaptions and has been used by several authors ever since. The frozen
drift approximation typically leads to closed-form solutions for caplet pricing in realistic LIBOR models,
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see Eberlein and Özkan (2005) and Belomestny et al. (2009). Although some authors (Brace et al. 2001,
Dun et al. 2001 and Schlögl 2002) argue that freezing the drift is justified in the lognormal LMM, it is well-
known that it does not yield acceptable results in more advanced LIBOR model extensions, especially for
exotic derivatives and longer time horizons. See also the numerical experiments in section 5.

Several alternative approximations have been developed in the literature. In one line of research, Kurban-
muradov, Sabelfeld, and Schoenmakers (2002) and Daniluk and Ga̧tarek (2005) have derived lognormal
approximations to the forward LIBOR dynamics (for deterministic volatility structures). Other authors
have been using linear interpolations and predictor-corrector Monte Carlo methods to get a more accu-
rate discretization of the drift term (cf. e.g. Hunter et al. 2001 and Glasserman and Zhao 2000). We refer
the reader to Joshi and Stacey (2008) and Gatarek, Bachert, and Maksymiuk (2006, Ch. 10) for a de-
tailed overview of that literature, some new approximation schemes and numerical experiments. Although
most of this literature focuses on the lognormal LIBOR market model, Glasserman and Merener (2003b,
2003a) have developed approximation schemes for the pricing of caps and swaptions in jump-diffusion
LIBOR market models, based on freezing the drift.

In this article, we consider a LIBOR market model driven by a Lévy process and aim at deriving ef-
ficient and accurate log-Lévy approximations. As a main result, we develop accurate log-Lévy LIBOR
approximations which may be represented as a deterministic drift term plus a stochastic integral of a
deterministic function with respect to a Lévy process. In particular, in the context of Monte Carlo simula-
tion the drift term can be computed outside the Monte Carlo loop, while the stochastic integrals can be
computed efficiently for each trajectory. In contrast, standard Euler stepping of the original LIBOR SDE
involves, for each LIBOR trajectory, an accurate computation of a complex-structured random drift term
at each Euler step and is therefore significantly more time-consuming1. Theoretical investigations as well
as numerical experiments show that the log-Lévy approximations are both fast and accurate when the
LIBOR volatilities are not too high, and thus provide an effective alternative to simulation methods based
on standard Euler discretizations. Finally, as a generalization of Gatarek et al. (2006), we derive log-Lévy
approximations for annuity terms, which allow for pricing options in high volatility regimes.

The article is structured as follows: in section 2 we review the Lévy-driven LIBOR model, in section 3
we construct the log-Lévy approximations to the model and in section 4 we provide some error esti-
mates. Section 5 demonstrates numerically the effect of the approximations, while section 6 deals with
approximation of annuities. The final section provides some recommendations on the construction of
multi-dimensional Lévy LIBOR models, while the appendices collect various calculations.

2 Lévy LIBOR framework

Let 0 = T0 < T1 < · · · < TN < TN+1 = T∗ denote a discrete tenor structure where δi = Ti+1−Ti,
i = 0, 1, . . . , N, are the so called day-count fractions. For this tenor structure we consider an arbitrage
free system of zero coupon bond processes Bi, i = 1, . . . , N + 1, on a filtered probability space
(Ω,F , (Ft)0≤t≤T∗ , IP∗), where IP∗ := IPN+1 is a numeraire measure connected with the terminal
bond BN+1. From this bond system we may deduce a forward rate system, also called LIBOR rate
system, defined by

Li(t) :=
1

δi

(
Bi(t)

Bi+1(t)
− 1

)
, 0 ≤ t ≤ Ti, 1 ≤ i ≤ N. (2.1)

1In a previous unpublished manuscript by the first and third author (Papapantoleon and Skovmand 2010) the efficiency of
the standard Euler approach was improved to some extend also, but there was still a costly random drift involved.
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Li is the annualized effective forward rate contracted at date t ≤ Ti for the period [Ti, Ti+1]. Jamshidian
(1999) derived a general representation for the LIBOR dynamics in a semimartingale framework. In this
article we consider a Lévy LIBOR framework as constructed by Eberlein and Özkan (2005); see also
Glasserman and Kou (2003) and Belomestny and Schoenmakers (2011) for jump-diffusion settings.

Consider a standard Brownian motion W in Rm, m ≤ N , a bounded deterministic nonnegative scalar
functionα(s), s ∈ [0, T∗], and a random measure µ on [0, T∗]×Rm with IP∗-compensatorF (s, dx)ds,
where µ and W are mutually independent. Let H = (H(t))0≤t≤T∗ be a time-inhomogeneous Lévy
process with canonical decomposition

H(t) =

∫ t

0

√
α(s)dW (s) +

∫ t

0

∫
Rm

x(µ(ds,dx)− F (s,dx)ds). (2.2)

We denote by µ̃ the compensated random measure of the jumps of H , that is µ̃(ds, dx) := µ(ds,dx)−
F (s,dx)ds. In order to avoid truncation conventions we assume that F satisfies the (stronger than
usual) integrability condition ∫ T∗

0

∫
Rm

(
∥x∥ ∧ ∥x∥2

)
F (s,dx)ds < ∞.

We further assume that ∫ T∗

0

∫
∥x∥>1

exp
(
uTx

)
F (s,dx)ds < ∞, (2.3)

for all ∥u∥ ≤ (1+ ε)M , with M, ε > 0 constants. Thus, by construction, the process (H(t))0≤t≤T∗ is
a IP∗-martingale. The cumulant generating function of H(t), t ∈ [0, T∗], is provided by

ln IE
[
eu

TH(t)
]
= κt(u) =

α(t)

2
∥u∥2 +

∫
Rm

(
eu

Tx − 1− uTx
)
F (t,dx). (2.4)

Along with the Lévy martingale (2.2) we introduce a set of bounded deterministic vector-valued functions
λi(s) ∈ Rm, i = 1, . . . , N, usually called loading factors. In order to avoid local redundances we
assume that the matrix [λ1, . . . , λN ](s) has full rank m for all s ∈ [0, T∗]. Moreover, we assume that
∥λi(s)∥ ≤ M , for all i, and ∥

∑
i λi(s)∥ ≤ M , for all s ∈ [0, T∗].

The Lévy martingale and the set of loading factors then constitute an arbitrage free LIBOR system con-
sistent with (2.1), whose dynamics under the terminal measure IP∗ are given by

Li(t) = Li(0) exp

(∫ t

0
bi(s)ds+

∫ t

0
λT
i (s)dH(s)

)
, (2.5)

i = 1, . . . , N , where the drift terms in the exponent are given by

bi = −1

2
α |λi|2 −

N∑
j=i+1

δjLj−
1 + δjLj−

αλT
i λj (2.6)

−
∫
Rm

(eλT
i x − 1

) N∏
j=i+1

1 +
δjLj−

(
eλ

T
i x − 1

)
1 + δjLj−

− λT
i x

F (·,dx);

for details see Eberlein and Özkan (2005). For notational convenience, we set Lj−(s) := Lj(s−) in
(2.6), while the time variable is suppressed.
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Due to the drift term (2.6), a straightforward Monte Carlo simulation of (2.5) would involve a numerical
integration at each time step, since the random terms

δjLj−
1+δjLj−

appear under the integral sign. In order to
overcome this problem, we will re-express the drift in terms of random quotients multiplied with cumulants
of the driving process. We have that

bi = −κ(λi)−
N∑

j=i+1

δjLj−
1 + δjLj−

αλT
i λj

−
N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
p+1∑
q=1

(−1)p+q+1
∑

0≤r1<···<rq≤p

κ̂(λjr1
+ · · ·+ λjr1

); (2.7)

the derivation is deferred to Appendix A, for brevity. Here κ̂ denotes the part of the cumulant κ stemming
from the jumps of L, that is

κ̂s(u) =

∫
Rm

(
eu

Tx − 1− uTx
)
F (s,dx). (2.8)

Therefore, we can now avoid the numerical integration when simulating LIBOR rates. However, another
problem becomes apparent in this representation: the number of terms to be computed in (2.7) grows
exponentially fast as a function of the number of LIBOR rates N , namely it has order O(2N ).

