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Abstract

The focus of this note lies on the numerical analysis of models describing the propagation
of a single crack in a linearly elastic material. The evolution of the crack is modeled as a
rate-independent process based on the Griffith criterion. We follow two different approaches
for setting up mathematically well defined models: the global energetic approach and an
approach based on a viscous regularization.

We prove the convergence of solutions of fully discretized models (i.e. with respect to time
and space) and derive relations between the discretization parameters (mesh size, time step
size, viscosity parameter, crack increment) which guarantee the convergence of the schemes.
Further, convergence rates are provided for the approximation of energy release rates by
certain discrete energy release rates. Thereby we discuss both, models with self-contact
conditions on the crack faces as well as models with pure Neumann conditions on the crack
faces. The convergence proofs rely on regularity estimates for the elastic fields close to the
crack tip and local and global finite element error estimates. Finally the theoretical results
are illustrated with some numerical calculations.

1 Introduction

The prediction of the growth of cracks in brittle materials is of importance in many practical
applications. However, mathematical models involving the full elastic interaction as well as the
evolution of a freely growing crack are rare. Even in the simpler case of a single crack which prop-
agates along a prescribed path there are only few mathematical contributions investigating evolu-
tion models for crack propagation analytically, see [NS07, NO08, KKT08, KMZ08, KZM10, LT10]
and the references therein. Moreover, a rigorous convergence analysis for numerical schemes for
crack propagation is only available in [NO08] for the out-of-plane case with a given crack path
and in [GP06] for a crack evolution model that is based on the global minimization of the total
energy (stored energy and dissipation).

In this paper we study the evolution of a single crack in a two dimensional elastic body,
where the crack can propagate along a given straight line. On the crack faces, non-penetration
conditions (self-contact conditions) are imposed. The basis for the crack evolution models studied
here is the Griffith fracture criterion. We assume that inertia terms can be neglected in the force
balance and investigate rate-independent models, which are relevant for cases, where the external
loading via time-dependent forces is much smaller than internal relaxation times.

It is intrinsic to rate independent evolution models that in spite of time-continuous data dis-
continuous solutions may occur, i.e. the function s : [0, T ] → [0, L] describing the position of
the crack tip at time t might develop jumps. Therefore, the Griffith criterion describing the
evolution of the crack has to be completed with suitable jump criteria. In literature, essentially
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two approaches are followed leading to different predictions of the discontinuities: In the global
energetic approach, cf. [Mie05], the jump criteria are determined by global minimization princi-
ples for the total energy (elastic energy plus dissipation), whereas in the so-called BV -setting,
cf. [MRS09, KMZ08, KZM10], the jump criteria are derived by a vanishing viscosity limit of
models including a viscous regularization.

In this paper we focus on the numerical realization of both, the global energetic model and
the BV -approach and highlight the different predictions of the models. Moreover, we prove
the convergence of solutions of the fully discretized models (FE in space, implicit Euler scheme
in time) to solutions of the original models provided that the discretization parameters (time
step size, mesh size, crack increment, viscosity) are chosen appropriately. We emphasize that
non-penetration conditions on the crack faces are taken into account.

While in the global energetic setting the convergence of the fully discretized solutions follows
from a convergence theorem in [MRS08] under quite general assumptions, Section 3, the analysis
in the vanishing viscosity setting is more delicate. Here, the main step is to prove the convergence
of sequences of discrete energy release rates to the continuous one. To be more precise, if
E : H1(Ωs,R2) × [0, L] → R∞ denotes the elastic energy depending on the displacement field
u ∈ H1(Ωs,R2) and the crack of length s ∈ [0, L], we have to show that

σ−1
N

(
EN (uN , sN + σN )− EN (uN , sN )

)
→ d

ds
E(u(s), s) for σN ↘ 0 and sN → s, (1.1)

see Theorem 4.5. Here, u(s) is the minimizer of the elastic energy E for the crack length s and
EN : V N × ZN → R∞ is a spatially discretized version of E , V N ⊂ H1

ΓD
(Ωs,R2) is a finite

dimensional subspace and ZN ⊂ [0, L] a finite set. The function uN ∈ V N is the minimizer of
EN (·, sN ).

We verify (1.1) for two cases, namely for models with contact conditions on the crack surface
and for models without such conditions (pure Neumann conditions). The proofs rely on the
regularity properties of the displacement field u(s) in a neighborhood of the crack tip. Higher
differentiability results are well known in the case without contact conditions on the crack faces
and very detailed descriptions of the crack tip singularities are available, see e.g. [Gri89]. For
cracks with contact conditions we use the result derived in [KS11], which states that the dis-
placement field u belongs to H

3
2
−δ(Ωs) for all δ > 0. This is in accordance with the results for

pure Neumann conditions. Using this property the proof of (1.1) is carried out for models with
contact conditions in Section 4.2.1. Applying local FE-error estimates improved convergence
properties are then derived for models without contact conditions in Section 4.2.2.

In Section 5, we present some numerical experiments which shed light on the different predic-
tions of the global energetic model and the model based on vanishing viscosity. We note that
the BV -model is possibly more realistic from a physical point of view. Our aim is to illustrate
the interplay of discretization parameters. Since this case seems to be closer to reality, we only
consider the contact case in our numerical experiments. We use finite elements with continuous,
piecewise bilinear ansatz functions on uniformly refined quadrilateral meshes to discretize the
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variational inequalities arising from the non-penetration condition of self-contact at the crack
surface, cf. [KO88]. For simplicity, we assume that the crack is partitioned by the edges of the
mesh so that the crack increment is determined by the edge lengths. We simply double the edges
along the crack to construct such partitionings. To provide for arbitrary crack increments one
may use remeshing or incorporate the crack into the discretization via, e.g., an extended finite
element approach (XFEM).

We study two algorithms computing the incremental solutions as a sequence of time-steps
and crack lengths. They rely on solving a sequence of time-incremental minimization problems
defined via the discrete energy and dissipation. The convergence of the first algorithm is analyzed
in this paper. The second algorithm is an extension of the first algorithm where some derivative
information of the interpolant of the discrete energy is used. Both algorithms are applicable
to compute approximations of the BV -solutions as well as of global energetic solutions. As a
result of the convergence analysis, the first algorithm exhibits a certain sensitivity with respect
to the discretization parameters. This can also be observed in the numerical experiments. In the
second algorithm this sensitivity is significantly reduced. However, the analysis of this improved
algorithm is still in progress.

For general applications it is often too restrictive to assume that the crack path is known in
advance. An exception is the study of an interface crack. Arbitrary crack geometries (including
branching and kinking) are included in crack evolution models developed and analyzed in the
global energetic framework [FM98, DFT05]. There, the displacement field belongs to the space
SBV (Ω) (special functions of bounded variation) and the crack is related with the discontinuity
set of the displacement field. We refer to [GP06], where the convergence of fully discretized
approximation schemes for these models are shown. It is an open question how to transfer this
general approach to the vanishing viscosity setting. One of the main challenges is to find a
suitable notion for the energy release rate for such general crack geometries.

2 The global energetic model and BV -solution models

2.1 Geometric assumptions and basic properties of the energy release rate

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary describing the undamaged physical
body. The boundary ∂Ω is divided into a part ΓD, where the displacements are prescribed, and
into a part ΓN , where the surface forces are imposed. We define Ω+ = {x = (x1, x2) ∈ Ω ; x2 >

0 } and Ω− is defined analogously. It is assumed that
∣∣ΓD ∩ Ω+

∣∣ > 0 and
∣∣ΓD ∩ Ω−

∣∣ > 0. Further,
(0, 0)⊤ ∈ ∂Ω and there exists L > 0 such that for all s ∈ (0, L) we have

Cs := {x ∈ R2 ; x = (σ, 0)⊤, σ ∈ (0, s] } ⊂ Ω

and (L, 0)⊤ ∈ ∂Ω. The line Cs describes a crack of length s with crack tip xs = (s, 0)⊤. Moreover,
Ωs = Ω\Cs is the domain with crack Cs, see Fig. 1(a).
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Ω+

Ω−

Cs

Figure 1: Example for an admissible domain with crack Cs.

For a given crack of length s the set of admissible displacements with vanishing Dirichlet-
boundary conditions on ΓD is

Vs = {u ∈ H1(Ωs,R2) ; u|ΓD
= 0 }, V := VL.

Since it is assumed that
∣∣ΓD ∩ Ω±

∣∣ > 0, Korn’s inequality is valid in Vs for all s ∈ [0, L]. The
convex cone of admissible displacements satisfying in addition non-penetration conditions on Cs

is defined as

Ks = {u ∈ Vs ; [u] · n ≥ 0 on Cs }, (2.1)

where n is the unit normal vector on Cs and [u] denotes the jump of u across the crack. For given
time t, crack tip position s and displacement field u the elastic energy E : [0, T ] × V × [0, L] →
R ∪ {∞} is given by

E(t, u, s) =


∫
Ωs

1
2(Cε(u)) : ε(u) dx−

∫
ΓN

ℓ(t) · udΓ if u ∈ Ks

∞ otherwise
.

Here, ℓ ∈ C1([0, T ];L2(ΓN ,R2)) describes the applied surface forces and ε(u) = 1
2(∇u + ∇u⊤)

is the linearized strain tensor. The fourth order tensor C denotes the elasticity tensor, which is
assumed to be constant, symmetric and positive definite on R2×2

sym, i.e. for all η, ξ ∈ R2×2
sym it holds

Cη : ξ = (Cijklηkl)ξij = (Cijklξkl)ηij and Cη : η ≥ cC |η|2. In the sequel we will frequently use
the notation A : B =

∑
ij AijBij for the inner product for tensors A,B ∈ R2×2 and |A| =

√
A : A

for the corresponding Frobenius norm.
For every fixed t ∈ [0, T ] and s ∈ [0, L] the energy E(t, ·, s) has a unique minimizer u(t, s) ∈ Ks.

Observe, that the minimizer is the unique solution of the following variational inequality: for all
v ∈ Ks it holds

as(u(t, s), u(t, s)− v) ≤
∫
ΓN

ℓ(t) · (u(t, s)− v) dΓ (2.2)

with as(u, v) =
∫
Ωs

Cε(u) : ε(v) dx for u, v ∈ H1(Ωs). For later use we also introduce the
associated linear elliptic differential operator As : Vs → V ∗

s , which is defined via ⟨As(u), v⟩ =

as(u, v) for all u, v ∈ Vs.
The following uniform estimate for minimizers relies on Korn’s inequality and the continuity

of as: There exists a constant c > 0 such that

sup
(t,s)∈[0,T ]×[0,L]

∥u(t, s)∥H1(ΩL)
≤ c ∥ℓ∥C0([0,T ];L2(ΓN )) . (2.3)
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We denote by

I : [0, T ]× [0, L] → R, I(t, s) = min
v∈Ks

E(t, v, s) = E(t, u(t, s), s)

the corresponding reduced energy functional.
A central quantity in the crack evolution models, which we investigate in this paper, is the

energy release rate G(t, s). This quantity is defined as G(t, s) = − d
dsI(t, s) and has the following

properties:

Theorem 2.1. If ℓ ∈ C1([0, T ];L2(ΓN )), then I ∈ C1([0, T ]×(0, L)) and G ∈ C0([0, T ]×(0, L)).
Moreover, if (tn, sn) → (t, s) ∈ [0, T ]× (0, L), then u(tn, sn) → u(t, s) strongly in V .

For s ∈ (0, L) the energy release rate G can be expressed by the Griffith formula via G(t, s) =
G(s, u(t, s)) where u(t, s) = argmin{ E(t, s, v) ; v ∈ Ks } and

G(s, v) =

∫
Ωs

E(∇v) : ∇ρs dx (2.4)

for v ∈ Vs. The Eshelby tensor E is defined as E(F ) = F⊤DFW (F )−W (F )I for F ∈ R2×2 with
W (F ) = 1

2CFsym : Fsym and ρs = θs(x) ( 10 ), where θs ∈ C∞
0 (Ω) is an arbitrary cut-off function

with θs = 1 in a neighborhood of the crack tip (s, 0)⊤.

The existence of the energy release rate was proved in [DD81, KS00] for quadratic energies
and extended in [KMZ08] to more general strictly convex energy densities with p-growth. Fur-
thermore, in [KMZ08] the continuity properties were investigated. We refer to [KM08, KZM10]
for the finite strain case. It is also shown in these references that formula (2.4) does not depend
on the particular choice of the cut-off function θs.

Since θs is constant outside a certain annulus centered at the crack tip, the support of ∇θs is
a subset of this annulus and does not contain the crack tip. Hence, the integration domain Ωs

in (2.4) can be reduced to this annulus. This observation is the basis for the refined estimates
which we carry out in Section 4.2.2.

