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Abstract: We consider p independent Brownian motions in R%. We assume that p > 2 and p(d — 2) < d. Let
£y denote the intersection measure of the p paths by time t, i.e., the random measure on R? that assigns to any
measurable set A C R? the amount of intersection local time of the motions spent in A by time ¢. Earlier results of
Chen [C09] derived the logarithmic asymptotics of the upper tails of the total mass Et(Rd) as t — o0. In this paper,
we derive a large-deviation principle for the normalised intersection measure ¢t ~P¢; on the set of positive measures on
some open bounded set B C R? as t — oo before exiting B. The rate function is explicit and gives some rigorous
meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of
the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-
Varadhan principle for the latter applicable to the intersection measure.

A second version of our principle is proved for the motions observed until the individual exit times from B, conditional
on a large total mass in some compact set U C B. This extends earlier studies on the intersection measure by Konig
and Morters [KM02, KMO06].

1. INTRODUCTION AND MAIN RESULTS

1.1 Brownian intersection local time.

Let WO, W® ..., W® be p independent Brownian motions in R%. We assume throughout this paper that p > 2
andd < 1%, which are the following cases:

p > 2 arbitrary ind = 2, p=2ind = 3.

In the 1950’s Dvoretzky, Erdds, Kakutani and Taylor [DEK50], [DEK54], [DEEKT57] showed that, almost surely, the
intersection of the p paths on individual time horizons,

p
So=[\Wihp: 0= (b1,--.,bp) € (0,00,
=1

are non-empty. Further results ([T64], [Fr67]) showed .S}, has measure zero in d > 2 and Hausdorff dimension two in
d = 2 and one in d = 3. Hence, .53 is a rather peculiar and interesting random set.

There is a natural measure ¢, supported on S, counting the intensity of path intersections. This measure can be
formally defined by

P b
(A) = /A dy H/o ds 6, (W) for every measurable A C R?. (1.1)
1=1

Hence, informally ¢} is the pointwise product of the densities of the p occupation measures on the individual time
horizons. This definition is rigorous in dimension d = 1, as the occupation measures of the motions have almost
surely a density, which is jointly continuous in the space and the time variable. However, in d > 2, the occupation
measures fail to have a density. Therefore, the above heuristic formula for £, needs an explanation, respectively a
rigorous construction. Geman, Horowitz and Rosen [GHR84] constructed £} as the intersection local time at zero
of the confluent Brownian motion, Le Gall [LG86] identified it as a renormalized limit of the Lebesgue measure on
the intersection of Wiener sausages, and a third identification is in terms of a Hausdorff measure on Sp, with explicit
identification of the gauge function [LG87-89]. These three rigorous constructions of ¢, are summarized in [C09] and
briefly surveyed in [KM02, Sect. 2.1]. As a by-product of the present paper, we will implicitly give a fourth construction
in terms of a rescaled limit of pointwise products of smoothed occupation times, see Proposition 2.3. Some of the
preceding results have been derived for b1, . . ., b, replaced by certain random times (independent exponential times
or exit times from domains), but the proofs easily carry over to £,



The measure ¢ is, with probability one, positive and locally finite on R%. Itis usually called intersection local time
(ISLT) in the literature. However, also its total mass, fb(Rd), enjoys this name, as it registers the total amount of
intersections of the motions. Since the difference between these two objects will be significant in this paper, we will
stick to the name intersection measure for £}, and keep the name ISLT for its total mass Eb(Rd).

1.2 Asymptotics for large total mass.

The large-t behaviour of the ISLT Etn(Rd) (where 1 = (1,...,1)) has been studied by X. Chen in a series of papers,
see his monography [C09] for a comprehensive summary of these results and the concepts of the proofs and much
more related material. The main result [C09, Theorem 3.3.2] is

1
tlim n log P(4;1(RY) > at?) = —a?4P~ Dy, a >0, (1.2)

where p
x = inf {ZV|3: v € H'RY, [Wllap = 1 = [16]2}. (13)

As we will explain in more detail in Section 1.4, the term 1/12 informally plays the role of the normalised occupation
measure density of any of the p motions, and 1)?P the one of the intersection measure t~P¢;y. This is one of the
main features of intersection measures: How much rigorous meaning can be given to the intersection measure as a
pointwise product of the occupation measures of the p motions? The above result indicates that some heuristic sense
can be given in terms of a large-t limit in the interpretation of the characteristic variational formula.

It is one of the main goals of this paper to give a more rigorous meaning to this interpretation in terms of a large-
deviation principle (LDP), at least for the case that the motions do not leave a given bounded set. Fix a bounded open
set B C R? with smooth boundary and compact closure B and denote by 7; = inf{t > 0: W\” ¢ B} the exit time
of the i-th motion from B. By ¢ = £ we denote the intersection measure for the motions running up to their individual
exit times from B, i.e., we replace the time horizon [0, b1] x --- x [0,b,] in (1.1) by [0, 71) X - -+ X [0, 7). Then £ is
a finite positive measure on B. Fix some compact subset U of B such that the boundary of U is a Lebesgue null set.
The upper tails of £(U) have been analysed by Kénig and Mérters [KM02], resulting in the asymptotics

lim a”7 logP ({(U) > a) = —Op(U) (1.4)

for
O5(U) = inf { |Vol3: 6 € HY(B), |16z = 1. (15

This result is in the same spirit as the above one by Chen. Again, <Z>2 and gz52p have the informal interpretation as the
densities of the individual occupation measures and the intersection measure, respectively. Denote by M the set of
minimizing functions ¢2?, then M is not empty [KM02, Thm. 1.3], and the elements of M/ admit some rigorous sense
in terms of a law of large masses. Indeed, under the conditional measure P(- | £(U) > a), it is shown in [KMO06] that
the distance of the normalized measure ¢/¢(U) (with harmonic extension to B) to M (where the elements of M are
seen as probability measures on U) tends to zero as a — oo. However, [KM06] failed to show that this convergence is
exponential in al/p, and their proof was not a consequence of a large-deviation principle. It was the goal of [KM06] to
get full control on the shape of £/¢(U) under P(- | £(U) > a) in terms of asymptotics for test integrals against many
test functions, but the technique used there (asymptotics for the k-th moments) turned out not to be able to give that;
the technique precluded functions that assume negative values.

1.3 Main results: Large deviations.

Our first main result is a large-deviation principle for large time for the motions before exiting the set B (defined as
in Section 1.2). Assume that the p motions W™, ... TW® have some arbitrary starting distribution on B, possibly
dependent on each other, which we suppress from the notation. Their occupation times measures are denoted by

¢
4 :/0 Oy ds, i=1,....p;t >0. (1.6)



We fix b = (b1,...,bp) € (0,00)” and consider the time horizon [0, tb;] for the i-th motion. By

P() =P (N ﬂ{tb <7})

we denote the sub-probability measure under which the i-th motion does not exit B before time tb;. Then £y, is
a random element of the set M (B) of positive measures on B. We equip it with the weak topology induced by test
integrals with respect to continuous bounded functions B — R. By M (B) we denote the set of probability measures
on B, and by H}(B) the usual Sobolev space with zero boundary condition in B.

Theorem 1.1 (LDP at diverging time). The tuple

1 (1) (p)
<tp Hp etbv Etbl e Egtbp)

satisfies, as t — oo, a large deviation principle in the space M(B) x M;1(B)P under P with speed t and rate
function

I(ps s ) = Zb 17413, (17)
if t, f11, - - . , i, €ach have densities 1)*P and 3, . . ., 1/112) with||1;|l2 = 1 fori = 1,...,psuchthaty,n, ..., ¢y, €
H&(B) and Y?P = le 1][}2.2 ; otherwise the rate function is co. The level sets of the rate function I in (1.7) are
compact.

To be more explicit in the special case b = 1, Theorem 1.1 says that, for any continuous and bounded test functions
f7f17"‘7fp: B_)R!

106 o (-2, 30150 )
:sup{<f[w3,f>+§pj<w3,fi>—;ann%:wieH(%(B)andnwiHF1fom’:1,...,p}.
=1 i=1 =1
(1.8)

Theorem 1.1 is an extension of the well-known Donsker-Varadhan LDP for the occupation measures of a single
Brownian motion in compacts [DV75-83], [G77] to the intersection measure. It gives a rigorous meaning to the heuris-
tic formula in (1.1) in the limit ¢ — o00. Since B is bounded, ¢y, is a finite measure. However, there is no natural
normalisation of £y, that turns it into a probability measure. Our result shows that t~P{, is asymptotically of finite
order. A heuristic derivation of Theorem 1.1 in terms of the Donsker-Varadhan LDP is given in Section 1.4, the proof in
Sections 2 and 3.

Specialising to the first entry of the tuple, we get the following principle from the contraction principle, [DZ98, Theo-
rem4.2.1]:

Corollary 1.2. Fixb = (by,...,by) € (0,00)P. Then the family of measures ((t” [[t_, b;) ™ "w)e>0 satisfies, as
t — o0, a large deviation principle in the space M(B) under P\**) with speed t and rate function

SR . a d
I(p) = mf{52bi||w¢\|%: i € Hy(B), il =1Vi=1,...,p, and [J v} = ﬁ}, (1.9)
=1 =1

if ;1 has a density, and I (1) = oo otherwise. The level sets of the rate function I in (1.9) are compact.