Remark 1. In a practically applicable model, the loading factors λi may be decomposed as follows:

λi(t) = cig(Ti − t)ei−m(t) ∈ Rm,

m(t) := inf{i : Ti ≥ t}, ∥ei∥ = 1, eTi ej = ρij , 1 ≤ i, j ≤ N,

for constants ci > 0, some (e.g. parametric) scalar function g > 0, and a correlation structure (ρij)
which resembles the correlations between forward LIBORs observed in the market. For instance, (ρij)
may be obtained as a rank-m approximation of a suitably parameterized full rank-N correlation structure;
see Schoenmakers (2005) for details. Further, the scalar function α may be taken as a constant that
controls the influence of the Wiener noise with respect to the jump noise.

Remark 2. The Lévy-driven LIBOR model is constructed under the terminal measure IPN+1 in this
paper, for definiteness. As an alternative, for products with shorter maturity for instance, one may consider
for some T

Ñ
< TN+1, a Lévy-driven LIBOR model for t ≤ T

Ñ
under the measure IP

Ñ
, with respect

to the numeraire bond B
Ñ

. Another possibility is to consider as numeraire the spot LIBOR rolling over
account

B◦(0) := 1, B◦(t) :=
Bm(t)(t)

B1(0)

m(t)−1∏
i=1

(1 + δiLi(Ti)),

m(t) := min{m : Tm ≥ t}, 0 < t ≤ TN+1,

and the numeraire measure IP◦ associated with it. If one prefers to work in one of these other measures,
the drift term (2.6) has to be modified in the following way: for the Libor model in the measure IP

Ñ
,

replace in (2.6), if i ≤ Ñ , the sum −
∑N

j=i+1 and the product
∏N

j=i+1 by −
∑Ñ−1

j=i+1 and
∏Ñ−1

j=i+1

respectively, and if i > Ñ , by
∑i

j=Ñ
and 1/

∏i
j=Ñ

respectively. Likewise, for a LIBOR model in the
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measure IP◦, replace in (2.6) −
∑N

j=i+1 by
∑i

j=m(t) and the product
∏N

j=i+1 by 1/
∏i

j=m(t). We
refer to Jamshidian (1999) for more details. The proper choice of a numeraire measure under which
the Lévy-driven LIBOR model is constructed may depend on the set of LIBORs involved in a particular
(structured) product which has to be evaluated by simulation. In principle, one should choose the measure
in such a way that the respective sum and product in the drift (2.6) involve as few terms as possible.

3 Efficient and accurate log-Lévy approximations

The aim of this section is to derive efficient and accurate log-Lévy approximations for the dynamics of
the LIBOR rates under the terminal measure. This is based on an appropriate approximation of the drift
term, cf. (2.6), which has two pillars:

1 expansion and truncation of the drift term,

2 Picard approximation of suitably defined processes.

We will first provide an overview of the approximation argument, and then present the full details in some
particular cases.

3.1 Outline of the method

Let us denote the log-LIBOR rates by Gi. They are defined via

Gi(t) := logLi(t),

and satisfy the integrated linear SDE, see (2.5),

Gi(t) = Gi(0) +

∫ t

0
bi(s)ds+

∫ t

0
λT
i (s)dH(s), (3.1)

0 ≤ t ≤ Ti, 1 ≤ i ≤ N . The semimartingale characteristics of Gi are

Bi =

∫ ·

0
bi(s)ds

Ci =

∫ ·

0
|λi|2(s)α(s)ds (3.2)∫ ·

0

∫
R
1A(x)F

i(s,dx)ds =

∫ ·

0

∫
Rm

1A
(
λT
i (s)x

)
F (s,dx)ds,

where A ∈ B(R \ {0}).

Inspired by the lognormal approximation developed by Kurbanmuradov et al. (2002) in the context of
the lognormal LIBOR market model, we will derive log-Lévy approximations for the dynamics of Li,
or equivalently Lévy approximations for the dynamics of Gi. The standard remedy for the numerical
problems arising in LMMs is to “freeze the drift”, that is to replace the random terms in (2.6) – or (2.7) –
by their deterministic initial values. In the present model, this obviously leads to a log-Lévy approximation,
which however is not accurate enough.

The method for deriving efficient and accurate log-Lévy approximations we propose can be summarized
in the following steps:
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� consider the different product terms
δj1Lj1

1+δj1Lj1
· · · δjpLjp

1+δjpLjp
=: Xj1...jp in (2.7), where i + 1 ≤

j1 < · · · < jp ≤ N ;

� define functions h : Rjp → R such that

h(Gj1 , . . . , Gjp) = Xj1...jp ;

� apply Itô’s formula to Xj1...jp , which leads to an SDE of the form

dXj1...jp(s) = Aj1...jp(s, L(s))ds+Bj1...jp(s, L(s))
TdW (s)

+

∫
Rm

Cj1...jp(s, x, L(s))µ̃(ds,dx), (3.3)

with L = [L1, . . . , LN ];

� use the first step of a Picard iteration to approximate Xj1...jp by the Lévy process

X
(1)
j1...jp

(t) = Xj1...jp(0) +

∫ t

0
Aj1...jp(s, L(0))ds (3.4)

+

∫ t

0
Bj1...jp(s, L(0))

TdWs +

∫ t

0

∫
Rm

Cj1...jp(s, x, L(0))µ̃(ds,dx);

� plug the Lévy processes X
(1)
j1...jp

into bi, cf. (2.7), which leads to a Lévy approximation for bi;

� finally, integrate by parts to deduce a Lévy approximation for Gi.

Remark 3. Note that the “frozen drift” approximation can be easily embedded in this scheme. It corre-

sponds to using just the initial values Xj1...jp(0) instead of the Lévy process X
(1)
j1...jp

in (3.4).

3.2 Log-Lévy approximation schemes

In the sequel, we are going to follow this recipe for deriving efficient and accurate log-Lévy approxima-
tions, and present the full details of the method. However, we will first truncate the drift terms at the
second order, in order to reduce the number of terms that need to be calculated.

1. The first step is to expand and truncate the drift term at the second order; these computations have
been deferred to Appendix A for brevity, see (A.5). We will approximate bi by b′′i , where

b′′i = −θi −
∑

i+1≤j≤N

δjLj−
1 + δjLj−

ηij

−
∑

i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

ζikl, (3.5)

where

θi = κ(λi), ηij = κ(λi + λj)− κ(λi)− κ(λj) (3.6)

and

ζikl = κ̂(λi + λk + λl)− κ̂(λi + λk)− κ̂(λi + λl)

− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl). (3.7)
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The number of terms to be calculated is thus reduced from O(2N ) to O(N2), while the error induced is

bi = b′′i +O(N2δ3∥L∥3). (3.8)

Therefore, the gain in computational time is significant, while the loss in accuracy is usually relatively
small. The numerical examples verify this, see section 5.1 for more details.

2. The second step is to approximate the random terms

Zj(t) :=
δjLj(t)

1 + δjLj(t)
and Ykl(t) :=

δkLk(t)

1 + δkLk(t)

δlLl(t)

1 + δlLl(t)
(3.9)

in (3.5) by a time-inhomogeneous Lévy process. Define the functions

f(x) =
δje

x

1 + δjex
and g(xk, xl) =

δke
xk

1 + δkexk

δle
xl

1 + δlexl
,

where

f ′(x) =
δje

x

(1 + δjex)2
and f ′′(x) =

δje
x(1− δje

x)

(1 + δjex)3
.

The partial derivatives of g can be computed equally easily, and are denoted

gk =
∂

∂xk
g, gl =

∂

∂xl
g, gkl =

∂2

∂xk∂xl
g, (3.10)

and so forth. We obviously have that

Zj(t) = f
(
Gj(t)

)
and Ykl(t) = g

(
Gk(t), Gl(t)

)
. (3.11)

The functions f and g are C2-differentiable, hence we can apply Itô’s formula for semimartingales (cf.
e.g. Jacod and Shiryaev 2003, Theorem I.4.57) to Zj and Ykl. Using (3.1) we may derive (with time
variable s suppressed or denoted by · in the integrands)

dZj =

(∫
Rm

(
f(Gj + λT

j x)− f(Gj)− f ′ (Gj)λ
T
j x
)
F (·,dx) (3.12)

+ f ′ (Gj) b
′′
j +

1

2
f ′′ (Gj) |λj |2 α

)
ds+ f ′ (Gj)

√
αλT

j dW

+

∫
Rm

(
f(Gj− + λT

j x)− f(Gj−)
)
(µ(ds,dx)− F (·,dx)ds) .

The derivation is given in Appendix B. Hence, we have that

dZj(s) = Aj(s, L(s))ds+BT
j (s, Lj(s))dW (s)

+

∫
Rm

Cj(s, Lj(s), x) (µ(ds, dx)− F (·,dx)ds) , (3.13)

with obvious definitions of the deterministic functions Aj , Bj , and Cj . Due to the drift term b′′j , the
function Aj depends on the whole LIBOR vector L rather than Lj only.