We also need the following refined continuity property of ∂sI:

Theorem 2.2. Let ℓ ∈ C1([0, T ];L2(ΓN )). Then the energy release rate −∂sI is locally Lipschitz
continuous on [0, T ]× (0, L), i.e. for every ϵ > 0 there exists a constant cϵ > 0 such that for all
t1, t2 ∈ [0, T ] and s1, s2 ∈ [ϵ, L− ϵ] it holds

|∂sI(t1, s1)− ∂sI(t2, s2)| ≤ cϵ
(
|t1 − t2|+ |s1 − s2|

)
. (2.5)

In Theorem 2.2 quantities are compared, which are defined with respect to different crack
lengths. In order to use minimizers for different crack-lengths as mutual test functions for the
corresponding variational inequalities, a transformation of these inequalities to a domain with
a fixed crack length has to be carried out. The advantage then is that the crack parameter
occurs in the coefficients of the corresponding bilinear forms and not any more in the domain of
integration. For the spatial transformations we use special inner variations, see [GH96], which
map cracks of different lengths onto each other, see also [DD81, KS00, KMZ08].
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Proof. We first construct spatial transformations in the spirit of [DD81, KMZ08].
Let ϵ > 0 and choose Rϵ > 0 such that for every s ∈ [ϵ, L− ϵ] the ball B4R2

ϵ
(xs) is compactly

contained in Ω. Let θ ∈ C∞
0 (R2;R) be a cut-off function with supp θ ⊂ B4R2

ϵ
(0) and θ

∣∣
B

R2
ϵ
(0)

= 1.

For s ∈ [ϵ, L − ϵ] and x ∈ R2 let θs(x) = θ(|x− xs|2). Obviously, θs ∈ C∞
0 (B2Rϵ(xs)) with

θ
∣∣
BRϵ (xs)

= 1. For ρ ∈ R we define the following family of mappings

Ts,ρ : R2 → R2, x 7→ x+ ρ
(

θs(x)
0

)
. (2.6)

Roughly speaking, Ts,ρ describes a translation which is tangential to the crack and of local length
ρθs. There exists a constant ρϵ > 0 such that for all |ρ| ≤ ρϵ and s ∈ [ϵ, L − ϵ] the mappings
Ts,ρ are diffeomorphisms with Ts,ρ(Ωs) = Ωs+ρ. Moreover, for these ρ the mappings Ts,ρ induce
isomorphisms between the spaces Vs and Vs+ρ, and v ∈ Ks+ρ if and only if v ◦ Ts,ρ ∈ Ks.
Observe that the expression ∥Ts,ρ∥C1(R2) +

∥∥T−1
s,ρ

∥∥
C1(R2)

is uniformly bounded on parameter sets
(s, ρ) ∈ [ϵ, L− ϵ]× [−ρϵ, ρϵ].

We will next transform the energies and variational inequalities to a domain with a fixed crack
length. Thereto let the coefficient tensor Bs(ρ) ∈ C∞(R2;R2×2×2×2) be defined as follows: for
all η1, η2 ∈ R2×2 and y ∈ R2

Bs(ρ, y)η1 : η2 = |det∇Ts,ρ(y)|
(
C(η1(∇Ts,ρ(y))−1)sym

)
: (η2(∇Ts,ρ(y))−1)sym. (2.7)

Clearly, Bs(0, y)η1 : η2 = Cη1,sym : η2,sym.
With this notation, u(t, s+ρ) ∈ Ks+ρ is a minimizer of E(t, ·, s+ρ) if and only if the following

transformed variational inequality is satisfied by ũs,ρ(t) := u(t, s+ ρ) ◦ Ts,ρ: for all v ∈ Ks∫
Ωs

Bs(ρ, y)∇ũs,ρ(t) : ∇(v − ũs,ρ(t)) dy ≥
∫
ΓN

ℓ(t) · (v − ũs,ρ(t)) dΓ.

Observe that the integration is carried out on the fixed domain Ωs and the different crack lengths
are represented by the parameter ρ.

Let t1, t2 ∈ [0, T ] and s1, s2 ∈ [ϵ, L − ϵ] with |s1 − s2| ≤ ρϵ/2. From the previous variational
inequality with s = s1, t = t2, ρ = s2 − s1 and v = u(t1, s1) together with the variational
inequality for the minimizer u(t1, s1) tested with ũs1,s2−s1(t2) = u(t2, s2) ◦ Ts1,s2−s1 ∈ Ks1 we
obtain∫

Ωs1

Bs1(0, y)∇(ũs1,s2−s1(t2)− u(t1, s1)) : ∇(ũs1,s2−s1(t2)− u(t1, s1)) dy

≤
∫
Ωs1

(
Bs1(s2 − s1, y)−Bs1(0, y)

)
∇ũs1,s2−s1(t2) : ∇(u(t1, s1)− ũs1,s2−s1(t2)) dy

−
∫
ΓN

(ℓ(t2)− ℓ(t1)) · (u(t1, s1)− ũs1,s2−s1(t2)) dΓ.

Technical calculations show that there exists a constant c̃ϵ > 0 such that for all y ∈ R2, s1, s2 ∈
[ϵ, L− ϵ] such that |s1 − s2| ≤ ρϵ it holds (see e.g. [GH96] or [KMZ08, Lemma 3.1])

sup
(
|Bs1(s2 − s1, y)−Bs1(0, y)|+ |∂ρBs1(s2 − s1, y)− ∂ρBs1(0, y)|

)
≤ c̃ϵ |s1 − s2| . (2.8)
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Hence, by Korn’s inequality (applied on ΩL) we arrive at the estimate

∥u(t1, s1)− ũs1,s2−s1(t2)∥H1(Ωs1 )
≤ cϵ

(
|s1 − s2|+ |t1 − t2|

)
∥ℓ∥C0([0,T ];L2(ΓN )) . (2.9)

Let now s ∈ [ϵ, L− ϵ] be fixed and |ρ0| ≤ ρϵ/2. Observe that the following identity holds true:

I(t, s+ ρ0) =

∫
Ωs

1

2
B(y, ρ0)∇ũs,ρ0(t2) : ∇ũs,ρ0(t2) dy −

∫
ΓN

ℓ(t) · ũs,ρ0(t2)dΓ,

where, as before, ũs,ρ0(t2)(y) = u(t2, s + ρ0) ◦ Ts,ρ0 . It follows from Theorem 3.1 and Theorem
3.2 in [KMZ08] that for t1, t2 ∈ [0, T ] we have

∂sI(t1, s) =
∫
Ωs

1

2
∂ρBs(0, y)∇u(t1, s) : ∇u(t1, s) dy, (2.10)

∂sI(t2, s+ ρ0) =

∫
Ωs

1

2
∂ρBs(ρ0, y)∇(ũs,ρ0(t2)) : ∇(ũs,ρ0(t2)) dy. (2.11)

Hence, combining these formulas with (2.8) and (2.9), estimate (2.5) follows for s1, s2 ∈ [ϵ, L− ϵ]
such that |s1 − s2| ≤ ρϵ. Covering [ϵ, L− ϵ] with finitely many intervals of length 2ρϵ we finally
arrive at estimate (2.5) for si, ti as stated in Theorem 2.2.

2.2 Evolution models based on the Griffith criterion

In the Griffith fracture criterion the energy, which is dissipated due to the crack growth, is
assumed to be proportional to the crack increment. This is characterized with the material
dependent fracture toughness κ ∈ C0([0, L]), κ > 0. The Griffith criterion implies to the following
quasistatic, rate independent model for crack propagation in Karush–Kuhn–Tucker form:

Definition 2.3. The function s : [0, T ] → (0, L) is a solution of the (continuous) crack propa-
gation model if s is non-decreasing, ṡ(t) = d

dts(t) exists for all t ∈ [0, T ] and if for all t ∈ [0, T ]

we have

(a) local stability: κ(s(t))− G(t, s(t)) ≥ 0,

(b) complementarity condition: ṡ(t)
(
κ(s(t))− G(t, s(t))

)
= 0.

Conditions (a) and (b) imply: if κ(s(t)) > G(t, s(t)), then ṡ(t) = 0 and the crack does not
move. The crack can only propagate if the local force balance κ(s(t)) = G(t, s(t)) is satisfied.

However, Definition 2.3 is too strong in the sense that solutions might exist only for short time
intervals. This can be seen as follows: Assume that during the evolution a point (t∗, s∗) is reached
with κ(s∗) − G(t∗, s∗) = 0 and κ(s∗ + ϵ) − G(t∗ + δ, s∗ + ϵ) < 0 for every δ ∈ (0, δ0), ϵ ∈ (0, ϵ0).
Then every continuous non-decreasing function s : [t∗, t∗ + δ0] → (0, L) with s(t∗) = s∗ violates
the local stability condition (a) and hence there is no continuous solution beyond the time t∗.
In the example in Section 5.1 such a situation is described. Thus, the model in Definition 2.3
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is not satisfactory and has to be refined for example by allowing for discontinuous solutions and
by adding further conditions for the discontinuities.

Let BV ([0, T ]) denote the space of functions from [0, T ] into R with bounded variation. For
s ∈ BV ([0, T ]) the set J(s) ⊂ [0, T ] is the jump set and consists of the discontinuity points of s.

Definition 2.4. A function s ∈ BV ([0, T ]) is a local solution (LS) to the crack problem if it is
non-decreasing and satisfies

(a) Local stability: t ∈ [0, T ]\J(s) ⇒ κ(s(t))− G(t, s(t)) ≥ 0,

(b) Energy inequality: For all 0 ≤ t1 < t2 ≤ T we have
I(t2, s(t2))+

∫ s(t2)
s(t1)

κ(σ)dσ ≤ I(t1, s(t1))+
∫ t2
t1
∂tI(t, s(t))dt.

Note that (a) and (b) of Definition 2.4 imply that the complementarity condition in Definition
(2.3)(b) is satisfied for almost every t ∈ [0, T ]. The model in Definition 2.4 is thermodynamically
admissible, but it allows for a great variety of solutions. By adding either a global minimization
criterion or a criterion based on a vanishing viscosity approach, one can select particular local
solutions. These two approaches are discussed in the next sections.

2.2.1 The global energetic model

The global energetic model is based on the elastic energy E(t, u, s) and the dissipation distance

D(s1, s2) =


∫ s2
s1
κ(σ)dσ if s2 ≥ s1

∞ otherwise
,

which quantifies the dissipated energy when passing from a crack with length s1 to a crack with
length s2. The dissipation distance takes into account the irreversibility of the crack propagation
process, i.e. the healing of the crack is excluded.

Definition 2.5. A pair (s, u) ∈ BV ([0, T ], [0, L]) × BV ([0, T ], V ) is a global energetic solution
(GES) to the initial values (s0, u0) ∈ [0, L]×Ks0 if (s(0), u(0)) = (s0, u0) and if for all t ∈ [0, T ]

it holds

(a) Global stability: For all s̃ ∈ [0, L], v ∈ V we have
E(t, u(t), s(t)) ≤ E(t, v, s̃) +D(s(t), s̃),

(b) Energy equality:
E(t, u(t), s(t)) + DissD(s; [0, t]) = E(0, u(0), s(0)) +

∫ t
0 ∂tE(τ, u(τ), s(τ))dτ .

The total dissipation along a given path s : [t1, t2] → R is defined as

DissD(s; [t1, t2]) = sup
partitions {τi} of [t1, t2]

{ N∑
i=1

D(s(τi−1), s(τi)) ; t1 = τ0 < · · · < τN = t2

}
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For the particular dissipation distance D of the crack model we obtain for nondecreasing curves
s : [t1, t2] → R the expression DissD(s; [t1, t2]) = D(s(t1), s(t2)).

The global energetic formulation is a general concept for modeling rate independent problems
and we refer to [Mie05, MRS08] for a survey. The existence of a GES for the crack evolution
problem follows from this general framework ([MRS08, Theorem 3.3]):

Theorem 2.6. Let κ ∈ L∞(0, L) with 0 < κ0 ≤ κ(σ) for a.e. σ ∈ [0, L]. Let further ℓ ∈
C1([0, T ];L2(ΓN )). Then for every stable initial datum (s0, u0) ∈ [0, L] × Ks0 there exists a
global energetic solution (s, u) ∈ BV ([0, T ], [0, L])×BV ([0, T ], V ).

The initial datum (s0, u0) is called stable if it satisfies the global stability condition for t = 0.
Note that every GES is a special LS and that in particular the local stability condition (a) in
Definition 2.4 is satisfied for almost every t. The behavior of GES is illustrated in Section 5.1.

2.2.2 The vanishing viscosity approach and BV -solutions

To generate solutions staying in local minimizers a vanishing viscosity approach is applied, which
is close to the physical modeling. In fact, true physical systems are not strictly rate-independent
but have some internal time scales (relaxation times) that are usually neglected when very
slow loading is considered. However, if rate-independent solutions are not continuous, then the
corresponding solution with small viscosity develops very large velocities. The aim is to derive
jump criteria for the rate-independent model by studying the limits of viscous solutions when
the viscosity tends to zero. We refer to [MRS09, EM06] for the general philosophy and to
[KMZ08, KZM10] for the application to the crack model for strictly convex elastic energies and
for the finite strain case.