To be more explicit in the special case b = 1, Corollary 1.2 says that, for any open set G C M(B) and every
closed set ' C M(B),

1
limsupflogl[”(t_p&EF,t<7'1/\---/\Tp) < —inf I(p),
t—oo L peF

1
liminf — logP(t P4 € Gyt < Ty A=+ A > —inf I(p),
oo 1 g ( t T1 Tp) = UEG (:U’)

In the special case b = 1 = (1,...,1), it is tempting to conjecture that, for (1, ...,,) a minimising tuple in
(1.9), all the ¢; should be identical. This would simplify the formula to (1) = £||V4|3 if ¢° is a density of y with
) € Hg(B). However, we found no evidence for that and indeed conjecture that this is not true for general /1. But note
that the result by Chen in (1.2)—(1.3), after replacing £;(R?) by ¢;(B) and H'(R?) by H}(B), for a = 1 suggests
that, at least for the miniser  of I (1), all the 1); should be identical, since the minimiser in (1.3) is just some 1/127’.

As a corollary of Theorem 1.1, we give now a related LDP for the normalised intersection local time for the motions
stopped at their first exit from B under conditioning on {¢/(U) > a} as a — oo, where we recall that U C B is a
compact set whose boundary is a Lebesgue null set. This solves a problem left open in [KM06], see Section 1.2. That
is, instead of diverging deterministic time, we now consider a random time horizon and diverging ISLT. The measure
¢/¢(U) is a positive measure on B, which is a probability measure on U. At the end of Section 1.2, we mentioned that
the normalised probability measure £/¢(U ) satisfies a law of large masses under the conditional law P(- | £(U) > a).
Here we in particular identify the precise rate of the exponential convergence. By M (B) we denote the set of positive
finite measures on B whose restriction to U is a probability measure. Our second main result is the following.

Theorem 1.3 (Large deviations at diverging mass). The normalized probability measures £/¢(U ) under P(- |¢(U) >
a) satisfy, as a — oo, a large deviation principle in the space M (B), with speed a/? and rate function J —© g(U ),
where

1< u d
i=1 =1

if 1u has a density and J (1) = oo otherwise, where © g(U) is the number appearing in (1.5). The level sets of J are
compact.

The proof of Theorem 1.3 is in Section 4, a heuristic derivation from Theorem 1.1 is in Section 1.4.

Like for the rate function I in (1.9), we do not know whether or not the minimising ¢1, . . . , ¢, are identical. However,
when minimising also over u € My (B), we see that min,c (., (py /(1) = ©p(U), and an inspection of (1.5)
shows that a minimising tuple is given by picking all ¢; are equal to ¢, where ¢2p is the minimiser in (1.5). It is an open
problem to give a sufficient condition on 1 for having a minimising tuple of p identical functions ¢1, . .., ¢,,.

For Theorems 1.1 and 1.3 and Corollary 1.2, there are analogues for random walks on Z% instead of Brownian

motions on R%. These are much easier to formulate and to prove since the heuristic formula in (1.1) can be taken as a
definition without problems.

1.4 Heuristic derivation of the main results.

In this section we sketch heuristics that lead to Theorems 1.1 and 1.3, starting from Donsker-Varadhan theory of large
deviations. For simplicity, we drop compactness issues and formulate the principle on R? rather on some bounded
domain B. We also put b = 1 and write #; instead of /;7.

Recall the occupation measure of the i-th Brownian motion defined in (1.6). That is, Eii) (A) is the amount of time
that W spends in A C R? by time ¢. The famous Donsker-Varadhan LDP [G77], [DV75-83] states that

. 1 dun2
P(%Ei’)%,u):exp[—tiHV\/ﬁHQ%—o(t)}, t — oo. (1.11)



This is a simplified version of the statement that, under (- N {TV\”

0] C B}), the distributions of 1¢;" satisfies an LDP

with speed ¢ and rate function y — 5[ V4/ %H% if the square root of the density of 11 exists in H'(R%) and p1 +— oo
otherwise.

The heuristic formula in (1.1) states that

p ()
1¢;
t7Pl(d ||E (1.12)

Hence, t P/ is a function of the tuple (%Eil), RN %K,Em). Let us ignore that this map is far from continuous. Now the
LDP in Theorem 1.1 follows from a formal application of the contraction principle.

Let us now give a heuristic derivation of the LDP in Theorem 1.3. The heuristic formula in (1.1) implies that

U(dy) _ (H £5)( dy ) dy. (113)

fU dz z 1 7—idgc =1

Pick some . € My (B) with density $?P. We make the ansatz that the event {£/¢(U) ~ u,£(U) > a} is realized
by the event (\!_, A(b;, 1;), where

1
A(bi, i) = {Ti > bial/P, e bal/P ~ 1p?(x) dx on B},

where 91, ...,v, € H}(B) are L?>(B)-normalized and by, ..., b, € (0,00). Later we optimise over 91, ..., v,
and by, ..., b,. In other words, the i-th motion spends an amount of 7; ~ b;a'/P time units in B until it leaves the set

B, and its normalized occupation times measure resembles 17 on B. We approximate £(U) > a by {(U) ~ a and
have therefore the following condition for by, . . ., by:

P P
:Hbi/ da [ ] %7 (). (1.14)
=1 YU =

Furthermore, from (1.13), we get the condition

o=t plw f[ (biv?) (1.15)
(U)  fpdae T, 2 (e) 220

Hence, we get, also using (1.11) with ¢ = b;a'/?,

lim a” /P IogIP)(e(fj) ~ ¢ () > a)
p

= — inf lim o~ /P log]P’( m A(bia@bi)) (1.16)

b17 7bp7’l/11’ 7¢pa_>oo i=1

— - Zb vl

b1,.. 7p7'¢}17 “ p

where the infimum runs under the above mentioned conditions, in particular (1.14) and (1.15). Now substituting qb? =
bﬂ[)? fori = 1,...,p, we see that the right-hand side of (1.16) is indeed equal to —.J(x). This ends the heuristic
derivation of Theorem 1.3.



2. PROOF OF THEOREM 1.1: LARGE DEVIATIONS FOR DIVERGING TIME

In this section, we prove our first main result, the LDP in Theorem 1.1. A summary of our proof is as follows. In
Section 2.2 we introduce an approximation of the normalised intersection measure in terms of the pointwise product of
smoothed versions of the normalized occupation times measures of the p motions and prove an LDP for the tuple built
from them. This is quite easy, as this tuple is a continuous function of the normalised occupation times measures, for
which we can apply the classical Donsker-Varadhan LDP. Furthermore, in Section 2.3 we show that the corresponding
rate function converges to the rate function I of the LDP of Theorem 1.1 as the smoothing parameter vanishes. The
convergence is in the sense of I'-convergence, and its proof relies on standard analysis. In Section 2.4 we finish
the proof of Theorem 1.1, subject to the fact that the smoothed versions of the intersection measure is indeed an
exponentially good approximation of the (non-smoothed) intersection measure. This fact is formulated as a proposition,
its proof is deferred to Section 3. In the following Section 2.1 we give some remarks on the relation to other proofs in
this field in the literature.

2.1 Literature remarks on the proof.

In the last decades, with especially much success in this millennium, people have developed many techniques to derive
the large-time or the large-mass asymptotics for the total mass of mutual intersections of several independent paths;
we mentioned two important ones in Section 1.2. With the exception of the work in [KMO06], these results concern only
the total mass, but not integrals against test functions, as we consider in the present paper. Hence, the question arises
which of the existing proof strategies are also amenable to the refined problem about test integrals. In our setting of
large deviations in a bounded set B, we do not have the — technically very nasty — additional problem of compactifying
the space, which cannot be overcome by the well-known periodisation technique, but was solved by Chen using an
abstract compactness criterion by de Acosta. We are also not using the technique of comparing deterministic time ¢ to
random independent exponential time, as this works only in connection with the Brownian scaling property, which we
cannot use for our refined problem.

The technique of finding the asymptotics of high polynomial moments and using them for the logarithmic asymptotics
of probabilities was first carried out in [KM02] in the context of mutual Brownian intersection local times in a bounded set
B, see Section 1.2 and a thorough presentation in [C09]. This has the advantage to avoid a smoothing approximation;
these are always technically involved. In [KMOG6], this technique was extended to the analysis of test integrals against
a large class of measurable and bounded test functions. However, this technique was not able to yield an LDP, since it
could be applied only to nonnegative test functions. Hence, we believe that this technique will not be helpful for deriving
LDPs.

Another possibility would be to use Le Gall’s [LG86] approximation technique with the help of renormalised Lebesgue
measure on the intersection of the Wiener sausages. The main task here would be to strengthen the LP-convergence
of test integrals of these measures to exponential convergence. However, we found no way to do this.

Chen developed a strategy of smoothing by convolution of the Dirac measure in the proof of [C09, Theorem 2.2.3]
for finding the logarithmic asymptotics for the upper tails of the total mass of the intersection. However, the strategy of
proving the exponentially good approximation was taylored there for the total mass and does not seem to be amenable
to the study of test integrals against test functions that may take arbitrary, positive and negative, values.

On the other side, another technique developed in [C07] seems to be amenable to prove an exponentially good
approximation of the intersection measure for p = 2 using Fourier inversion. However, for p > 2, the mollifier used in
[CO7] does not seem to admit an LDP, at least not without substantial work, and we did not see how.