Similarly, we have for Ykl that

dYkl(s) = Akl(s, L(s))ds+BT
kl(s, Lkl(s))dW (s)

+

∫
Rm

Ckl(s, Lkl(s), x) (µ(ds,dx)− F (·,dx)ds) , (3.14)
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where Akl, Bkl, and Ckl are deterministic functions; see Appendix C for all the details. Analogously to
(3.13), Akl depends on the whole LIBOR vector L, while Bkl and Ckl depend on Lk and Ll only; this
is denoted by Lkl.

3. The next step is to approximate Zj and Ykl by suitable Lévy processes. This approximation is based
on a Picard iteration for the SDEs in (3.13) and (3.14). Regarding Z , the initial value of the Picard iteration
is

Z
(0)
j = Zj(0) =

δjLj(0)

1 + δjLj(0)
, (3.15)

while the first order Picard iteration is provided by

Z
(1)
j (t) = Zj(0) +

∫ t

0
Aj(s, L(0))ds+

∫ t

0
BT

j (s, Lj(0))dW (s)

+

∫ t

0

∫
Rm

Cj(s, Lj(0), x) (µ(ds,dx)− F (·,dx)ds) . (3.16)

We can easily deduce thatZ(1) is a time-inhomogeneous Lévy process, since the coefficientsAj(·, L(0)),
Bj(·, Lj(0)), and Cj(·, Lj(0), ·) in (3.16) are deterministic. Indeed, we have that

Aj(s, L(0)) = f ′ (Gj(0)) b
(0)
j (s) +

1

2
f ′′ (Gj(0)) |λj |2 (s)α(s)

+

∫
Rm

(
f(Gj(0) + λT

j (s)x)− f(Gj(0))− f ′ (Gj(0))λ
T
j (s)x

)
F (·,dx), (3.17)

where

b
(0)
j (s) := −θi(s) −

∑
i+1≤j≤N

δjLj−(0)

1 + δjLj−(0)
ηij(s)

−
∑

i+1≤k<l≤N

δkLk−(0)

1 + δkLk−(0)

δlLl−(0)

1 + δlLl−(0)
ζikl(s),

and

Bj(s, Lj(0)) = f ′ (Gj(0))
√

α(s)λj(s), (3.18)

Cj(s, Lj(0), x) = f
(
Gj(0) + λT

j (s)x
)
− f(Gj(0)). (3.19)

Analogously, the initial value of the Picard iteration for (3.14) is

Y
(0)
kl = Ykl(0) =

δkLk(0)

1 + δkLk(0)

δlLl(0)

1 + δlLl(0)
, (3.20)

and the first order iteration is

Y
(1)
kl (t) = Ykl(0) +

∫ t

0
Akl(s, L(0))ds+

∫ t

0
BT

kl(s, Lkl(0))dW (s)

+

∫ t

0

∫
Rm

Ckl(s, Lkl(0), x) (µ(ds, dx)− F (·,dx)ds) , (3.21)

and we can again deduce that Y
(1)
kl is an additive Lévy process.
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4. The fourth step is to apply the Lévy approximations of the random terms to (3.5). Let us denote by b̂i
the resulting approximate drift term; we have that

b′′i ≈ b̂i := −θi −
∑

i+1≤j≤N

ηijZ
(1)
j −

∑
i+1≤k<l≤N

ζiklY
(1)
kl . (3.22)

Keeping in mind that b̂i will be integrated over time, we define

Vij(s, t) =

∫ t

s
ηij(r)dr, and V ikl(s, t) =

∫ t

s
ζikl(r)dr,

which are obviously deterministic processes of finite variation. Now, for fixed t > 0, we can apply inte-
gration by parts, which yields∫ t

0
ηij(s)Z

(1)
j (s)ds

(3.16)
= Vij(0, t)Zj(0) +

∫ t

0
Vij(s, t)Aj(s, L(0))ds

+

∫ t

0
Vij(s, t)B

T
j (s, Lj(0))dW (s) (3.23)

+

∫ t

0
Vij(s, t)

∫
Rm

Cj(s, Lj(0), x)µ̃(ds,dx).

Similarly for the other term we get∫ t

0
ζikl(s)Y

(1)
kl (s)ds

(3.21)
= V ikl(0, t)Ykl(0) +

∫ t

0
V ikl(s, t)Akl(s, L(0))ds

+

∫ t

0
V ikl(s, t)B

T
kl(s, Lkl(0))dW (s) (3.24)

+

∫ t

0
V ikl(s, t)

∫
Rm

Ckl(s, Lkl(0), x)µ̃(ds,dx).

5. Finally, collecting all the pieces together we can derive a Lévy approximation for the log-LIBOR rates.
The approximate log-LIBOR is denoted by Ĝi and has the following dynamics

Ĝi(t) = Gi(0) +

∫ t

0
b̂i(s)ds+

∫ t

0
λT
i (s)dH(s), (3.25)
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which using (3.22), (3.23) and (3.24) leads to

Ĝi(t) = Ĝi(0, t)−
∫ t

0

θi(s) + ∑
i+1≤j≤N

Vij(s, t)Aj(s, L(0))

+
∑

i+1≤k<l≤N

V ikl(s, t)Akl(s, L(0))

 ds

+

∫ t

0

√α(s)λT
i (s)−

∑
i+1≤j≤N

Vij(s, t)B
T
j (s, Lj(0))

−
∑

i+1≤k<l≤N

V ikl(s, t)B
T
kl(s, Lkl(0))

dW (s)

+

∫ t

0

∫
Rm

λT
i (s)x−

∑
i+1≤j≤N

Vij(s, t)Cj(s, Lj(0), x)

−
∑

i+1≤k<l≤N

V ikl(s, t)Ckl(s, Lkl(0), x)

 µ̃(ds,dx), (3.26)

with
Ĝi(0, t) := Gi(0)−

∑
i+1≤j≤N

Vij(0, t)Zj(0)−
∑

i+1≤k<l≤N

V ikl(0, t)Ykl(0).

Let us abbreviate (3.26) by

Ĝi(t) = Ĝi(0, t) +

∫ t

0
Hi(t, s)ds+

∫ t

0
ΘT

i (t, s)dW (s) +

∫ t

0
Ii(t, s, x)µ̃(ds,dx)

=: X
(t)
i (t),

where the process X
(t)
i (r), 0 ≤ r ≤ t is defined by

X
(t)
i (r) := Ĝi(0, r) +

∫ r

0
Hi(t, s)ds+

∫ r

0
ΘT

i (t, s)dW (s) +

∫ r

0
Ii(t, s, x)µ̃(ds,dx).

Obviously, X
(t)
i (r), 0 ≤ r ≤ t is a time-inhomogeneous Lévy process whose characteristic function

may be expressed by the Lévy–Khintchine formula in terms of Hi, Θi and Ii in a straightforward manner.

Remark 4. We will call the approximation in (3.26) the second order log-Lévy approximation of the LIBOR
rate. If we ignore the second order terms (i.e. those depending on Lk and Ll), we immediately arrive at
the first order approximation. The numerical results in section 5 document the improvement from the first
to the second order approximation.

Remark 5. If we restrict our model to the Brownian motion case, the approximation in (3.26) coincides
with the “fully lognormal model” of Daniluk and Ga̧tarek (2005); see also Kurbanmuradov et al. (2002).

Remark 6. Note that the approximation methods developed in the previous sections do not depend
crucially on the choice of the measure. If we work under the spot measure, cf. Remark 2, then the Picard
approximations can be carried out similarly. However, an additional approximation is required to represent
the drift in terms of cumulants as in eq. (2.7) (because of the 1/

∏
j terms).
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3.3 Efficient simulation of the log-Lévy approximation

In this section, we outline how simulation of the Lévy approximation

Ĝi(t) = Ĝi(0, t) +

∫ t

0
Hi(t, s)ds+

∫ t

0
ΘT

i (t, s)dW (s) +

∫ t

0
Ii(t, s, x)µ̃(ds,dx) (3.27)

can be carried out in an effective way due to the fact that Ĝi(0, t) and the integrands in (3.27) are ex-
plicitly known deterministic functions.

(I) The terms Ĝi(0, t) and
∫ t
0 Hi(t, s)ds are deterministic integrals which may be computed outside any

Monte Carlo loop using some quadrature formula.

