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Abstract: We consider p independent Brownian motions in Rd. We assume that p ≥ 2 and p(d − 2) < d. Let
`t denote the intersection measure of the p paths by time t, i.e., the random measure on Rd that assigns to any
measurable set A ⊂ Rd the amount of intersection local time of the motions spent in A by time t. Earlier results of
Chen [C09] derived the logarithmic asymptotics of the upper tails of the total mass `t(Rd) as t → ∞. In this paper,
we derive a large-deviation principle for the normalised intersection measure t−p`t on the set of positive measures on
some open bounded set B ⊂ Rd as t → ∞ before exiting B. The rate function is explicit and gives some rigorous
meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of
the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-
Varadhan principle for the latter applicable to the intersection measure.

A second version of our principle is proved for the motions observed until the individual exit times fromB, conditional
on a large total mass in some compact set U ⊂ B. This extends earlier studies on the intersection measure by König
and Mörters [KM02, KM06].

1. INTRODUCTION AND MAIN RESULTS

1.1 Brownian intersection local time.

Let W (1),W (2), . . . ,W (p) be p independent Brownian motions in Rd. We assume throughout this paper that p ≥ 2
and d < 2p

p−1 , which are the following cases:

p ≥ 2 arbitrary in d = 2, p = 2 in d = 3.

In the 1950’s Dvoretzky, Erdős, Kakutani and Taylor [DEK50], [DEK54], [DEEKT57] showed that, almost surely, the
intersection of the p paths on individual time horizons,

Sb =
p⋂
i=1

W (i)

[0,bi]
, b = (b1, . . . , bp) ∈ (0,∞)p,

are non-empty. Further results ([T64], [Fr67]) showed Sb has measure zero in d ≥ 2 and Hausdorff dimension two in
d = 2 and one in d = 3. Hence, Sb is a rather peculiar and interesting random set.

There is a natural measure `b supported on Sb counting the intensity of path intersections. This measure can be
formally defined by

`b(A) =
∫
A

dy
p∏
i=1

∫ bi

0
ds δy(W (i)

s ) for every measurable A ⊂ Rd. (1.1)

Hence, informally `b is the pointwise product of the densities of the p occupation measures on the individual time
horizons. This definition is rigorous in dimension d = 1, as the occupation measures of the motions have almost
surely a density, which is jointly continuous in the space and the time variable. However, in d ≥ 2, the occupation
measures fail to have a density. Therefore, the above heuristic formula for `b needs an explanation, respectively a
rigorous construction. Geman, Horowitz and Rosen [GHR84] constructed `b as the intersection local time at zero
of the confluent Brownian motion, Le Gall [LG86] identified it as a renormalized limit of the Lebesgue measure on
the intersection of Wiener sausages, and a third identification is in terms of a Hausdorff measure on Sb with explicit
identification of the gauge function [LG87-89]. These three rigorous constructions of `b are summarized in [C09] and
briefly surveyed in [KM02, Sect. 2.1]. As a by-product of the present paper, we will implicitly give a fourth construction
in terms of a rescaled limit of pointwise products of smoothed occupation times, see Proposition 2.3. Some of the
preceding results have been derived for b1, . . . , bp replaced by certain random times (independent exponential times
or exit times from domains), but the proofs easily carry over to `b.
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The measure `b is, with probability one, positive and locally finite on Rd. It is usually called intersection local time
(ISLT) in the literature. However, also its total mass, `b(Rd), enjoys this name, as it registers the total amount of
intersections of the motions. Since the difference between these two objects will be significant in this paper, we will
stick to the name intersection measure for `b and keep the name ISLT for its total mass `b(Rd).

1.2 Asymptotics for large total mass.

The large-t behaviour of the ISLT `t1l(Rd) (where 1l = (1, . . . , 1)) has been studied by X. Chen in a series of papers,
see his monography [C09] for a comprehensive summary of these results and the concepts of the proofs and much
more related material. The main result [C09, Theorem 3.3.2] is

lim
t→∞

1
t

log P(`t1l(Rd) > atp) = −a2/d(p−1)χ, a > 0, (1.2)

where
χ = inf

{p
2
‖∇ψ‖2

2 : ψ ∈ H1(Rd), ‖ψ‖2p = 1 = ‖ψ‖2

}
. (1.3)

As we will explain in more detail in Section 1.4, the term ψ2 informally plays the role of the normalised occupation
measure density of any of the p motions, and ψ2p the one of the intersection measure t−p`t1l. This is one of the
main features of intersection measures: How much rigorous meaning can be given to the intersection measure as a
pointwise product of the occupation measures of the p motions? The above result indicates that some heuristic sense
can be given in terms of a large-t limit in the interpretation of the characteristic variational formula.

It is one of the main goals of this paper to give a more rigorous meaning to this interpretation in terms of a large-
deviation principle (LDP), at least for the case that the motions do not leave a given bounded set. Fix a bounded open
set B ⊂ Rd with smooth boundary and compact closure B and denote by τi = inf{t > 0: W (i)

t /∈ B} the exit time
of the i-th motion from B. By ` = `B we denote the intersection measure for the motions running up to their individual
exit times from B, i.e., we replace the time horizon [0, b1]× · · · × [0, bp] in (1.1) by [0, τ1)× · · · × [0, τp). Then ` is
a finite positive measure on B. Fix some compact subset U of B such that the boundary of U is a Lebesgue null set.
The upper tails of `(U) have been analysed by König and Mörters [KM02], resulting in the asymptotics

lim
a→∞

a
− 1

p log P (`(U) > a) = −ΘB(U) (1.4)

for
ΘB(U) = inf

{p
2
‖∇φ‖2

2 : φ ∈ H1
0 (B), ‖1lUφ‖2p = 1

}
. (1.5)

This result is in the same spirit as the above one by Chen. Again, φ2 and φ2p have the informal interpretation as the
densities of the individual occupation measures and the intersection measure, respectively. Denote by M the set of
minimizing functions φ2p, then M is not empty [KM02, Thm. 1.3], and the elements of M admit some rigorous sense
in terms of a law of large masses. Indeed, under the conditional measure P(· | `(U) > a), it is shown in [KM06] that
the distance of the normalized measure `/`(U) (with harmonic extension to B) to M (where the elements of M are
seen as probability measures on U ) tends to zero as a→∞. However, [KM06] failed to show that this convergence is
exponential in a1/p, and their proof was not a consequence of a large-deviation principle. It was the goal of [KM06] to
get full control on the shape of `/`(U) under P(· | `(U) > a) in terms of asymptotics for test integrals against many
test functions, but the technique used there (asymptotics for the k-th moments) turned out not to be able to give that;
the technique precluded functions that assume negative values.

1.3 Main results: Large deviations.

Our first main result is a large-deviation principle for large time for the motions before exiting the set B (defined as
in Section 1.2). Assume that the p motions W (1), . . . ,W (p) have some arbitrary starting distribution on B, possibly
dependent on each other, which we suppress from the notation. Their occupation times measures are denoted by

`(i)t =
∫ t

0
δ
W

(i)
s

ds, i = 1, . . . , p; t > 0. (1.6)



3

We fix b = (b1, . . . , bp) ∈ (0,∞)p and consider the time horizon [0, tbi] for the i-th motion. By

P(tb)(·) = P
(
· ∩

p⋂
i=1

{tbi < τi}
)

we denote the sub-probability measure under which the i-th motion does not exit B before time tbi. Then `tb is
a random element of the set M(B) of positive measures on B. We equip it with the weak topology induced by test
integrals with respect to continuous bounded functionsB → R. ByM1(B) we denote the set of probability measures
on B, and by H1

0 (B) the usual Sobolev space with zero boundary condition in B.

Theorem 1.1 (LDP at diverging time). The tuple( 1
tp
∏p
i=1 bi

`tb;
1
tb1

`(1)tb1 , . . . ,
1
tbp

`(p)

tbp

)
satisfies, as t → ∞, a large deviation principle in the space M(B) ×M1(B)p under P(tb) with speed t and rate
function

I
(
µ;µ1, . . . , µp

)
=

1
2

p∑
i=1

bi‖∇ψi‖2
2, (1.7)

if µ, µ1, . . . , µp each have densitiesψ2p andψ2
1, . . . , ψ

2
p with ‖ψi‖2 = 1 for i = 1, . . . , p such thatψ,ψ1, . . . , ψp ∈

H1
0 (B) and ψ2p =

∏p
i=1 ψ

2
i ; otherwise the rate function is ∞. The level sets of the rate function I in (1.7) are

compact.

To be more explicit in the special case b = 1l, Theorem 1.1 says that, for any continuous and bounded test functions
f, f1, . . . , fp : B → R,

lim
t→∞

1
t

log E(t1l)

[
exp

{
t
(
〈t−p`t1l, f〉+

p∑
i=1

〈1
t `

(i)

t , fi〉
)}]

= sup
{〈 p∏

i=1

ψ2
i , f
〉

+
p∑
i=1

〈ψ2
i , fi〉 −

1
2

p∑
i=1

‖∇ψi‖2
2 : ψi ∈ H1

0 (B) and ‖ψi‖2 = 1 for i = 1, . . . , p
}
.

(1.8)

Theorem 1.1 is an extension of the well-known Donsker-Varadhan LDP for the occupation measures of a single
Brownian motion in compacts [DV75-83], [G77] to the intersection measure. It gives a rigorous meaning to the heuris-
tic formula in (1.1) in the limit t → ∞. Since B is bounded, `tb is a finite measure. However, there is no natural
normalisation of `tb that turns it into a probability measure. Our result shows that t−p`tb is asymptotically of finite
order. A heuristic derivation of Theorem 1.1 in terms of the Donsker-Varadhan LDP is given in Section 1.4, the proof in
Sections 2 and 3.

Specialising to the first entry of the tuple, we get the following principle from the contraction principle, [DZ98, Theo-
rem 4.2.1]:

Corollary 1.2. Fix b = (b1, . . . , bp) ∈ (0,∞)p. Then the family of measures ((tp
∏p
i=1 bi)

−1`tb)t>0 satisfies, as
t→∞, a large deviation principle in the space M(B) under P(tb) with speed t and rate function

I(µ) = inf
{1

2

p∑
i=1

bi‖∇ψi‖2
2 : ψi ∈ H1

0 (B), ‖ψi‖2 = 1∀i = 1, . . . , p, and
p∏
i=1

ψ2
i =

dµ
dx

}
, (1.9)

if µ has a density, and I(µ) = ∞ otherwise. The level sets of the rate function I in (1.9) are compact.
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To be more explicit in the special case b = 1l, Corollary 1.2 says that, for any open set G ⊂ M(B) and every
closed set F ⊂M(B),

lim sup
t→∞

1
t

log P
(
t−p`t ∈ F, t < τ1 ∧ · · · ∧ τp

)
≤ − inf

µ∈F
I(µ),

lim inf
t→∞

1
t

log P
(
t−p`t ∈ G, t < τ1 ∧ · · · ∧ τp

)
≥ − inf

µ∈G
I(µ),

In the special case b = 1l = (1, . . . , 1), it is tempting to conjecture that, for (ψ1, . . . , ψp) a minimising tuple in
(1.9), all the ψi should be identical. This would simplify the formula to I(µ) = p

2‖∇ψ‖
2
2 if ψ2p is a density of µ with

ψ ∈ H1
0 (B). However, we found no evidence for that and indeed conjecture that this is not true for general µ. But note

that the result by Chen in (1.2)–(1.3), after replacing `t(Rd) by `t(B) and H1(Rd) by H1
0 (B), for a = 1 suggests

that, at least for the miniser µ of I(µ), all the ψi should be identical, since the minimiser in (1.3) is just some ψ2p.

As a corollary of Theorem 1.1, we give now a related LDP for the normalised intersection local time for the motions
stopped at their first exit from B under conditioning on {`(U) > a} as a → ∞, where we recall that U ⊂ B is a
compact set whose boundary is a Lebesgue null set. This solves a problem left open in [KM06], see Section 1.2. That
is, instead of diverging deterministic time, we now consider a random time horizon and diverging ISLT. The measure
`/`(U) is a positive measure onB, which is a probability measure on U . At the end of Section 1.2, we mentioned that
the normalised probability measure `/`(U) satisfies a law of large masses under the conditional law P(· | `(U) > a).
Here we in particular identify the precise rate of the exponential convergence. ByMU (B) we denote the set of positive
finite measures on B whose restriction to U is a probability measure. Our second main result is the following.

Theorem 1.3 (Large deviations at diverging mass). The normalized probability measures `/`(U) under P(· |`(U) >
a) satisfy, as a→∞, a large deviation principle in the spaceMU (B), with speed a1/p and rate function J−ΘB(U),
where

J(µ) = inf
{1

2

p∑
i=1

‖∇φi‖2
2 : φ1, . . . , φp ∈ H1

0 (B),
p∏
i=1

φ2
i =

dµ
dx

}
, (1.10)

if µ has a density and J(µ) = ∞ otherwise, where ΘB(U) is the number appearing in (1.5). The level sets of J are
compact.

The proof of Theorem 1.3 is in Section 4, a heuristic derivation from Theorem 1.1 is in Section 1.4.

Like for the rate function I in (1.9), we do not know whether or not the minimising φ1, . . . , φp are identical. However,
when minimising also over µ ∈ MU (B), we see that minµ∈MU (B) J(µ) = ΘB(U), and an inspection of (1.5)
shows that a minimising tuple is given by picking all φi are equal to φ, where φ2p is the minimiser in (1.5). It is an open
problem to give a sufficient condition on µ for having a minimising tuple of p identical functions φ1, . . . , φp.