The starting point for deriving the BV -model as a vanishing viscosity limit is a viscous reg-
ularization of the model presented in Definition 2.3: Given a viscosity parameter ν > 0, the
function sν ∈ H1([0, T ];R) is a viscous solution of the crack model if for a.e. t ∈ [0, T ] we have
ṡ(t) ≥ 0 together with

(a) local stability: κ(sν(t)) + νṡν(t)− G(t, sν(t)) ≥ 0,

(b) complementarity condition: ṡν(t)
(
κ(sν(t)) + νṡν(t)− G(t, sν(t))

)
= 0.

It is shown in [KMZ08] that viscous solutions (i.e. sν) exist and that (sub)sequences of viscous
solutions converge weakly* in BV ([0, T ];R) to so-called BV -solutions or vanishing viscosity
solutions described in the definition here below:

Definition 2.7. A nondecreasing function s ∈ BV ([0, T ];R) is called a BV -solution of the crack
evolution model with initial value s0 if s(0) = s0 and if for all t ∈ [0, T ] conditions (a)-(d) here
below are satisfied

(a) κ(s(t))− G(t, s(t)) ≥ 0 if t /∈ J(s) and s(t) < L.
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(b) if κ(s(t))− G(t, s(t)) > 0, then t ∈ D(s) and ṡ(t) = 0.

(c) For all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗)−G(t, s∗) ≤ 0. If s(t+) = L, then
the inequality holds for s∗ ∈ [s(t−), L).

Here, the set J(s) is the set of discontinuity points and D(s) is the set of differentiable points
of s ∈ BV ([0, T ];R). The case s(t) = L plays a special role since it is not clear, whether here
the energy release rate is well defined. BV -solutions satisfy an energy equality and are special
local solutions, see [KMZ08].

3 Numerical approximation and convergence analysis for the global
energetic model

In order to calculate global energetic solutions and BV -solutions numerically, the models are
discretized using finite elements in the space and an implicit Euler scheme in time. In this
section we prove the convergence of the fully discretized problems to global energetic solutions.
In Section 4, BV -solutions are treated.

Let Z = [0, L]. For N ∈ N let ZN ⊂ Z be a finite partition with L ∈ ZN and ∪N∈NZN = Z.
Let further V N ⊂ V be a closed subspace. We define V N

s := V N ∩ Vs and KN
s := V N

s ∩ Ks.
Observe that the following closedness property holds true:

Lemma 3.1. For all sequences { sN ; N ∈ N } ⊂ Z with sN ∈ ZN and all {uN ; N ∈ N } ⊂ VL

with uN ∈ KN
sN

such that sN → s and uN ⇀ u weakly in VL it holds u ∈ Ks.

Proof. The weak convergence in VL implies the strong convergence of the traces u±N
∣∣
CL

in
L2(CL) to u±

∣∣
CL

. Hence, at least for a subsequence we have [uN (x)] · n → [u(x)] · n for almost
every x ∈ CL, which shows that u ∈ Ks.

The following approximation property is assumed to hold:

For all s ∈ Z, v ∈ Ks, N ∈ N and all sequences { sN ; N ∈ N } ⊂ Z with sN ∈ ZN

and sN → s there exists vN ∈ KN
sN

such that vN → v strongly in V for N → ∞.
(3.1)

The discrete energy EN : [0, T ]× V × Z → R∞ is defined as

EN (t, v, s) =

E(t, v, s) if s ∈ ZN and v ∈ KN
s

∞ otherwise
. (3.2)

Observe that if (s, u) ∈ Z × Ks and if (sN , uN )N∈N is a sequence according to (3.1), then
EN (t, uN , sN ) → E(t, u, s) for N → ∞.

Finally, for N ∈ N let ΠN be a partition of the time interval into 0 = t0N < t1N < . . . < tNN = T

with fineness f(ΠN ) = max1≤i≤N (tiN − ti−1
N ).
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The approximation of the global energetic crack propagation model from Definition 2.5 relies
on a sequence of time-incremental minimization problems defined via the discrete energy EN and
the dissipation DN . Thereby the dissipation DN is defined as

DN (s1, s2) =


∫ s2
s1
κN (σ)dσ if s1 ≤ s2

∞ otherwise

with functions κN ∈ L∞(0, L), 0 < κ0 ≤ κN ≤ ∥κ∥L∞(0,L). For example the κN can be chosen
as piecewise constant approximations of the fracture toughness κ.

Let N ∈ N be given and let (u0N , s
0
N ) ∈ V N × ZN be stable initial values. This means that

EN (0, u0N , s
0
N ) ≤ EN (0, v, s) +DN (s0N , s) for all (v, s) ∈ V N × ZN .

For k ∈ {1, . . . , N} the incremental solutions (ukN , s
k
N ) are determined from the minimization

problem

(ukN , s
k
N ) ∈ Argmin{ EN (tkN , v, s) +DN (sk−1

N , s) ; s ∈ ZN , v ∈ KN
s }. (3.3)

From the minimizers we construct the piecewise constant functions uN : [0, T ] → V N and
sN : [0, T ] → ZN via

uN (t) = ukN for t ∈ (tk−1
N , tkN ], sN (t) = sk−1

N for t ∈ (tk−1
N , tkN ].

As an application of the abstract convergence Theorem 3.3 in [MRS08] we obtain:

Theorem 3.2. Let the assumptions of Theorem 2.6 be satisfied and choose a sequence of parti-
tions ΠN with f(ΠN ) → 0 for N → ∞. Assume that the functions κN converge to κ strongly in
L1(Ω). Let furthermore (u0N , s

0
N ) ∈ V N × ZN be stable initial values with u0N → u0 strongly in

V and s0N → s0 for N → ∞.
Then for every N the corresponding incremental problems (3.3) have minimizers and there

exists a subsequence (uNj , sNj )j∈N and a pair of functions (u, s) ∈ BV ([0, T ], V )×BV ([0, T ], Z)

such that (u, s) is a global energetic solution with initial values (u0, s0) and for all t ∈ [0, T ] we
have sNj (t) → s(t) and uNj (t) → u(t) strongly in V . In addition, for all t the energies converge,
i.e. ENj (t, uNj (t), sNj (t)) → E(t, u(t), s(t)), and any function (ũ, s̃) : [0, T ] → V × Z obtained as
such a limit is a global energetic solution of the crack problem.

Proof. The assumptions of Theorem 3.3 in [MRS08] can easily be verified. In particular, the
approximation property (3.1) implies the required conditioned upper semicontinuity of stable sets.
Hence, Theorem 3.3 in [MRS08] implies Theorem 3.2, but with weak convergence of uNj (t) ⇀

u(t). The uniform convexity of E with respect to u and the convergence of the energies ensure
the strong convergence uNj (t) → u(t) in V .

Since the solutions of the global energetic model in general are not unique, one cannot expect
the whole sequence to converge.

11



4 Numerical approximation and convergence analysis for the BV -
model

We first introduce the notation and the fully discretized model. Based on an assumption concern-
ing the convergence of certain discrete energy release rates, we prove the convergence of solutions
of the fully discretized model (with viscosity) to BV -solutions. In Section 4.2 we present condi-
tions, which are sufficient to guarantee the above mentioned convergence of energy release rates.
We will consider both, models with and models without contact conditions on the crack faces.

4.1 Convergence analysis for the fully discretized vanishing viscosity model

For N ∈ N let ΠN = {0 = t0N < t1N < . . . < tNN = T} be a partition of the time interval with
fineness τN = maxk{tkN − tk−1

N }, τN := mink{tkN − tk−1
N } and local time step size τkN = tkN − tk−1

N .
The assumptions on the sets ZN ⊂ Z of discrete crack lengths are slightly stronger in compar-

ison to Section 3: Let s0 ∈ (0, L) and Z = [s0, L]. Let (MN )N ⊂ N be a sequence with MN → ∞
for N → ∞. We define σN := (L− s0)/MN and ZN := { s0 + kσN ; k ∈ N, 0 ≤ k ≤MN }. The
set ZN describes admissible discrete crack lengths. The assumption that the elements of ZN are
equally spaced is for notational simplicity.

Finally, let again V N ⊂ V be a family of closed subspaces and KN
s = V N ∩Ks. Assume that

for all N we have KN
s0 ̸= ∅. Further compatibility conditions between the spaces V N , KN

s and
the sets ZN are implicitly formulated here below in assumption (4.1) on the uniform convergence
of discrete energy release rates: For t ∈ [0, T ], s ∈ [0, L] the reduced energy is defined as

IN (t, s) = min{ E(t, v, s) ; v ∈ KN
s }.

Observe that in general IN is not continuous with respect to s. We assume

For every ϵ, µ > 0 exists Nϵ,µ ∈ N such that for all N ≥ Nϵ,µ, s ∈ [ϵ, L− ϵ]∩ZN and
t ∈ [0, T ] it holds

∣∣∣ 1
σN

(IN (t, s± σN )− IN (t, s))∓ ∂sI(t, s)
∣∣∣ ≤ µ.

(4.1)

Taking into account the uniform boundedness of ∂sI(t, s) on sets [0, T ]× [ϵ, L− ϵ], see Theorem
2.1, assumption (4.1) implies that for all ϵ > 0 it holds

sup
N∈N

sup
s∈ZN∩[ϵ,L−ϵ]

sup
t∈[0,T ]

∣∣∣∣ 1

σN

(
IN (t, s± σN )− IN (t, s)

)∣∣∣∣ <∞. (4.2)

In Sections 4.2.1 and 4.2.2 we give concrete examples for settings where condition (4.1) is satisfied.
Let { νN ; N ∈ N } ⊂ (0,∞) be a sequence of viscosity parameters. For k ∈ {1, . . . , N} the

functions (ukN , s
k
N ) ∈ KN

skN
× ZN are determined from the following time-incremental, viscous

minimization problem: Given initial values s0N ∈ ZN and u0N = argmin{ E(0, v, s0N ) ; v ∈ KN
s0N

}
find

(ukN , s
k
N ) ∈ Argmin{ E(tkN , v, s) + τkNRνN (s

k−1
N ;

s− sk−1
N

τkN
) ; s ∈ ZN , v ∈ KN

s }. (4.3)
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Here, Rν(s; v) := κ(s)v + ν
2 |v|

2 if v ≥ 0 and Rν(s; v) = ∞ otherwise. Observe that in contrast
to the minimization problem (3.3) now viscosity terms are present in (4.3).

As before, we construct the piecewise constant functions sN , sN : [0, T ] → ZN via

sN (t) = skN for t ∈ (tk−1
N , tkN ],

sN (t) = sk−1
N for t ∈ [tk−1

N , tkN )

and similar for uN , uN : [0, T ] → V N . Moreover, the continuous and piecewise affine interpolant
is defined as

ŝN (t) = sk−1
N +

t− tk−1
N

τkN
(skN − sk−1

N ) for t ∈ (tk−1
N , tkN ], ŝN (0) = s0N .

The main result is the following convergence theorem:

Theorem 4.1. Let κ ∈ C0([0, L]), κ > 0, ℓ ∈ C1([0, T ];L2(ΓN )) and s0 ∈ [s0, L). Let further
condition (4.1) be satisfied and assume that (u0N , s

0
N ) → (u0, s0) ∈ Ks0 × [s0, L) with u0 =

argmin{ E(0, v, s0) ; v ∈ Ks0 }. Assume finally that for N → ∞ it holds

σN → 0, τN → 0, νN → 0, σNνN/τN → 0, τN/νN → 0. (4.4)

Then there exists a subsequence of (ŝN )N∈N, a nondecreasing function s ∈ BV ([0, T ];R) with
s(0) = s0 and a function u : [0, T ] → H1(ΩL) such that for n→ ∞ it holds

ŝNn

∗
⇀ s in BV [0, T ],

ŝNn(t) → s(t) for all t ∈ [0, T ],

uNn(t), uNn
(t) → u(t) strongly in H1(ΩL) for all t ∈ [0, T ].

Moreover, the limit function s is a BV -solution in the sense of Definition 2.7 and u(t) =

argmin{ E(t, v, s(t)) ; v ∈ Ks(t) } for all t.