(II) The Gaussian part

ςi(t) :=

∫ t

0
ΘT

i (t, s)dW (s) (3.28)

may be computed either by usual Euler stepping, or even directly at some fixed time t if only the distri-
bution of Ĝ(t) matters. In this respect, the distribution of any vector (ςi1(t), ..., ςik(t)) — for simulating

a set of log-LIBORs (Ĝi1(t), ..., Ĝik(t))) — is Gaussian with explicitly known covariance structure, and
thus can be simulated straightforwardly.

(III) Finally, consider the practically important case where the Lévy measure itself is time homogeneous,
i.e. F (dx) ≡ F (·,dx). After truncating this measure with respect to jumps with size smaller than some
ϵ > 0 (if needed), simulation of a realization of the jump term in (3.27) may effectively be carried out
as follows. First sample on the interval (0, t) the number Nt (of jump times) according to a Poisson
distribution with intensity tF ({||x|| > ϵ}). Next distribute Nt jump points {s1, ..., sNt} uniformly over
the interval (0, t), and sample independently for each jump point sl a jump xl, 1 ≤ l ≤ Nt from the
probability measure

F (dx ∩ {||x|| > ϵ})
F ({||x|| > ϵ})

.

Then a realization of the (compensated) jump term is obtained as

ςJi (t) :=

Nt∑
l=1

Ii(t, sl−, xl)−
∫ t

0

∫
||x||>ϵ

Ii(t, s, x)F (dx)ds, (3.29)

where the deterministic integral term can be computed outside any Monte Carlo loop by standard meth-
ods. Note that a realization of the whole log-LIBOR vector (ςJ1 (t), . . . , ς

J
N (t)) will be computed using

the same set of jumps (sl, xl), l = 1, ..., Nt.

The main benefit from the log-Lévy approximation as outlined above, is the fact that for the simulation
of a log-LIBOR vector (Ĝi(t), ..., ĜN (t)), the computation of the terms in (2.5) via (2.7) or (3.5) based
on each realization of the Brownian motion and the jump process on a fine enough time grid is not
required. This is in clear contrast to the Euler (or predictor-corrector) discretization of (2.5) and (2.7). It is
obvious that in view of the complex structure of (3.5) only, such a simulation would require the (accurate
enough) construction of a whole log-LIBOR system (Ĝi(tj), ..., ĜN (tj)) for 0 < t1 < · · · < tn := t
involving the evaluation of the function b′′ at each grid point tj . In contrast, simulation of the log-Lévy
LIBOR approximation only involves the evaluation of (3.29) at the jump times and the relatively efficient
simulation of the Wiener integral (3.28) inside a Monte Carlo loop.
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4 Error estimates

In this section, we will provide some error estimates for the log-Lévy approximations in order to offer
a theoretical justification for the proposed approximations. The error estimates are rather qualitative in
nature, however they allow for useful conclusions.

In view of (3.25) we have for the pathwise error of the (log-)LIBOR approximation,∣∣∣∣∣ L̂i(t)

Li(t)

∣∣∣∣∣ ≤ exp
∣∣∣Ĝj(t)−Gj(t)

∣∣∣ ≤ exp

(∫ t

0

∣∣∣̂bi(s)− bi(s)
∣∣∣ ds) ,

thus we need to study the difference |̂bi − bi|. Since the main contribution of this error is due to the first
and second order term in (2.7), we consider instead (see (3.5))∣∣∣̂bi − b′′i

∣∣∣ ≤ ∑
i+1≤j≤N

∣∣∣Zj − Z
(1)
j

∣∣∣ |ηij |+ ∑
i+1≤k<l≤N

∣∣∣Ykl − Y
(1)
kl

∣∣∣ |ζikl| .
Let us assume for simplicity that α(s) ≡ 1, and that Kη and Kζ are (dimensionless) constants such
that

max
1≤i<j≤N

|ηij | ≤ Kη max
1≤i≤N

sup
0≤t≤T

∥λi(t)∥22 =: Kηλ
2
max,

max
1≤i<k<l≤N

|ζikl| ≤ Kζ max
1≤i≤N

sup
0≤t≤T

∥λi(t)∥22 =: Kζλ
2
max.

We then have∥∥∥∥∥log
∣∣∣∣∣ L̂i(t)

Li(t)

∣∣∣∣∣
∥∥∥∥∥
L2(P∗)

≤ Kηλ
2
max max

i+1≤j≤N

∫ t

0

∥∥∥Z(1)
i (s)− Zi(s)

∥∥∥
L2(P∗)

ds

+Kζλ
2
max max

i+1≤k<l≤N

∫ t

0

∥∥∥Y (1)
kl (s)− Ykl(s)

∥∥∥
L2(P∗)

ds =: (I) + (II).

For the term (I) we get from (3.13) and (3.16)∥∥∥Z(1)
j (s)− Zj(s)

∥∥∥
L2(P∗)

≤
∫ s

0
|Aj(u, L(0))−Aj(u, L(u))|L2(P∗)

du

+

(∫ s

0
E ∥Bj(u, Lj(0))−Bj(u, Lj(u))∥22 du

)1/2

+

(∫ s

0

∫
Rm

E (Cj(u, Lj(0), x)− Cj(u, Lj(u), x))
2 F (u,dx)du

)1/2

.

In view of (3.17), (3.18) and (3.19), let KA, KB, KC be dimensionless Lipschitz constants such that for
all 1 ≤ j ≤ N and 0 ≤ u ≤ T∗, ∣∣Aj(u, y)−Aj(u, y

′)
∣∣ ≤ KAλ

2
max

∥∥y − y′
∥∥
2
,∥∥Bj(u, yj)−Bj(u, y

′
j)
∥∥
2
≤ KBλmax

∣∣yj − y′j
∣∣ ,∫

Rm

(
Cj(u, yj , x)− Cj(u, y

′
j , x)

)2
F (u,dx) ≤ K2

Cλ
2
max

∣∣yj − y′j
∣∣2 .
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Then, using∥∥∥Z(1)
j (s)− Zj(s)

∥∥∥
L2(P∗)

≤ KAλ
2
max

∫ s

0
∥L(0)− L(u)∥2,L2(P∗)

du

+ (KB +KC)λmax

(∫ s

0
E |Lj(0))− Lj(u)|2 du

)1/2

,

we obtain the estimate

(I) ≤ λ4
maxKηKA

∫ t

0

(∫ s

0
∥L(0)− L(u)∥2,L2(P∗)

du

)
ds

+ λ3
maxKη (KB +KC)

∫ t

0
max

i+1≤j≤N

(∫ s

0
E |Lj(0))− Lj(u)|2 du

)1/2

ds,

and a similar expression may be obtained for the second term (II).

On an intuitive level we may interpret the estimates (I) and (II) in the following way: if we roughly
consider that (the approximate squared variance) E |Lj(0))− Lj(u)|2 / λ2

maxu, then for (I) we
obtain

(I) / λ5
maxKηKA

∫ t

0

∫ s

0

√
u du ds

+ λ4
maxKη (KB +KC)

∫ t

0

(∫ s

0
udu

)1/2

ds

=
4

15
λ5
maxKηKAt

5/2 +

√
2

4
λ4
maxKη (KB +KC) t

2,

and a similar result for (II). Hence, for some dimensionless constants K1 and K2,∥∥∥∥∥log
∣∣∣∣∣ L̂i(t)

Li(t)

∣∣∣∣∣
∥∥∥∥∥
L2(P∗)

/ K1

(
λ2
maxt

)5/2
+K2

(
λ2
maxt

)2
.

Concluding, the log-Lévy LIBOR approximations are extremely good as long as λ2
maxt is small enough

but, may become poor as soon as this product grows very large. This issue is confirmed in our numerical
experiments.