For Theorems 1.1 and 1.3 and Corollary 1.2, there are analogues for random walks on Zd instead of Brownian
motions on Rd. These are much easier to formulate and to prove since the heuristic formula in (1.1) can be taken as a
definition without problems.

1.4 Heuristic derivation of the main results.

In this section we sketch heuristics that lead to Theorems 1.1 and 1.3, starting from Donsker-Varadhan theory of large
deviations. For simplicity, we drop compactness issues and formulate the principle on Rd rather on some bounded
domain B. We also put b = 1l and write `t instead of `t1l.

Recall the occupation measure of the i-th Brownian motion defined in (1.6). That is, `(i)t (A) is the amount of time
that W (i) spends in A ⊂ Rd by time t. The famous Donsker-Varadhan LDP [G77], [DV75-83] states that

P
(

1
t `

(i)

t ≈ µ
)

= exp
[
− t

1
2

∥∥∥∇√dµ
dx

∥∥∥2

2
+ o(t)

]
, t→∞. (1.11)
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This is a simplified version of the statement that, under P(·∩{W (i)

[0,t] ⊂ B}), the distributions of 1
t `

(i)

t satisfies an LDP

with speed t and rate function µ 7→ 1
2‖∇

√
dµ
dx‖

2
2 if the square root of the density of µ exists in H1(Rd) and µ 7→ ∞

otherwise.

The heuristic formula in (1.1) states that

t−p`t(dy) =
p∏
i=1

1
t

`(i)t (dy)
dy

. (1.12)

Hence, t−p`t is a function of the tuple (1
t `

(1)

t , . . . ,
1
t `

(p)

t ). Let us ignore that this map is far from continuous. Now the
LDP in Theorem 1.1 follows from a formal application of the contraction principle.

Let us now give a heuristic derivation of the LDP in Theorem 1.3. The heuristic formula in (1.1) implies that

`(dy)
`(U)

=
1∫

U dx
∏p
i=1

`
(i)
τi

(dx)

dx

( p∏
i=1

`(i)τi (dy)
dy

)
dy. (1.13)

Pick some µ ∈ MU (B) with density φ2p. We make the ansatz that the event {`/`(U) ≈ µ, `(U) > a} is realized
by the event

⋂p
i=1A(bi, ψi), where

A(bi, ψi) =
{
τi > bia

1/p,
1

bia1/p
`(i)
bia1/p ≈ ψ2

i (x) dx on B
}
,

where ψ1, . . . , ψp ∈ H1
0 (B) are L2(B)-normalized and b1, . . . , bp ∈ (0,∞). Later we optimise over ψ1, . . . , ψp

and b1, . . . , bp. In other words, the i-th motion spends an amount of τi ≈ bia
1/p time units in B until it leaves the set

B, and its normalized occupation times measure resembles ψ2
i on B. We approximate `(U) > a by `(U) ≈ a and

have therefore the following condition for b1, . . . , bp:

1 ≈ 1
a
`(U) =

p∏
i=1

bi

∫
U

dx
p∏
i=1

ψ2
i (x). (1.14)

Furthermore, from (1.13), we get the condition

φ2p =
`

`(U)
=

∏p
i=1 ψ

2
i∫

U dx
∏p
i=1 ψ

2
i (x)

=
p∏
i=1

(
biψ

2
i

)
. (1.15)

Hence, we get, also using (1.11) with t = bia
1/p,

lim
a→∞

a−1/p log P
( `

`(U)
≈ φ2p, `(U) > a

)
= − inf

b1,...,bp,ψ1,...,ψp

lim
a→∞

a−1/p log P
( p⋂
i=1

A(bi, ψi)
)

= − inf
b1,...,bp,ψ1,...,ψp

p∑
i=1

bi
1
2
‖∇ψi‖2

2,

(1.16)

where the infimum runs under the above mentioned conditions, in particular (1.14) and (1.15). Now substituting φ2
i =

biψ
2
i for i = 1, . . . , p, we see that the right-hand side of (1.16) is indeed equal to −J(µ). This ends the heuristic

derivation of Theorem 1.3.
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2. PROOF OF THEOREM 1.1: LARGE DEVIATIONS FOR DIVERGING TIME

In this section, we prove our first main result, the LDP in Theorem 1.1. A summary of our proof is as follows. In
Section 2.2 we introduce an approximation of the normalised intersection measure in terms of the pointwise product of
smoothed versions of the normalized occupation times measures of the p motions and prove an LDP for the tuple built
from them. This is quite easy, as this tuple is a continuous function of the normalised occupation times measures, for
which we can apply the classical Donsker-Varadhan LDP. Furthermore, in Section 2.3 we show that the corresponding
rate function converges to the rate function I of the LDP of Theorem 1.1 as the smoothing parameter vanishes. The
convergence is in the sense of Γ-convergence, and its proof relies on standard analysis. In Section 2.4 we finish
the proof of Theorem 1.1, subject to the fact that the smoothed versions of the intersection measure is indeed an
exponentially good approximation of the (non-smoothed) intersection measure. This fact is formulated as a proposition,
its proof is deferred to Section 3. In the following Section 2.1 we give some remarks on the relation to other proofs in
this field in the literature.

2.1 Literature remarks on the proof.

In the last decades, with especially much success in this millennium, people have developed many techniques to derive
the large-time or the large-mass asymptotics for the total mass of mutual intersections of several independent paths;
we mentioned two important ones in Section 1.2. With the exception of the work in [KM06], these results concern only
the total mass, but not integrals against test functions, as we consider in the present paper. Hence, the question arises
which of the existing proof strategies are also amenable to the refined problem about test integrals. In our setting of
large deviations in a bounded set B, we do not have the – technically very nasty – additional problem of compactifying
the space, which cannot be overcome by the well-known periodisation technique, but was solved by Chen using an
abstract compactness criterion by de Acosta. We are also not using the technique of comparing deterministic time t to
random independent exponential time, as this works only in connection with the Brownian scaling property, which we
cannot use for our refined problem.

The technique of finding the asymptotics of high polynomial moments and using them for the logarithmic asymptotics
of probabilities was first carried out in [KM02] in the context of mutual Brownian intersection local times in a bounded set
B, see Section 1.2 and a thorough presentation in [C09]. This has the advantage to avoid a smoothing approximation;
these are always technically involved. In [KM06], this technique was extended to the analysis of test integrals against
a large class of measurable and bounded test functions. However, this technique was not able to yield an LDP, since it
could be applied only to nonnegative test functions. Hence, we believe that this technique will not be helpful for deriving
LDPs.

Another possibility would be to use Le Gall’s [LG86] approximation technique with the help of renormalised Lebesgue
measure on the intersection of the Wiener sausages. The main task here would be to strengthen the Lp-convergence
of test integrals of these measures to exponential convergence. However, we found no way to do this.

Chen developed a strategy of smoothing by convolution of the Dirac measure in the proof of [C09, Theorem 2.2.3]
for finding the logarithmic asymptotics for the upper tails of the total mass of the intersection. However, the strategy of
proving the exponentially good approximation was taylored there for the total mass and does not seem to be amenable
to the study of test integrals against test functions that may take arbitrary, positive and negative, values.

On the other side, another technique developed in [C07] seems to be amenable to prove an exponentially good
approximation of the intersection measure for p = 2 using Fourier inversion. However, for p > 2, the mollifier used in
[C07] does not seem to admit an LDP, at least not without substantial work, and we did not see how.

Therefore, we chose to work with mollifying each occupation time and to approximate the intersection measure with
their pointwise product, which itself is easily seen to satisfy an LDP. Our proof of the exponential approximation in
Section 3 with this object requires combinatorial and analytical work.
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2.2 Large deviations for smoothed intersection local times.

Recall from (1.6) the occupation measure `(i)t of the i-th motion. Let ϕ = ϕ1 be a non-negative, C∞-function on
Rd with compact support, normalised such that

∫
Rd ϕ1(y) dy = 1. Now we define the approximation of the Dirac

δ-function at zero by

ϕε(x) = ε−dϕ1(x/ε).

Let us consider the convolution of the above occupation measures with ϕε:

`(i)ε,t(y) = ϕε ? `
(i)

t (y) =
∫ t

0
ds ϕε(W (i)

s − y).

Then `(i)ε,t is a bounded C∞-function. As ε ↓ 0, the measure with density `(i)ε,t converges weakly towards the occupation

measure `(i)t . Consider the point-wise product of the above densities:

`ε,t(y) =
p∏
i=1

`(i)ε,t(y).

We will write `ε,t(y) dy for the measure with density `ε,t. It should come as no surprise that these measures are, for
any fixed t, an approximation of the intersection local time `t as ε ↓ 0, even though we could not find this statement in
the literature. Actually, we will go much further and will show that they even are an exponentially good approximation of
the intersection local time `t in the sense of [DZ98], see below.

First we state a large-deviation principle for the measures with density `ε,t as t → ∞ for fixed ε > 0. It is
known by classical work by Donsker and Varadhan [DV75-83], [G77] that each 1

t `
(i)

t satisfies, as t → ∞, a large-
deviations principle. In the proof of Lemma 2.1 below we will see that `ε,t(y) dy is a continuous functional of the tuple
(`(1)t , . . . , `

(p)

t ). Hence, by the contraction principle, `ε,t(y) dy itself satisfies an LDP with some (ε-dependent) rate
function.

Recall that we equip M(Rd), the space of finite measures on Rd, with the weak topology induced by test integrals
against continuous bounded functions. For a measure µ ∈M(Rd) and a function f : Rd → R, we denote by 〈µ, f〉
the integral

∫
f dµ.

Lemma 2.1 (LDP for smoothed measures). Fix ε > 0 and b = (b1, . . . , bp) ∈ (0,∞)p. Then the tuple of random
measures ( 1

tp
∏p
i=1 bi

`ε,tb; 1
tb1
`(1)ε,tb1 , . . . ,

1
tbp
`(p)

ε,tbp

)
satisfies, as t→∞, a large deviation principle in M(B)×M1(B)p under P(tb) with speed t and rate function

Iε
(
µ;µ1, . . . , µp

)
= inf

{1
2

p∑
i=1

bi‖∇ψi‖2
2 : ψi ∈ H1

0 (B), ‖ψi‖2 = 1, ψ2
i ? ϕε =

dµi
dx

∀i = 1, . . . , p,

and
p∏
i=1

ψ2
i ?ϕε =

dµ
dx

}
,

(2.1)

if µ has a density, and Iε(µ) = ∞ otherwise. The level sets of Iε are compact.

Proof. First observe that the mapping

(
M1(Rd)

)p −→M(Rd),
(
µ1, . . . , µp

)
7→
( p∏
i=1

µi?ϕε(x)
)

dx, (2.2)
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is weakly continuous. Indeed, first note that the map (µ1, . . . , µp) 7→ µ1 ⊗ · · · ⊗ µp is continuous from M1(Rd)p to
M1((Rd)p) since M1(Rd) is a Polish space. Furthermore, for every continuous bounded test function f : Rd → R
and any µ1, . . . , µp ∈M1(Rd), we have〈

f,
( p∏
i=1

µi?ϕε(x)
)

dx
〉

=
∫

Rd

dxf(x)
∫

(Rd)p

µ1( dy1) . . . µp( dyp) ϕε(x− y1) . . . ϕε(x− yp)

=
〈
Af , µ1 ⊗ · · · ⊗ µp

〉
,

where

Af (y1, . . . , yp) =
∫

Rd

dx f(x) ϕε(x− y1) . . . ϕε(x− yp).

As ϕε is smooth and compactly supported in Rd, the functionAf is continuous and bounded in (Rd)p. This shows the
continuity of the map in (2.2). Now the claimed LDP follows from the contraction principle [DZ98, Theorem 4.2.1]. �

2.3 Gamma-convergence of the rate function.

In this section, we pass to the limit ε ↓ 0 in the variational formula (2.1). The sense of convergence is the Γ-
convergence, as will be required in the proof of Theorem 1.1 in Section 2.4 below. The proof of this convergence
is based on standard analytic tools. By Bδ(µ) = {ν ∈ M(B) : d(ν, µ) < δ} we denote the open ball of radius δ
around µ, where d is a metric which induces the weak topology in M(B). By d we also denote the product metric on
M(B)×M1(B)p and by Bδ(µ;µ1, . . . µp) the open δ-ball around (µ, µ1, . . . , µp) in this space.

Proposition 2.2. For every µ ∈M(B), we have,

sup
δ>0

lim inf
ε↓0

inf
Bδ(µ;µ1,...,µp)

Iε = I(µ;µ1, . . . , µp), (2.3)

where I is the rate function defined in (1.7). Furthermore, the level sets of I are compact.

Proof. We write f(x)µ(dx) for the measure with density f with respect to µ. We denote the Lebesgue measure by
dx.