The proof follows closely the lines in [KMZ08, KZM10] investigating carefully the dependence
of the estimates on σN , τN and νN . Roughly speaking, the proof is a discrete version of the
proof of Theorem 5.1 in [KMZ08]: The additional technical difficulty comes from the fact that
the energy release rate ∂sI(t, s) has to be approximated by difference quotients of the type
σ−1
N (IN (t, s+σN )−IN (t, s)) and the energies IN (t, ·) in general are not continuous with respect

to the second variable.
In the proof we also take care of what happens if s reaches the length L, for which the

body is broken into two pieces. This extends the existence result in [KMZ08] by avoiding the
artificial stopping criterion formulated there. Let us finally remark that time dependent Dirichlet
conditions can be treated in a similar way.
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Proof. The following estimates are valid due to the boundedness of the set ZN and the coercivity
of the energy E : There exists a constant c > 0 such that

sup
N∈N

(
∥sN∥L∞(0,T ) + ∥sN∥L∞(0,T ) + ∥ŝN∥L∞(0,T )

)
≤ L, (4.5)

sup
N∈N

(
∥uN∥L∞(0,T ;H1(ΩL))

+ ∥uN∥L∞(0,T ;H1(ΩL))

)
≤ c ∥ℓ∥C0([0,T ];L2(ΓN )) . (4.6)

In terms of the reduced energy IN (t, s), the minimization problem (4.3) can be rewritten as
follows (τkN = tkN − tk−1

N )

skN ∈ Argmin{ IN (tkN , s̃) + τkNRνN

(
sk−1
N ;

s̃− sk−1
N

τkN

)
; s̃ ∈ ZN }. (4.7)

Hence, from the minimality we obtain with s̃ = sk−1
N

IN (tkN , s
k
N ) + τkNRνN

(
sk−1
N ;

skN − sk−1
N

τkN

)
≤ IN (tkN , s

k−1
N ) + τkNRνN

(
sk−1
N ;

sk−1
N − sk−1

N

τkN

)
= IN (tk−1

N , sk−1
N ) +

∫ tkN

tk−1
N

∂tIN (ρ, sk−1
N )dρ.

Summation over all time steps leads to

IN (tkN , s
k
N ) +

∫ tkN

0
RνN (sN (ρ); ŝ′N (ρ))dρ ≤ IN (0, s0N ) +

∫ tkN

0
∂tIN (ρ, sN (ρ))dρ. (4.8)

Observe ([KMZ08]) that ∂tIN (t, sN (t)) = −
∫
ΓN

ℓ′(t) · uN (t) dΓ with

uN (t) = argmin{ E(t, v, sN (t)) ; v ∈ KN
sN (t) }.

Again, the uniform bound supN ∥uN∥L∞(0,T ;H1(ΩL))
≤ c ∥ℓ∥C0([0,T ];L2(ΓN )) is valid. Thus,

sup
N

|∂tIN (·, sN (·))|L∞(0,T ) ≤ c ∥ℓ∥2C1([0,T ];L2(ΓN )) ,

which implies in connection with (4.8), (4.6) and the definition of Rν that there exists a constant
c > 0 such that

sup
N∈N

√
νN

∥∥ŝ′N∥∥
L2(0,T )

≤ c. (4.9)

Like in [KMZ08, Lemma 4.1] we conclude that

∥sN − ŝN∥L∞(0,T ) + ∥sN − ŝN∥L∞(0,T ) ≤ c(τN/νN )
1
2 . (4.10)

Since the sequence {sN , N ∈ N} is bounded from above and since the sN are monotone functions,
Helly’s selection principle, see e.g. [Rud76], yields the existence of a subsequence (not relabeled)
and of a function s ∈ BV ([0, T ],R) with the properties

sN , ŝN , sN
∗
⇀ s weakly in BV ([0, T ]) and sN (t), ŝN (t), sN (t) → s(t) for all t ∈ [0, T ]. (4.11)
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It remains to show that s is a BV -solution in the sense of Definition 2.7. Let

T∗ :=

inf{ t ∈ [0, T ] ; s(t) = L } if s(T ) = L,

T if s(T ) < L.

Assume that T∗ > 0 (the case T∗ = 0 is treated at the end of the proof). Then for all ϵ > 0 there
exists δϵ > 0 such that for all 0 ≤ t ≤ T∗ − δϵ it holds s(t) ≤ L − ϵ. Fix now ϵ, δϵ > 0 and let
Tϵ = T∗ − δϵ. From (4.11) it follows that there exists N0 ∈ N such that for all N ≥ N0 we have

σN ≤ ϵ

4
and sN (Tϵ), ŝN (Tϵ), sN (Tϵ) ≤ L− ϵ

2
.

Proof of condition (a) of Definition 2.7. The choice s̃ = skN + σN ≤ L− ϵ
4 and tkN ≤ Tϵ in

the minimization problem (4.7), implies for t ∈ [tk−1
N , tkN ) that

0 ≤ 1

σN

(
IN (tkN , s

k
N + σN )− IN (tkN , s

k
N )

)
+ κ(sk−1

N ) + νN ŝ
′
N (tkN ) +

νNσN
2τN

.

The previous inequality is a discrete, viscous version of condition (a) of Definition 2.7. For all
ψ ∈ L2(0, Tϵ) with ψ ≥ 0 we obtain

0 ≤
∫ Tϵ

0
ψ(ρ)

( 1

σN

(
IN (tN (ρ), sN (ρ) + σN )− IN (tN (ρ), sN (ρ))

)
+ κ(sN (ρ)) + νN ŝ

′
N (ρ) +

νNσN
2τN

)
dρ, (4.12)

where tN (ρ) = tkN for ρ ∈ [tk−1
N , tkN ). By (4.2) the discrete energy release rate satisfies

sup
ρ∈[0,Tϵ], N∈N

∣∣∣ 1
σN

(IN (tN (ρ), sN (ρ) + σN )− IN (tN (ρ), sN (ρ)))
∣∣∣ <∞.

Moreover, the Lipschitz continuity of ∂sI on the set [0, T ] × [s0, L − ϵ], see Theorem 2.2, and
assumption (4.1) imply that the discrete energy release rate converges pointwise to ∂sI(ρ, s(ρ))
for N → ∞. Hence, with the Lebesgue Theorem, assumption (4.4), estimate (4.9) and the
continuity of κ we conclude in the same way as in [KMZ08] that the right hand side in (4.12)
converges to

∫ Tϵ

0 ψ(ρ)(∂sI(ρ, s(ρ)) + κ(s(ρ)))dρ. Since ψ ≥ 0 is arbitrary, we arrive at condition
(a) of Definition 2.7.

Proof of condition (c) of Definition 2.7. Again, the proof is a discrete version of the proof
of Theorem 5.1 in [KMZ08]. Assume that skN > sk−1

N . Then s̃ = skN −σN ≥ sk−1
N is an admissible

test for the minimality condition (4.3) leading to a finite value of RνN . Hence, evaluating the
minimality condition for this particular choice gives

0 ≥ κ(sk−1
N ) + νN ŝ

′
N (tkN )− 1

σN

(
IN (tkN , s

k
N − σN )− IN (tkN , s

k
N )

)
− νNσN

2τN
(4.13)
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Since ŝ′N (t) ≥ 0 for all t ∈ [0, Tϵ]\ΠN and since ŝ′N (t) = 0 if skN = sk−1
N , it follows that for all

t ∈ [0, Tϵ]\ΠN it holds

0 ≥ ŝ′N (t)
(
− νNσN

2τN
+ κ(sN (t)) − 1

σN

(
IN (t̄N (t), s̄N (t) − σN ) − IN (t̄N (t), s̄N (t))

))
(4.14)

Let t∗ ∈ J(s) ∩ [0, Tϵ] and choose sa, sb with s(t∗−) ≤ sa < sb ≤ s(t∗+). Since the functions ŝN
are continuous and not decreasing, for N large enough there exist taN < tbN with ŝN (taN ) = sa,
ŝN (tbN ) = sb and taN → t∗, tbN → t∗ for N → ∞. For all φ ∈ L2(sa, sb) with φ ≥ 0 it follows with
(4.14):

0 ≥
∫ tbN

taN

φ(ŝN (t))ŝ′N (t)
(
− νNσN

2τN
+ κ(sN (t))

− 1

σN

(
IN (t̄N (t), s̄N (t)− σN )− IN (t̄N (t), s̄N (t))

))
dt

Now, as in the proof of [KMZ08, Thm. 5.2], we change variables:

t̂N (σ) := min{ t ∈ [taN , t
b
N ] ; ŝN (t) = σ }.

Observe that ŝN (t̂N (σ)) = σ. With this, the previous inequality can be rewritten as

0 ≥
∫ sb

sa

φ(σ)
(
− νNσN

2τN
+ κ(sN (t̂N (σ)))

− 1

σN

(
IN (t̄N (t̂N (σ)), s̄N (t̂N (σ))− σN )− IN (t̄N (t̂N (σ)), s̄N (t̂N (σ)))

))
dσ (4.15)

By (4.10) it holds
∣∣sN (t̂N (σ))− σ

∣∣ =
∣∣sN (t̂N (σ))− ŝN (t̂N (σ))

∣∣ ≤ c(τN/νN )1/2, and the right
hand side tends to 0 for N → ∞ by assumption (4.4). Furthermore, by the definition of t̄N and
t̂N we find

∣∣t̄N (t̂N (σ))− t∗
∣∣ ≤ τN + max{|taN − t∗| ,

∣∣tbN − t∗
∣∣} → 0 for N → ∞, uniformly in

σ. Hence with assumption (4.4), the Lebesgue Theorem and assumption (4.1) we obtain from
(4.15) the following estimate in the limit N → ∞: for all φ ∈ L2(sa, sb) with φ ≥ 0 it holds

0 ≥
∫ sb

sa

φ(σ)
(
κ(σ) + ∂sI(t, σ)

)
dσ.

Since sa, sb ∈ [s(t∗−), s(t∗+)] are arbitrary we finally arrive at condition (c) of Definition 2.7 on
the time interval [0, T∗].

Proof of condition (b) of Definition 2.7. The basic properties used are the uniform con-
tinuity of ∂sI(·, ·) on sets of the type [0, T ] × [s0, s1] with s1 < L and the uniform convergence
of the discrete energy release rates to ∂sI formulated in assumption (4.1). Again, the proof is a
discrete version of the corresponding part of the proof of Theorem 5.1 in [KMZ08].

Let t∗ ∈ (0, Tϵ) with κ(s(t∗))+ ∂sI(t∗, s(t∗)) =: η > 0. The goal is to show that t∗ ∈ D(s) and
that ṡ(t∗) = 0. Thereto we show that there exist constants δ̃ > 0 and Ñ ∈ N such that for all
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N ≥ Ñ the functions sN are constant on (t∗− δ̃, t∗+ δ̃). Due to the pointwise convergence of the
sequence { sN ; N ∈ N } to the limit function s it then follows that s is constant on (t∗− δ̃, t∗+ δ̃)
as well and hence ṡ(t∗) = 0.

Let s∗ = s(t∗). From the continuity of κ and ∂sI it follows that there exist constants ϵ0, δ0 > 0

such that for all s̃, t with |s̃− s∗| ≤ ϵ0, |t∗ − t| ≤ δ0 it holds

κ(s̃) + ∂sI(t, s̃) ≥
η

2
.

Further, there exists ϵ1 > 0 such that for all t with |t∗ − t| ≤ δ0 and s1, s2 ∈ (s∗ − ϵ0
2 , s∗ +

ϵ0
2 )

with |s1 − s2| < ϵ1 it holds

κ(s1) + ∂sI(t, s2) ≥
η

4
. (4.16)

Due to condition (c), t∗ /∈ J(s) and hence, the limit function s is continuous in t∗. This implies
that there exists a constant δ1 ∈ (0, δ0) such that for all t with |t− t∗| ≤ δ1 we have |s(t)− s∗| ≤
ϵ0/4 and hence κ(s(t)) − ∂sI(t, s(t)) ≥ η

2 . Since the piecewise constant functions sN and s̄N

converge pointwise to s and since sN , s̄N and s are monotone, there exists a constant N1 ∈ N
such that for all N ≥ N1 and all t with |t− t∗| ≤ δ1 it holds

|sN (t)− s∗| ≤ ϵ0/2, |s̄N (t)− s∗| ≤ ϵ0/2. (4.17)

Let R±
N (t, s̃) = ∂sI(t, s̃)∓σ−1

N (IN (t, s̃± σN )− IN (t, s̃)) for s̃ ∈ ZN , cf. (4.1). Due to assumption
(4.1) we may finally choose N1 in such a way that in addition for all N ≥ N1, all t with
|t− t∗| ≤ δ1 and all s̃ with |s̃− s∗| ≤ ϵ0/2 we have

∣∣R±
N (t, s̃)

∣∣ ≤ η
16 .

Consider now the following incremental minimization problem for given t = tkN ∈ ΠN and
s0 ∈ ZN :

s1 ∈ Argmin{ IN (t, s̃) + τkNRνN

(
s0;

s̃− s0

τkN

)
; s̃ ∈ ZN }. (4.18)

Claim: There exists N2 ≥ N1 such that for all N ≥ N2 the following is valid: Let (t, s0) ∈
(ΠN × ZN ) ∩

(
(t∗ − δ1, t∗ + δ1) × [s∗ − ϵ0/2, s∗ + ϵ0/2]

)
. If s1 ∈ [s∗ − ϵ0/2, s∗ + ϵ0/2] satisfies

(4.18) and if |s1 − s0| ≤ ϵ1, then s1 = s0.

Proof of the claim: Choose N2 ≥ N1 such that for all N ≥ N2 we have νNσN/(2τN ) ≤ η/16

and ϵ1 ≥ 2c(τN/νN )
1
2 (from (4.10)). Let s1 be a minimizer as described above and assume that

s1 > s0. Then similar to (4.13) it follows from (4.18) that

0 ≥ κ(s0) + νN ŝ
′
N (t)− σ−1

N

(
IN (t, s1 − σN )− IN (t, s1)

)
− νNσN/(2τN )

≥ κ(s0) + ∂sI(t, s1)−R−
N (t, s1)− η/16

≥ η/8 > 0,

which is a contradiction. Hence, s1 = s0.