Therefore, we chose to work with mollifying each occupation time and to approximate the intersection measure with
their pointwise product, which itself is easily seen to satisfy an LDP. Our proof of the exponential approximation in
Section 3 with this object requires combinatorial and analytical work.



2.2 Large deviations for smoothed intersection local times.

Recall from (1.6) the occupation measure Eé” of the i-th motion. Let ¢ = (1 be a non-negative, C*°-function on
R? with compact support, normalised such that fRd v1(y)dy = 1. Now we define the approximation of the Dirac
d-function at zero by

—d
pe(z) = e %p1(x/e).
Let us consider the convolution of the above occupation measures with ¢ :

t
() = eex b7(y) = /0 ds pe(W}" ).

i

Then Eé”t is a bounded C*°-function. As ¢ | 0, the measure with density Ké”t converges weakly towards the occupation
measure Eéi). Consider the point-wise product of the above densities:

e | O]
i=1
We will write Zs,t(y) dy for the measure with density /. ;. It should come as no surprise that these measures are, for
any fixed t, an approximation of the intersection local time #; as € | 0, even though we could not find this statement in
the literature. Actually, we will go much further and will show that they even are an exponentially good approximation of
the intersection local time ¢; in the sense of [DZ98], see below.

First we state a large-deviation principle for the measures with density /. ; as ¢ — oo for fixed ¢ > 0. It is
known by classical work by Donsker and Varadhan [DV75-83], [G77] that each %Zf) satisfies, as t — o0, a large-
deviations principle. In the proof of Lemma 2.1 below we will see that Eat(y) dy is a continuous functional of the tuple
(69, ..., ). Hence, by the contraction principle, /- ;(y) dy itself satisfies an LDP with some (c-dependent) rate
function.

Recall that we equip M(Rd), the space of finite measures on ]Rd, with the weak topology induced by test integrals
against continuous bounded functions. For a measure i € M (R?) and a function f: RY — R, we denote by (, f)
the integral | f dp.

Lemma 2.1 (LDP for smoothed measures). Fixe > 0 andb = (b1,...,by) € (0,00)P. Then the tuple of random
measures

1 1) 1))
(tp T, Cestbs oy Loy -+ @Es,tbp)
satisfies, ast — 0o, a large deviation principle in M(B) x M (B)P under P with speedt and rate function

. 1< dp;
Lo s p) :mf{§§jb¢r\vwirr%: Vi € Hy(B), |[illa = 1,97 » e = -
=1

Vi=1,...,p,
(2.1)

? 2 dp
ana [ e = 21,
i=1

if 1L has a density, and I.(j1) = oo otherwise. The level sets of I are compact.

Proof. First observe that the mapping

(MIRD) — MED), (a1, o) = ([ orpe() o, 22)
=1



is weakly continuous. Indeed, first note that the map (u1, .. ., ftp) — p1 ® - - - & py is continuous from Ml(Rd)p to
M1 ((R9)P) since M1(R?) is a Polish space. Furthermore, for every continuous bounded test function f: RY — R
and any ji1, ..., tt, € M1 (R%), we have

(r (iliws(x)) dw) = /R daf(a) /(Rd)p i1 (dy) - i dyp) 0o — 1) - ool — )

= <Af,u1 ®--~®up>,
where

Aploneev) = [ 2@ pulo =)o =)

As . is smooth and compactly supported in RY, the function Ay is continuous and bounded in (]Rd)p. This shows the
continuity of the map in (2.2). Now the claimed LDP follows from the contraction principle [DZ98, Theorem 4.2.1]. [

2.3 Gamma-convergence of the rate function.

In this section, we pass to the limit € | O in the variational formula (2.1). The sense of convergence is the I'-
convergence, as will be required in the proof of Theorem 1.1 in Section 2.4 below. The proof of this convergence
is based on standard analytic tools. By Bs(u) = {v € M(B): d(v, ) < ¢} we denote the open ball of radius 0
around p, where d is a metric which induces the weak topology in M (B). By d we also denote the product metric on
M(B) x Mi(B)P and by Bs(p; f11, - - - t4p) the open d-ball around (g, i1, . - . , 1) in this space.

Proposition 2.2. For every u € M(B), we have,

sup lim inf inf I = I(ps; -y fp), (2.3)
650  €l0 Bs(uipa,...,pp)

where I is the rate function defined in (1.7). Furthermore, the level sets of I are compact.

Proof. We write f(z) u(dx) for the measure with density f with respect to ;.. We denote the Lebesgue measure by
dax.

First we prove ‘<’. Let u, 11, ..., tp be given. Without loss of generality, we may assume that 1/12-2 = (if“ exists,
and d“ = [Tt 47 Fix 6 > 0 and take € > 0 so small that ¢? * () dz € Bgop(p;) fori = 1,...,p and

(I, zpf *pe(x)) dz € Bs/op(f1). Hence, the tuple (( b VExp(z)) das ik p(z) da, . .. ,ng * pe(x) do)
lies in Bs(ft; f11, - - - , f1p)- Hence,

inf I<I<(sz*go£ )) das 6 x pe() da, .. 0 % pe(e) ) < Zuwzng,

B (134215105 p)

where in the last step we used the definition of I..

Now we prove ‘>". Let ju, f11, . . . , ttp be given and let I (y; pu1, . . ., pipp) be finite. Without loss of generality, the left

hand side of (2.3) is also finite. For &, & > 0, we pick (1@, 8>, ..., ut"*) in Bs(u; pu1, - - - , f1p) such that

. e d,e e
inf IEZIE(M(‘S’);/fl ),...,,ug )) d.
B (3150 1p)

By definition of I, there are L2-normalized 1)\"" € H}(B)fori = 1,...,psuch that p1\"” (dz) = 1? x ¢.(z) dx
and 1149)(dz) = ([[7_y 67 * p.()) dz and

- o< L .
L (=2 uf?) > §ZIV¢§5’)H§—€



Then, by well-known analysis [LLO1, Chapter 8], along some subsequences, we may assume that @DZ(-‘S’E) — 1&1@ as
e | 0, for some L?-normalized )\” € HJ(B) fori = 1,...,p, such that || Veh{” |2 < lim inf.|q || V4{>7||3. This
convergence is true strongly in LY forany g > 1ind =2and 1 < ¢ < 6ind = 3, and we have

12
liminf  inf IL.>= V|3 — 6. (2.4)

el0  Bs(pip1,esip) FT2 ; | ! I
In particular, we have ,ug‘s’g) = %@ ()2 dz =: Mﬁé)(dx) in the weak topology. It is elementary (using Hélder's

(6,€)
%

)? % pe(w) dz = 4"

1

inequality) to see that (1 (dx) in the weak topology. Hence, ,ug‘s) € Bs/op(f1i). Now we
let & | O and take a subsequence of 1,!);‘” which converges to some ; strongly in L4 forany ¢ > 1ind = 2 and

1<g<6ind=3and
P p
n%nfz; IV 213 = 1 Vaill3.

i=1
Since ué‘;) € B(;/Qp(ui), 1&1-2 must be a density of u;. Therefore, the right hand side of the last display is
2I(p; g1, - - -, fp)- Sending & | 0 in (2.4), the proof is finished for the case when I'(yi; fu1, . . ., pip) is finite.

Now we consider the case I(u; i1, . .. jtp) = oo. First, we consider the case that all 11, . .., t, have densities
1/1%, .. ,1/13 such that ¥; € H&(B), but w either fails to have a density or to be the pointwise product of the wl-z. By
way of contradiction, assume that the left hand side of (2.3) is finite. Now we follow the same line of arguments as
above and define 1@ = ([T7_,(x{”)?(x)) dx and note that 1> = u® as e | 0. Indeed 1\ converges as
€ | Ostronglyin L9 forg > 1lind =2and1 < g < 6ind = 3)to 1/Jf), and taking the pointwise product of
the densities is a weakly continuous operation. Hence 1.9 lies in B(;/gp(u). Now we send § | 0 and use the same
argument to infer that u® = p = ([Tt ¥(z)) dz. This is a contradiction.

Furthermore, also in the case that one of the 1;’s does not have a density or its squareroot is not in H&(B), the
same arguments above (by contradiction) shows

p
hI?iioan V9113 > +o0 = I(ps s - s ).
=1

2.4 Completion of the proof of Theorem 1.1.

The main step in the remaining part of the proof of Theorem 1.1 is to show that the intersection measure ¢/, is
exponentially well approximated by ¢/, ;. This we formulate here as a result on its own interest.

Proposition 2.3 (Exponential approximation). Fix b = (b1,...,b,) € (0,00)P and a measurable and bounded
function f: B — R. Then, for any € > 0, there is C'(¢) > 0 such that

k
Y H(Etb —€€7tb,f>‘ } < kP C(e)f,  te(0,00),kEN. (25)
andlim. |y C(e) = 0.

Note that this result implicitly shows that ¢, is indeed approximated by ¢ ; in Lk-topology for any k, as we announced
in Section 1.1. The proof of Proposition 2.3 is given in Section 3. Now we finish the proof of our main result.