First we prove ‘≤’. Let µ, µ1, . . . , µp be given. Without loss of generality, we may assume that ψ2
i = dµi

dx exists,

and dµ
dx =

∏p
i=1 ψ

2
i . Fix δ > 0 and take ε > 0 so small that ψ2

i ? ϕε(x) dx ∈ Bδ/2p(µi) for i = 1, . . . , p and
(
∏p
i=1 ψ

2
i ?ϕε(x)) dx ∈ Bδ/2p(µ). Hence, the tuple ((

∏p
i=1 ψ

2
i ?ϕε(x)) dx;ψ2

1 ?ϕε(x) dx, . . . , ψ2
p ?ϕε(x) dx)

lies in Bδ(µ;µ1, . . . , µp). Hence,

inf
Bδ(µ;µ1,...,µp)

Iε ≤ Iε

(( p∏
i=1

ψ2
i ? ϕε(x)

)
dx;ψ2

1 ? ϕε(x) dx, . . . , ψ2
p ? ϕε(x) dx

)
≤ 1

2

p∑
i=1

‖∇ψi‖2
2,

where in the last step we used the definition of Iε.

Now we prove ‘≥’. Let µ, µ1, . . . , µp be given and let I(µ;µ1, . . . , µp) be finite. Without loss of generality, the left
hand side of (2.3) is also finite. For δ, ε > 0, we pick (µ(δ,ε), µ(δ,ε)

1 , . . . , µ(δ,ε)
p ) in Bδ(µ;µ1, . . . , µp) such that

inf
Bδ(µ;µ1,...,µp)

Iε ≥ Iε
(
µ(δ,ε);µ(δ,ε)

1 , . . . , µ(δ,ε)
p

)
− δ.

By definition of Iε, there are L2-normalized ψ(δ,ε)

i ∈ H1
0 (B) for i = 1, . . . , p such that µ(δ,ε)

i (dx) = ψ2
i ? ϕε(x) dx

and µ(δ,ε)(dx) = (
∏p
i=1 ψ

2
i ? ϕε(x)) dx and

Iε
(
µ(δ,ε);µ(δ,ε)

1 , . . . , µ(δ,ε)
p

)
≥ 1

2

p∑
i=1

‖∇ψ(δ,ε)

i ‖2
2 − ε.
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Then, by well-known analysis [LL01, Chapter 8], along some subsequences, we may assume that ψ(δ,ε)

i → ψ(δ)

i as
ε ↓ 0, for some L2-normalized ψ(δ)

i ∈ H1
0 (B) for i = 1, . . . , p, such that ‖∇ψ(δ)

i ‖2
2 ≤ lim infε↓0 ‖∇ψ(δ,ε)

i ‖2
2. This

convergence is true strongly in Lq for any q > 1 in d = 2 and 1 < q < 6 in d = 3, and we have

lim inf
ε↓0

inf
Bδ(µ;µ1,...,µp)

Iε ≥
1
2

p∑
i=1

‖∇ψ(δ)

i ‖
2
2 − δ. (2.4)

In particular, we have µ(δ,ε)

i ⇒ ψ(δ)

i (x)2 dx =: µ(δ)

i (dx) in the weak topology. It is elementary (using Hölder’s
inequality) to see that (ψ(δ,ε)

i )2 ? ϕε(x) dx ⇒ µ(δ)

i (dx) in the weak topology. Hence, µ(δ)

i ∈ Bδ/2p(µi). Now we

let δ ↓ 0 and take a subsequence of ψ(δ)

i which converges to some ψi strongly in Lq for any q > 1 in d = 2 and
1 < q < 6 in d = 3 and

lim inf
δ↓0

p∑
i=1

‖∇ψ(δ)

i ‖
2
2 ≥

p∑
i=1

‖∇ψi‖2
2.

Since µ(δ)

i ∈ Bδ/2p(µi), ψ2
i must be a density of µi. Therefore, the right hand side of the last display is

2I(µ;µ1, . . . , µp). Sending δ ↓ 0 in (2.4), the proof is finished for the case when I(µ;µ1, . . . , µp) is finite.

Now we consider the case I(µ;µ1, . . . µp) = ∞. First, we consider the case that all µ1, . . . , µp have densities
ψ2

1, . . . , ψ
2
p such that ψi ∈ H1

0 (B), but µ either fails to have a density or to be the pointwise product of the ψ2
i . By

way of contradiction, assume that the left hand side of (2.3) is finite. Now we follow the same line of arguments as
above and define µ(δ) = (

∏p
i=1(ψ

(δ)

i )2(x)) dx and note that µ(δ,ε) ⇒ µ(δ) as ε ↓ 0. Indeed ψ(δ,ε)

i converges as
ε ↓ 0 (strongly in Lq for q > 1 in d = 2 and 1 < q < 6 in d = 3) to ψ(δ)

i , and taking the pointwise product of
the densities is a weakly continuous operation. Hence µ(δ) lies in Bδ/2p(µ). Now we send δ ↓ 0 and use the same
argument to infer that µ(δ) ⇒ µ = (

∏p
i=1 ψ

2
i (x)) dx. This is a contradiction.

Furthermore, also in the case that one of the µi’s does not have a density or its squareroot is not in H1
0 (B), the

same arguments above (by contradiction) shows

lim inf
δ↓0

p∑
i=1

‖∇ψ(δ)

i ‖
2
2 ≥ +∞ = I(µ;µ1, . . . , µp).

�

2.4 Completion of the proof of Theorem 1.1.

The main step in the remaining part of the proof of Theorem 1.1 is to show that the intersection measure t−p`tb is
exponentially well approximated by t−p`ε,tb. This we formulate here as a result on its own interest.

Proposition 2.3 (Exponential approximation). Fix b = (b1, . . . , bp) ∈ (0,∞)p and a measurable and bounded
function f : B → R. Then, for any ε > 0, there is C(ε) > 0 such that

E(tb)

[∣∣∣〈`tb − `ε,tb, f
〉∣∣∣k] ≤ k!p C(ε)k, t ∈ (0,∞), k ∈ N. (2.5)

and limε↓0C(ε) = 0.

Note that this result implicitly shows that `t is indeed approximated by `ε,t inLk-topology for any k, as we announced
in Section 1.1. The proof of Proposition 2.3 is given in Section 3. Now we finish the proof of our main result.

Proof of Theorem 1.1. Recall that we have a LDP for the ε-depending tuple in Lemma 2.1. We now use Proposition 2.3
to see that this tuple is an exponentially good approximation of the tuple in Theorem 1.1. Recall that d is a metric on
M(B) that induces the weak topology. We also denote by d a metric onM(B)×M1(B)p that induces the product
topology of this topology. Then we have to show that the probability that the d-distance of the two tuples in Lemma 2.1
and Theorem 1.1 being larger than any δ > 0 has an exponential rate as t→∞ which tends to −∞ as ε ↓ 0. Since
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the topology on M(B) is induced by test integrals against continuous bounded functions, it is enough to show that,
for any such test functions f, f1, . . . , fp : B → R,

lim
ε↓0

lim sup
t→∞

1
t

log P(tb)

({∣∣∣〈 1
tp
∏p
i=1 bi

(`tb − `ε,tb), f
〉∣∣∣ > δ

}
∪

p⋃
i=1

{∣∣〈 1
tbi

(`(i)tbi − `(i)ε,tbi), fi〉
∣∣ > δ

})
= −∞.

This indeed follows from Proposition 2.3, together with a version of this for p = 1, which is indeed much simpler and
also follows from [AC03, Lemma 3.1], e.g. Indeed, we have from Proposition 2.3 that

lim
ε↓0

lim sup
t↑∞

1
t

log P(tb)

(∣∣∣〈 1
tp
∏p
i=1 bi

(`tb − `ε,tb), f
〉∣∣∣ > δ

)
= −∞, (2.6)

which follows from the Markov inequality, applied to the function x 7→ xk with k = dte, as follows:

P(tb)

(∣∣∣〈 1
tp
∏p
i=1 bi

(`tb − `ε,tb), f
〉∣∣∣ > δ

)
≤ δ−kt−pkCkE(tb)

[∣∣∣〈`tb − `ε,tb, f
〉∣∣∣k]

≤ δ−kt−pkCk k!pC(ε)k ≤ C̃(ε)t,

for any t > 0, where C , C(ε) and C̃(ε) depend on b, B, d, f and δ (but not on t) and satisfy limε↓0C(ε) = 0 =
limε↓0 C̃(ε), and C(ε) is the constant from Proposition 2.3. Since k = dte and limε↓0 C̃(ε) = 0, (2.6) follows.

Hence, according to [DZ98, Theorem 4.2.16], the LDP of Theorem 1.1 is true with the rate function on the left-hand
side of (2.3). But Proposition 2.2 identifies this as I given in (1.9).

Note that by (2.3) and [DZ98, Theorem 4.2.16], I is a lower semicontinuous functional. Hence, its level sets are
closed inM(B)×M1(B)p. Since the infimum in (1.7) extends only over functions inH1

0 (B) (i.e., with zero boundary
conditions), I can be seen also as a lower semicontinuous functional onM(B)×M1(B)p, which is weakly compact
by Prohorov’s theorem. Hence, the levels sets of I are also compact. That is, the proof of Theorem 1.1 is finished. �

3. PROOF OF PROPOSITION 2.3: EXPONENTIAL APPROXIMATION

We turn to the proof of Proposition 2.3. We will do this only for b = 1l and write E(t) instead of E(t1l) etc. Fix a
measurable bounded function f on B. Then our task is to prove that, for any ε > 0,∣∣∣E(t)

[(
〈`t, f〉 − 〈`ε,t, f〉

)k]∣∣∣ ≤ k!p C(ε)k, t ∈ (0,∞), k ∈ N, (3.1)

and limε↓0C(ε) = 0.

Note that we have now the absolute value signs outside the expectation, in contrast to (2.5). This is sufficient for
proving (2.5), since, for k even, we can drop the absolute value signs anyway, and for k odd, we use Jensen’s inequality
to go from the power k to k + 1 and use that ((k + 1)!p)k/(k+1) ≤ k!pCk for some C ∈ (0,∞) and all k ∈ N.

Our proof of (3.1) is bulky and also technical, we divide it into several steps. In Section 3.1 we present a formula
for the moments of integrals against `t − `ε,t in terms of k-step transition densities, some of which are convolved.
In Section 3.2 we present a heuristic proof for the regime k � t, which is meant to be a guiding philosophy which
leads the actual proof strategy, though we do not use this section later. The second main tool of our proof, a standard
expansion of the transition density in terms of eigenfunctions and eigenvalues of −1

2∆, is employed in Section 3.3.
The latent ε presence also manifests here as some of the eigenfunctions are convolved (and the rest remain ε-free).
Furthermore, we also estimate away some contributions (popping up from some singularities) to the main term. These
are relatively easy to handle. The main term is attacked in Section 3.4, where we use an intricate counting technique
that makes it finally possible to trace back our way using the binomial theorem and to extract the k-th power of some
term that is small if ε is small.
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3.1 Moment formula.

We begin with a moment formula for the left-hand side of (3.1), which is an adaptation of Le Gall’s formula for the
moments of `(U) for compact subsets U of B [LG86, LG87-89].

We write P(t)
x,y and E(t)

x,y for the Brownian bridge sub-probability measure ⊗pl=1Px(l)(· , t < τ ;Wt ∈ dy(l))/dy(l)

(where x = (x(1), . . . , x(p)), y = (y(1), . . . , y(p)) ∈ Bp) and the corresponding expectation. In other words, under
P(t)
x,y , we consider p independent Brownian bridges in B with time interval [0, t] from x(l) to y(l), for l = 1, . . . , p.

Later we integrate over x, y ∈ Bp with respect to ν(dx)dy, where ν is the joint starting distribution of the p motions
and hence P(t) =

∫
Bp ν(dx)

∫
Bp dy P(t)

x,y .

Furthermore, we denote by p(B)
s (x, y) = Px(Ws ∈ dy; τ > s)/dy the density of the distribution of a single

Brownian motion at time s before the exit time τ from B when started at x ∈ B. By Sk we denote the set of
permutations of 1, . . . , k.

Lemma 3.1 (Moment formula). For any continuous function f : B → R and any k ∈ N and any t > 0, and any
x0 = (x(1)

0 , . . . , x(p)

0 ) and xk+1 = (x(1)

k+1, . . . , x
(p)

k+1) ∈ B
p,

E(t)
x0,xk+1

[
(〈f, `t〉 − 〈f, `ε,t〉)k

]
=

k∑
m=0

(−1)m
(
k

m

)∫
Bk

k∏
i=1

(
f(yi) dyi

)
p∏
i=1

[ ∑
σ∈Sk

∫
[0,t]k

drk . . . dr1 1l{
∑k

i=1ri ≤ t}
∫
Bk−m

k∏
j=m+1

(
ϕε(yj − zj) dzj

) k+1∏
j=1

p(B)
rj (x(i)

j−1, x
(i)

j )
]
,

(3.2)
where we abbreviate rk+1 = t−

∑k
i=1 ri and, for j = 1, . . . , k,

xj = x(i)

j =

{
yσ−1(j) if σ−1(j) ≤ m,

zσ−1(j) if σ−1(j) > m.
(3.3)

Proof. We use the binomial theorem to split the k-th moment as follows.