17



We now turn back to the proof of (b). As already announced, the goal is to show that for
N ≥ N2 the function s̄N is constant on the fixed interval (t∗ − δ1/2, t∗ + δ1/2). For this
purpose let N ≥ N2 and define tN,1 = min{ tkN ; tkN ≥ t∗ − δ1 + τN , t

k
N ∈ ΠN }. Then

s̄N (tN,1), sN (tN,1) ∈ [s∗− ϵ0/2, s∗+ ϵ0/2] due to (4.17) and sN (tN,1) satisfies (4.18) with t = tN,1

and s0 = sN (tN,1). Hence, by the above proven claim in combination with estimate (4.10),
it follows that s̄N (tN,1) = sN (tN,1). We now repeat the argument with t = tN,2 = tN,1 + τkN
and s0 = sN (tN,2) = s̄N (tN,1) until the time t∗ + δ1 is reached. This shows that the func-
tion s̄N is constant on (t∗− δ1/2, t∗+ δ1/2). Since s̄N converges pointwise to s, this implies that
also s is constant on the interval (t∗−δ1/2, t∗+δ1/2) and (b) is proved for the time interval [0, T∗].

Let us finally discuss the case T∗ = 0. Then s(0) = s0 and for all t > 0 we have s(t) = L.
Hence, J(s) = {0} and we only have to verify condition (c). This means, we have to show that
for all s∗ ∈ [s0, L) it holds κ(s∗)− G(0, s∗) ≤ 0. But this follows similar to the previous proof of
(c) with obvious modifications.

4.2 Convergence of discrete energy release rates

The goal of this section is to present two sufficient conditions, under which assumption (4.1) on
the uniform convergence of discrete energy release rates is valid. Assumption (4.1) implicitly
requires a compatibility condition between the discrete spaces V N and the crack increments ZN .
Regularity and interpolation properties play a fundamental role in the construction of suitable
spaces V N and ZN . We discuss here both cases, models with contact conditions on the crack
surface and models without contact conditions. In the second case better relations between ZN

and V N can be obtained under slightly stronger assumptions on the meshes.
In this section we need the following spaces defined on the domains Ωs: For non-integers γ,

the Sobolev-Slobodeckij spaces on Ωs are defined as complex interpolation spaces, [LM72]: Let
γ ∈ (0, 1), k ∈ N0. Then

Hk+γ(Ωs) := [Hk+1(Ωs),H
k(Ωs)](1−γ), Hγ

ΓD
(Ωs) := [Vs, L

2(Ωs)](1−γ).

Moreover, the intermediate Besov or Nikolskii space B
3
2
2,∞(Ωs) is defined as a real interpolation

space (cf. [Tri10]) in the following way:

B
3
2
2,∞(Ωs) = (H1(Ωs),H

2(Ωs)) 1
2
,∞.

For every δ > 0 the space B3/2
2,∞ is continuously embedded in H3/2−δ, [Tri10].

As a general assumption on the datum ℓ we require

ℓ = H
∣∣
ΓN

n for some H ∈ C0([0, T ];H1+γ(Ω;R2×2
sym)) and some (small) γ > 0. (4.19)

This is a sufficient condition for the subsequent analysis. In some of the following statements
the assumptions on ℓ can be weakened.
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4.2.1 The case with contact conditions

The same notation as in Section 4.1 is used. In particular, the minimizing displacement fields
are denoted by

u(t, s) = argminv∈Ks
E(t, v, s), uN (t, s) = argminv∈KN

s
E(t, v, s).

Observe that for all vN ∈ KN
s the minimizer uN (t, s) satisfies the variational inequality

as(uN (t, s), uN (t, s)− vN ) ≤
∫
ΓN

ℓ(t) · (uN (t, s)− vN ) dΓ. (4.20)

Hence, there exists a constant c > 0 such that

sup
N∈N,

s∈ZN , t∈[0,T ]

∥uN (t, s)∥H1(ΩL)
≤ c ∥ℓ∥C0([0,T ];L2(ΓN )) . (4.21)

The next interpolation assumption plays a crucial role in this section:

There exists a sequence (hN )N∈N ⊂ (0,∞) with hN → 0 for N → ∞ and parameters
α, β > 0 such that for all ϵ > 0 it holds: there exists a constant cϵ > 0 such that for all
t ∈ [0, T ], N ∈ N, sN ∈ ZN ∩ [ϵ, L−ϵ] and all minimizers u(t, sN ) ∈ KsN of E(t, ·, sN )

there exists an element ũNt,sN ∈ KN
sN

satisfying
∥∥u(t, sN )− ũNt,sN

∥∥
H1(ΩL)

≤ cϵh
α
N and∥∥u(t, sN )− ũNt,sN

∥∥
L2(ΩL)

≤ cϵh
β
N .

(4.22)

The sequence (hN )N for example can be interpreted as mesh parameters of finite element meshes
defining the spaces V N . The estimates in terms of powers of hN then can be obtained from
regularity results for minimizers in combination with suitable projection/interpolation operators.
We give an example in Section 5.1.

The following uniform regularity estimate is valid in a neighborhood of the crack tip:

Lemma 4.2. For every ϵ > 0 there exists a constant cϵ > 0 and a radius Rϵ < ϵ such that for
all t ∈ [0, T ] and s ∈ [ϵ, L− ϵ] it holds u(t, s) ∈ B

3/2
2,∞(BRϵ(xs) ∩ Ωs) and

∥u(t, s)∥
B

3
2
2,∞(BRϵ (xs)∩Ωs)

≤ cϵ. (4.23)

Proof. The regularity result is derived in [KS11]. A close inspection of the proof in [KS11]
shows that a uniform estimate is valid on parameter sets [0, T ]× [ϵ, L− ϵ] for every ϵ > 0.

Motivated by this regularity property, we impose the following uniform regularity assumption on
the minimizing displacement fields:

For every (t, s) ∈ [0, T ]× [0, L] the minimizers of E(t, ·, s) with respect to Ks satisfy
u(t, s) ∈ B

3/2
2,∞(Ωs) and for every ϵ > 0 exists a constant cϵ > 0 such that

sup
t∈[0,T ], s∈[ϵ,L−ϵ]

∥u(t, s)∥
B

3
2
2,∞(Ωs)

≤ cϵ. (4.24)
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In order to have B
3/2
2,∞-regularity globally on Ωs, a sufficient condition is to assume that Ω

is a polygonal domain, which is convex in those points, where the Dirichlet and Neumann-
boundaries intersect, and that ℓ satisfies (4.19), see for example[NS99, EF99] and the references
therein. Moreover, under these assumptions the same regularity is valid in a neighborhood of
those points, where the crack intersects ∂Ω, [KS11].

It follows from assumption (4.24) that u(t, s) ∈ H
3
2
−δ(Ωs) for every δ > 0 and that there exists

a constant cϵ,δ > 0 such that

sup
t∈[0,T ], s∈[ϵ,L−ϵ]

∥u(t, s)∥
H

3
2−δ(Ωs)

≤ cϵ,δ. (4.25)

Let As : Vs → V ∗
s be the differential operator introduced in Section 2.1 via ⟨As(u), v⟩ = as(u, v)

for all u, v ∈ Vs. On the basis of the regularity estimates it follows that for all δ̃ > 0 the functional

As(u(t, s)) ∈ V ∗
s can be extended to a linear and continuous functional on H

1
2
+δ̃

ΓD
(Ωs), i.e.

As(u(t, s)) ∈ (H
1
2
+δ̃

ΓD
(Ωs))

∗ =:Ws,δ̃. (4.26)

Moreover, for every fixed δ̃ > 0 the operator norm of As(u(t, s)) with respect to Ws,δ̃ is uniformly
bounded on parameter sets of the type (t, s) ∈ [0, T ]×[ϵ, L−ϵ]. This is an immediate consequence
of the regularity estimate (4.25).

Using the Falk approximation theorem for variational inequalities [Fal74] we obtain

Proposition 4.3. Let ϵ, δ > 0 and assume that conditions (4.19) and (4.24) are satisfied. Then
there exists a constant cϵ,δ > 0 such that for all t ∈ [0, T ], s ∈ ZN ∩ [ϵ, L − ϵ] and all N ∈ N it
holds

∥uN (t, s)− u(t, s)∥H1(Ωs)

≤ cϵ,δ inf
vN∈KN

s

(
∥u(t, s)− vN∥2H1(Ωs)

+
(
∥As(u(t, s))∥Ws,δ

+ ∥ℓ∥C0([0,T ];L2(ΓN ))

)
∥u(t, s)− vN∥

H
1
2+δ(Ωs)

) 1
2
. (4.27)

If in addition condition (4.22) is satisfied, then

∥uN (t, s)− u(t, s)∥H1(Ωs)
≤ cϵ,δ

(
h2αN + h

β+( 1
2
+δ)(α−β)

N

) 1
2 . (4.28)

Proof. By assumption we have KN
s ⊂ Ks. Hence, in the same way as in the proof of [Fal74,

Theorem 1] we obtain that for all vN ∈ KN
s it holds with u := u(t, s) and uN := uN (t, s)

as(u− uN , u− uN ) ≤
∫
ΓN

ℓ(t) · (u− vN ) dΓ− ⟨As(u), u− vN ⟩+ as(u− uN , u− vN ).

The mapping properties of As(u), see (4.26), together with Korn’s and Young’s inequality now
imply (4.27).

Estimate (4.28) follows from (4.27) and assumption (4.22) by the interpolation inequality.
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An immediate consequence of the previous proposition is

Corollary 4.4. Let ϵ > 0 and assume that (4.22) and (4.19) with C1 instead of C0 are valid.
Then for every sequence (tN , sN )N ⊂ [0, T ] × [ϵ, L − ϵ] with sN ∈ ZN and (tN , sN ) → (t, s) it
holds: There exists N0 ∈ N such that for all N ≥ N0 we have

∥uN (tN , sN )− u(t, s)∥H1(ΩL)
≤ cϵ,δ

(
|t− tN |+ |s− sN |+ |s− sN |

1
2 +

(
h2αN + h

β+( 1
2
+δ)(α−β)

N

) 1
2

)
,

IN (tN , sN ) = E(tN , uN (tN , sN ), sN ) → E(t, u(t, s), s) = I(t, s).

Proof. Let ρϵ be the radius defined in the proof of Theorem 2.2 and let N0 ∈ N such that for
all N ≥ N0 we have |s− sN | ≤ ρϵ. Then, in the notation of the proof of Theorem 2.2, it holds

∥uN (tN , sN )− u(t, s)∥H1(ΩL)
≤ ∥uN (tN , sN )− u(tN , sN )∥H1(ΩL)

+ ∥u(t, s)− ũs,sN−s(tN )∥H1(ΩL)
+ ∥ũs,sN−s(tN )− u(tN , sN )∥H1(ΩL)

.

The first term on the right hand side can be estimated with (4.28) and the second term with
(2.9). The estimate for the last term relies on the regularity assumption (4.24), on Lemma 4.1
in [KM08] and on the interpolation inequality applied to B3/2

2,∞ = (H1, H2)1/2,∞, which all imply
that ∥ũs,sN−s(tN )− u(tN , sN )∥H1(ΩL)

≤ cϵ
√

|sN − s| ∥u∥
B

3/2
2,∞(Ωs)

.

Theorem 4.5. Assume that conditions (4.19), (4.22) and (4.24) are valid. Then for every
ϵ, δ > 0 there exist constants cϵ,δ > 0 and Nϵ ∈ N such that for all t ∈ [0, T ], N ≥ Nϵ and
s ∈ ZN ∩ [ϵ, L− ϵ] it holds∣∣∣∣ 1

σN

(
IN (t, s± σN )− IN (t, s)

)
∓ ∂sI(t, s)

∣∣∣∣ ≤ cϵ,δ(σN + σ−1
N (h2αN + h

β+( 1
2
+δ)(α−β)

N )
1
2 ). (4.29)

Hence, condition (4.1) is satisfied provided that the right hand side in (4.29) tends to zero for
N → ∞.

Estimate (4.29) determines the relation between the mesh size hN associated with the spaces
V N and the crack increment σN associated with ZN . In Section 5.1 we study an example, where
α = 1

2−δ and β = α+1. In this case one obtains σN+σ−1
N

(
h2αN +h

β+( 1
2
+δ)(α−β)

N

) 1
2 ≈ σN+σ−1

N h
1
2
−δ

N

in (4.29). If one neglects contact conditions on the crack surface, then this relation can be
improved. This will be discussed in the next section.