Proof of Theorem 1.1. Recall that we have a LDP for the e-depending tuple in Lemma 2.1. We now use Proposition 2.3
to see that this tuple is an exponentially good approximation of the tuple in Theorem 1.1. Recall that d is a metric on
M (B) that induces the weak topology. We also denote by d a metric on M (B) x M (B)P that induces the product
topology of this topology. Then we have to show that the probability that the d-distance of the two tuples in Lemma 2.1
and Theorem 1.1 being larger than any § > 0 has an exponential rate as ¢t — oo which tends to —oco as € | 0. Since



the topology on M (B) is induced by test integrals against continuous bounded functions, it is enough to show that,
for any such test functions f, fi,..., fp: B = R,

1

gﬁlliﬂgp % 10gP(ib)({‘<W(ftb —Llep), f>‘ > 5} U LpJ {Ri(&% - gz(si,)tbi)vfi” > 5}) =~

This indeed follows from Proposition 2.3, together with a version of this for p = 1, which is indeed much simpler and
also follows from [AC03, Lemma 3.1], e.g. Indeed, we have from Proposition 2.3 that

1 1
. . - (tb) _ _
lalﬁ)lhrﬂi?p . logP (‘<7tp 7, (b, — Ce1p), f>‘ > 5) = —00, (2.6)

=1

which follows from the Markov inequality, applied to the function = — z* with & = [], as follows:

o (gtto—taon )] > 8) < 420w (00—t

< §FPRECR BIPC ()R < C(e)

forany t > 0, where C, C(¢) and 6‘(5) depend on b, B, d, f and § (but not on t) and satisfy lim. o C(e) = 0 =
lim. o C(e), and C'(¢) is the constant from Proposition 2.3. Since k& = [t] and lim. o C'(¢) = 0, (2.6) follows.

Hence, according to [DZ98, Theorem 4.2.16], the LDP of Theorem 1.1 is true with the rate function on the left-hand
side of (2.3). But Proposition 2.2 identifies this as I given in (1.9).

Note that by (2.3) and [DZ98, Theorem 4.2.16], I is a lower semicontinuous functional. Hence, its level sets are
closed in M (B) x M1 (B)P. Since the infimum in (1.7) extends only over functions in H{ (B) (i.e., with zero boundary
conditions), I can be seen also as a lower semicontinuous functional on M(E) X Ml(E)p, which is weakly compact
by Prohorov’s theorem. Hence, the levels sets of I are also compact. That is, the proof of Theorem 1.1 is finished. [

3. PROOF OF PROPOSITION 2.3: EXPONENTIAL APPROXIMATION

We turn to the proof of Proposition 2.3. We will do this only for b = 1 and write E instead of E*Y etc. Fix a
measurable bounded function f on B. Then our task is to prove that, for any £ > 0,

’Em {((zt,ﬁ — (egyt,f>)’“” < kP Ce)*  te(0,00),keN, (3.1)

and lim. o C(e) = 0.

Note that we have now the absolute value signs outside the expectation, in contrast to (2.5). This is sufficient for
proving (2.5), since, for k even, we can drop the absolute value signs anyway, and for k£ odd, we use Jensen'’s inequality
to go from the power k to k + 1 and use that ((k + 1)!)%/(++1) < EIPCF for some C' € (0, 00) and all k € N.

Our proof of (3.1) is bulky and also technical, we divide it into several steps. In Section 3.1 we present a formula
for the moments of integrals against ¢; — . ; in terms of k-step transition densities, some of which are convolved.
In Section 3.2 we present a heuristic proof for the regime & < ¢, which is meant to be a guiding philosophy which
leads the actual proof strategy, though we do not use this section later. The second main tool of our proof, a standard
expansion of the transition density in terms of eigenfunctions and eigenvalues of —%A, is employed in Section 3.3.
The latent € presence also manifests here as some of the eigenfunctions are convolved (and the rest remain e-free).
Furthermore, we also estimate away some contributions (popping up from some singularities) to the main term. These
are relatively easy to handle. The main term is attacked in Section 3.4, where we use an intricate counting technique
that makes it finally possible to trace back our way using the binomial theorem and to extract the k-th power of some
term that is small if € is small.



3.1 Moment formula.

We begin with a moment formula for the left-hand side of (3.1), which is an adaptation of Le Gall’s formula for the
moments of £(U') for compact subsets U of B [LG86, LG87-89].

We write P, and E), for the Brownian bridge sub-probability measure ®@f_ P, q)(-,t < 7; W} € dy®)/dy®
(where x = (z™, ... x(P>) y = (y™,...,y®) € BP) and the corresponding expectation. In other words, under
Py, we consider p independent Brownian bridges in B with time interval [0, t] from 2" to y®, for I = 1,...,p.
Later we integrate over x,y € BP with respect to v(dx)dy, where v is the joint starting distribution of the p motions
and hence P® = [, v(dx) pr dy PY,.

Furthermore, we denote by pi” (z,y) = P.(W, € dy;7 > s)/dy the density of the distribution of a single
Brownian motion at time s before the exit time 7 from B when started at x € B. By G; we denote the set of
permutations of 1,. .., k.

Lemma 3.1 (Moment formula). For any continuous function f: B — R and any k € N and anyt > 0, and any

xo = (z3’,...,2) and xpy 1 = (J:Z;_f_l, . ;f_il) € Bp,
k & k
k m
B, [<<f, 6 =t ] = S0 () [ TG aw)
m=0 Bk i=1
P k+1
11 Z/ A SR < 1) ( Sy — dzj>Hp(B) 21,29,
=1 oee, Y0 Brm
(3-2)
where we abbreviate i1 =1 — Ele riand, forj=1,...,k,
. 1y ifoT(g) <
;= .’I};” _ {ya L) I O-,l(j.) =m, (3.3)
Zg-1(jy foTH(j) > m.
Proof. We use the binomial theorem to split the k-th moment as follows.
k
m k —-m
B [0 = ()] = D2 (1) <m> By (£ @4

Now we handle the mixed moments above. We formulate the proof in a somewhat lose way, a mathematically correct
way to turn the following way is described in [LG86]. For any m € {0,..., k},

k
B oy |5 00 o)™ = /B JlrwEs.., . ®€t (dy;) ® Caly)dy;| . (@5)
=1

j=m+1

where we recall that /; does not have a density, but /. ; is a smooth function. By definition of /. ; and independence of
paths, the expectation on the right-hand side of (3.5) can be written as

p k . .
[] W, €dy; iftj<m,
/ dsg . .. dsl/ | | (%(yj — Zj)d?Jj)IP(t) @ j Yj ' ] <m
i=1 | /[0 BR=m z @il \ | Wy, € dz; ifj > m.

where we remark that the integral over B~ refers to dzm+1 . . . dzg. Now we time-order the k-dimensional cube
[0, t]¥ and write the last expression as

: .
11> / dSl/ | | 805 IP’“()) © W, €dy; ifj<m
v OSSISWS%Q BE=m Lht1 ng(j) edz; ifj>m.

i=1 | €S
(3.6)



The time-ordering allows us to invoke the Markov property at the consecutive times s1 < s9 < -+ < s and to
split the path into k pieces. Each of the pieces is a Brownian motion before leaving B. Therefore the joint probability
distribution above also splits into the corresponding k-step transition probability densities.

PY. W'So'(j) edy; ifj<m, _p® Ws, € dyo-—l( h f O'_I(j) < m,
o)l \ Wi,y €2y ifj >m. )2l \ | Wy, € dzpmr(py it 1(5) > m.

}P’(t()l) ) <Wsj € dx;i),j =1,..., k:> (3.7)

0 k41

k+1
< H p(sf)—sj 1 ;” 1, )) dyl . dymdzm+1 . dzk

Substituting ; = s; — s;1 and putting all the material together proves the lemma. O

3.2 A heuristic proof for k < t.

In order to give some guidance to the reader, let us briefly describe heuristically in which way we will succeed to
estimate the bulky expression on the right of (3.2) in terms of k!PC (¢)* with a small C/(¢). We do this only for the
regime k < t, which we actually do not consider in Proposition 2.3, but this only meant as a demonstration of the
philosophy of our proof. Apart from the formulation of Lemma 3.2 below, the material of this section will not be used
later in the proof of Proposition 2.3.

The problem is to extract an extinction coming from a difference of two close (for small €) terms with a power of
order k by use of the binomial theorem. Since this works only if certain powers of these close terms appear, one has
to expand the probability terms on the right of (3.2) into sums of powers.

Our second main ingredient is a standard eigenvalue expansion with respect to the spectrum of the Laplace oper-
ator in B with zero boundary condition, which follows from the well-known spectral theorem for compact, self-adjoint
operators [B95, Theorem 4.13]:

Lemma 3.2 (Eigenvalue expansion). There exist a system of eigenvalues 0 < A1 < \o < ... and an L?(B)-
orthonormal basis of corresponding eigenfunctions 11,3, . .. in B of —%A with zero boundary condition in B, that
is, —%Aﬂ)n = A\, forany n € N. Furthermore,

P (@ Ze M (@) aly), s >0, (3.8)

and the convergence is absolute and uniforminx,y € B.