E(t)
x0,xk+1

[
(〈f, `t〉 − 〈f, `ε,t〉)k

]
=

k∑
m=0

(−1)m
(
k

m

)
E(t)
x0,xk+1

[
〈f, `t〉m〈f, `ε,t〉k−m

]
. (3.4)

Now we handle the mixed moments above. We formulate the proof in a somewhat lose way, a mathematically correct
way to turn the following way is described in [LG86]. For any m ∈ {0, . . . , k},

E(t)
x0,xk+1

[
〈f, `t〉m〈f, `ε,t〉k−m

]
=
∫
Bk

k∏
l=1

f(yi) E(t)
x0,xk+1

 m⊗
j=1

`t(dyj)
k⊗

j=m+1

`ε,t(yj) dyj

 , (3.5)

where we recall that `t does not have a density, but `ε,t is a smooth function. By definition of `ε,t and independence of
paths, the expectation on the right-hand side of (3.5) can be written as

p∏
i=1

∫
[0,t]k

dsk . . . ds1
∫
Bk−m

k∏
j=m+1

(
ϕε(yj − zj) dyj

)
P(t)

x
(i)
0 ,x

(i)
k+1

({
Wsj ∈ dyj if j ≤ m,

Wsj ∈ dzj if j > m.

) ,
where we remark that the integral over Bk−m refers to dzm+1 . . .dzk. Now we time-order the k-dimensional cube
[0, t]k and write the last expression as

p∏
i=1

∑
σ∈Sk

∫
0≤s1≤···≤sk≤t

dsk . . . ds1
∫
Bk−m

k∏
j=m+1

ϕε(yj − zj)P(t)

x
(i)
0 ,x

(i)
k+1

({
Wsσ(j)

∈ dyj if j ≤ m

Wsσ(j)
∈ dzj if j > m.

)
(3.6)



12

The time-ordering allows us to invoke the Markov property at the consecutive times s1 < s2 < · · · < sk and to
split the path into k pieces. Each of the pieces is a Brownian motion before leaving B. Therefore the joint probability
distribution above also splits into the corresponding k-step transition probability densities.

P(t)

x
(i)
0 ,x

(i)
k+1

({
Wsσ(j)

∈ dyj if j ≤ m,

Wsσ(j)
∈ dzj if j > m.

)
= P(t)

x
(i)
0 ,x

(i)
k+1

({
Wsj ∈ dyσ−1(j) if σ−1(j) ≤ m,

Wsj ∈ dzσ−1(j) if σ−1(j) > m.

)

= P(t)

x
(i)
0 ,x

(i)
k+1

(
Wsj ∈ dx(i)

j , j = 1, . . . , k
)

=
( k+1∏
j=1

p(B)

sj−sj−1
(x(i)

j−1, x
(i)

j )
)

dy1 . . .dymdzm+1 . . .dzk.

(3.7)

Substituting rj = sj − sj−1 and putting all the material together proves the lemma. �

3.2 A heuristic proof for k � t.

In order to give some guidance to the reader, let us briefly describe heuristically in which way we will succeed to
estimate the bulky expression on the right of (3.2) in terms of k!pC(ε)k with a small C(ε). We do this only for the
regime k � t, which we actually do not consider in Proposition 2.3, but this only meant as a demonstration of the
philosophy of our proof. Apart from the formulation of Lemma 3.2 below, the material of this section will not be used
later in the proof of Proposition 2.3.

The problem is to extract an extinction coming from a difference of two close (for small ε) terms with a power of
order k by use of the binomial theorem. Since this works only if certain powers of these close terms appear, one has
to expand the probability terms on the right of (3.2) into sums of powers.

Our second main ingredient is a standard eigenvalue expansion with respect to the spectrum of the Laplace oper-
ator in B with zero boundary condition, which follows from the well-known spectral theorem for compact, self-adjoint
operators [B95, Theorem 4.13]:

Lemma 3.2 (Eigenvalue expansion). There exist a system of eigenvalues 0 < λ1 ≤ λ2 ≤ . . . and an L2(B)-
orthonormal basis of corresponding eigenfunctions ψ1, ψ2, . . . in B of −1

2∆ with zero boundary condition in B, that
is, −1

2∆ψn = λnψn for any n ∈ N. Furthermore,

p(B)
s (x, y) =

∞∑
n=1

e−sλn ψn(x)ψn(y), s > 0, (3.8)

and the convergence is absolute and uniform in x, y ∈ B.

In the regime k � t, we use that rj is large for any j and use the approximation

p(B)
r (x, y) = e−rλ1(ψ1(x)ψ1(y) + o(1)), r →∞. (3.9)
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That is, instead of plugging in the full eigenvalue expansion (3.8) we just pick the leading term of the expansion (3.9) in
the last line of (3.2). This gives, for any i = 1, . . . , p,

k+1∏
j=1

p(B)
rj (x(i)

j−1, x
(i)

j ) ≈
k+1∏
j=1

(
e−rjλ1ψ1(x

(i)

j−1)ψ1(x
(i)

j )
)

= e−tλ1ψ1(x
(i)

0 )ψ1(x
(i)

k+1)
k∏
j=1

ψ2
1(xj)

= e−tλ1ψ1(x
(i)

0 )ψ1(x
(i)

k+1)
( m∏
j=1

ψ2
1(yj)

)( k∏
j=m+1

ψ2
1(zj)

)
.

(3.10)

Note that the last term does not depend on σ ∈ Sk or any r1, . . . , rk ∈ [0, t]. Also note that |Sk| = k! and∫
[0,t]k drk . . .dr11l{

∑k
i=1 rk ≤ t} = tk/k!. Substituting the last term of (3.10) in (3.2), we can integrate out the

convolution integrals over zm+1, . . . , zk and afterwards the integrals over y1, . . . , yk and see that

E(t)
x0,xk+1

[
(〈f, `t〉 − 〈f, `ε,t〉)k

]
≈ e−tpλ1tkp

( p∏
i=1

ψ1(x
(i)

0 )ψ1(x
(i)

k+1)
) k∑
m=0

(−1)m
(
k

m

)

×
∫
Bk

dy1 . . .dyk
( k∏
j=1

f(yj)
)( m∏

j=1

ψ2p
1 (yj)

)( k∏
j=m+1

(
ϕε?ψ

2
1

)p (yj)
)

= e−tpλ1tkp
( p∏
i=1

ψ1(x
(i)

0 )ψ1(x
(i)

k+1)
) k∑
m=0

(−1)m
(
k

m

)
〈f, ψ2p

1 〉
m〈f, (ϕε?ψ2

1)
p〉k−m

= e−tpλ1tkp
( p∏
i=1

ψ1(x
(i)

0 )ψ1(x
(i)

k+1)
)(
〈f, ψ2p

1 〉 − 〈f, (ϕε?ψ2
1)
p〉
)k
,

(3.11)

according to the binomial theorem. Since ϕε is an approximation of the Dirac delta measure at zero, it is clear that
〈f, ψ2p

1 〉 − 〈f, (ϕε?ψ2
1)
p〉 tends to zero as ε ↓ 0. Hence, we have derived an upper bound as claimed in (2.5).

The above heuristic is the guiding philosophy of our proof. However, when we expand the transition densities
p(B)
r (x, y) into a full eigenvalue expansion, we encounter two singularities: (1) the time parameters rj getting small and

(2) the indices nj attached to the corresponding eigenfunction ψnj getting large. These two singularities hinder us from

integrating
∫
[0,t] drj along with the infinite sum

∑
nj∈N. Hence, we expand only those transition densities p(B)

rj (x, y)
for which rj > δ. For this part, large nj indices can easily be summed out, thanks to the factors exp{−λnjrj}.
The rest of the transition densities (for which rj ≤ δ) stay over and are finally integrated out in terms of the Green’s
function. We spell out the details.
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3.3 Eigenvalue expansion.

Recall that we have to show (3.1). We start from (3.2). For brevity, we set forth the following notations. We abbreviate,
with a slight abuse of notation,∫

dy
∏

f =
∫
B

dy1 . . .

∫
B

dyk
k∏
j=1

f(yj),

∫
<

dr =
∫

[0,t]k
drk . . .dr11l{

∑k
i=1 ri ≤ t}

(
rk+1 = t−

k∑
i=1

ri

)
,

∫
dz ϕε =

∫
B

dzm+1 . . .

∫
B

dzk
k∏

j=m+1

ϕε(yj − zj).

Our next main step is to expand the transition density terms p(B)
ri (xi−1, xi) in a standard Fourier series with respect

to all the eigenvalues and eigenfunctions of −1
2∆ in B with zero boundary condition, see Lemma 3.2. However, this

series has only then good convergence properties if the time parameter ri is bounded away from zero. Therefore, we
introduce a new small parameter δ ∈ (0,∞) and distinguish, for each integration variable ri, if ri ≤ δ or ri > δ.
Introducing another small parameter η ∈ (0,∞), we isolate the contribution from those multi-indices (r1, . . . , rk)
such that less than ηk of the indices i satisfy ri ≤ δ. In other words, we write∫

<
dr =

∑
D⊂{1,...,k+1}

∫
<

dr
∏
j∈D

1lrj≤δ
∏
j /∈D

1lrj>δ

and see from (3.2) that

E(t)
x0,xk+1

[
(〈f, `t〉 − 〈f, `ε,t〉)k

]
= (I)t,k(η, δ, ε) + (II)t,k(η, δ, ε), (3.12)

where

(I)t,k(η, δ, ε) =
k∑

m=0

(−1)m
(
k

m

)∫
dy
∏

f
∑

∀i=1,...,p : Di⊂{1,...,k+1}
#Di≤ηk

p∏
i=1

[ ∑
σ∈Sk

∫
<

dr
∏
j∈Di

1lrj≤δ
∏
j∈Dc

i

1lrj>δ

∫
dz ϕε

k+1∏
j=1

p(B)
rj (xj−1, xj)

]
,

(3.13)

and (II)t,k(η, δ, ε) is defined accordingly, that is, with the sum on the Di replaced by the sum on D1, . . . , Dp ⊂
{1, . . . , k + 1} satisfying #Di > ηk for at least one i ∈ {1, . . . , p}. This last term has a small exponential rate for
fixed η if δ is small, since there are at least ηk integrations ri ∈ [0, δ]:

Lemma 3.3 (Riddance of small δ). For every η, δ > 0, there is C(η, δ) > 0 such that, for any ε ∈ (0, 1],∣∣∣(II)t,k(η, δ, ε)∣∣∣ ≤ k!pC(η, δ)k, t ∈ (0,∞), k ∈ N, (3.14)

where C(η, δ) ↓ 0 as δ ↓ 0.

Proof. Note that the only i-dependence of the factors in the last line of (3.13) sits in the starting and ending points, x(i)

0

and x(i)

k+1. We neglect the changing signs (−1)m and estimate
(
k
m

)
≤ 2k and estimate against the supremum over

all x(i)

0 ∈ B and all x(i)

k+1 for each i = 1, . . . , p. Hence, the sum on D1, . . . , Dp satisfying #Di > ηk for at least
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one i is equal to p times the sum on those D1, . . . , Dp satisfying #D1 > ηk. Estimating also |f | ≤ C and dropping

the indicator on {
∑k

j=1 rj ≤ t} and carrying out the integration on rj , we obtain,

|(II)| ≤ p(2C)k sup
x0,xk+1∈Bk

k∑
m=0

∫
Bk

dy1 . . .dyk
p∏
i=2

[ ∑
σi∈Sk

∫
ϕε

k+1∏
j=1

G(xj−1, xj)
]

×
∑

D1 : #D1>ηk

∑
σ1∈Sk

∫
ϕε

∏
j∈D1

Gδ(xj−1, xj)
∏
j∈Dc

1

G(xj−1, xj),

where G is the Green’s function in B and Gδ(v, w) =
∫ δ
0 ds p(B)

s (v, w) is the truncated Green’s function. Now we
carry out the convolution integrals over dzm+1 . . .dzk, which turns some of the (truncated) Green’s functions into
convolved (truncated) Green’s functions, each of which can be estimated against G(?ε) and G(?ε)

δ , respectively, where

G(?ε)(x, y) = max
{
G(x, y), (G(x, ·) ? ϕε)(y)

}
, (3.15)

and an analogous notation for G replaced by Gδ .

Now we interchange the integration over y1, . . . , yk and the sum on σ1, such that, after some elementary substi-
tutions involving all the permutations, this sum on σ1 is turned into k! times the term with σ1 equal to the identical
permutation. This gives

|(II)| ≤ k! p(2C)k sup
x0,xk+1∈Bk

k∑
m=0

∫
Bk

dy1 . . .dyk
p∏
i=2

[ ∑
σi∈Sk

k+1∏
j=1

G(?ε)(xj−1, xj)
]

×
∑

D1 : #D1>ηk

∏
j∈D1

G(?ε)

δ (yj−1, yj)
∏
j∈Dc

1

G(?ε)(yj−1, yj).