5 Numerical illustrations

Throughout this section, we will consider a simple example with a flat and constant volatility structure.
Similarly zero coupon rates are generated from a flat term structure of interest rates: B(0, Ti) =
exp(−0.04 · Ti). We consider a tenor structure with 6 month increments (i.e. δi = 1

2 ). As stated in
the introduction, the Brownian motion case is already well studied; therefore we set α = 0, thus limiting
ourselves to the case where H is a pure jump Lévy process. We consider two univariate specifications,
for simplicity. The first is a tempered stable or CGMY process (cf. Carr, Geman, Madan, and Yor 2002
and Madan and Yor 2008) with parameters M = G = 13, Y = 0.25 and C = 48.4201, resulting
in a process with mean zero and variance 1 (at t = 1), infinite activity and finite variation. The CGMY
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process has cumulant generating function defined for all u ∈ C with |ℜu| ≤ min(G,M),

κCGMY(u) = Γ(−Y )GY

{(
1− u

G

)Y
− 1 +

uY

G

}
+ Γ(−Y )MY

{(
1 +

u

G

)Y
− 1− uY

M

}
. (5.1)

The necessary conditions are then satisfied for term structures up to at least 10 years of length because
M = min(G,M), hence

∑20
i=1 |λi| ≤ 12 < M . Exact simulation of the increments can be performed

without approximation using the approach in Poirot and Tankov (2006). This approach can be used when
simulating from (3.1) with or without drift expansions, but cannot be employed in the case of the log-Lévy
approximation in (3.26) where jump sizes are transformed in a non-linear fashion. Instead we employ an
approximation where we replace jumps smaller than ϵ with their expectation which is zero since the jumps
are compensated. This means that jumps bigger than ϵ follow a compound Poisson process which can
be easily simulated using the so-called Rosinski rejection method (see Rosiński 2001 and Asmussen and
Glynn 2007, p. 338). We set the truncation point sufficiently low, at ϵ = 10−3, thus making the variance
of the truncated term

∫ ϵ
−ϵ x

2ν(dx) = 3.11 × 10−4, which can be considered small enough to safely
disregard. To be consistent, we employ this procedure everywhere we simulate from the CGMY process.

The second specification is a compound Poisson process with normally distributed jump sizes — often
referred to as the Merton model. The cumulant generating function for u ∈ C is

κMerton(u) = λ̄
(
exp(µ̄u+ σ̄2u2)− 1− µ̄u

)
. (5.2)

We set λ̄ = 5, µ̄ = 0 and σ̄ =
√

1/λ̄ yielding a process with mean zero and variance 1 (at t = 1), as
before.

In order to verify the validity of our approximations we consider both linear and nonlinear payoffs; in
particular, forward rate agreements (FRAs), caplets and swaptions. To price FRAs and caplets with strike
K maturing at time Ti, we compute the following expectations:

FRA0 = δB(0, T∗) IEIP∗

[ N∏
l=i+1

(
1 + δLl(Ti+1)

)
(Li(Ti)−K)

]
, (5.3)

C0 = δB(0, T∗) IEIP∗

[ N∏
l=i+1

(
1 + δLl(Ti+1)

)
(Li(Ti)−K)+

]
. (5.4)

Following Kluge (2005, pp. 78), we have that the price of a payer swaption with strike rate K , where the
underlying swap starts at time Ti and matures at Tm (i < m ≤ N ) is given by

S0 = B(0, T∗) IEIP∗

(− m∑
k=i

(
ck

N∏
l=k

(1 + δLl(Ti))

))+
 , (5.5)

where

ck =


−1, k = i,
δkK, i+ 1 ≤ k ≤ m− 1,
1 + δkK, k = m.

(5.6)
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5.1 Performance of the drift expansion

As we have argued in section 3.2, the truncation of the drift term in equation (2.6) is necessary in order
to build a model that is computationally tractable. This section illustrates the effect of this truncation using
the standard Euler discretization of the actual dynamics, i.e. equations (2.5) and (2.7).

Due to the complexity of calculating the true drift we limit ourselves to setting N = 10, corresponding
to a 5 year term structure. Furthermore we consider volatility structures constant and flat at λi = 0.2
and λi = 0.6 respectively. We simulate 10000 paths and plot the absolute difference between the
prices from the drift expansions and the price without expansion (i.e. the full drift in (2.6)) in Figures
5.1 and 5.2. Each Monte Carlo simulation is done using the same random shocks for each method,
thus eliminating the Monte Carlo noise as an error source. The figures demonstrate that the effect of
the truncation depends mostly on the level of volatility λi and less in the choice of product to price or
the driving process. Furthermore, we notice that for low volatility even the first order expansion can be
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Figure 5.1: Drift expansion: low volatility scenario.

considered adequate, since the maximum of the absolute error is smaller than 0.2 bp. Conversely, for the
high volatility case, the second order expansion is necessary to get proper accuracy. However, going to
the third order expansion or beyond appears to be unnecessary as there is no visible gain in accuracy
(< 10−5 bp). Hence, in the next sections we will use the second order drift expansion as our benchmark
case since any resulting error is small enough to be disregarded.

In Table 5.1, CPU times are shown when simulating 10000 paths on an Intel i7 PC running Matlab.
Here we can see that highly significant speed-up is achieved when truncating the higher order drift
terms, whereas the decrease in speed when taking higher order approximations into account is relatively
negligible. The CGMY is slower than the Merton model due to the much higher jump intensity needed in
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Figure 5.2: Drift expansion: high volatility scenario.

its approximation. We conjecture that the efficiency can be improved using the methods of Kohatsu-Higa
and Tankov (2010), but this lies outside the focus of this article.

Full Drift 1st order 2nd order 3rd order
Merton 358.5 3.95 4.48 4.79
CGMY 471.9 16.29 16.59 16.74

Table 5.1: CPU Times (secs) for 10000 paths

Finally, to conclude the subsection we should also mention that pricing errors for swaptions (not shown
here) are of similar order of magnitude as in case of caplets.

5.2 Performance of the log-Lévy approximations

Next we study the performance of the log-Lévy approximations. We increase the number of rates to the
more realistic setting of N = 20 and consider the pricing of FRAs, caplets and swaptions; the latter
are maturing at time Ti and ending at (Ti + 3) years. Since we have established that errors from the
drift expansion can be disregarded, we consider as the benchmark case the second order drift expansion
studied in the previous section. In Figure 5.3 we plot prices from the frozen drift, the first and second order
log-Lévy approximations of section 3, and include the annuity approximation of the following section for
completeness. We use both the Merton and the CGMY model. We can observe that the frozen drift is
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consistently beaten by both the 1st and 2nd order approximation in both models and for all three products.
The 1st and 2nd order log-Lévy approximations have a quite similar performance suggesting that second
order approximation may not be necessary. Note that other parameter values (higher/lower intensity for
Merton and fatter tails/slower tail decay for CGMY) have also been studied and again the results are
qualitatively the same.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

Maturity

P
ric

e 
in

 b
p

ATM FRAs Merton  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

Maturity
P

ric
e 

in
 b

p

ATM FRAs CGMY  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

0 2 4 6 8 10
10

15

20

25

30

35

Maturity

P
ric

e 
in

 b
p

ATM CPLs Merton  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

0 2 4 6 8 10
10

15

20

25

30

35

Maturity

P
ric

e 
in

 b
p

ATM CPLs CGMY  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

0 1 2 3 4 5 6 7
50

100

150

200

Maturity

P
ric

e 
in

 b
p

ATM SWPTs Merton  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

0 1 2 3 4 5 6 7
50

100

150

200

Maturity

P
ric

e 
in

 b
p

ATM SWPTs CGMY  λ
i
=0.2

 

 

benchmark
log−levy 1st order
log−levy 2nd order
annuity approx.
frozen

Figure 5.3: Prices for the Merton and CGMY models.

Concluding, the log-Lévy approximations offer an alternative to the Euler (or predictor-corrector) dis-
cretization of the actual dynamics which can be simulated faster and yields almost as accurate options
prices.
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6 Approximation of annuities

In the lognormal LIBOR market model, it is well documented that problems may occur for high volatilities
due to a proportionally large Monte Carlo variance in the annuity term used for discounting under the
terminal measure, see Beveridge (2010) and Gatarek et al. (2006). Motivated by this numerical problem,
we will derive an approximation of the annuity term in the spirit of Gatarek et al. (2006, §10.13).

Let us define the annuity term

Ai(t) =
N∏

j=i+1

(1 + δLj(t)), (6.1)

and consider the vector of log-LIBOR ratesG = [Gi+1, . . . , GN ]. We define a function f : RN−(i+1) →
R such that

(xi+1, . . . , xn) = x 7−→
N∏

j=i+1

(1 + δexj ).