In the regime k < t, we use that r; is large for any j and use the approximation

PP y) = e M (@) (y) +o(1), 7 — oo (3.9)



That is, instead of plugging in the full eigenvalue expansion (3.8) we just pick the leading term of the expansion (3.9) in
the last line of (3.2). This gives, foranyz =1,...,p,

E+1 E+1
1o @ ey~ I (e v lall ) ()
j=1 J=1
k
A i i 2
Ty () (i) T 7 () (3.10)
j=1
m k
_—tA () 2
e M () (i) ([T wdwn)) ( TT 32))
7j=1 j=m+1
Note that the last term does not depend on 0 € Sy or any r1,...,r; € [0,t]. Also note that |&;| = k! and
f[o,t]k dry...dr ]1{2;‘;1 re < t} = t¥/k!. Substituting the last term of (3.10) in (3.2), we can integrate out the
convolution integrals over 2z,,+1, . . . , 2, and afterwards the integrals over y1, . . . , yx and see that

B oy | (U 00) = (f, M)’“}

~ o~ tPM hp <H 1 (2 ) (2 )

k

)
></Bk dyr ... dyy (]Hlf(yj))(jﬁlwp )(]l;[+1 i) yy)) 3.11)
)
)

P
= e Pt (T (o)

according to the binomial theorem. Since . is an approximation of the Dirac delta measure at zero, it is clear that
(f, w%p> — (f, (p=*1b?)P) tends to zero as ¢ | 0. Hence, we have derived an upper bound as claimed in (2.5).

The above heuristic is the guiding philosophy of our proof. However, when we expand the transition densities
piB) (x,y) into a full eigenvalue expansion, we encounter two singularities: (1) the time parameters r; getting small and
(2) the indices n; attached to the corresponding eigenfunction wn]. getting large. These two singularities hinder us from
integrating fw] dr; along with the infinite sum aneN- Hence, we expand only those transition densities pi«f) (z,y)
for which r; > 4. For this part, large n; indices can easily be summed out, thanks to the factors exp{—)\njrj}.
The rest of the transition densities (for which 7; < ¢) stay over and are finally integrated out in terms of the Green’s

function. We spell out the details.



3.3 Eigenvalue expansion.

Recall that we have to show (3.1). We start from (3.2). For brevity, we set forth the following notations. We abbreviate,
with a slight abuse of notation,

k
/dny = /del---/deij;[lf(yj),
/<dr = /[Ot]k drk...drlﬂ{Zle r; <t} (Tk+1 :tzk:ri>,

i=1
/dzgpg = /d2m+1.../de; H e (yj — 25).
B

j=m+1

Our next main step is to expand the transition density terms pﬁf) (xi—1, ;) in a standard Fourier series with respect
to all the eigenvalues and eigenfunctions of —%A in B with zero boundary condition, see Lemma 3.2. However, this
series has only then good convergence properties if the time parameter r; is bounded away from zero. Therefore, we
introduce a new small parameter 6 € (0, c0) and distinguish, for each integration variable r;, if r; < ¢ or r; > 0.
Introducing another small parameter € (0, 00), we isolate the contribution from those multi-indices (71, . .., %)
such that less than nk of the indices ¢ satisfy r; < J. In other words, we write

/ dr — Z / dr H 1, <s H L~

DcA{1,...,k+1} jeD j¢D

and see from (3.2) that

B s | (0 = (£ L)) | = (Dea(n,8,6) + (IDe(n,6,2), 312

where

Dumsa =Y () [wllr %

m=0 Vi=1,...,p: D;C{1,...,k+1}

#Di<nk (3.13)
p k+1
I[Y [arTL e I] 1o | de [ (wj1.27)]

=1 o€ JjED; JjeD;5

and (1) x(n,9d,¢€) is defined accordingly, that is, with the sum on the D; replaced by the sum on D1,..., D, C
{1,...,k + 1} satisfying #D; > nk for at leastone i € {1,...,p}. This last term has a small exponential rate for
fixed 7 if 0 is small, since there are at least nk integrations 7; € [0, d]:

Lemma 3.3 (Riddance of small §). For everyn,d > 0, there is C(n,d) > 0 such that, for any e € (0, 1],
(ID)1k(n,6,)| < KPC(n,6)F,  t€(0,00),k €N, (3.14)
where C(n,d) | 0asd | 0.

Proof. Note that the only ¢-dependence of the factors in the last line of (3.13) sits in the starting and ending points, m( 2
and $k+1 We neglect the changing signs (—1)™ and estimate ( ) < 2F and estimate against the supremum over

all ac ) € Bandall xk_H foreachi = 1,...,p. Hence, the sumon D1, ..., D, satisfying #D; > nk for at least



one i is equal to p times the sum on those D1, . .., D), satisfying # D1 > nk. Estimating also | f| < C' and dropping
the indicator on {Z§:1 r; < t} and carrying out the integration on 7, we obtain,

k+1

(D] <p20)  su Z/ an-an ] | Z/gogngmj )]

xo, xk+1€Bk i=2 0,66,

x> /sos I Gojmr.zp) ] Glajr,2y),

D1: #D1>nko1€6;, je€D1 jeDY

where G is the Green’s function in B and G5(v, w) fo ds p(B)( w) is the truncated Green’s function. Now we
carry out the convolution integrals over dz,,+1 . . . dzg, which turns some of the (truncated) Green’s functions into
convolved (truncated) Green’s functions, each of which can be estimated against G**) and Gf;e), respectively, where

G, y) = max {G(z,y), (G(r,) * p)W) }. (3.15)
and an analogous notation for (G replaced by G.

Now we interchange the integration over 41, ...,y and the sum on o1, such that, after some elementary substi-
tutions involving all the permutations, this sum on oy is turned into k! times the term with o1 equal to the identical
permutation. This gives

k+1

(IT)] < k! p(2C)F  su Z/ dys .. dyk]_[[ > T @)1, )
J:o,a:k+1EBk BF =2 0,€6, j=1
<> T 65wy T 6% wi-1,99)-

Dy: #D1>nk jED; Jjeby

Note that, for anyS > 0,

limsup sup sup Gg*g)(v,w) =0, and limsup sup sup/ GU(z,y)Pdy =0. (3.16)
lz—y|<o

610 £€(0,1] v weié 510 €€(0,1]zeB
In order to employ these two facts, we separate the product overz = 2, ..., p from the last line with the help of Hélder’s

inequality and distinguish in the latter term those integrals over dy; . . . dyy, that satisfy #{j € D : |yj,1 — yj| <
5} > 7k and the remainder, where 5> 0and 1 > 0 are new small auxiliary parameters. The first contribution gives at
least 77k integrals over G( )(y] 1, y5)P dy; with |y] 1 —yj| < § (and therefore a small number) and in the second,
we have at least 7k indices j with |y;—1 — y;| > 6, which makes it possible to estimate G (yj_]_, y;) against a
small number. Hence, the contribution from the last line is bounded by k!C (8, 1)* for some suitable C(,7) € (0, c0)
satisfying lims o 6(5, 1) = 0. The other terms (that is, those that stem from the product over i = 2,...,p) can
be bounded against EP~1C* for some constant C' that does not depend on k. Summarizing, we obtain the estimate
in (3.14) with some suitable C'(d, 7). The details are pretty standard and we refer the reader to the proof of [KM02,
Lemma 3.3]. ]

Now we go on with the term (/) defined in (3.13) and use the eigenvalue expansion of Lemma 3.2 for all times that
are > 0. Forany¢ = 1,...,pand each j € D, i.e., for any time duration 7; > J, we expand pﬁff) (xj—1,2;) into
a eigenvalue series as in Lemma 3.2, introducing a sum on N’ = (n{”);cpe € NPi. Because r; > 4 and the

appearance of the factor exp{— TJA <z)} the sum on n( 2

converges exponentially fast.
The eigenfunctions 1/;”(1-) will later be used for an application of the binomial theorem, but this will turn out to be

].
helpful only if all indices n;-” appearing are taken from some bounded set. Therefore, we truncate this infinite sum at a



large cut off level R € N. We write R = {1,..., R} and split each sum on nj into the two sums on n( Y € R and
n;” € RE. This gives, for every i, sums of the form

X+ )=-> > X .

€D pWer  pere  BiCDiNWERF: n)g(Re)Ps\Fi

with the understanding that '@ € R and N'® € (R®)P\Fi may be concatenated to some map A" : D§ — N.

We now introduce another small parameter v € (0,00) and distinguish the contribution coming from those
multi-sums with sets E; satisfying # (DS \ E;) < ~k for all i and the remainder. This implies the decomposition
(I)t,k (7% 51 6) = (Ia)t,k (7% v 57 €, R) + (Ib)t,k:("% v 5a &, R)1 where (Ia) = (Ia)t7k(777 v 57 g, R) is defined as

wm- Y Y x oy yer(h)

Vi: D;C{1,...,k+1} Vi: B;CD§ Vi: N eRE; Vi N(DE(RC)DE\Ei m=0

#D;<nk #(DS\E;) <k
/dnyH[Z/dTH (V@lpg; '/dwenpk zi-133) [ w0 (@i-0)0,0 ;)
=1 “0e6y JeD; JjeD;
(3.17)

where

H,(N©: D;) ( I1 ]1TJ<5) I1 <]17~,->5 exp{ —rj)\ngi>}>. (3.18)

JjeD; JjeDY

The definition of (Ib) is according, i.e., for at leastone i € {1,...,p}, the set E; satisfies #(Df \ E;) > ~k. That

is, for at least one 7, the sum on n;i) runs over the remainder set R° for at least vk different js and gives therefore,

for large R, a small factor with power at least yk. Let us first show that therefore (1) (1,7, 0, €, R) is a small error
term if R is large for fixed ~y:

Lemma 3.4 (Riddance of large \). Foreveryn,v,d € (0,1) and R € N, there is C*(n,~,d, R) > 0 such that,
foranye € (0,1),

(Ib)1k(n,7.0,,R) < kPC®(n,~,6,R)*,  t€(0,00),k €N, (3.19)
andC®(n,~,0,e,R) | 0as R | oc.