Note that, for any δ̃ > 0,

lim sup
δ↓0

sup
ε∈(0,1]

sup
v,w∈B :

|v−w|≥δ̃

G(?ε)

δ (v, w) = 0, and lim sup
δ̃↓0

sup
ε∈(0,1]

sup
x∈B

∫
|x−y|≤δ̃

G(?ε)(x, y)p dy = 0. (3.16)

In order to employ these two facts, we separate the product over i = 2, . . . , p from the last line with the help of Hölder’s
inequality and distinguish in the latter term those integrals over dy1 . . .dyk that satisfy #{j ∈ D1 : |yj−1 − yj | ≤
δ̃} > η̃k and the remainder, where δ̃ > 0 and η̃ > 0 are new small auxiliary parameters. The first contribution gives at
least η̃k integrals over G(?ε)

δ (yj−1, yj)p dyj with |yj−1 − yj | ≤ δ̃ (and therefore a small number) and in the second,

we have at least η̃k indices j with |yj−1 − yj | > δ̃, which makes it possible to estimate G(?ε)

δ (yj−1, yj) against a

small number. Hence, the contribution from the last line is bounded by k!C̃(δ, η)k for some suitable C̃(δ, η) ∈ (0,∞)
satisfying limδ↓0 C̃(δ, η) = 0. The other terms (that is, those that stem from the product over i = 2, . . . , p) can
be bounded against k!p−1Ck for some constant C that does not depend on k. Summarizing, we obtain the estimate
in (3.14) with some suitable C(δ, η). The details are pretty standard and we refer the reader to the proof of [KM02,
Lemma 3.3]. �

Now we go on with the term (I) defined in (3.13) and use the eigenvalue expansion of Lemma 3.2 for all times that
are ≥ δ. For any i = 1, . . . , p and each j ∈ Dc

i , i.e., for any time duration rj ≥ δ, we expand p(B)
rj (xj−1, xj) into

a eigenvalue series as in Lemma 3.2, introducing a sum on N (i) = (n(i)

j )j∈Dc
i
∈ NDc

i . Because rj ≥ δ and the

appearance of the factor exp{−rjλn(i)
j

}, the sum on n(i)

j converges exponentially fast.

The eigenfunctions ψ
n

(i)
j

will later be used for an application of the binomial theorem, but this will turn out to be

helpful only if all indices n(i)

j appearing are taken from some bounded set. Therefore, we truncate this infinite sum at a
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large cut off level R ∈ N. We write R = {1, . . . , R} and split each sum on n(i)

j into the two sums on n(i)

j ∈ R and

n(i)

j ∈ Rc. This gives, for every i, sums of the form∏
j∈Dc

i

( ∑
n

(i)
j ∈R

+
∑

n
(i)
j ∈Rc

)
=
∑

Ei⊂Dc
i

∑
N (i)∈REi

∑
N (i)∈(Rc)Dc

i
\Ei

,

with the understanding thatN (i) ∈ REi andN (i) ∈ (Rc)D
c
i \Ei may be concatenated to some mapN (i) : Dc

i → N.

We now introduce another small parameter γ ∈ (0,∞) and distinguish the contribution coming from those
multi-sums with sets Ei satisfying #(Dc

i \ Ei) ≤ γk for all i and the remainder. This implies the decomposition
(I)t,k(η, δ, ε) = (Ia)t,k(η, γ, δ, ε, R) + (Ib)t,k(η, γ, δ, ε, R), where (Ia) = (Ia)t,k(η, γ, δ, ε, R) is defined as

(Ia) =
∑

∀i : Di⊂{1,...,k+1}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
#(Dc

i
\Ei)≤γk

∑
∀i : N (i)∈REi

∑
∀i : N (i)∈(Rc)Dc

i
\Ei

k∑
m=0

(−1)m
(
k

m

)
∫

dy
∏

f

p∏
i=1

[ ∑
σ∈Sk

∫
<

dr Hr(N (i)|Dc
i
;Di)

∫
dz ϕε

∏
j∈Di

p(B)
rj (xj−1, xj)

∏
j∈Dc

i

ψ
n

(i)
j

(xj−1)ψn(i)
j

(xj)
]

(3.17)
where

Hr(N (i);Di) =
( ∏
j∈Di

1lrj≤δ
) ∏
j∈Dc

i

(
1lrj>δ exp

{
− rjλn(i)

j

})
. (3.18)

The definition of (Ib) is according, i.e., for at least one i ∈ {1, . . . , p}, the set Ei satisfies #(Dc
i \ Ei) > γk. That

is, for at least one i, the sum on n(i)

j runs over the remainder set Rc for at least γk different js and gives therefore,
for large R, a small factor with power at least γk. Let us first show that therefore (Ib)t,k(η, γ, δ, ε, R) is a small error
term if R is large for fixed γ:

Lemma 3.4 (Riddance of large N ). For every η, γ, δ ∈ (0, 1) and R ∈ N, there is C(b)(η, γ, δ, R) > 0 such that,
for any ε ∈ (0, 1),

(Ib)t,k(η, γ, δ, ε, R) ≤ k!pC(b)(η, γ, δ, R)k, t ∈ (0,∞), k ∈ N, (3.19)

and C(b)(η, γ, δ, ε, R) ↓ 0 as R ↑ ∞.

Proof. We use a generic contant C that does not depend on the parameters involved, but only on B, f or d. In
(3.17) (with the neccessary changes for (Ib)), we estimate

∑k
m=0(−1)m

(
k
m

)
≤ 2k and ‖f‖∞ ≤ C and

∫
< dr ≤∫

[0,∞)k dr1 . . .drk and

Hr(N (i);Di) ≤
( ∏
j∈Dc

i \Ei

1lrj>δ exp
{
− rjλn(i)

j

}) ∏
j∈Ei

exp
{
− rjλ1

}
.

Next, in (Ib) we estimate all the terms against their absolute value and then apply the uniform eigenfunction estimate
[Gr02]

‖ψn‖∞ ≤ Cλ
d−1
4

n , n ∈ N, (3.20)
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to the eigenfunction product
∏
j∈Dc

i
ψ
n

(i)
j

(xj−1)ψn(i)
j

(xj) to see that (recall the notation in (3.15))

(Ib) ≤ Ck
∑

∀i : Di⊂{1,...,k+1}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
∃j : #(Dc

j
\Ej)>γk

∫
dy

p∏
i=1

[( ∑
σ∈Sk

∏
j∈Di

G(?ε)(xj−1, xj)
)( ∏

j∈Ei

∑
n

(i)
j ∈R

λ
d−1
2

n
(i)
j

)

×
( ∏
j∈Dc

i \Ei

∑
n

(i)
j ∈Rc

∫ ∞

δ
dr e

−rλ
n
(i)
j λ

d−1
2

n
(i)
j

)(∫
[0,∞)Ei

dr
∏
j∈Ei

e−rjλ1

)]

≤ CkCδ(R)γkC(R)pk
∑

∀i : Di⊂{1,...,k+1}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
∃j : #(Dc

j
\Ej)>γk

∫
dy

p∏
i=1

(∑
σ∈Sk

∏
j∈Di

G(?ε)(xj−1, xj)
)
,

(3.21)

where Cδ(R) =
∑

n∈Rc

∫∞
δ dr e−rλnλ

(d−1)/2
n and C(R) =

∑
n∈R λ

(d−1)/2
n , and we have estimated∫∞

0 dr e−rλ1 ≤ C for some C > 1. We assumed that R is so large that Cδ(R) < 1 and C(R) ≥ 1. Use that
supε∈(0,1] supx∈B

∫
B dy G(?ε)(x, y)p ≤ C (see the second statement in (3.16)) to see that the sum on σ ∈ Sk is

not larger than k!pCk. The two sums on the sets Di and Ei have no more than Ck terms.

By the well-known Weyl lemma, λn tends to ∞ like n2/d. Hence, Cδ(R) decays stretched-exponentially fast to
zero as R ↑ ∞ (the rate depends on δ only), and CR tends to ∞ only polynomially, hence we may estimate
CkCδ(R)γkC(R)pk ≤ C(b)(η, γ, δ, R)k with some constant satisfying C(b)(η, γ, δ, ε, R) ↓ 0 as R ↑ ∞. This
finishes the proof. �

3.4 Estimating the main term

After the preparations in Lemma 3.3 and 3.4, we now estimate the main term (Ia) defined in (3.17), which is the heart
of the proof. The proof of (3.1), and therefore the proof of Proposition 2.3, is finished by the two lemmas, together with
the following proposition, see (3.12) and recall the decomposition (I) = (Ia) + (Ib).

Proposition 3.5 (The main estimate). For every η, γ, δ, ε ∈ (0, 1) such that η + γ < 1/2p and for every R ∈ N,
there is a constant C(a)(η, γ, δ, ε, R) > 0 such that,∣∣∣(Ia)t,k(η, γ, δ, ε, R)

∣∣∣ ≤ k!pC(a)(η, γ, δ, ε, R)k, t ∈ (0,∞), k ∈ N, (3.22)

and C(a)(η, γ, δ, ε, R) ↓ 0 as ε ↓ 0.

Proof. Step 1: Rewrite of eigenfunction terms. First we unravel the last term involving the eigenfunctions appearing
in the right hand side of (3.17). Observe that zj = z(i)

j and xj = x(i)

j in the i-th factor both depend on i, and we write
σi instead of σ. Recall from Lemma 3.1 that

x(i)

j =

{
yσ−1

i (j) if σ−1
i (j) ≤ m,

z(i)

σ−1
i (j)

if σ−1
i (j) > m.

(3.23)

Therefore, the last term in the second line of (3.17) reads as follows.∏
j∈Dc

i

(
ψ
n

(i)
j

(x(i)

j−1)ψn(i)
j

(x(i)

j )
)

=
( ∏

j∈σ−1
i

(Dc
i
)

j≤m

ψ
n

(i)
σi(j)

(yj)
)( ∏

j∈σ−1
i

(Dc
i
−1)

j≤m

ψ
n

(i)
σi(j)+1

(yj)
)

×
( ∏

j∈σ−1
i

(Dc
i
)

j>m

ψ
n

(i)
σi(j)

(z(i)

j )
)( ∏

j∈σ−1
i

(Dc
i
−1)

j>m

ψ
n

(i)
σi(j)+1

(z(i)

j )
)
.
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We now carry out the ϕε-convolution integration over all z(i)

j and the integration over all those yj that satisfy the
following: (1) they exclusively appear in the above product twice for every i ∈ {1, . . . , p} (but not in the product over
the p(B)

rj -terms with j ∈ Di for any i), i.e., σi(j) and σi(j) + 1 both lie in Dc
i , and (2) the index n(i)

σi(j)
respectively

n(i)

σi(j)+1 at the corresponding ψ lies in R, i.e., both indices σi(j) and σi(j) + 1 lie in Ei. Since Ei ⊂ Dc
i , these are

precisely those j that satisfy j ∈ S(σ), where we set, for each σ = (σ1, . . . , σp) ∈ S
p
k,

S(σ) =
p⋂
i=1

σ−1
i (Fi), where Fi = Ei ∩ (Ei − 1).

Certainly, we have to obey that, for j ≤ m, the integration is over yj and for j > m it is the convolution with ϕε. To
express this, we write, for every subset S ⊂ {1, . . . , k},

S≤ = S ∩ {1, . . . ,m} and S> = S ∩ {m+ 1, . . . , k}.
Each j ∈ S(σ) appears only in the product over ψ(... ) or ϕε ? ψ(... ), whereas for j ∈ S(σ)c = {1, . . . , k} \
S(σ), the eigenfunction products stay over and remain unconvolved. We write N = (N (1), . . . ,N (p)) and Nj =
(n(1)

j , . . . , n
(p)

j ) and introduce, for j ∈ S(σ),

a(Nj ,Nj+1) =
〈
f,

p∏
i=1

ψ
n

(i)
j

ψ
n

(i)
j+1

〉
, (3.24)

aε(Nj ,Nj+1) =
〈
f,

p∏
i=1

ϕε?
(
ψ
n

(i)
j

ψ
n

(i)
j+1

)〉
. (3.25)

Substituting this in (3.17), we conclude

(Ia) =
∑

∀i : Di⊂{1,...,k+1}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
#(Dc

i
\Ei)≤γk

∑
∀i : N (i)∈REi

∑
∀i : N (i)∈(Rc)Dc

i
\Ei

k∑
m=0

(−1)m
(
k

m

)

×
∑

σ=(σ1,...,σp)∈Sp
k

[ ∏
j∈S(σ)≤

a
(
Nσ(j),Nσ(j)+1

)] [ ∏
j∈S(σ)>

aε
(
Nσ(j),Nσ(j)+1

)]
Gt
(
m,D,E, σ,N

)
,

(3.26)
where we wrote Nσ(j) = (n(i)

σi(j)
)i=1,...,p and D = (D1, . . . , Dp) and E = (E1, . . . , Ep), and the remainder term

is given as

Gt
(
m,D,E, σ,N

)
=
∫
BS(σ)c

dy
∏

j∈S(σ)c

f(yj)

p∏
i=1

[ ∫
<

dr Hr(N (i);Di)
∫ ∏

j∈Wi : j>m

(
dz(i)

j ϕε(yj − z(i)

j )
) ∏
j∈Di

p(B)
rj (x(i)

j−1, x
(i)

j )

×
( ∏
j∈σ−1

i (Dc
i \Fi) : j≤m

ψ
n

(i)
σi(j)

(yj)
)( ∏

j∈σ−1
i ((Dc

i−1)\Fi) : j≤m

ψ
n

(i)
σi(j)+1

(yj)
)

×
( ∏
j∈σ−1

i (Dc
i \Fi) : j>m

ψ
n

(i)
σi(j)

(z(i)

j )
)( ∏

j∈σ−1
i ((Dc

i−1)\Fi) : j>m

ψ
n

(i)
σi(j)+1

(z(i)

j )
)]
,

(3.27)

where we recall that Fi = Ei ∩ (Ei − 1). Note that Gt depends on N (i) only via its restriction to Dc
i and on σi only

via its restriction to

W c
i = σ−1

i

(
(Dc

i \ Fi) ∪ ((Dc
i − 1) \ Fi) ∪Di ∪ (Di − 1)

)
= σ−1

i (F c
i ), (3.28)
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where c denotes the complement in {1, . . . , k}.