Proof. Let ϵ > 0 and choose Nϵ ∈ N such that for all N ≥ Nϵ we have σN ≤ ρϵ with ρϵ from
the proof of Theorem 2.2. For N ≥ Nϵ and s ∈ ZN it holds∣∣∣ 1

σN

(
IN (t, s+ σN )− IN (t, s)

)
− ∂sI(t, s)

∣∣∣
≤ 1

σN

(
|IN (t, s+ σN )− I(t, s+ σN )|+ |IN (t, s)− I(t, s)|

)
+
∣∣∣ 1

σN

(
I(t, s+ σN )− I(t, s)

)
− ∂sI(t, s)

∣∣∣. (4.30)
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Due to the quadratic structure of E the first two terms on the right hand side can be estimated
as follows using (4.28) and (4.21):

1

σN
|IN (t, s)− I(t, s)|

≤ σ−1
N c

(
∥uN (t, s)∥H1(Ωs)

+ ∥u(t, s)∥H1(Ωs)
+ ∥ℓ∥C0([0,T ];L2(ΓN ))

)
∥uN (t, s)− u(t, s)∥H1(Ωs)

≤ cϵ,δ ∥ℓ∥C0([0,T ];L2(ΓN )) σ
−1
N (h2αN + h

β+( 1
2
+δ)(α−β)

N )
1
2 .

For estimating the last term in (4.30) we apply Theorem 2.2:∣∣∣∣ 1

σN

(
I(t, s+ σN )− I(t, s)

)
− ∂sI(t, s)

∣∣∣∣ ≤ ∫ 1

0
|∂sI(t, s+ rσN )− ∂sI(t, s)| dr ≤ cϵσN .

Combining the above considerations gives (4.29).

4.2.2 The case without contact conditions

In the previous section global regularity results, in particular the B3/2
2,∞-smoothness close to the

crack tip, were combined with Falk’s Approximation Theorem for variational inequalities to
deduce a relation between the discretization parameters hN and σN , see (4.29). A closer look
at the representation formula for the energy release rate in Theorem 2.1 shows that in fact the
integration is taken with respect to an annulus, which does not contain the crack tip. Inside
this annulus the displacement fields are H2-regular. Using local finite element error estimates
from [NS74] weaker relations between hN and σN can be formulated, which still guarantee the
convergence of discrete energy release rates. Such local error estimates to the author’s knowledge
are known for equations without contact conditions, only. Hence, in this section we restrict
ourselves to the crack propagation model without contact conditions on the crack faces.

Given t ∈ [0, T ] and s ∈ [0, L], the function u(t, s) ∈ Vs is now defined as

u(t, s) = argmin{ E(t, v, s) ; v ∈ Vs },

or, equivalently, as the unique solution of the equation∫
Ωs

Cε(u(t, s)) : ε(v) dx =

∫
ΓN

ℓ(t) · v dΓ for all v ∈ Vs.

Clearly, there exists a constant c > 0 such that

sup
t∈[0,T ], s∈[0,L]

∥u(t, s)∥H1(Ωs)
≤ c ∥ℓ∥C0([0,T ];L2(ΓN )) .

Furthermore, Lemma 4.2 is valid as well.
Based on this regularity estimate in the sequel we assume that minimizers u(t, s) are elements

of B3/2
2,∞(Ωs). More precisely we assume the following regularity estimate to hold true for the
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linear elliptic operator As associated with as(·, ·):
For all ϵ > 0 there exists a constant cϵ > 0 such that for all s ∈ [ϵ, L − ϵ] it
holds: If f ∈ L2(Ω), if ℓ satisfies (4.19), and if vs ∈ Vs is the unique solution of

as(vs, v) =

∫
Ωs

f · v dx+

∫
ΓN

ℓ · v dΓ for v ∈ V , then

∥vs∥
B

3
2
2,∞(Ωs)

≤ cϵ

(
∥f∥L2(Ω) + ∥H∥H1+γ(Ω)

)
. (4.31)

Remark 4.6. As in the case with contact conditions on Cs, a sufficient geometrical condition
to guarantee (4.31) is to assume that ∂Ω is a polygon which is convex in a neighborhood of
those points, where the type of the boundary conditions changes, see for example [NS99, EF99].
Assumption (4.31) is formulated in order to reduce the technicalities in the derivation of our
final result, Theorem 4.12. For example by choosing suitably adapted finite element meshes one
could also treat situations, where stronger singularities occur at the boundary far from the crack
tip.

On the finite dimensional subspaces V N
s of Vs and the discrete crack sets ZN we impose the

following interpolation condition:

For every N ∈ N, s ∈ ZN there exists a linear operator QN
s : Vs → V N

s with the
following properties: For all ϵ > 0 there exists a constant cϵ > 0 such that for all
N ∈ N, s ∈ ZN ∩ [ϵ, L− ϵ], l ∈ {0, 1}, m ∈ {1, 2} and v ∈ Hm(Ωs) it holds∥∥v −QN

s (v)
∥∥
Hl(Ωs)

≤ cϵh
m−l
N ∥v∥Hm(Ωs)

.

(4.32)

As in the previous section, we define uN (t, s) = argminv∈V N
s

E(t, v, s) and obtain the estimate

sup
t∈[0,T ],N∈N,s∈ZN

∥uN (t, s)∥H1(Ωs)
< c ∥ℓ∥C0([0,T ];L2(ΓN )) . (4.33)

As a conclusion of the regularity estimate and the assumptions on the spaces V N
s one obtains

the following version of the Aubin-Nitsche estimate, which we need in the further analysis:

Corollary 4.7. Assume that conditions (4.19), (4.31) and (4.32) are satisfied. Then there exists
a constant cϵ > 0 such that for all s ∈ ZN ∩ [ϵ, L− ϵ] and t ∈ [0, T ] it holds

∥u(t, s)− uN (t, s)∥L2(Ωs)
≤ cϵhN ∥u(t, s)∥

B
3
2
2,∞(Ωs)

. (4.34)

Proof. Let zs ∈ Vs be the unique solution of the equation as(z, v) =
∫
Ωs
(u(t, s) − uN (t, s)) ·

v dx for v ∈ Vs. By assumption (4.31) the solution zs belongs to B3/2
2,∞(Ωs) and there exists a

constant cϵ > 0 such that ∥zs∥
B

3
2
2,∞(Ωs)

≤ cϵ ∥u(t, s)− uN (t, s)∥L2(Ωs)
. Hence, from the Galerkin

orthogonality one finds that for all v ∈ V N
s it holds

∥u(t, s)− uN (t, s)∥2L2(Ωs)
≤ c ∥u(t, s)− uN (t, s)∥H1(Ωs)

∥zs − v∥H1(Ωs)
.

Choosing v = QN
s (z) with QN

s from assumption (4.32), applying the Cea estimate to the first
factor and taking into account the interpolation identity B3/2

2,∞ = (H1,H2) 1
2
,∞ we finally arrive

at (4.34).
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In addition to the Aubin-Nitsche estimates our further analysis also relies on the local error
estimates due to Nitsche and Schatz, [NS74]. We will apply them to annuli which are centered
at the crack tip of Ωs.

For x0 ∈ R2, R > ρ > 0 the annulus Aρ,R(x0) centered at x0 is defined by Aρ,R(x0) :=

ER(x0)\Eρ(x0). Here, Er(x0) = x0 + (−r, r)2 is the cube with center x0 and side length 2r.
Let xs be the vertex of the crack of the domain Ωs and choose R > ρ > 0 such that Aρ,R(xs)

is contained in the interior of Ωs. Since the crack is assumed to be a straight line and since the
volume forces are equal to 0 it follows that u(t, s)

∣∣
Ωs∩Aρ,R(xs)

∈ H2(Ωs ∩ Aρ,R(xs)). Moreover,
for every ϵ > 0 there exist constants cϵ > 0 and ρϵ > 0 such that for all t ∈ [0, T ], s ∈ [ϵ, L − ϵ]

it holds

∪s∈[ϵ,L−ϵ]E8ρϵ(xs) b Ω, (4.35)

∥u(t, s)∥H2(Aρϵ,8ρϵ (xs)∩Ωs)
≤ cϵ. (4.36)

The version of the Nitsche-Schatz estimates adapted to these annuli reads as follows:

Corollary 4.8. Assume that conditions (4.19), (4.31) and (4.32) are valid. For every ϵ > 0

there exist constants c̃ϵ, cϵ > 0 such that for all t ∈ [0, T ], s ∈ [ϵ, L − ϵ] it holds with ρϵ from
above:

∥u(t, s)− uN (t, s)∥H1(A2ρϵ,7ρϵ (xs)∩Ωs)
≤ c̃ϵhN (∥u∥H2(Aρϵ,8ρϵ (xs)∩Ωs)

+ ∥u(t, s)∥
B

3
2
2,∞(Ωs)

)

≤ cϵhN .

Proof. Corollary 4.8 is a combination of Theorem 5.1 from [NS74] with Corollary 4.7 and esti-
mate (4.36).

Remark 4.9. The original proof of Theorem 5.1 from [NS74] is derived for subdomains Ω1, which
are compactly contained in Ωs. A careful inspection of the proof reveals that the arguments
can be transferred also to the annuli we study, possibly with a slightly modified geometry at the
points, where the annuli intersect the crack Cs. The essential ingredients are again regularity
results for solutions to the equations of linear elasticity. In particular, it is needed in [NS74]
that on cubes E b Ωs the equation as(w, v) =

∫
E f · v dx for v ∈ H1

0 (E) has a unique solution
w ∈ H2(E)∩H1

0 (E) provided that f ∈ L2(E). In order to extend the estimates to the boundary, it
is additionally needed that there exists an angle ω ∈ (0, π/2] such that on trapezoids Tω as drawn
in Figure 2, the equation as(w, v) =

∫
Tω f · v dx for v ∈ W (Tω) := { ṽ ∈ H1(Tω) ; ṽ

∣∣
∂Tω\Cs

= 0 }
has a unique solution w ∈ H2(Tω) ∩W (Tω) provided that f ∈ L2(Tω). Such an angle ω exists
and depends on the material tensor C, see eg. [Gri89, Paragraph 6.2], where the isotropic case is
studied. The regularity properties on E together with the regularity properties with respect to
Tω now should be used instead of [NS74, Lemma 1.1] in the derivation of [NS74, Theorem 5.1].

A first consequence of the above two corollaries is the following approximation result for the
energy release rate:
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Figure 2: Example for Tω.

Corollary 4.10. Assume conditions (4.19), (4.31) and (4.32) are valid. Let ϵ > 0 be arbitrary.
Let further θ ∈ C∞

0 (R2) be a cut-off function with θ
∣∣
E

4ρ2ϵ
(0)

= 1 and θ
∣∣
R2\E

49ρ2ϵ
(0)

= 0. Define

θs(x) = θ(|x− xs|2) with xs the crack tip of Ωs. Then there exists a constant cϵ > 0 such that in
the notation of Theorem 2.1 it holds for every t ∈ [0, T ], N ∈ N and s ∈ ZN ∩ [ϵ, L− ϵ]:

|(−∂sI(t, s))−G(s, uN (t, s))| = |G(s, u(t, s))−G(s, uN (t, s))| ≤ cϵhN .

Proof. Observe that supp∇θs ⊂ A2ρϵ,7ρϵ(xs). Hence, the assertion follows from the formula for
G(s, v) from Theorem 2.1 in combination with Corollary 4.8.

Remark 4.11. Corollary 4.10 shows that a good approximation of the energy release rate can
be obtained by inserting the discrete solution (i.e. uN ) into the Griffith formula provided in
Theorem 2.1. The examples in Section 5.1 indicate that the order of convergence predicted in
Corollary 4.10 is optimal.

The final goal of this section is to derive an analog of estimate (4.29) and hence to verify condition
(4.1). The idea is to imitate Corollary 4.10 for the discrete energy release rate defined by finite
differences. For this we need a further compatibility condition for the spaces V N

s associated
with different crack lengths. In general, spatial transformations, which map Ωs1 onto Ωs2 do not
induce isomorphisms between the discrete spaces V N

s1 and V N
s2 . Roughly speaking we assume

that there exists a family of spatial transformations such that elements from V N
s1 with support

outside a certain annulus around xs1 are mapped on elements of V N
s2 .

To be more precise let Ts,δ : R2 → R2 be a family of mappings with the following properties: For
every ϵ > 0 exists δϵ > 0 such that for all s ∈ [ϵ, L− ϵ] and |δ| ≤ δϵ the mapping Ts,δ : Ωs → Ωs+δ

is a diffeomorphism with

Ts,δ(xs) = xs+δ, Ts,δ(Cs) = Cs+δ and Ts,δ(x) = x for x ∈ ∂Ω.

Moreover, T : [ϵ, L − ϵ] × [−δϵ, δϵ] × R2, (s, δ, x) → Ts,δ(x), and T̃ : [ϵ, L − ϵ] × [−δϵ, δϵ] × R2,
(s, δ, x) → T−1

s,δ (x), belong to C2([ϵ, L− ϵ]× [−δϵ, δϵ]×R2). Finally it is assumed that for ρϵ from
above (cf. (4.35)) we have

suppx ∂δ∇xTs,δ ⊂ A3ρϵ,6ρϵ(xs) for all |δ| ≤ δϵ.