The partial derivatives of f are provided by

fk(x) =
∂

∂xk
f(x) =

N∏
j=i+1
j ̸=k

(1 + δexj )δexk = f(x)
δexk

1 + δexk
,

for all i+ 1 ≤ k ≤ N , while we obviously have that

f(G(t)) = Ai(t). (6.2)

Applying Itô’s formula to f(G), we have that

f(G(t)) = Ai(t) = Ai(0) +

N∑
j=i+1

∫ t

0
fj(G(s−))dGj(s)

+
1

2

N∑
j,k=i+1

∫ t

0
fj,k(G(s−))d⟨Gk, Gj(s)⟩c(s)

+
∑
s≤t

∆f(G(s))−
N∑

j=i+1

fj(G(s−))∆Gj(s)

 . (6.3)

Noting that the annuity is a IP∗-martingale, we will focus on the martingale parts of (6.3) in the sequel.
Using (3.1) and the fact that H is also a IP∗-martingale, we get that the martingale part of the first
summand is

N∑
j=i+1

∫ t

0
fj(G(s−))λj(s)dH(s) =

N∑
j=i+1

∫ t

0

δLj(s−)

1 + δLj(s−)
f(G(s−))λj(s)dH(s)

=

∫ t

0
Ai(s−)

N∑
j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)dH(s).

18



The second summand is omitted, while the final summands yields that

∑
s≤t

∆f(G(s))−
N∑

j=i+1

fj(G(s−))∆Gj(s)


=
∑
s≤t

∆Ai(s)−Ai(s−)

N∑
j=i+1

δLj(s−)

1 + δLj(s−)
∆Gj(s)


=
∑
s≤t

∆Ai(s)−Ai(s−)

N∑
j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)∆H(s)


=

∫ t

0

∫
Rm

Ai(s)−Ai(s−)−Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)x

 µ̃(ds,dx)

−
∫ t

0

∫
Rm

Ai(s)−Ai(s−)−Ai(s−)
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s)x

F (s,dx)ds, (6.4)

where the quantity Ai in the last two integrals should be understood as

Ai(s) =
N∏

j=i+1

(
1 + δ exp

{
Gj(s−) + λT

j (s)x
})

. (6.5)

Collecting all the pieces together, we have that the annuity Ai satisfies the following integrated SDE

Ai(t) = Ai(0) +

∫ t

0
Ai(s−)Λi(s−)dH(s)

+

∫ t

0

∫
Rm

{Ai(s)−Ai(s−)−Ai(s−)Λi(s−)} µ̃(ds, dx)

= Ai(0) +

∫ t

0
Ai(s−)Λi(s−)dH(s)

+

∫ t

0

∫
Rm

Ai(s−)

{
Ai(s)

Ai(s−)
− 1− Λi(s−)x

}
µ̃(ds, dx), (6.6)

where

Λi(s−) =
N∑

j=i+1

δLj(s−)

1 + δLj(s−)
λj(s). (6.7)

The solution of the SDE (6.6) is the stochastic exponential, thus we get that

Ai(t) = Ai(0) exp

(∫ t

0
Λi(s−)dW (s)− 1

2

∫ t

0

(
Λi(s−)

)2
ds

+

∫ t

0

∫
Rm

{
Ai(s)

Ai(s−)
− 1

}
µ̃(ds, dx) (6.8)

−
∫ t

0

∫
Rm

(
log

{
Ai(s)

Ai(s−)

}
− Ai(s)

Ai(s−)
+ 1

)
µ(ds,dx)

)
,
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where again Ai(s) should be understood as in (6.5). By freezing the random terms in the drifts and
jump sizes in the above dynamics we get an alternative approximation for the annuity term. Note that the
resulting approximation is also a log-Lévy approximation.

We can now use this approximation to price caplets and swaptions, noting that their respective payoffs
can be written in terms of annuities:

C0 = δB(0, T∗) IEIP∗

[
(Ai−1(Ti+1) + (1− δiK)Ai(Ti+1))

+
]
, (6.9)

S0 = B(0, T∗) IEIP∗

[(
−

m∑
k=i

ckAk−1(Ti)

)+]
, (6.10)

where the ck ’s are defined in (5.6). Any other payoff can be expressed in terms of annuities in a similar
fashion.

6.1 Performance of the annuity approximation
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Figure 6.1: Caplet prices as a function of volatility (N = 20).

In Figure 6.1, the quality of the various approximations is studied for a number of at-the-money caplets
as a function of the volatility. As before we set the number of rates to N = 20, and simulate 50000
paths for each volatility level. The plot is for the Merton model while the results are similar for CGMY.
Using that at-the-money call option prices are increasing and roughly linear functions of volatility (see
for example Wilmott 1998, Brenner and Subrahmanyam 1994 and Backus, Foresi, and Wu 2004 for
the case of non-Gaussian distributions), we can observe that only the annuity approximation produces
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Figure 6.2: Caplet prices as a function of volatility (N = 10).

sensible option prices at all levels of volatility. Moreover, even the benchmark case fails when volatility
grows beyond 30%, meaning that the Monte Carlo simulation has failed to converge. The frozen drift
fails at even lower levels of volatility, while the log-Lévy approximations fail at a higher level, similar to
the benchmark case. The annuity approximation works for all (higher) levels and also, as we have seen
in Figure 5.3, for the low levels. One should therefore be careful when the average (across maturity)
at-the-money implied volatilities are above 30% which is indeed the case in the current market for USD
denominated LIBOR caplets where volatilities range from roughly 80% in the short end to 25% in the
long end (source: Bloomberg).

Moreover, in Figure 6.2 we observe that this problem becomes significantly less severe when limiting the
number of rates to 10 with δi = 1 instead of 20 with δi = 0.5. Needless to say, limiting the number of
rates is rarely a possibility in practice.

In order to intuitively understand why this approximation performs better in the high volatility case than the
other methods (e.g. the standard Euler scheme or the log-Lévy approximations), let us just concentrate
on the lognormal case. We have from (6.8) that

logAi(t) ∼=
N∑

j=i+1

δLj(0)

1 + δLj(0)
λj ·

√
tN + deterministic terms, (6.11)

where N denotes a standard normal random variate. On the other hand, from (6.1), we get that

logAi(t) ∼=
N∑

j=i+1

δ exp
(
λj ·

√
tN + random terms

)
, (6.12)

where actually the method of approximation will only affect the random terms. We can easily conclude
from (6.11) and (6.12) that the variance of the annuity approximation is significantly lower that the vari-
ance of the standard representation, which results in the faster convergence of the Monte Carlo method.
Thus, the annuity log-Lévy approximation should be interpreted as a variance reduction technique for the
LIBOR market model.
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7 Economically meaningful multi-dimensional Lévy measures via subor-
dination

Next, we reflect on the properties the driving process should have for practical applications and provide
some recommendations. In an economically realistic Lévy LIBOR model the very structure of the Lévy
measure is important. Since, from an economic point of view, any jump in the daily rate typically affects
all segments of the yield curve, we require in our modeling that, at a jump time, all the LIBORs jump,
not only the first or second half of the LIBOR curve for example. Moreover, this requirement should
be fulfilled regardless of the structure of the loading factors λi; the latter may be inferred from some
calibration procedure for instance. A natural way to meet this property is to take Lévy measures which
are absolutely continuous. In a jump-diffusion setting this can be easily established by taking as Lévy
measure the product of one dimensional absolutely continuous probability measures pi, i.e.

ν(dx) = p1(dx1) · · · pm(dxm); (7.1)

see Belomestny and Schoenmakers (2011). In this paper we consider LIBOR models based on Lévy
processes with possibly infinite activity, thus having available flexible and realistic LIBOR models possibly
without Wiener part (i.e. α ≡ 0). However, Lévy measures of infinite activity cannot be obtained by simply
taking the product of a set of one-dimensional Lévy measures of infinite activity. Nonetheless, we seek
for absolutely continuous infinite activity Lévy measures such that the entailed jump processes maintain
certain (weak) independence properties. Such measures may be constructed by Brownian subordination
(see e.g. Cont and Tankov 2004) as outlined below.

Let W be a Wiener process on Rm. The characteristic function of W (t) is given by

IE
[
eizW (t)

]
= e−

t
2
∥z∥2 =: etΨ(z), z ∈ Rm.

We now consider a subordinator (St)t≥0 on R+, with Lévy triplet (0, 0, ρ), and with Laplace exponent
Ξ, i.e.

IE
[
euSt

]
= etΞ(u) := exp

(
t

∫
(0,∞)

(esu − 1) ρ(ds)
)
, u ≤ 0.