Proof. We use a generic contant C' that does not depend on the parameters involved, but only on B, f or d. In
(3.17) (with the neccessary changes for (Ib)), we estimate Z’:n:()(_l)m(:@) < 2Fand || f||oo < C and f< dr <
f[O,oo)k d7“1 e d?“k and

H, (N, D) < H 1,55 exp{—rj)\ ()}> H exp{—rj)\l}.

JEDS\E; JEE;

Next, in (Ib) we estimate all the terms against their absolute value and then apply the uniform eigenfunction estimate
[Gr02]

d-1
[nlle <CA* ', mneEN, (3.20)



to the eigenfunction product [ ] ; e wn@ (xjfl)w,bn(;) () to see that (recall the notation in (3.15))

my<ck Y > /dy H [( TT ¢ @j1.7) )( Iy A )

Vi: D;C{1,...,k+1} : B;CD§ €Sy, jED; JEE; ( >ER
#D;<nk 3j: #(DC\E )>’yk
—rA (7, Le—21 )\
(10 > [ NEN( [ L)
JEDP\E; (i) 0.00)%  jeE,
< cresrremyt Y > dyn(z [T 610,
Vi: D;C{1,...,k+1} : E;CD§ o€y jED;
#D;<nk 3j: #(DC\E Yk
(3.21)
where C5(R) = Y .cpe[s” dre e \E/2 gng CR) = X,enr A=D/2 and we have estimated

JoZdre ™1 < C for some C' > 1. We assumed that R is so large that C5(R) < 1 and C(R) > 1. Use that
SUP.¢(0,1] SUPxcB [ dy G (x,y)? < C (see the second statement in (3.16)) to see that the sum on o € &y, is
not larger than k!PC*. The two sums on the sets D; and E; have no more than C* terms.

By the well-known Weyl lemma, )\,, tends to oo like n2/d, Hence, C5(R) decays stretched-exponentially fast to
zero as R T oo (the rate depends on § only), and Cr tends to co only polynomially, hence we may estimate
C*Cs5(R)™C(R)P* < C®(n,~,d, R)* with some constant satisfying C®(n,v,d,e,R) | 0 as R | oo. This
finishes the proof. ]

3.4 Estimating the main term

After the preparations in Lemma 3.3 and 3.4, we now estimate the main term (Ia) defined in (3.17), which is the heart
of the proof. The proof of (3.1), and therefore the proof of Proposition 2.3, is finished by the two lemmas, together with
the following proposition, see (3.12) and recall the decomposition (1) = (Ia) + (Ib).

Proposition 3.5 (The main estimate). For every n,7,0,¢ € (0,1) such thatn + ~ < 1/2p and for every R € N,
there is a constant C) (n,~, d,e, R) > 0 such that,

(Ia)ik(n,7,0,6, R)| < kPC(n,7,6,6,R)*,  t€(0,00),k €N, (3.22)
and C(n,~,0,e,R) | 0ase | 0.

Proof. Step 1: Rewrite of eigenfunction terms. First we unravel the last term involving the eigenfunctions appearing
in the right hand side of (3.17). Observe that z; = z]( ? and Ty = x ) in the i-th factor both depend on 7, and we write
o; instead of . Recall from Lemma 3.1 that
e =1/

@ _ JYert0) ifo; " (j) <m,
J @ if 071( i) >m (3.23)
oty "% Y '
Therefore, the last term in the second line of (3.17) reads as follows.

H(¢<)( )@ZH)( )):( H ¢<>( (yg))( 11 Y ) (yj)>

z

jeD§ jeo; 1(D9) j€oy H(DE-1) Moit)
7<m j<m
< ( [T v (5-”))( I e )
. 1 o'i(j>+1
JEU DC) Jj€o; (Dgfl)

]>m j>m



We now carry out the ¢.-convolution integration over all z](” and the integration over all those y; that satisfy the
following: (1) they exclusively appear in the above product twice for every i € {1,...,p} (but not in the product over
the p@)-terms with j € D; for any i), i.e., 0;(j) and ;(j) + 1 both lie in DS, and (2) the index n((;?(j) respectively
nl )( /)41 2t the corresponding 1 lies in R, i.e., both indices 0;(j) and 0;(j) + 1 lie in E;. Since E; C DS, these are

precisely those j that satisfy j € S(o), where we set, for each o = (01,...,0,) € &,
=(No;'(Fi), where F,=E;n(E—1).

Certainly, we have to obey that, for ;7 < m, the integration is over y; and for j > m it is the convolution with ¢.. To
express this, we write, for every subset S C {1,...,k},

S<=8n{l,....m} and Ss=Sn{m+1,...,k}.
Each j € S(o) appears only in the product over 9y or . * t ), whereas for j € S(0)¢ = {1,...,k} \

S(0o), the eigenfunction products stay over and remain unconvolved. We write N* = (N, ... N ®) and N; =
(1) (») : .
(n;’,...,n;”) and introduce, for j € S(o),
P
a(Nj, Njp1) = <fa Hwnwn@j, (3.24)
=1 7 7
p
ac(Nj, Njy1) = <f, Hsoa*(wn§i)wn§i+>l)>. (3.25)
i=1

Substituting this in (3.17), we conclude

- Y 3 3 DI ()

Vi: D;C{1,...,k+1} Vi: B;CD§ ;. N eRE; Vi:N<i)E(RC)D§\Ei m=0

#Di<nk #(DS\Eg) <k
< > I aWepNogrin)| | TT ae oty Nogya1)| Ge(m, D, B 0,00,
0':(0'1,...,0'p)66£ jeS(o)< jeS(o)>
(3.26)

where we wrote N (jy = (nfj?(j))z‘:h_m and D = (Dq,...,Dy) and E = (Ey,. .., E,), and the remainder term
is given as

Gi(m.D.BoN) = [y ] 1)
J

€S(o)°
p
H[/drH N<)D / H (dz“gpa HP(B) ;)17 Jz)
i=1 JEW;: j>m jeD; 027
% ( B H | (0 W (%))(‘ . H | (0 w0, )H(yj))
j€o; (D{\Fy): j<m jeo H(DE—1\F): j<m
X ( » H | (0 (z(ﬂ)(zj('ﬁ))(‘ B H | wng;(jm(z;n)ﬂ,
jeo; (DS\Fy): j>m j€o; H(DS=1)\F;): j>m

where we recall that F; = E; N (E; — 1). Note that G depends on N/ only via its restriction to D§ and on o; only
via its restriction to

Wi =0, ' ((D§\ F) U (DS — 1)\ F;) UD; U(D; — 1)) = 0; ' (FY), (3.28)

(2



where © denotes the complementin {1, ..., k}.

Step 2: Cutting and permutation symmetry.

We write m = mj + mg and k — m = mg3 + my, where m; = #S(0)< and m3z = #S5(0)>. With
Sk _o(=1)™(¥) in front, the second line of (3.26) reads

> e, ) WZ >

mi1,mg,m3,mq€Ng N - 25 {1,.., mi+mo} SsC{mi+mo+1,..., k}

E?:1 my=k - #S< =mq #S>=mg3
« 3 se=socy | IT (- Nage)] [ TT aeWogs) Nogyyo1)
cf:(m,..-,ap)EGP §>=5()> JjE€S< jESS

X Gt(ml +m2,D,E,O',N).

We claim that the term in the last two lines above is constant on the sets S< and S~ and depends only on the
cardinalities m of S< and mg of S-. More precisely, for m = m; + mg, and any permutation 7 € &y, such that
7({1,...,m}) ={1,...,m}, weclaim (puttingo o 7 = (01 07,...,0,07))

(i)

(ii)
I eWoiiy Nogrsr) TI aWoii) Nogy1)
Jj€S(o)< j€S(o)>
= I eWermm Neonm+)  TI @ WNoor iy Mooy ()+1)
jeS(ooT)< je€S(oor)>
(i)
Gt(ml +mgo,D,E,o,N) = Gt(ml +mg,D,E,co1,N).

Proofs of these facts are rather easy and involve straightforward computations. Indeed, (i) is seen as follows.

T‘I(Sw)g)=r—1(ms¢<ai>)m{1, m}_mT o (EY) N {L,...,m)
i=1

D
=((eior) {(F)N{L,...,m} =S(coT)<.
i=1
This proves (i) and similarly one can prove (ii). For the third part, we substitute y; = Yr(;) and can perform a similar

computation. Therefore, the sums on S< and S~ may be replaced by the number of summands, which is (mif”) X
(kfmlfmg

m ) and the definite choices
3

Sz =A{l,...,m1} and ST ={mi+ma+1,....,m1 +mg+mz}.

k
mi+m2

|
mi!malmslmg!”

Multiplied with the factor ( ) the number gives

Recall that G; depends on any permutation o; only via its restriction to W = ai_l (FY), see (3.28). Therefore, we

split each permutation o; € &, into two bijections 0;: W; — Fj and 7;: W — FY and we write

2= 2 2.

JGGZ Vi:#%c{;ﬁwk} Vi:og: Wi—F;  Vi: 1 WESF?
=
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where the two latter sums go over bijections o; and 7;. Furthermore, from (3.24) we see that the a and a. terms
depend on N via its restriction to F; = E; N (E; — 1). With this in mind, we decompose the sum on A/ as

> = > 2.