Step 2: Cutting and permutation symmetry.

We write m = m1 + m2 and k − m = m3 + m4, where m1 = #S(σ)≤ and m3 = #S(σ)>. With∑k
m=0(−1)m

(
k
m

)
in front, the second line of (3.26) reads∑

m1,m2,m3,m4∈N0P4
l=1

ml=k

(−1)m2

(
k

m1 +m2

) ∑
S≤⊂{1,...,m1+m2}

#S≤=m1

∑
S>⊂{m1+m2+1,...,k}

#S>=m3

×
∑

σ=(σ1,...,σp)∈Sp
k

1l{S≤=S(σ)≤
S>=S(σ)>

}[ ∏
j∈S≤

(
− a(Nσ(j),Nσ(j)+1)

)] [ ∏
j∈S>

aε(Nσ(j),Nσ(j)+1)
]

×Gt
(
m1 +m2, D,E, σ,N

)
.

We claim that the term in the last two lines above is constant on the sets S≤ and S> and depends only on the
cardinalities m1 of S≤ and m3 of S>. More precisely, for m = m1 + m2, and any permutation τ ∈ Sk such that
τ({1, . . . ,m}) = {1, . . . ,m}, we claim (putting σ ◦ τ = (σ1 ◦ τ, . . . , σp ◦ τ))

(i)

τ−1(S(σ)≤) = S(σ ◦ τ)≤ and τ−1(S(σ)>) = S(σ ◦ τ)>,
(ii) ∏

j∈S(σ)≤

a
(
Nσ(j),Nσ(j)+1

) ∏
j∈S(σ)>

aε
(
Nσ(j),Nσ(j)+1

)
=

∏
j∈S(σ◦τ)≤

a
(
N(σ◦τ)(j),N(σ◦τ)(j)+1

) ∏
j∈S(σ◦τ)>

aε
(
N(σ◦τ)(j),N(σ◦)τ)(j)+1

)
,

(iii)

Gt
(
m1 +m2, D,E, σ,N ) = Gt

(
m1 +m2, D,E, σ ◦ τ,N ).

Proofs of these facts are rather easy and involve straightforward computations. Indeed, (i) is seen as follows.

τ−1
(
S(σ)≤

)
= τ−1

( p⋂
i=1

Si(σi)
)
∩ {1, . . . ,m} =

p⋂
i=1

τ−1
(
σ−1
i (Fi)

)
∩ {1, . . . ,m}

=
p⋂
i=1

(σi ◦ τ)−1(Fi) ∩ {1, . . . ,m} = S(σ ◦ τ)≤.

This proves (i) and similarly one can prove (ii). For the third part, we substitute ỹj = yτ(j) and can perform a similar

computation. Therefore, the sums on S≤ and S> may be replaced by the number of summands, which is
(
m1+m2

m1

)
×(

k−m1−m2

m3

)
and the definite choices

S∗≤ = {1, . . . ,m1} and S∗> = {m1 +m2 + 1, . . . ,m1 +m2 +m3}.

Multiplied with the factor
(

k
m1+m2

)
, the number gives k!

m1!m2!m3!m4! .

Recall that Gt depends on any permutation σi only via its restriction to W c
i = σ−1

i (F c
i ), see (3.28). Therefore, we

split each permutation σi ∈ Sk into two bijections σi : Wi → Fi and τi : W c
i → F c

i and we write∑
σ∈Sp

k

=
∑

∀i : Wi⊂{1,...,k}
#Wi=#Fi

∑
∀i : σi : Wi→Fi

∑
∀i : τi : W c

i →F c
i

,
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where the two latter sums go over bijections σi and τi. Furthermore, from (3.24) we see that the a and aε terms
depend on N (i) via its restriction to Fi = Ei ∩ (Ei − 1). With this in mind, we decompose the sum on N as∑

∀i : N (i)∈REi

=
∑

∀i : N (i)∈RFi

∑
∀i : N (i)∈REi\Fi

.

Putting all the material together, we conclude

(Ia) =
∑

∀i : Di⊂{1,...,k}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
#(Dc

i
\Ei)≤γk

∑
∀i : Wi⊂{1,...,k}

#Wi=#Fi

∑
m1,m2,m3,m4∈N0P4

l=1
ml=k

(−1)m2
k!

m1!m2!m3!m4!

×
∑

∀i : N (i)∈(Rc)Dc
i
\Ei

∑
∀i : N (i)∈REi\Fi

∑
∀i : τi : W c

i →F c
i

∑
∀i : N (i)∈RFi

Gt
(
m1 +m2, D,E, τ,N

)
×

∑
∀i : σi : Wi→Fi

[ ∏
j∈S∗≤

(
− a(Nσ(j),Nσ(j)+1)

)][ ∏
j∈S∗>

aε(Nσ(j),Nσ(j)+1)
]
.

(3.29)

Step 3: Counting permutations and multi-indices.

Our next goal is to simplify the terms starting from the sum on N (i) ∈ RFi on the right hand side of (3.29) and to
show that these terms contain the k-th power of a small number if ε is small, which lays the basis of an upper bound
like in (3.22) with a small number to the power k. For doing this, we will count the number of N (1), . . . ,N (p) and of
σ1, . . . , σp that give precisely the same contribution and to apply the binomial theorem (incorporating the sum on m1

andm3) for a large power of terms of the form aε(l)−a(l), which is uniformly small if ε is small. This is the point after
which we are finally allowed to use more stable estimates like the triangle inequality for absolute signs.

The starting point is that many of the multi-indices N (i) ∈ RFi and of the permutations σ1, . . . , σp, i = 1, . . . , p,
give precisely the same contribution. Our task here is to identify what classes of such N and σ do this and to evaluate
their cardinality.

First we note that the two products in the third line do not depend on each value of (Nj ,Nj+1) for j ∈ S∗,
but only on their occupation numbers, i.e., on the number A(l) of occurrences of a given vector l ∈ (R2)p in the
vector ((Nj ,Nj+1))j∈S∗ . Hence, A : (R2)p → N0 is a map satisfying

∑
l∈(R2)p A(l) = m1 + m3, and we will

be summing on all such maps. Note that the dependence of the term Gt defined in (3.27) on N (i)|Fi is only via the
occupation numbers A(l), since these indices enter only as a product over all j ∈ Fi. Since also m2 + m4 can be
constructed from m = m1 +m2 and A, we therefore may write

Gt
(
m1 +m2, D,E, τ,N

)
= G̃t

(
m2 +m4, D,E, τ, A, (N (i)|Dc

i \Fi
)i=1,...,p

)
for some suitable function G̃t which we do not make explicit here.

However, in order to describe the last line on the right-hand side of (3.29), we also have to sum on all occupation
numbers r(l) of the vectors (Nj ,Nj+1) in the first product and the occupation numbers (which are necessarilyA(l)−
r(l)) in the second product. This leads to a further sum on all maps r : (R2)p → N0 satisfying

∑
l∈(R2)p r(l) = m1

and 0 ≤ r(l) ≤ A(l) for any l ∈ (R2)p. We denote by Mm1,m3 the set of all pairs (A, r) of such maps and
by Mm1+m3 the set of all maps A as above. Our strategy is to write the right-hand side of (3.29) as a sum on
A ∈Mm1+m3 and a sum on (A, r) ∈Mk,m, express both the product over the a-terms as functions ofA and r, and
finally to count all the tuples (N (i)|Fi , σi), i = 1, . . . , p, such that (A, r) is the pair of occupation number vectors of
the vectors (Nσ(j),Nσ(j)+1) for j ∈ S∗. By the last we mean that A(l) is equal to the number of j ∈ S∗ such that
l = (Nσ(j),Nσ(j)+1).
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In view of this discussion, the terms starting from the sum on N (i) ∈ RFi on the right hand side of (3.29) read as∑
(A,r)∈Mm1,m3

G̃t
(
m2 +m4, D,E, τ, A,N

) ∏
l∈(R2)p

[
(−a(l))r(l)aε(l)A(l)−r(l)

]
#Ψ(A, r), (3.30)

where the set Ψ is given by

Ψ(A, r) =
{(
N (i)|Fi , σi

)
i=1,...,p

: ∀l ∈ (R2)p, r(l) = #{j ∈ S∗≤ : (Nσ(j),Nσ(j)+1) = l},

A(l)− r(l) = #{j ∈ S∗> : (Nσ(j),Nσ(j)+1) = l}
}
,

(3.31)

where the domains of the N (i)|Fi and the σi are as in (3.29).

Now we evaluate this counting term. We will decompose this in the two steps of counting first the multi-indices and
afterwards the permutation. For every i = 1, . . . , p, we define the i-th marginal of A ∈Mm1+m3 by

Ai(l(i)) =
∑

(l(j))j 6=i∈(R2)p−1

A(l(1), . . . , l(p)), l(i) ∈ R2. (3.32)

Now we consider the multi-indices N that produce the occupation times vectors Ai:

Φ(A1, . . . , Ap) =
{
(N (i)|Fi)i=1,...,p :

∀ i = 1, . . . , p, ∀ l(i) ∈ R2,#{j ∈ S∗ : (N (i)

j ,N (i)

j+1) = l(i)} = Ai(l(i))
}
.

(3.33)

Given N ∈ Φ(A), we denote

Ψ(A, r,N ) =
{
(σi)i=1,...,p ∈ ⊗pi=1B(Wi, Fi) : (N , σ1, . . . , σp) ∈ Ψ(A, r)

}
, (3.34)

where we denote by B(W,F ) the set of bijections W → F . Then it is clear that #Ψ(A, r) =∑
N∈Φ(A) #Ψ(A, r,N ). The cardinality of Ψ(A, r,N ) is given in the next lemma.

Lemma 3.6 (Cardinality of Ψ(A, r,N )). For any m1,m3 ∈ N0 and any (A, r) ∈Mm1,m3 and any N ∈ Φ(A),

#Ψ(A, r,N ) = m1!m3!
∏p
i=1

∏
l(i)∈R2 Ai(l(i))!∏

l∈(R2)p A(l)!

∏
l∈(R2)p

(
A(l)
r(l)

)
. (3.35)

Proof. We count the number of p independent bijections σi : Wi → Fi for i = 1, . . . , p with the prescribed properties.
Since #(∩pi=1Wi) = #(∩pi=1Fi) = #S∗, clearly this task boils down to counting all permutations σi of S∗ =
S∗≤ ∪ S∗>. From now on, therefore, we shall be counting permutations σi of S∗.

For p = 1, we want to find out the the number of permutations σ of the numbers in S∗ such that any l ∈ R2 appears
r(l) times as a pair (nσ(j), nσ(j)+1) for j ∈ S∗≤ and A(l) − r(l) times as a pair (nσ(j), nσ(j)+1) for j ∈ S∗>. We

will now describe a two-step procedure that constructs all such σ. For each l ∈ R2, choose r(l) out of A(l) indices
j ∈ S∗ such that (nj , nj+1) = l. Let D be the set of those j. Then D has precisely m1 elements and there are∏
l∈R2

(A(l)
r(l)

)
choices. Now any permutation σ that maps {1, . . . ,m1} onto D has the above property. Obviously, for

a given D, there are m1!m3! such σs. This shows that there are at least as many as m1!m3!
∏
l∈R2

(A(l)
r(l)

)
such σs.

In other words,

#Ψ(A, r,N ) ≥
∏
l∈R2

(
A(l)
r(l)

)
m1!m3!. (3.36)

To see that also the upper bound ≤ holds, pick a σ ∈ Ψ and put D = {σ(1), . . . , σ(m1)}. Then, by definition of
Ψ, D contains, for any l, precisely r(l) out of A(l) indices j satisfying (nj , nj+1) = l. This means that the above
construction produces also the chosen σ. This shows that equality holds in (3.36). Hence, we have proved (3.35) for
p = 1.
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For p = 2, we can go ahead similarly. Without loss of generality, we may assume that N ∈ Φ(A). First we argue
that

{σ1 ∈ Sk : ∃σ2 ∈ Sk : (σ1, σ2) ∈ Ψ(A, r,N )} = Ψ1

(
A1, r1,N (1)

)
(3.37)

where Ψ1(A1, r1,N (1)) is defined in (3.31) for p = 1 and A and r replaced by their first marginals A1 an r1
respectively. Indeed, let σ1, σ2 ∈ S(S∗) be such that r(·) and A(·) − r(·) are the occupation times vectors of(
n(i)

σi(j)
, n(i)

σi(j)+1

)
i=1,2

for j = 1, . . . ,m1 and of
(
n(i)

σ(i)(j)
, ni

σ(i)(j)+1

)
i=1,2

for j = m1 + m2 + 1, . . . ,m1 +
m2 + m3, respectively. By projecting on the first row, we see that r1 and A1 − r1 are the occupation numbers of(
n(1)

σ1(j), n
(1)

σ1(j)+1

)
for j = 1, . . . ,m1 and

(
n(1)

σ1(j), n
(1)

σ1(j)+1

)
for j = m1 + m2 + 1, . . . ,m1 + m2 + m3. This

shows that σ1 ∈ Ψ1(A1, r1,N (1)).
Let us show that also ⊃ holds in (3.37). Pick σ1 ∈ Ψ1(A1, r1,N (1)). Since N ∈ Φ(A), for each l(2) ∈ R2, there
are precisely A2(l(2)) indices j such that

(
n(2)

j , n
(2)

j+1

)
= l(2). Therefore, there is an order (i.e., a permutation σ2

of the second row) such that, for any l(1) and any r(l(1), l(2)), the set {j ∈ S∗≤ :
(
n(1)

σ(1)(j)
, n(1)

σ(1)(j)+1

)
= l(1)}

contains precisely as many as r(l(1), l(2)) indices j satisfying
(
n(2)

σ2(j), n
(2)

σ2(j)+1

)
= l(2), for any l(2) ∈ R2 and the set

{j ∈ S∗> :
(
n(1)

σ1(j), n
(1)

σ1(j)+1

)
= l(1)} contains precisely as many as A(l(1), l(2))− r(l(1), l(2)) indices j satisfying(

n2
σ2(j), n

2
σ2(j)+1

)
= l(2), for any l(2) ∈ N2. Therefore, (σ1, σ2) ∈ Ψ(A, r,N ). This proves (3.37).