Then the m-dimensional process Y defined by

Y (t) := W (St)

has characteristic function

IE
[
eiz

TY (t)
]
= IE

[
IE
[
eiz

TW (St)|St

]]
= IE

[
eStΨ(z)

]
= etΞ(Ψ(z))

= exp

[
t

∫
(0,∞)

(
esΨ(z) − 1

)
ρ(ds)

]

= exp

[
t

∫
(0,∞)

(
e−

s
2
∥z∥2 − 1

)
ρ(ds)

]
=: exp [tΦ(z)]

As a result, Y is a pure jump martingale Lévy process with Lévy measure νY satisfying

Φ(z) =

∫
(0,∞)

(
e−

s
2
∥z∥2 − 1

)
ρ(ds) =

∫
Rm

(eiz
Tx − 1− izTx)νY (dx). (7.2)
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It is easily checked that

νY (dx) =

∫ ∞

0

1(√
2πs
)m e−

1
2s

||x||2ρ(ds)dx, (7.3)

which is a measure with absolutely continuous support.

Example 7. Let (St)t≥0 be the inverse Gaussian subordinator with

ρ(ds) =
ce−λs

s3/2
1{s>0}ds, and IE

[
euSt

]
= e−2ct

√
π(

√
λ−u−

√
λ).

Then, (7.2) is known explicitly as

Φ(z) = −2c
√
π

(√
λ+

σ2

2
∥z∥2 −

√
λ

)
,

e.g. see Cont and Tankov (2004).

Example 8. Let (St)t≥0 be a Lévy subordinator with the following properties:

ρ(dt) = Ce−
t
4
GD−Y (G)1{t>0}dt,

Ξ(u) = 2CΓ(−Y )

[
(G2 − 2u)Y/2 cos

(
Y arctan

(√
−2u

G

))
−GY

]
,

where D is the parabolic cylinder function. Then, (7.2) is known explicitly as the Lévy exponent of the
CGMY process, cf. (5.1), with G = M ; see Madan and Yor (2008).

Remark 9. By taking in (2.2) F (s, dx) := νY (dx) with νY given by (7.3), the jump-part of (2.2) is
represented by the process Y constructed above. It is easy to see that Y has uncorrelated components,
although they are generally not independent. Indeed, Y (t) has mean zero and we have that

IE
[
Y (k)(t)Y (l)(t)

]
= IE

[
IE
[
W (k)(St)W

(l)(St) | St

]]
= 0, 1 ≤ k < l ≤ m.

Thus in contrast to the jump-diffusion situation in Belomestny and Schoenmakers (2011) where all com-
ponents jump at the same time independently, here the components of Y still jump at the same time but
in an uncorrelated rather than in an independent way.

A Computation of the drift

A.1 Full expansion in terms of cumulants

We will derive a representation for the integral term of the drift (2.6) which does not involve an integration
over random terms. Let us denote the integral term by

Bi :=

∫
Rm

(eλT
i x − 1

) N∏
j=i+1

1 +
δjLj−

(
eλ

T
i x − 1

)
1 + δjLj−

− λT
i x

F (·,dx).
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Observe that

l∏
j=1

(1 + wj) = 1 +
∑

1≤j≤l

wj +
∑

1≤j1<j2≤l

wj1wj2

+
∑

1≤j1<j2<j3≤l

wj1wj2wj3 + ...+ w1 · · ·wl

= 1 +

l∑
p=1

Sl
p(w1, ..., wl),

where Sl
p denotes the elementary symmetric polynomial of degree p in l variables, i.e.

Sl
p(w1, ..., wl) :=

∑
1≤j1<···<jp≤l

wj1 · · ·wjp , 1 ≤ p ≤ l.

Thus Bi may be rearranged as follows:

Bi =

∫ (
eλ

T
i x − 1− λT

i x
)
F (·,dx) +

N−i∑
p=1

∫ (
eλ

T
i x − 1

)
×

SN−i
p

δi+1Li+1−

(
eλ

T
i+1x − 1

)
1 + δi+1Li+1−

, . . . ,
δNLN−

(
eλ

T
Nx − 1

)
1 + δNLN−

F (·,dx)

:= (I) + (II).

Let us consider in (II) for p ≥ 1 the term

∫ (
eλ

T
i x − 1

)
SN−i
p

δi+1Li+1−

(
eλ

T
i+1x− 1

)
1 + δi+1Li+1−

, . . . ,
δNLN−

(
eλ

T
Nx − 1

)
1 + δNLN−

F (·,dx)

=
∑

i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
∫ (

eλ
T
i x − 1

)(
e
λT
j1
x − 1

)
· · ·
(
e
λT
jp
x − 1

)
F (·,dx).

With j0 := i, we may write (
eλ

T
i x − 1

)(
e
λT
j1
x − 1

)
· · ·
(
e
λT
jp
x − 1

)
(A.1)

= (−1)p+1
(
1− e

λT
j0
x
)(

1− e
λT
j1
x
)
· · ·
(
1− e

λT
jp
x
)

= (−1)p+1

1 + p+1∑
q=1

Sp+1
q (−e

λT
j0
x
, . . . ,−e

λT
jp
x
)

 = (−1)p+1 [1 + (∗)]
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where

(∗) =
p+1∑
q=1

(−1)qSp+1
q (e

λT
j0
x
, . . . , e

λT
jp
x
) =

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

e
λT
jr1

x · · · eλ
T
jrq

x

=

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
e
λT
jr1

x+···+λT
jrq

x − 1− (λT
jr1

x+ · · ·+ λT
jrq

x)

)
︸ ︷︷ ︸

O(∥x∥2)

+

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
1 + λT

jr1
x+ · · ·+ λT

jrq
x
)
.

Obviously, expression (A.1) is of order O(∥x∥2) for any p ≥ 1, hence (!) it must hold

1 +

p+1∑
q=1

(−1)q
∑

0≤r1<···<rq≤p

(
1 + λT

jr1
x+ · · ·+ λT

jrq
x
)
= 0.

Therefore, we can deduce the following representation for the integral term

Bi =

∫ (
eλ

T
i x − 1− λT

i x
)
F (·,dx)

+

N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

p+1∑
q=1

(−1)p+q+1

×
∑

0≤r1<···<rq≤p

∫ (
e

(
λjr1

+···+λjrq

)T
x − 1−

(
λjr1

+ · · ·+ λjrq

)T
x

)
F (·,dx)

= κ̂(λi) +

N−i∑
p=1

∑
i<j1<···<jp≤N

δj1Lj1−
1 + δj1Lj1−

· · ·
δjpLjp−

1 + δjpLjp−

×
p+1∑
q=1

(−1)p+q+1
∑

0≤r1<···<rq≤p

κ̂
(
λjr1

+ · · ·+ λjrq

)
. (A.2)

A.2 First order expansion of (A.2)

Let us consider the first order expansion of Bi; we get

Bi = κ̂(λi) +
∑

i<j<n

δjLj−
1 + δjLj−

2∑
q=1

(−1)q
∑

0≤r1<···<rq≤1

κ̂
(
λjr1

+ · · ·+ λjrq

)
+O(∥L∥2).

Note that
2∑

q=1

(−1)q
∑

0≤r1<···<rq≤1

κ̂
(
λjr1

+ · · ·+ λjrq

)
= −

∑
0≤r1≤1

κ̂
(
λjr1

)
+

∑
0≤r1<r2≤1

κ̂
(
λjr1

+ λjr2

)
= −κ̂ (λj0)− κ̂ (λj1) + κ̂ (λj0 + λj1) .
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Thus we obtain the following expression for the first order expansion of the integral term Bi

B′
i = κ̂(λi) +

∑
i<j≤N

δjLj−
1 + δjLj−

(
κ̂(λi + λj)− κ̂(λi)− κ̂(λj)

)
, (A.3)

which leads to the following approximation for the drift term bi in (2.6)

b′i = κ(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ(λi + λj)− κ(λi)− κ(λj)

)
, (A.4)

taking also the terms stemming from the diffusion into account.