Vi: NOeRE:  Vi: NOeRFi vi: N eREi\F;

Putting all the material together, we conclude

- k!
(a)= 3 > > ) TP

Vi: D;C{1,..., k} Vi: EiCDZ(.: Vi: W; C{1,..., k} myp,mg,m3,my€ENg
#D;<nk #(DS\E;) <~k HW,=#F; 221:1 my=k

X Z Z Z Z Gi(m1 +mo, D, E,7,N) (3.29)

V- N(i)e(Rc)Df\Ei Vi: N eRENF; Yi: m3: WE—FP v N eREi

x> [ 11 (_a(NU(J')’NU(j)H))H I1 %Wau)af\/a(ml)]-

Vi:og: Wi—F;  jeSL jeSE

Step 3: Counting permutations and multi-indices.

Our next goal is to simplify the terms starting from the sum on N & RE: on the right hand side of (3.29) and to
show that these terms contain the k-th power of a small number if £ is small, which lays the basis of an upper bound
like in (3.22) with a small number to the power k. For doing this, we will count the number of NV, ..., N/®) and of
o1, ...,0p that give precisely the same contribution and to apply the binomial theorem (incorporating the sum on m;
and ms) for a large power of terms of the form a. (1) — a(l), which is uniformly small if £ is small. This is the point after
which we are finally allowed to use more stable estimates like the triangle inequality for absolute signs.

The starting point is that many of the multi-indices N'® € R*% and of the permutations o1, ..., 0p,i = 1,...,p,
give precisely the same contribution. Our task here is to identify what classes of such N and o do this and to evaluate
their cardinality.

First we note that the two products in the third line do not depend on each value of (./\/'j,/\/'jH) for j € 5%,
but only on their occupation numbers, i.e., on the number A(l) of occurrences of a given vector I € (R?) in the
vector (N, Njt1))jes+. Hence, A: (R?*)P — Ny is a map satisfying 2ier2ye A(l) = mq + mg, and we wil
be summing on all such maps. Note that the dependence of the term G defined in (3.27) on N(i)\Fi is only via the
occupation numbers A(1), since these indices enter only as a product over all j € F;. Since also mgy + my4 can be
constructed from m = my + mo and A, we therefore may write

Gt (ml + m27D7E77_7N) = ét (m2 + m47D7E77_7A7 (N(i)‘Df\F)i:l,...,p)

for some suitable function ét which we do not make explicit here.

However, in order to describe the last line on the right-hand side of (3.29), we also have to sum on all occupation
numbers (1) of the vectors (./\/'j , ./\/j+1) in the first product and the occupation numbers (which are necessarily A (1) —
7(1)) in the second product. This leads to a further sum on all maps r: (R?)P — Ny satisfying D ierzye (1) =ma
and 0 < r(l) < A(l) for any I € (R?)P. We denote by M., m, the set of all pairs (A, r) of such maps and
by My, +ms the set of all maps A as above. Our strategy is to write the right-hand side of (3.29) as a sum on
A € My, 4m, andasumon (A, ) € My, ,,, express both the product over the a-terms as functions of A and r, and
finally to count all the tuples (N |g,,0;), i = 1,...,p, such that (A, r) is the pair of occupation number vectors of
the vectors (N (j), Ny(j)+1) for j € S*. By the last we mean that A(1) is equal to the number of j € S* such that

= (No()s No(y+1)-
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In view of this discussion, the terms starting from the sum on '@ € RF% on the right hand side of (3.29) read as

S G(me+m, DB AN) ] [(—a(l))"(l)ag(l) (O =( }#xp(A ), (3.30)

(Avr)EMml,mg, lE(RQ)P

where the set W is given by
(A1) = { (N Ol 00) oy VEE (REP,r(l) = ) € 8% Wy Noggyen) = 1,
A(D) = (1) = #4) € 85 (Nog), Noan) = 1},

where the domains of the N'”)| . and the o; are as in (3.29).

(3.31)

Now we evaluate this counting term. We will decompose this in the two steps of counting first the multi-indices and
afterwards the permutation. For every i = 1, ..., p, we define the i-th marginal of A € M, 4, by

A (19) = > AW, 1@y, 19 e R2, (3.32)
(19))j2,€(R?)P—1
Now we consider the multi-indices " that produce the occupation times vectors A;:
(I)(A1, - ,Ap) = {(N(i)‘Fi)z‘:l,...,p:
Vi=1,...,p, VIV e R®,#{j € §*: (N}",N[{)) =19} = 4,(1V)}.
Given N € ®(A), we denote
(A, r,N)={(0i)i=1,..p € &_ BW, F): (N,01,...,0p) € U(A,r)}, (3.34)

where we denote by B(W,F') the set of bijectons W — F. Then it is clear that #V(A,r) =
ZNecb(A) #WU (A, r,N). The cardinality of U (A, r, ) is given in the next lemma.

(3.33)

Lemma 3.6 (Cardinality of ¥ (A, ,\)). Foranymi,m3 € Ny and any (A,r) € My, m, andany N € ®(A),

D Tlhoere A1) A(l
Hle(R2)p (0)! le(R2)P r(l)
Proof. We count the number of p independent bijections ;: W; — F;fori = 1,..., p with the prescribed properties.

Since #(NP_,W;) = #(NE_, F;) = #5*, clearly this task boils down to countlng all permutations o; of S* =
SZ U S%. From now on, therefore, we shall be counting permutations o; of S*.

For p = 1, we want to find out the the number of permutations ¢ of the numbers in S* such thatany [ € R? appears
7(1) times as a pair (n4(;); N(j)+1) for j € St and A(l) — 7(1) times as a pair (14(;), 7o(j)+1) for j € S%. We
will now describe a two-step procedure that constructs all such o. For each I € R?, choose 7(1) out of A(1) indices
Jj € S*suchthat (nj,nj+1) = . Let D be the set of those j. Then D has precisely m; elements and there are

HleRz ( (l)) choices. Now any permutation o that maps {1, ..., m1} onto D has the above property. Obviously, for

a given D, there are m1!m3! such os. This shows that there are at least as many as m1!m3! [ [;c 2 (f((ll))) such os.
In other words,
A(l)
#U(A,r,N) > [] ( l )mllmg!. (3.36)
leRr? T( )
To see that also the upper bound < holds, pick a 0 € ¥ and put D = {o(1),...,0(m1)}. Then, by definition of
WU, D contains, for any [, precisely 7(l) out of A(l) indices j satisfying (1, 711) = [. This means that the above
construction produces also the chosen o. This shows that equality holds in (3.36). Hence, we have proved (3.35) for
p=1.



22

For p = 2, we can go ahead similarly. Without loss of generality, we may assume that A € ®(A). First we argue

that
{0'1 € Gp: dog € 6y (0'1,0'2) € \I/(A, T,N)} = \I’l(A1,T1,N<1)) (3.37)

where Wy (A1, 71, N V) is defined in (3.31) for p = 1 and A and r replaced by their first marginals A; an 71
respectively. Indeed, let 01,09 € &(S*) be such that () and A(-) — 7(-) are the occupation times vectors of
(nf;j(j),n;lj(j)+1)i:1,2 forj = 1,...,m; and of (”Zgz‘)(j)v”Z<w(j>+1)¢=1,2 forj =m;+mo+1,...,m; +
me + mg, respectively. By projecting on the first row, we see that 71 and A; — 71 are the occupation numbers of

(1) (1) s (1) (1) s ;
(ncr1(j)’n01(j)+1) fory =1,...,m; and (ngl(j),ngl(j)ﬂ) forj =mi+mo+1,...,m; + mo + ms. This
shows that o € Wy (Aq, 71, NV).
Let us show that also D holds in (3.37). Pick o1 € W1(Ay,71, N©V). Since N' € ®(A), for each I® € R?, there
are precisely A5 (1®) indices j such that (nf),nffrl) = [, Therefore, there is an order (i.e., a permutation oo

; . 1) (1) —

of the second row) such that, for any [V and any r(IV),1®), the set {j € St (na<1>(j)’na<1)(j)+1) = |}

contains precisely as many as (1", [?) indices j satisfying (nf;(j), nf;(j)H) =1® forany [® € R? and the set

{jess: (n;lf(j), nfyll)(j)ﬂ) = [™M} contains precisely as many as A(I1), 1)) — 7(1(V) 1(2)) indices j satisfying
(n(ZTQ(j), nEQ(].)H) =1 forany I¥) € N2, Therefore, (01, 03) € W(A,r,N). This proves (3.37).
Hence we have
#Uy(A,r,N) = Z #{o9: (01,09) € U(A,r,N)}. (3.38)
o1€V (AN
Fix o1 € WUy(A1,71, V). We now give a two-step construction of all o satisfying (o1,02) € W(A,r,N). For

each [V [ € R2, we decompose the set {j € S (ngf(j),n(l) ) = 1™} into disjoint sets Dy 2

o1 (j)+1 A
of cardinality 7(I,1®) and the set {j € S%: (nsl)(j),nglf(j)ﬂ) = 1™} into sets Dju) 2 of cardinality
AWM 1®) — (1M, 1®), For doing this, we have

Tl(l(l))!(Al — Tl)(l(l))!