Hence we have
#Ψ2(A, r,N ) =

∑
σ1∈Ψ1(A,r,N (1))

#{σ2 : (σ1, σ2) ∈ Ψ(A, r,N )}. (3.38)

Fix σ1 ∈ Ψ1(A1, r1,N (1)). We now give a two-step construction of all σ2 satisfying (σ1, σ2) ∈ Ψ(A, r,N ). For
each l(1), l(1) ∈ R2, we decompose the set {j ∈ S∗≤ :

(
n(1)

σ1(j)
, n(1)

σ1(j)+1

)
= l(1)} into disjoint sets Dl(1),l(2)

of cardinality r(l(1), l(2)) and the set {j ∈ S∗> :
(
n(1)

σ1(j), n
(1)

σ1(j)+1

)
= l(1)} into sets D̄l(1),l(2) of cardinality

A(l(1), l(2))− r(l(1), l(2)). For doing this, we have∏
l(1)∈R2

r1(l(1))!(A1 − r1)(l(1))!∏
l(2)∈R2

(
r(l(1), l(2))!

)(
(A− r)(l(1), l(2))!

)
choices. Having fixed these sets, every permutation σ2 satisfying σ2

(
{j ∈ S∗ :

(
n(2)

j , n
(2)

j+1

)
= l(1)}

)
=⋃

l(1)∈R2

(
Dl(1),l(2) ∪ D̄l(1),l(2)

)
, ∀l(2) ∈ R2, has the property that each pair (l(1), l(2)) appears precisely r(l(1), l(2))

times in
(
n(i)

σi(j)
, n(i)

σi(j)+1

)
i=1,2

for j = 1, . . . ,m1 and precisely (A− r)(l(1), l(2)) times
(
n(i)

σi(j)
, n(i)

σi(j)+1

)
i=1,2

for

j = m1 + m2 + 1, . . . ,m1 + m2 + m3. That is, (σ1, σ2) ∈ Ψ2(A, r,N ). Obviously, there are
∏
l(2) A2(l(2))!

such permutations σ2. Different choices of D and D̄ produces different choices of permutations σ1, σ2. A little re-
flection shows that every σ2 satisfying (σ1, σ2) ∈ Ψ2 can be constructed in this way (put D(l(1),l(2)) = {j ∈
S∗≤ :

(
n(i)

σi(j)
, n(i)

σi(j)+1

)
i=1,2

} and D̄(l(1),l(2)) = {j ∈ S∗> :
(
n(i)

σi(j)
, n(i)

σi(j)+1

)
i=1,2

}).

Therefore, we have

#Ψ2(A, r,N ) = #Ψ1(A1, r1,N (1))×
∏

l(2)∈R2

A2(l(2))!
∏

l(1)∈R2

r1(l(1))! (A1 − r1)(l(1))!∏
l(2)∈R2 r(l(1), l(2))!

(
A− r

)
(l(1), l(2))!

= m1!m3!
∏
l(1) A1(l(1))!

∏
l(2) A2(l(2))!∏

l(1),l(2) r(l(1), l(2))! (A− r)(l(1), l(2))!

= m1!m3!
∏2
i=1

∏
l(i)∈R2 Ai(l(i))!∏

l∈(R2)2 A(l)!

∏
l∈(R2)2

(
A(l)
r(l)

)
.

(3.39)
This proves (3.35) for p = 2. We leave the proof for p > 2 to the reader, as it is similar and can be carried out in a
recursive manner. �
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Now we use (3.35) in (3.30) and this in (3.29). Replacing m1 on the right-hand side of (3.29) by
∑

l r(l), the only
condition on r in the set

⋃m1+m3
m=0 Mm1,m3 that is left is that r(l) ∈ {0, . . . , A(l)} for any l. Therefore, we infer from

(3.30) and (3.29) that

(Ia) =
∑

∀i : Di⊂{1,...,k}
#Di≤ηk

∑
∀i : Ei⊂Dc

i
#(Dc

i
\Ei)≤γk

∑
∀i : Wi⊂{1,...,k}

#Wi=#Fi

∑
m2+m4≤k

(−1)m2
k!

m2!m4!

∑
∀i : N (i)∈(Rc)Dc

i
\Ei

∑
∀i : N (i)∈REi\Fi

∑
∀i : τi : W c

i →F c
i

∑
A∈Mk−m2−m4

G̃t
(
m2 +m4, D,E, τ, A,N

)

×#Φ(A)
∏p
i=1

∏
l(i)∈R2 Ai(l(i))!∏

l∈(R2)p A(l)!

∏
l∈(R2)p

[ A(l)∑
r(l)=0

[
(−a(l)r(l)aε(l)A(l)−r(l)](A(l)

r(l)

)]
.

(3.40)

By the binomial theorem, the last term in the brackets is equal to (a(l)− aε(l))A(l).

Step 4: Finishing: some estimates.

In this step we shall prove (3.22) and finish the proof of Proposition 3.5. From now on, we will use that |a(l)−aε(l)| is,
for fixedR, small uniformly in l ∈ R2p if ε > 0 is small, and we are allowed to use the triangle inequality to estimate all
the other terms appearing in (3.40) in absolute value. We will useC to denote a generic positive constant that depends
on f , B or d only and may change its value from appearance to appearance.

The main task now is to estimate the second line of (3.40) as follows. We claim that there is some Cδ ∈ (0,∞)
such that, for any k,m2,m4 ∈ N satisfying m2 +m4 ≤ k and for any A ∈Mk−m2−m4 and for any t ∈ (0,∞),∑

∀i : N (i)∈(Rc)Dc
i
\Ei

∑
∀i : N (i)∈REi\Fi

∑
∀i : τi : W c

i →F c
i

∣∣G̃t(m2 +m4, D,E, τ, A,N
)∣∣ ≤ Ckδ

p∏
i=1

#(F c
i )! (3.41)

We defer the proof of (3.41) to the end of this step.

Next, it is a standard fact from combinatorics [dH00, II.2] that, for A ∈Mk−m2−m4 ,

#Φ(A) ≤ kp
p∏
i=1

∏
l
(i)
1 ∈RAi(l

(i)

1 )!∏
l(i)∈R2 Ai(l(i))!

(3.42)

whereAi is the marginal ofAi on the first component, i.e.,Ai(l1) =
∑

l2∈RAi(l1, l2) for every l1 ∈ R. We estimate

the sum over Wi against
(
k

#Fi

)
and the sum over Di and Ei against Ck. Combining everything, we conclude

(Ia) ≤ kpCkCkδ
∑

m2+m4≤k

k!
m2!m4!

p∏
i=1

[( k

#Fi

)
#F c

i !
]

×
∑

A∈Mk−m2−m4

∏p
i=1

∏
l
(i)
1 ∈RAi(l

(i)

1 )!∏
l∈(R2)p A(l)!

∏
l∈(R2)p

|a(l)− aε(l)|A(l)

≤ kpCkCkδ k!
p

∑
m2+m4≤k

k!
m2!m4!(k −m2 −m4)!

×
∑

A∈Mk−m2−m4

(k −m2 −m4)!∏
l∈(R2)p A(l)!

∏
l∈(R2)p

|a(l)− aε(l)|A(l),

(3.43)
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where we estimated #Fi! ≥ (k − m2 − m4)!, which is true for any i since S∗ ⊂ σ−1
i (Fi), and∏p

i=1

∏
l
(i)
1 ∈RAi(l

(i)

1 )! ≤ (k −m2 −m4)!, which is true since the numbers Ai(l
(i)

1 ) sum up to k −m2 −m4.

Now we use the multinomial theorem to see that the last sum is equal to Ck−m2−m4
ε,R , where Cε,R =∑

l∈(R2)p |a(l) − aε(l)|. Take ε so small that Cε,R < 1, then we can estimate Ck−m2−m4
ε,R ≤ C

k(1−2p(η+γ))
ε,R ,

since

k −m2 −m4 = #S∗ = #
p⋂
i=1

Wi = #
p⋂
i=1

(
Ei ∩ (Ei − 1)

)
≥ k(1− 2p(η + γ)),

since #Dc
i ≥ k(1−η) and #(Dc

i \Ei) ≤ γk (and also #(Dc
i \(Ei−1)) ≤ γk) and therefore #(Ei∩(Ei−1)) ≥

k(1− 2(η + γ)).

The sum over m2 +m4 ≤ k on the right-hand side of (3.43) equal to 3k, which we absorb in the Ck. Hence, we
derive the estimate

(Ia) ≤ k!pkpCkCkδC
k(1−2p(η+γ))
ε,R .

Since limε↓0Cε,R = 0 and η + γ < 1/2p, this estimate proves (3.22) and therefore finishes the proof of Proposi-
tion 3.5.

Now we owe the reader only the proof of (3.41). In (3.18), we estimate

Hr(N (i);Di) ≤
∏
j∈Dc

i

(
1lrj>δ exp

{
− rj

2
λ
n

(i)
j

})
×

∏
j∈(Dc

i−1)

(
1lrj+1>δ exp

{
− rj+1

2
λ
n

(i)
j+1

})

≤
∏

j∈Dc
i \Fi

(
1lrj>δ exp

{
− rj

2
λ
n

(i)
j

})
×

∏
j∈(Dc

i−1)\Fi

(
1lrj+1>δ exp

{
− rj+1

2
λ
n

(i)
j+1

})
×
∏
j∈Fi

exp
{
− rjλ1

}
.

Furthermore, we drop the indicator on {
∑k+1

j=1 rj ≤ t}, such that all integrations on rj can be executed freely (over
[δ,∞) for j /∈ Fi and over [0,∞) for j ∈ Fi) as an upper bound. In (3.27), we estimate the absolute value of Gt by
using the triangle inequality and the uniform eigenfunction estimate from (3.20). Furthermore, we also summarize and
estimate the sums over N (i)|Dc

i \Ei
and N (i)|Ei\Fi

as a sum over N (i)|Dc
i \Fi

∈ NDc
i \Fi , for i = 1, . . . , p. Hence,

we obtain, also using the notation of (3.16),

l.h.s. of (3.41) ≤ Ck
∫
B(S∗)c

dy
∏

j∈(S∗)c

p∏
i=1

[( ∑
τi : W c

i →F c
i

∏
j∈Di

G(?ε)(yτ−1
i (j−1), yτ−1

i (j))
)

×
( ∏
j∈Dc

i \Fi

∑
n

(i)
j ∈Rc

∫ ∞

δ
dr e

−rλ
n
(i)
j λ

d−1
2

n
(i)
j

)(∫
[0,∞)Fi

dr
∏
j∈Fi

e−rjλ1

)]

≤ CkCkδ

( p∏
i=1

#F c
i !
)∫

B(S∗)c
dy

p∏
i=1

∏
j∈Di

G(?ε)(yj−1, yj)

(3.44)

where Cδ =
∑

n∈N
∫∞
δ dr e−rλnλ

(d−1)/2
n ∨ 1, and we absorbed the #Fi-fold power of

∫∞
0 dr e−rλ1 = 1/λ1 in

the term Ck, and we used the Jensen’s inequality to the sum over τ1, . . . , τp to get hold of the term
∏p
i=1(#F

c
i )!.

The integrals over the yj are now bounded by Ck, thanks to the classical fact supx∈B
∫
B dy Gp(x, y) ≤ C for

p < d/(d− 2). Altering the value of Cδ suitably, we finish the proof of (3.41). �
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4. FROM LARGE TIME TO LARGE MASS: PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. To do this, we carry over our LDP for `tb as the time t diverges (Theorem 1.1) to
an LDP for ` = `(τ1,··· ,τp) with random time horizon [0, τ1)×· · ·× [0, τp) as the mass `(U) diverges. Recall that U is
a compact subset of B whose boundary is a Lebesgue null set. We want large deviations for the probability measures
`/`(U) conditional on P(· | `(U) > a), as a ↑ ∞ with rate function J defined in (1.10). The basic idea is to replace
` with `tb where t = a1/p and to optimise over b = (b1, . . . , bp). In other words, we cut each i-th Brownian path at
some time tbi smaller than τi, for some bi > 0 and control the cut-off part. Theorem 1.1 gives the large-deviations
rate for `tb as t → ∞. Optimising over b1, · · · , bp gives us the desired asymptotics. Lemmas 4.1 and 4.2 below give
the lower resp. upper bound in the LDP.

We pick a metric d on M(B) which induce the weak topology. Recall that MU (B) is the subspace of positive
measures on B whose restriction to U is a probability measure.