Such a family of mappings can be constructed like in the proof of Theorem 2.2. Observe that
the mappings Ts,δ induce isomorphisms between the spaces Vs and Vs+δ. However, in general
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they do not map the discrete spaces V N
s and V N

s+δ onto each other. In the sequel the next
compatibility condition is needed, which relates the mappings Ts,δ with the operators QN

s from
condition (4.32):

There exists a family of linear operators QN
s : Vs → V N

s with (4.32) and a family of
diffeomorphisms (Ts,δ)s,δ as described above which satisfy the following: For every ϵ > 0

exists Nϵ ∈ N such that for all N ≥ Nϵ and s ∈ ZN ∩ [ϵ, L− ϵ] it holds

(a) QN
s : Vs → V N

s is a projection with QN
s (v) = v for all v ∈ V N

s .

(b) v ∈ H2(Aρϵ,8ρϵ(xs)) ⇒
∥∥v −QN

s (v)
∥∥
H1(A2ρϵ,7ρϵ (xs))

≤ cϵhN ∥v∥H2(Aρϵ,8ρϵ (xs))
,

(c) v ∈ V N
s+σN

⇒ (v ◦ Ts,σN )
∣∣
Ωs\A2ρϵ,7ρϵ (xs)

=
(
QN

s (v ◦ Ts,σN )
) ∣∣

Ωs\A2ρϵ,7ρϵ (xs)
,

(d) v ∈ V N
s

⇒
(
v ◦ T−1

s,σN

) ∣∣
Ωs+σN

\A2ρϵ,7ρϵ (xs+σN
)
=

(
QN

s+σN
(v ◦ T−1

s,σN
)
) ∣∣

Ωs+σN
\A2ρϵ,7ρϵ (xs+σN )

.

(4.37)

The main result of this section is the following theorem on the convergence of finite difference
quotients of the energy to the energy release rate:

Theorem 4.12. Assume that conditions (4.19), (4.31), (4.32) and (4.37) are valid. Then for
every ϵ > 0 there exist constants cϵ > 0 and Nϵ ∈ N such that for all t ∈ [0, T ], N ≥ Nϵ and
s ∈ ZN ∩ [ϵ, L− ϵ] it holds∣∣∣∣ 1

σN

(
IN (t, s± σN )− IN (t, s)

)
∓ ∂sI(t, s)

∣∣∣∣ ≤ cϵ(σN + hN + h2Nσ
−1
N ). (4.38)

Hence, condition (4.1) is satisfied provided that the right hand side in (4.38) tends to zero for
N → ∞.

In view of estimate (4.38) the optimal relation is σN ≈ hN , which gives the error estimate∣∣ 1
σN

(
IN (t, s± σN )− IN (t, s)

)
∓ ∂sI(t, s)

∣∣ ≤ cϵhN .

This rate of convergence is also observed in the numerical examples in Section 5.1.

Proof. Let Bs(ρ, y) be the coefficient tensor introduced in (2.7) on the basis of the family Ts,δ
from assumption (4.37). The energy Ẽs : [−δϵ, δϵ]× [0, T ]× Vs → R is defined by

Ẽs(δ, t, v) =
∫
Ωs

1

2
Bs(δ, y)∇v : ∇v dy −

∫
ΓN

ℓ(t) · v dΓ.

It holds Ẽs(0, t, v) = E(t, v, s) for v ∈ Vs and Ẽs(δ, t, w ◦ Ts,δ) = E(t, w, s + δ) for w ∈ Vs+δ. Let
wN := uN (t, s+ σN ) ◦ Ts,σN and uN := uN (t, s). It follows for s ∈ ZN ∩ [ϵ, L− ϵ] and N ≥ Nϵ,
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where Nϵ ∈ N is chosen such that σNϵ ≤ min{δϵ, ρϵ},

1

σN
(IN (t, s+ σN )− I(t, s)) = 1

σN

(
Ẽs(σN , t, wN )− Ẽs(0, t, uN )

)
=

1

σN

∫ 1

0

d

dδ
Ẽs(δσN , t, uN + δ(wN − uN )) dδ

=

∫ 1

0

∫
Ωs

1

2
B′

s(δσN , y)∇wN
δ : ∇wN

δ dy dδ +
1

σN

∫ 1

0
DuẼs(δσN , t, wN

δ )[wN − uN ] dδ

= SN
1 + SN

2 ,

with wN
δ = uN + δ(wN −uN ). The goal is to show that SN

1 approximates the energy release rate
and that the error SN

2 tends to zero:∣∣SN
1 − ∂sI(t, s)

∣∣ ≤ cϵ(σN + hN ), (4.39)∣∣SN
2

∣∣ ≤ cϵ(σN + hN + h2Nσ
−1
N ). (4.40)

We first discuss (4.39). In view of the representation formula for ∂sI provided in Theorem 2.1,
see also the proof of this formula in [KMZ08, Section 3], it holds with u := u(t, s)

∂sI(t, s) = −G(s, u(t, s)) =
∫
Ωs

1

2
B′

s(0, y)∇u : ∇udy.

Hence,

SN
1 − ∂sI(t, s) =

1

2

∫ 1

0

∫
Ωs

B′
s(δσN , y)∇wN

δ : ∇wN
δ −B′

s(0, y)∇u : ∇udy dδ

=
1

2

∫ 1

0

∫
Ωs

(B′
s(δσN , y)−B′

s(0, y))∇wN
δ : ∇wN

δ dy dδ

+
1

2

∫ 1

0

∫
Ωs

B′
s(0, y)∇(wN

δ + u) : ∇(wN
δ − u) dy dδ

= SN
11 + SN

12.

It follows from the definition of Bs(δ, y), the assumptions on the family Ts,δ and the uniform
estimate (4.33) that

∣∣SN
11

∣∣ ≤ cϵσN . The term SN
12 can be treated as follows. Note first that

suppxB
′
s(0, ·) ⊂ A3ρϵ,6ρϵ(xs). Hence, with w := u(t, s+ σN ) ◦ Ts,σN we find∣∣SN

12

∣∣ ≤ cϵ

(∥∥uN − u
∥∥
H1(A3ρϵ,6ρϵ (xs)∩Ωs)

+
∥∥wN − w

∥∥
H1(A3ρϵ,6ρϵ (xs)∩Ωs)

+ ∥w − u∥H1(A3ρϵ,6ρϵ (xs)∩Ωs)

)
.

(4.41)

The local error estimates from Corollary 4.8 imply that∥∥uN − u
∥∥
H1(A3ρϵ,6ρϵ (xs)∩Ωs)

+
∥∥wN − w

∥∥
H1(A3ρϵ,6ρϵ (xs)∩Ωs)

≤ cϵhN .

Further, in the same way as in the derivation of estimate (2.9) in the proof of Proposition 2.2,
we conclude that ∥w − u∥H1(A3ρϵ,6ρϵ (xs)∩Ωs)

≤ cϵσN . Collecting the estimates, inequality (4.39)
is shown.
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In order to prove estimate (4.40) we split SN
2 into a part which vanishes due the fact that

minimizers satisfy the Euler-Lagrange equations and into a part where the integration in fact is
taken with respect to an annulus, only. On this part, the local error estimates due to Nitsche
and Schatz (Corollary 4.8) and assumption (4.37) are applied. From the linearity of DuẼs with
respect to the displacements we deduce

SN
2 =

1

σN

∫ 1

0
(1− ρ)DuẼs(ρσN , t, uN )[wN − uN ] dρ+

1

σN

∫ 1

0
ρDuẼs(ρσN , t, wN )[wN − uN ] dρ

= SN
21 + SN

22.

In the following we discuss the term SN
21. The term SN

22 can be treated similarly.

SN
21 =

1

σN

∫ 1

0
(1− ρ)DuẼs(0, t, uN )[wN − uN ] dρ

+
1

σN

∫ 1

0
(1− ρ)

(
DuẼs(ρσN , t, uN )−DuẼs(0, t, uN )

)
[wN − uN ]︸ ︷︷ ︸

=
∫
Ωs

(B(ρσN ,y)−B(0,y))∇uN :∇(wN−uN ) dy

dρ

= SN
211 + SN

212.

In order to estimate SN
212 we use again that suppB′(ρσ, ·) ⊂ A3ρϵ,6ρϵ(xs) and that B is Lipschitz

continuous with uniform bounds with respect to its first argument (see assumption (4.37)).
Hence, together with the uniform bound (4.33) we obtain in the same way as in (4.41)∣∣SN

212

∣∣ ≤ cϵ
∥∥uN∥∥

H1(Ωs)

∥∥wN − uN
∥∥
H1(A3ρϵ,6ρϵ (xs)∩Ωs)

≤ cϵ(σN + hN ).

It remains to estimate SN
211. Let QN

s be the projection operator introduced in condition (4.37).

SN
211 =

1

2σN
DuẼs(0, t, uN )[QN

s (wN )− uN ] +
1

2σN
DuẼs(0, t, uN − u)[wN −QN

s (wN )]. (4.42)

In the last term we used again the linearity of DuẼs in the displacements and the fact that u
is the minimizer of Ẽs(0, t, ·) with respect to Vs and hence satisfies the Euler Lagrange equation
DuẼs(0, t, u)[v] = 0 for every v ∈ Vs. In view of assumption (4.37) it follows that

1

2σN

∣∣∣DuẼs(0, t, uN − u)[wN −QN
s (wN )]

∣∣∣
≤ cϵ

1

σN

∥∥uN − u
∥∥
H1(A2ρϵ,7ρϵ (xs))

∥∥wN −QN
s (wN )

∥∥
H1(A2ρϵ,7ρϵ (xs))

The first factor can be estimated by cϵhN using Corollary 4.8. To the second factor we apply
also Corollary 4.8 and assumption (4.37):∥∥wN −QN

s (wN )
∥∥
H1(A2ρϵ,7ρϵ (xs))

≤
∥∥(I−QN

s )(wN − w)
∥∥
H1(A2ρϵ,7ρϵ (xs))

+
∥∥(I−QN

s )(w)
∥∥
H1(A2ρϵ,7ρϵ (xs))

≤ cϵ(h
N + hN ).
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Figure 3: Static solution (deformation multiplied by factor 20), von Mises equivalent stress.

The first term on the right hand side of (4.42) is equal to 0 since QN
s (wN )− uN ∈ V N

s and since
uN is a minimizer of Ẽs(0, t, ·) with respect to V N

s . Hence,
∣∣SN

211

∣∣ ≤ cϵh
2
Nσ

−1
N and we have finally

proved estimate (4.40).

5 Numerical results

5.1 Numerical approximation global energetic and BV -solutions

In this Section, we study some numerical experiments to confirm the convergence results of
Sections 3 and 4. For this purpose, we define the domain Ω := (−1, 1)× (0, 10) with a maximum
crack length L := 9.5 as introduced in Section 2.1. We assume homogenous Dirichlet boundary
conditions on the boundary part Γ0 := {10}×(−1, 1) and a monotone surface load h(t, x) := tg(x)

on the boundary parts Γ1,± := (0, 2) × {±1}, Γ2,± := (2, 4) × {±1} and Γ3,± := (4, 5) × {±1}.
The function g is defined as g(x) := ±0.15 if x ∈ Γ1,±, g(x) := ∓1 if x ∈ Γ2,± and g(x) := ±1

if x ∈ Γ3,±, cf. Figure 3. In our experiments, we use Hooke’s law with modulus of elasticity
E := 210 kN/mm2 and Poisson’s number ν := 0.28 with fracture toughness κ := 50MPam1/2.
These material parameters correspond to steel. The end time is set to T := 400 s and the initial
crack length is chosen as s0 = 0.5. In this section, we only consider the case with contact as
introduced in Section 4.2.1 as this case seems to be more realistic than the case without contact
where in principle only traction loads are physically reasonable. Note, the contact conditions
(2.1) describing self contact can be simplified to unilateral one-body contact conditions under
the assumption of symmetric surface loads.

To discretize the variational inequality (2.2), we apply a finite element discretization with
continuous, piecewise bilinear ansatz functions on a quadrilateral finite element mesh with mesh
size hN . We assume that the crack is partitioned by the edges of the finite element mesh so that
the mesh of Ωsi with si := ihN , i = 1, 2, . . ., can easily be constructed from the mesh of Ωsi−1

via the doubling of edges.
Due to the monotone load, the reduced energy and the energy release rate are determined

by I(t, s) = t2I(1, s) and −∂sI(t, s) = −t2∂sI(1, s), respectively. In Figure 4(a) and (c), the
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Figure 4: (a) Energy release rate, (b) global energetic solution and BV-solution, (c) energy
release rate and energy.

approximated energy release rate s 7→ GN (1, s) with GN (t, s) := G(s, uN (1, s)) and the ap-
proximated reduced energy s 7→ IN (1, s) are shown. We use a uniform mesh with mesh size
hN = 1/64 to calculate these approximations. To obtain a rough guess, one may construct the
global energetic solution and the BV-solution via the mapping s 7→ G(s, u(1, s)) and the level
set L := {(t, s) ∈ [0, T ] × (0, L) | κ + ∂sI(t, s) = 0}, cf. [KMZ08]. This is done in Figure 4(b)
where s 7→ GN (1, s) is used.