A.3 Second order expansion of (A.2)

Analogously, we can also derive a second order expansion of Bi; we get

Bi = κ̂(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ̂(λi + λj)− κ̂(λi)− κ̂(λj)

)
+

∑
i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

(
κ̂(λi + λk + λl)− κ̂(λi + λk)

− κ̂(λi + λl)− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl)
)

+O(∥L∥3),

which leads to the following second order expansion of bi in (2.6)

b′′i = κ(λi) +
∑

i<j≤N

δjLj−
1 + δjLj−

(
κ(λi + λj)− κ(λi)− κ(λj)

)
+

∑
i+1≤k<l≤N

δkLk−
1 + δkLk−

δlLl−
1 + δlLl−

(
κ̂(λi + λk + λl)− κ̂(λi + λk)

− κ̂(λi + λl)− κ̂(λk + λl) + κ̂(λi) + κ̂(λk) + κ̂(λl)
)
. (A.5)

B Derivation of (3.12)

Using the Itô formula for general semimartingales (cf. Jacod and Shiryaev 2003, Theorem I.4.57) we
have

Zj = Zj(0) +

∫ ·

0
f ′(Gj(s−))dGj +

1

2

∫ ·

0
f ′′(Gj)d⟨Gc

j , G
c
j⟩

+
∑
0<s≤·

(
f(Gj(s))− f (Gj(s−))− f ′ (Gj(s−))∆Gj(s)

)
, (B.1)

where ⟨Gc
j , G

c
j⟩ denotes the quadratic variation of the continuous martingale part of Gj , that is

d⟨Gc
j , G

c
j⟩(s) = |λj |2 (s)α(s)ds. (B.2)
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The sum in (B.1), using (3.2), may be written as∑
0<s≤·

(
f(Gj(s−) + ∆Gj(s))− f (Gj(s−))− f ′ (Gj(s−))∆Gj(s)

)
(B.3)

=

∫ ·

0

∫
Rm

(
f(Gj(s−) + λT

j x)− f (Gj(s−))− f ′ (Gj(s−))λT
j x
)
µ(ds,dx)

=

∫ ·

0

∫
Rm

(
f(Gj(s−) + λT

j x)− f (Gj(s−))− f ′ (Gj(s−))λT
j x
)
F (s,dx)ds

+

∫ ·

0

∫
Rm

(
f(Gj(s−) + λT

j x)− f (Gj(s−))− f ′ (Gj(s−))λT
j x
)
µ̃(ds,dx).

Moreover, ∫ ·

0
f ′(Gj(s−))dGj =

∫ ·

0
f ′(Gj(s−))bjds+

∫ t

0
f ′(Gj(s−))

√
αλT

j dW

+

∫ ·

0

∫
Rm

f ′(Gj(s−))λT
j x µ̃(ds,dx). (B.4)

Finally, by plugging (B.2), (B.3) and (B.4) into (B.1), (3.12) follows.

C Derivation of (3.14)

Applying Itô’s formula for general semimartingales again, we have

Ykl = Ykl(0) +
∑
i=k,l

∫ ·

0
gi(Gk(s−), Gl(s−))dGi

+
1

2

∑
i,j=k,l

∫ ·

0
gij(Gk(s−), Gl(s−))d⟨Gc

i , G
c
j⟩ (C.1)

+
∑
0<s≤·

∆g(Gk(s), Gl(s))−
∑
i=k,l

gi(Gk(s−), Gl(s−))∆Gi(s)

 ,

where
d⟨Gc

i , G
c
j⟩(s) = λi(s)λj(s)α(s)ds. (C.2)
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The sum in (C.1), using (3.2), may be written as

∑
0<s≤·

∆g(Gk(s), Gl(s))−
∑
i=k,l

gi(Gk(s−), Gl(s−))∆Gi(s)


=

∫ ·

0

∫
Rm

(
g(Gk(s−) + λT

k x,Gl(s−) + λT
l x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i x

)
µ(ds,dx)

=

∫ ·

0

∫
Rm

(
g(Gk(s−) + λT

k x,Gl(s−) + λT
l x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i x

)
F (s,dx)ds

+

∫ ·

0

∫
Rm

(
g(Gk(s−) + λT

k x,Gl(s−) + λT
l x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i x

)
µ̃(ds,dx). (C.3)

Moreover ∫ ·

0
gi(Gk, Gl)dGi =

∫ ·

0
gi(Gk, Gl)bids+

∫ t

0
gi(Gk, Gl)

√
αλT

j dW

+

∫ ·

0

∫
Rm

gi(Gk, Gl)λ
T
j x µ̃(ds, dx). (C.4)

Finally, putting all the pieces together we have that

Ykl(t) = Ykl(0) +

∫ t

0
Akl(s, L(s))ds+

∫ t

0
BT

kl(s, Lkl(s))dW (s)

+

∫ t

0

∫
Rm

Ckl(s, Lkl(s), x) (µ(ds, dx)− F (·,dx)ds) , (C.5)

where

Akl(s, L(s)) =
∑
i=k,l

gi(Gk(s−), Gl(s−))bi(s)

+
1

2

∑
i,j=k,l

∫ ·

0
gij(Gk(s−), Gl(s−))λi(s)λj(s)α(s)

+

∫
Rm

(
g(Gk(s−) + λT

k x,Gl(s−) + λT
l x)− g(Gk(s), Gl(s))

−
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i x

)
F (s, dx), (C.6)

BT
kl(s, Lkl(s)) =

∑
i=k,l

gi(Gk(s−), Gl(s−))
√

α(s)λT
i (s) (C.7)
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and

Ckl(s, Lkl(s), x) =
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i (s)x

+ g
(
Gk(s−) + λT

k x,Gl(s−) + λT
l x
)
− g
(
Gk(s), Gl(s)

)
−
∑
i=k,l

gi(Gk(s−), Gl(s−))λT
i x. (C.8)

Here Lkl(s) := (Lk(s), Ll(s)) and denotes that Bkl and Ckl depend on Lk and Ll (via Gk and Gl).
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tanić, and M. Musiela (Eds.), Option Pricing, Interest Rates and Risk Management, pp. 278–313.
Cambridge University Press.

Brace, A., D. Ga̧tarek, and M. Musiela (1997). The market model of interest rate dynamics. Math.
Finance 7, 127–155.

Brenner, M. and M. Subrahmanyam (1994). A simple approach to option valuation and hedging in the
Black-Scholes model. Financial Analysts J. 50(2), 25–28.

Carr, P., H. Geman, D. B. Madan, and M. Yor (2002). The fine structure of asset returns: An empirical
investigation. J. Business 75, 305–332.

Cont, R. and P. Tankov (2004). Financial Modelling with Jump Processes. Chapman and Hall/CRC
Press.

Daniluk, A. and D. Ga̧tarek (2005). A fully log-normal LIBOR market model. Risk 18(9), 115–118.

Dun, T., G. Barton, and E. Schlögl (2001). Simulated swaption delta-hedging in the lognormal forward
LIBOR model. Int. J. Theor. Appl. Finance 4, 677–709.

Eberlein, E. and F. Özkan (2005). The Lévy LIBOR model. Finance Stoch. 9, 327–348.

Gatarek, D., P. Bachert, and R. Maksymiuk (2006). The LIBOR Market Model in Practice. Wiley.

Glasserman, P. and S. G. Kou (2003). The term structure of simple forward rates with jump risk. Math.
Finance 13, 383–410.

29



Glasserman, P. and N. Merener (2003a). Cap and swaption approximations in LIBOR market models
with jumps. J. Comput. Finance 7, 1–36.

Glasserman, P. and N. Merener (2003b). Numerical solution of jump-diffusion LIBOR market models.
Finance Stoch. 7, 1–27.

Glasserman, P. and X. Zhao (2000). Arbitrage-free discretization of lognormal forward LIBOR and
swap rate models. Finance Stoch. 4, 35–68.

Hunter, C., P. Jäckel, and M. Joshi (2001). Getting the drift. Risk 14, 81–84.

Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (2nd ed.). Springer.

Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance Stoch. 1, 293–330.

Jamshidian, F. (1999). LIBOR market model with semimartingales. Working Paper, NetAnalytic Ltd.

Joshi, M. and A. Stacey (2008). New and robust drift approximations for the LIBOR market model.
Quant. Finance 8, 427–434.

Kluge, W. (2005). Time-inhomogeneous Lévy processes in interest rate and credit risk models. Ph. D.
thesis, Univ. Freiburg.

Kohatsu-Higa, A. and P. Tankov (2010). Jump-adapted discretization schemes for Lévy-driven SDEs.
Stochastic Process. Appl. 120, 2258–2285.

Kurbanmuradov, O., K. Sabelfeld, and J. Schoenmakers (2002). Lognormal approximations to LIBOR
market models. J. Comput. Finance 6, 69–100.

Madan, D. B. and M. Yor (2008). Representing the CGMY and Meixner processes as time changed
Brownian motions. J. Comput. Finance 12, 27–47.

Miltersen, K. R., K. Sandmann, and D. Sondermann (1997). Closed form solutions for term structure
derivatives with log-normal interest rates. J. Finance 52, 409–430.

Papapantoleon, A. and D. Skovmand (2010). Picard approximation of stochastic differential equations
and application to LIBOR models. Preprint, arXiv/1007:3362.

Poirot, J. and P. Tankov (2006). Monte Carlo option pricing for tempered stable (CGMY) processes.
Asia-Pac. Finan. Markets 13, 327–344.
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