Lemma 4.1 (Lower bound). For every open set G ⊂MU (B), we have

lim inf
a↑∞

1
a1/p

log P
(

`

`(U)
∈ G, `(U) > a

)
≥ − inf

µ∈G
J(µ). (4.1)

Proof. Set t = a1/p and fix b = (b1, . . . , bp) ∈ (0,∞)p. We use that, for any δ1, δ2 > 0,

{`(U) > a} ⊃
{
a < `(U) < a(1 + δ1)

}
∩

p⋂
i=1

{tbi < τi < t(bi + δ2)}

⊃
{
a < `tb(U) < a(1 + δ1)−

(
`t(b+δ21l)(U)− `tb(U)

)}
∩

p⋂
i=1

{tbi < τi < t(bi + δ2)}.

On the set on the right-hand side, we want to replace `/`(U) by 1
tp `tb = 1

a`tb. The difference is estimated as∣∣∣ `

`(U)
− `tb

a

∣∣∣ = ∣∣∣`− `tb
`(U)

+
1
tp
`tb

( a

`(U)
− 1
)∣∣∣ ≤

`t(b+δ21l) − `tb

tp
+

1
tp
`tb

δ1
1 + δ1

. (4.2)

Pick some open set G̃ ⊂M(B) such that G = G̃∩M(B). Fix ε > 0. Denote by G̃ε = {µ ∈ G̃ : d(µ, G̃c) > ε}
the inner ε-neighbourhood of G̃. Hence, for any M > 0, on the event {d( 1

tp `tb, 0) < M} ∩A, where

A =
{

d
(`t(b+δ21l) − `tb

tp
, 0
)
<
ε

2
, `t(b+δ21l)(U)− `tb(U) ≤ a

δ1
2

}
, (4.3)

we have, for sufficiently small δ1, δ2 > 0, that the event {`/`(U) ∈ G} contains the event { 1
tp `tb ∈ G̃ε}. Thus, we

have the following lower bound.

P
( `

`(U)
∈ G, `(U) > a

)
≥ P

(
1
tp `tb ∈ G̃ε, a < `tb(U) < a(1 + δ1

2 ),d( 1
tp `tb, 0) < M,A,∀i : tbi < τi < t(bi + δ2)

)
= E

(
1l
{

1
tp `tb ∈ G̃ε, 1 <

1
tp `tb(U) < 1 + δ1

2 ,d( 1
tp `tb, 0) < M,∀i : tbi < τi

}
F
(
W (1)

tb1
, . . . ,W (p)

tbp

))
,

(4.4)

where we used the Markov property at times tb1, . . . , tbp and introduced

F (x) = Px
(
d
(

1
tp `tδ21l, 0

)
<
ε

2
, `tδ21l(U) ≤ tp

δ1
2
,∀i : τi < tbiδ2

)
;

we recall that Px denotes expectation with respect to the p motions starting in the sites x1, . . . , xp, respectively. It is
easy to see, by chosing some appropriate joint strategy of the p motions, that lim inft→∞

1
t log infx∈Bp F (x) ≥ 0.
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To the remaining term on the right-hand side of (4.4), we can apply the lower bound in the LDP for (tp
∏p
i=1 bi)

−1`tb
from Corollary 1.2 and obtain

lim inf
a→∞

1
a1/p

log P
( `

`(U)
∈ G, `(U) > a

)
≥ − inf

{1
2

p∑
i=1

bi‖∇ψi‖2
2 : ψi ∈ H1

0 (B), ‖ψi‖2 = 1∀i,

p∏
i=1

(biψ2
i ) ∈ G̃ε, 1 <

∫
U

p∏
i=1

(biψ2
i ) < 1 + δ1

2 ,d
( p∏
i=1

(biψ2
i ), 0

)
< M

}
,

where we conceive the function
∏p
i=1(biψ

2
i ) as a measure on B. Now let M → ∞ to see that the last condition is

immaterial, let δ1 ↓ 0, substitute φ2
i = biψ

2
i and take the supremum over b1, . . . , bp on the right-hand side (i.e., drop

the condition ‖φi‖2
2 = bi), to see that

lim inf
a→∞

1
a1/p

log P
( `

`(U)
∈ G, `(U) > a

)
≥ − inf

{1
2

p∑
i=1

‖∇φi‖2
2 : φi ∈ H1

0 (B)∀i,
p∏
i=1

φ2
i ∈ G̃ε, 1 =

∫
U

p∏
i=1

φ2
i

}
= − infeGε

J̃ ,

where J̃ is the extension of J defined in (1.10) from MU (B) to M(B) with J(µ) = ∞ for µ ∈ M(B) \MU (B).
Now let ε ↓ 0 and use the lower semicontinuity of J to see that (4.1) holds. This concludes the proof of Lemma 4.1. �

Now we handle the upper bound part.

Lemma 4.2 (Upper bound). For every closed set F ⊂MU (B),

lim sup
a↑∞

1
a1/p

log P
(

`

`(U)
∈ F, `(U) > a

)
≤ − inf

µ∈F
J(µ). (4.5)

Proof. For any R ∈ (0,∞) and δ1 ∈ (0,∞), we have the following upper bound estimate:

P
( `

`(U)
∈ F, `(U) > a

)
≤

∑
j∈N∩[0,R/δ1]

P
( `

`(U)
∈ F, a(1 + (j − 1)δ1) < `(U) ≤ a(1 + jδ1)

)
+ P

(
`(U) > aR

)
.

(4.6)

The exponential rate of the second probability is known from [KM02], see (1.4):

P
(
`(U) > aR

)
= exp

(
− a1/pR1/p

(
ΘB(U) + o(1)

))
, (4.7)

where ΘB(U) ∈ (0,∞) is the variational formula appearing in (1.5).

With this in mind, let us now focus on one of the summands of the first term on the right-hand side of (4.6). By
monotonicity in j, is sufficient to consider the event for j = 1, as this gives the dominant term. Then, for any R̃ ∈ N
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and δ2 ∈ (0,∞),

P
( `

`(U)
∈ F, a < `(U) ≤ a(1 + δ1)

)
≤

∑
b1,...,bp∈δ2N∩[0, eR]

P
( `

`(U)
∈ F, a < `(U) ≤ a(1 + δ1),∀i : a1/pbi < τi ≤ a1/p(bi + δ2)

)

+
p∑
i=1

P
(
τi > a1/pR̃

)
+

p∑
i=1

P
(
`(U) > a, τi ≤ a1/pδ2

)
.

(4.8)

The first probability on the last line has a strongly negative exponential rate for large R̃:

P
(
τi > a1/pR̃

)
= exp

(
− R̃a1/pλ1 + o(a1/p)

)
, a ↑ ∞, (4.9)

λ1 ∈ (0,∞) being the principal eigenvalue of −1
2∆ in B with zero boundary condition. Furthermore, the last proba-

bility on the last line has a strongly negative exponential rate for small δ2, since

lim
δ2↓0

lim sup
a↑∞

1
a1/p

log P
(
`(U) > a, τi ≤ a1/pδ2

)
= −∞, i ∈ {1, . . . , p}. (4.10)

This is shown as follows. For any K ∈ (0,∞), estimate

P
(
`(U) > a, τi ≤ a1/pδ2

)
≤ P(`(U) > a, τi ≤ a1/pδ2,∀j 6= i : τj ≤ a1/pK

)
+
∑
j 6=i

P(τj > a1/pK).

The last term has a very negative exponential rate for large K (see (4.9)), and for fixed K , we estimate the first term
on the right against P(`a1/pv(U) > a), where v is the vector in (0,∞)p with δ2 in the i-th component and K in all
the other p − 1 components (we use the notation introduced in (1.1)). Now use the Markov inequality to estimate, for
any m ∈ N,

P(`a1/pv(U) > a) ≤ a−mE
[
`a1/pv(U)m

]
≤ a−mE0

[
`a1/pv(R

d)m
]

≤ a−mE0

[
`a1/pδ21l(R

d)m
]1/pE0

[
`a1/pK1l(R

d)m
](p−1)/p

,

where we used the fact that the total mass of the intersection local time is stochastically larger if all the p motions
start from the origin (see [C09, (2.2.24)]) and used Hölder’s inequality in the last step (see [C09, (2.2.12)]); recall the
notation 1l = (1, . . . , 1) ∈ {1}p. Now use the Brownian scaling property and the bound

E0

[
`a1/pδ21l(R

d)m
]

=
(
a1/pδ2)

2p−d(p−1)
2

mE0

[
`1l(Rd)m

]
≤ m!

d(p−1)
2
(
a1/pCδ2

) 2p−d(p−1)
2

m

with some Cδ2 satisfying limδ2↓0Cδ2 = 0 and an analogous bound for E0[`a1/pK1l(Rd)m] (see [C09, (2.2.22)] and
the last display in the proof of [C09, Theorem 2.2.9]), and pick m ≈ a1/p and summarize to see that (4.10) holds.

Hence, we focus on one of the summands of the first sum on the right-hand side of (4.8), for fixed δ2, R̃ ∈ (0,∞).
Set t = a1/p and b = (b1, . . . , bp). We want to replace `/`(U) by 1

tp `tb. The difference is estimated as in (4.2) on the
event {a < `(U) < a(1+ δ1)}∩

⋂p
i=1{tbi < τi ≤ t(bi+ δ2)}; this difference is small on the event {d( 1

tp `tb, 0) ≤
M}∩A, withA as in (4.3), for anyM and small δ1. Furthermore, note that, on the event

⋂p
i=1{tbi < τi ≤ t(bi+δ2)},{

a < `(U) < a(1 + δ1)
}
⊂
{
a−

(
`t(b+δ21l)(U)− `tb(U)

)
< `tb(U) < a(1 + δ1)

}
. (4.11)

Fix ε > 0. Note that F is also closed in M(B). Denote by Fε = {µ ∈ M(B) : d(µ, F ) ≤ ε} the outer closed
ε-neighborhood of F . Hence, for any M > 0, on the event {d( 1

tp `tb, 0) ≤ M} ∩ A, we have, for sufficiently small
δ1 > 0, that the event {`/`(U) ∈ F} is contained in the event { 1

tp `tb ∈ Fε}, and furthermore we may estimate
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`t(b+δ21l)(U)− `tb(U) ≤ aδ1/2 and use this on the right-hand side of (4.11). Thus,

P
( `

`(U)
∈ F, a < `(U) ≤ a(1 + δ1),∀i : a1/pbi < τi ≤ a1/p(bi + δ2)

)
≤ P

( 1
tp
`tb ∈ Fε, 1−

δ1
2
<

1
tp
`tb(U) < 1 + δ1,d

( 1
tp
`tb, 0

)
≤M,A,∀i : τi > tbi

)
+ P

(
d
(

1
tp `tb, 0

)
> M ∀i : τi > tbi

)
+ P(Ac)

≤ P
( 1
tp
`tb ∈ Fε, 1−

δ1
2
<

1
tp
`tb(U) < 1 + δ1, ∀i : τi > tbi

)
+ P

(
d
(

1
tp `tb, 0

)
> M,∀i : τi > tbi

)
+ P

(
d
(

1
tp

(
`t(b+δ21l) − `tb

)
, 0
)
>
ε

2

)
+ P

(
1
tp

(
`t(b+δ21l)(U)− `tb(U)

)
>
δ1
2

)
.

(4.12)

Note that the exponential rates of the last three terms are strongly negative for large M , respectively for small δ2. For
the first of these this follows from an application of the LDP for 1

βtp `tb (with β =
∏p
i=1 bi) from Corollary 1.2 noting

that large values of d(µ, 0) imply large values of µ(B). For the two latter terms, this follows from our proof of (4.10)
(use the Markov property at times tb1, . . . , tbp, respectively).

For the first term on the right-hand side of (4.12), we put β =
∏p
i=1 bi, use the upper bound for the LDP of 1

βtp `tb
from Corollary 1.2 and the continuity of the map µ 7→ µ(U) (recall that U is a Lebesgue-continuity set), to see that

lim sup
a→∞

1
a1/p

log P
( 1
βtp

`tb ∈
Fε
β
,
1− δ1

2

β
<

1
βtp

`tb(U) <
1 + δ1
β

,∀i : τi > tbi

)
≤ − inf

{1
2

p∑
i=1

bi‖∇ψi‖2
2 : ψi ∈ H1

0 (B), ‖ψi‖2 = 1∀i,

p∏
i=1

ψ2
i ∈

Fε
β
,

1− δ1
2

β
≤
∫
U

p∏
i=1

ψ2
i ≤

1 + δ1
β

}
≤ − inf

{1
2

p∑
i=1

‖∇φi‖2
2 : φ1, . . . , φp ∈ H1

0 (B),
p∏
i=1

φ2
i ∈ Fε, 1− δ1

2
≤
∫
U

p∏
i=1

φ2
i ≤ 1 + δ1

}
,

where we substituted φ2
i = biψ

2
i and dropped the condition ‖ψi‖2 = 1. Now let δ1 ↓ 0 and note that the right-hand

side converges to− infFε J̃ , where J̃ is the extension of J defined in (1.10) fromMU (B) toM(B) with J(µ) = ∞
for µ ∈ M(B) \ MU (B). By lower semicontinuity, this in turn tends to the right-hand side of (4.5). Collecting all
preceding steps, this concludes the proof of Lemma 4.2. �
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