To implement the minimization problem (4.3), we define the piecewise affine interpolant IN on
the data set (si, IN (1, si))0≤i<n, where n is the number of edges partitioning the crack. Thanks
to the monotone load we have I(t, s) ≈ t2IN (s). Note that the data set (si, IN (1, si))0≤i<n can
be computed in a preprocessing step. The input data of the following algorithm consists of the
initial crack length s0 ∈ (0, L), the crack increment σN > 0, the viscosity parameter νN > 0

and the time-step size τN > 0. The output is the set of incremental solutions (tkN , s
k
N )1≤k≤N ,

where tkN is the time-step and skN the crack length at the corresponding time-step. Defining
ZN := {s0 + kσN | k ∈ N, 0 ≤ k ≤MN} and

F k
N (s) := (tkN )2IN (s) + τNRνN (s

k−1
N ; (s− sk−1

N )/τN ),

Algorithm I is given as follows:

(1) k = 0, tkN = 0, skN := s0.

(2) k := k + 1. If kτN > T, stop.

(3) tkN := kτN, skN := Argmin{F k
N (s) | s ∈ ZN , s ≥ sk−1

N }.
(4) back to (2)

Clearly, the minimization problem (4.3) is exactly solved, if s0 corresponds to a node of the
finite element mesh and σN is a multiple of the mesh size hN . For νN := 0, Algorithm I, de-
termines incremental solutions approximating the global energetic solution. In Figures 5(a),(b)
the convergence of these incremental solutions is depicted with σN := hN and hN tending to 0.
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Figure 5: (a) Approximation of the global energetic solution, (b) zoom at the first jump, (c)
viscous solutions.

The first jump is predicted for t ∈ (56, 58) which corresponds to the global energetic solution as
depicted in Figure 4(b). We conclude that Algorithm I is applicable to compute approxima-
tions for the global energetic solution. Indeed, this confirms the assertion in Theorem 3.2. In
Figure 5(c), some approximations for viscous solutions are shown, where the viscosity parameter
varies from 10 to zero. The incremental solutions have two jumps along the level set L as shown
in Figure 4(b). We observe that the approximative viscous solutions converge from the right to
the global energetic solution.

Using Algorithm I to approximate the BV-solution, we have to balance the parameters σN ,
νN and τN in dependence of the mesh size hN and according to conditions (4.1) and (4.4) in
Theorem 4.1 and (4.29) in Theorem 4.5. The parameters α, β occurring in (4.29) are based on the

interpolation estimates formulated in condition (4.22). In our case, since u(t, sN ) ∈ B
3
2
2,∞(ΩsN ),

it follows, choosing ũNt,sN ∈ KN
sN

as the Lagrange interpolant on bilinear elements, that α = 1
2 −µ

and β = 3
2 − µ for arbitrary (small) µ > 0. Indeed, this choice is justified as follows, where

the arguments should be done for the Lipschitz domains Ω+ and Ω− separately: Complex inter-
polation theory implies that for s ∈ (1, 2) it holds Hs(Ω+) = (W 1,r(Ω+),W

2,ρ(Ω+))θ provided
that θ = s − 1 and 1

2 = 1−θ
r + θ

ρ , [Tri83]. Since Ω+ is two-dimensional, for r > 2 the Lagrange
interpolation operator Lh is well defined and uniformly continuous on W 1,r(Ω+). Moreover, for
all v ∈W 2,ρ(Ω+) the estimate

∥v − Lhv∥W 1,r(Ω+) ≤ cr,ρh
1+ 2

r
− 2

ρ ∥v∥W 2,ρ(Ω+)

is valid with a constant cr,ρ that is independent of h. Hence, by interpolation (cf. [LM72]), we
find for v ∈ Hs(Ω+) with s ∈ (1, 2) and arbitrary (small) r > 2 that

∥v − Lhv∥H1(Ω) ≤ cr ∥v − Lhv∥W 1,r(Ω) ≤ cr,ρh
θ(1+2( 1

r
− 1

ρ
)) ∥v∥Hs(Ω+) . (5.1)

Thus, with s = 3
2 −δ1, θ = s−1, r = 2+δ2, where δ1, δ2 are positive, but can be chosen arbitrary

small, it follows that ρ = 2 − δ3 with a suitable (small) δ3 > 0. Hence, the exponent in (5.1)
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Figure 6: Approximation of the BV-solution: (a) σN = h0.25N , νN = 0.8h0.875N , τN = 0.1hN , (b)
zoom at the jump, (c) σN = hN , νN = 0.2h0.5N , τN = 0.1hN .

behaves like 1
2 − µ with some suitable µ > 0 depending on δ1, δ2, and µ → 0 for δ1, δ2 → 0.

Similar arguments show that β = 3
2 − µ.

In the following, we ignore the constant µ. Hence, setting σN := δhγN with γ > 0 and using
the exponents α = 1/2 and β = 3/2, the right side of condition (4.29) becomes hγN +h

1/2−γ
N . For

γ = 1/4, both terms uniformly tend to zero. For νN := δ1h
γ1
N and τN := δ2h

γ2
N , condition (4.4)

becomes hγ+γ1+γ2
N → 0 and hγ2−γ1

N → 0 so that γ1 = γ2 − 1/8. To link the time-step size to the
crack increment, we have to choose γ1 := 1/8 and γ2 := 1/4. Ensuring the time-step size to be
equal to the mesh size, we may take γ1 := 7/8 and γ2 := 1. However, in view of the experiments
shown in Figure 11, condition (4.29) seems to be too pessimistic, so that also σN := hN and,
therefore, νN := h

1/2
N as well as τN := hN may be a reasonable choice. We expect that the

position of the first jump should be between 153 and 154 as shown in Figure 4(b) and, moreover,
the smaller hN is, the more to the right the second jump is located

In Figure 6, the output of Algorithm I describing the approximation of the BV-solution is
depicted. In our experiments, we observed a high sensitivity of the algorithm with respect to the
parameters δ1 and δ2. Improperly chosen parameters lead to jumps far from the predicted jump
so that convergence is not visible for large mesh sizes hN . See also the discussion to Figure 8(a).

To overcome these difficulties, we extend Algorithm I using some derivative information of the
interpolant IN and the function Rν . The input and output data of Algorithm II are the same as
for Algorithm I except for the crack increment σN , where we assume σN := hN . Furthermore,
step (3) is replaced by

(3) tkN := kτN, skN := Argmin{F k
N (s) | s ∈ ZN ∪ Z̃N

k , s ≥ sk−1
N }

where
Z̃N
k := {s ∈ (si−1, si) | (tiN )2I ′N (s) + τR′

ν(s
i−1
N ; s) = 0, 1 ≤ i < n}.
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Figure 7: Approximation of the BV-solution: (a) νN = h0.5N , τN = 0.1hN , (b) zoom at the jump,
(c) viscous solutions.
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Figure 8: Approximation of the BV-solution: (a) two fixed viscosity parameters νN , time
step τN → 0 (Algorithm I), (b) two fixed viscosity parameters νN , time step τN → 0

(Algorithm II), (c) zoom at the jump (Algorithm II).

In Figure 7, some approximative BV-solutions are depicted which are obtained on the basis
of Algorithm II. In our experiments we observed that the sensitivity of the algorithm with
respect to the parameters is essentially smaller. In Figure 7(c), viscous solutions are shown with
time-step size and mesh size τN = hN = 1/64 and viscosity parameter ν tending to 0. For
large viscosity parameters we observe smooth viscous incremental solutions, whereas for small
viscosity parameters the solutions have steep slopes which move to the first jump of the energetic
solution.

In Figure 8, we study the influence of the time-step size τN on the approximation of the
BV-solution using Algorithm I and Algorithm II. In Figure 8(a) and (b), we fix the viscosity
parameter νN and the mesh size hN . Using Algorithm I, we observe that the first jump of the
approximated BV-solution moves to the right as τN tending to 0, see Figure 8(a). Moreover, we
see some dependencies of the parameters νN and τN which may be explained by the assumptions
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Figure 9: Approximation of the BV-solution for initial crack s0 = 1.25: (a) σN = hN ,
νN = 0.1h0.5N τN = 0.1hN (Algorithm I), (b) zoom at the jump (Algorithm I), (c) fixed
νN , τN → 0 (Algorithm I), (d) νN = h0.5N , τN = 0.1hN (Algorithm II), (e) zoom at the jump
(Algorithm II), (f) νN = τN = hN (Algorithm II).

in Theorem 4.1. In the case of Algorithm II, however, the viscous solutions with fixed νN

converge as τN → 0, cf. Figure 8(b) and (c). This means that τN can be chosen arbitrary small.
Thus, τN and νN are independent of each other. A further observation is that small viscosity
parameters νN lead to steep slopes, which is, of course, expectable. However, they also lead to
a less accurate approximation of the jump of the BV-solution (which should approximatively be
between 153 and 154). On the other hand, large viscosity parameters result in less steep and
’rounded’ curves, cf. Figure 8(c). This effect can also be observed for Algorithm I. Due to the
dependence of τN and νN the time-step size has to be increased in this case which may lead to
a rough approximation.

In Figure 9, we study the same experiments, but with the longer initial crack length s0 = 1.25.
At first sight, the sensitivity of Algorithm I with respect to the parameters seems to be smaller
than in the previous experiments. In particular, the convergence of the approximative BV-
solutions seems to be more clear, cf. Figure 9(a). However, we have the same set of problems
using Algorithm I, in particular, if we want to balance the parameters νN and τN with δ1 and
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Figure 10: Several examples (von Mises equivalent stress): (a) mode I (multiplied by factor
50), (b),(c) contact solution with symmetric load (factor 10,50), (d) mode II with self-contact
(factor 20), (e) solution with symmetric load without contact (factor 20).

δ2, cf. Figure 9(c). Again, Algorithm II produces approximations of the BV-solution which
inspire much more confidence.

Finally, we advert to the dependence of the viscosity parameter νN from the mesh size hN
and time step size τN in the application of Algorithm II. As we can see in Figure 9(f), the
second jumps of the approximative BV-solutions converges to some final time as hN → 0 for
νN = hN = τN . This means that the approximative BV-solutions do not converge to the BV-
solution. Choosing νN = h0.5N = τ0.5N , we observe that the second jumps move to the right as
desired. This highlights that the assumption τN/νN → 0 is, in fact, needed.

5.2 Convergence of the energy release rates

At last, we study the convergence rates predicted in (4.29) and (4.38). In Fig. 10, several
examples for contact and non-contact problems are depicted. The maximum crack length is
L = 2 and the domain is defined by Ω := [0, 3]× [−1, 1]. The example (a) is a mode I function
with non-homogenous Dirichlet boundary conditions on Γ0 := {3} × (−1,−1), cf. [Gro96].

The functions in the Examples (b)-(d) are solutions of the variational inequality (2.2), where
homogenous Dirichlet boundary conditions on Γ0 and surface loads on the boundary parts Γ1,± :=

(0, 1) × {±1}, Γ2,± := (1, 2) × {±1}, Γ3 := {0} × (−1, 0), Γ3 := {0} × (0, 1) are assumed. The
surface loads are given in Table 1. In Example (e), contact conditions on the crack are not
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Example Γ1,+ Γ1,− Γ2,+ Γ2,− Γ3 Γ4

(b) 1 -1 -10 10 0 0
(c) -1 1 1 -1 0 0
(d) -10 -10 -10 -10 1 -1
(e) -1 1 1 -1 0 0

Table 1: Surface loads.

enforced so that self-penetration occurs which is, of course, physically unreasonable.
In Figure 11, the convergence rates for the terms |σ−1

N (IN (t, s−σN )−IN (t, s))+∂sI(t, s)| and
|G(s, u(t, s))−G(s, uN (t, s))| with s = L are shown. We observe that the convergence rate is at
least O(hN ) for both terms, where σN ∈ {hN , 2hN , 4hN}. Indeed, the rate O(hN ) is predicted
in Theorem 4.12 for non-contact as given in Example (a). In the case of contact, the estimations
(4.29) seem to be too pessimistic. Provided that the surface loads act orthogonally and the crack
is closed, we even obtain quadratic rates for |G(s, u(t, s))−G(s, uN (t, s))|, cf. Figure 11(b). For
surface loads leading to shear strains and, moreover, to a closing crack, the rates may not be
quadratic, but seem to be better than linear. Also, the absence of contact conditions could lead
to higher convergence rates, cf. Figure 11(e).
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Figure 11: (a)-(e): |σ−1
N (IN (t, s−σN )−IN (t, s))+∂sI(t, s)|, (f) |G(s, u(t, s))−G(s, uN (t, s))|.

We finally remark that condition (4.37) is satisfied if one chooses meshes that are locally
invariant with respect to a translation of length h (mesh width) parallel to the crack. Then, an
appropriate choice for QN

s is the Zhang/Scott interpolation operator [SZ96].
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