AL oz G o

choices. Having fixed these sets, every permutation oo satisfying 02({j e S*: (n

(2) n(2) ) — l<1)}) —
. RS
Ui er2 (Dl(l)’l(Q) U Dlm,l(z)), VI® € R?, has the property that each pair (I, 1)) appears precisely (1", 1)
times in (nf;j(j gz(j)+1)i:1,2 forj = 1,...,mq and precisely (A —r)(IV,1®) times (ngj(j)7n«(;2(j)+1)z‘:1,2 for
j=mp+mg+1,...,m1 + mo + mgs. That is,ﬁ(al,ag) € Wy(A,r,N). Obviously, there are [[;2) A2(1®®)!
such permutations o. Different choices of D and D produces different choices of permutations o1, 2. A little re-
flection shows that every oy satisfying (01,02) € Wy can be constructed in this way (put D(l(l)’l(2)) ={j €
N O () > — [ * . (0 ® ()
5%+ ()2 ()41 iz 2 @08 D gy = {70 € 525 (595 41) i oD
Therefore, we have

r (1) (A =) ()
#Us(A,r,N) = #U (A1, r, NV) x Ay (1)
l(2>1;[7€2 1@ eres Li@era (1O, 12))! (A—=r)(Im,1®)!

[T A1) e A2(1*)!
[Li e T(IO IO (A — ) (IO, 1@)!
H?:l [T ere Ai(1™)! H (A(l))

[Lie(r2)2 A(D)! (1)

"

= m1!m3!

= m1!m3!
1€(R?)?

(3.39)
This proves (3.35) for p = 2. We leave the proof for p > 2 to the reader, as it is similar and can be carried out in a
recursive manner. O
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Now we use (3.35) in (3.30) and this in (3.29). Replacing m on the right-hand side of (3.29) by >, ((), the only

condition on 7 in the set (J"X5" My, m, that s left is that 7(1) € {0, ..., A(l)} for any I. Therefore, we infer from
(3.30) and (3.29) that

my K
(Ia) = Z Z Z Z (=1) malmy!

Vi: D;C{1,....k} Vi: B;CD§ Vi: Wy C{1,....k}  mo+mu<k
#D;<nk #(DS\E;) <~k #HW,;=#F;

Z Z Z Z ét(m2+m4,D,E,7, A,N) (3.40)

Vi /\[(i)e(’RC)Df\Ei Vi: N@OeRE\F; Vi: 7;: WE—FY AeMk7m2fm4

% #@(A)HZ 1Hl(z)eR2A (1) H [ Z r(l) (l)A(l)—r(l)] <A(l)>}

ey ATy L (0

By the binomial theorem, the last term in the brackets is equal to (a(1) — a.(1))A®.

Step 4: Finishing: some estimates.

In this step we shall prove (3.22) and finish the proof of Proposition 3.5. From now on, we will use that |a(l) — a- ()| is,
for fixed R, small uniformly inl € R?P if ¢ > 0 is small, and we are allowed to use the triangle inequality to estimate all
the other terms appearing in (3.40) in absolute value. We will use C to denote a generic positive constant that depends
on f, B or d only and may change its value from appearance to appearance.

The main task now is to estimate the second line of (3.40) as follows. We claim that there is some C5 € (0, c0)
such that, for any k, ma, m4 € N satisfying ma + my < k and forany A € My_,,—m, and for any ¢t € (0, c0),

p
3 > S [Ge(me +ma, D E, 7, AN)| < CET[#(F)!  (3.41)

i - N(i)E(Rc)Df\Ei Vi: N eRE\F; Vi: 7;: WE—FE? i=1
We defer the proof of (3.41) to the end of this step.
Next, it is a standard fact from combinatorics [dHOO, 11.2] that, for A € Mg_ . —m,»
A (1@
ngi)GR Al(ll )'
im1 Hl(i)eRQ Az(l(l))‘

where A; is the marginal of A; on the first component, i.e., A;(I1) = ZZQER A;i(l1,1y) forevery 1 € R. We estimate

#P(A) < kP (3.42)

the sum over W; against (#]}) and the sum over D; and F; against C*k. Combining everything, we conclude

(Ia) < kPCHCY Z m2|m4l H [(#F>#FC'}

mo+mqy<k
[T T e Ai 7))
<2

AEMy— 1y —m, ez AD! le(R2)P

k!
< KPCRCEEIP
J mf%gk mglm4!(k — Mo — m4)!

S (k —mg — my)! T la@) - a- A

|
AeMk7m27m4 Hle(QQ)p A(l). le(RQ)P

la(l) — a.(1)[*®)
(3.43)
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where we estimated #F;! > (k — ma — my)!, which is true for any 4 since S* C o, '(F;), and
I, Hl‘” A (170 < (K — mg — my)!, which is true since the numbers A;(1{”) sum up to k — mg — my.

Now we use the multinomial theorem to see that the last sum is equal to Ck_mz_m“, where Cc p =

Yie(reye la(l) — a=(1)]. Take & so small that C- p < 1, then we can estimate Ck e < O (1 2p(n+7)),
since

k—mz—m:#S*=#ﬂWi=#ﬂ(Em(Ei—1>) > k(1 —2p(n+7)),

since # D¢ > k(1—n) and #(D$\ E;) < vk (and also # (DS \ (E; —1)) < k) and therefore #(E; N (E; —1)) >
k(1 =2(n+ 7))

The sum over ms + my4 < k on the right-hand side of (3.43) equal to 3%, which we absorb in the C*. Hence, we
derive the estimate

(Ia) < kPRPCFCECEG2P0r0),

Since lim. o C: g = 0 and n + v < 1/2p, this estimate proves (3.22) and therefore finishes the proof of Proposi-
tion 3.5.

Now we owe the reader only the proof of (3.41). In (3.18), we estimate

OF iy, Ny
H,. (N H < ;>0 exp{ 2)\n§_2>}> X H (]lTj+1>5 exp{ 5 )\nﬁl})

jeDs je(Di-1)
T 1
< H <]]1"J>6 exp{ - 2j)‘n(_i)}> X H <]1Tj+1>5 exp{ j; A (1)1}>
JEDS\F; ! JE(Di=D\F; o
X H exp{ — Tj/\l}.
JEF;

Furthermore, we drop the indicator on {ZkH r; < t}, such that all integrations on r; can be executed freely (over

[0, 00) for j ¢ F; and over [0, 00) for j € F) as an upper bound. In (3.27), we estimate the absolute value of G by
using the triangle inequality and the uniform eigenfunction estimate from (3.20). Furthermore, we also summarize and
estimate the sums over N'V| pe\ iz, and N[ g\ 7, as a sum over N'V|pe\, € NP for i = 1,..., p. Hence,
we obtain, also using the notation of (3.16),

L.h.s. of (3.41) < C’“/

11 H[( > 160 )

B(S*) €(S*)ci=1 T WE—=Ff jeD;
(1)
< H Z / dre " )\ 2 >(/ dr Herj)q)] (3.44)
JED{\Fi 000)™ ek,
P p
k~k e
< C*C} (H#F')/ LAy [T I 6% @w-199)
i=1 BT il jeb;
where Cs = > -y f5 dr e_”\”)\(d D72y, 1, and we absorbed the # F;-fold power of fooo dre ™ = 1/A{in
the term C*, and we used the Jensen’s inequality to the sum over 71, ..., 7, to get hold of the term Hle(#Ff)!.

The integrals over the y; are now bounded by C*, thanks to the classical fact SUp,cp fB dy GP(z,y) < C for
p < d/(d — 2). Altering the value of C suitably, we finish the proof of (3.41). O
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4, FROM LARGE TIME TO LARGE MASS: PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. To do this, we carry over our LDP for /4, as the time t diverges (Theorem 1.1) to
anLDP for = £(;, ... -y with random time horizon [0, 71) X - - - X [0, 7;,) as the mass £(U ) diverges. Recall that U is
a compact subset of B whose boundary is a Lebesgue null set. We want large deviations for the probability measures
¢/¢(U) conditional on P(- | £(U) > a), as a T oo with rate function .J defined in (1.10). The basic idea is to replace
¢ with £y, where t = a'/P and to optimise over b = (b1,...,bp). In other words, we cut each i-th Brownian path at
some time tb; smaller than 7;, for some b; > 0 and control the cut-off part. Theorem 1.1 gives the large-deviations
rate for £, as t — oo. Optimising over by, - - - , by, gives us the desired asymptotics. Lemmas 4.1 and 4.2 below give
the lower resp. upper bound in the LDP.

We pick a metric d on M (B) which induce the weak topology. Recall that M;(B) is the subspace of positive
measures on B whose restriction to U is a probability measure.

Lemma 4.1 (Lower bound). For every open setG C My (B), we have

| ¢ .
hg%(glfmlog]l” <€(U) eG,UU) > a) > _ﬁlelg J (). (4.1)
Proof. Sett = a'/? and fix b = (by, ..., b,) € (0,00)P. We use that, for any &1, 52 > 0,

{E(U) > a} D {CL < E(U) < CL(l +51)} N ﬁ{tbz <7< t(bi +52)}

=1
p
D {a < gtb(U) < a(l + (51) — (ﬁt(b+52n)(U) — gtb(U))} N m{tbz <7< t(bi + (52)}
=1

On the set on the right-hand side, we want to replace ¢/¢(U) by tlpﬁtb = éﬁtb. The difference is estimated as

_ ‘ —
5 2=l 5 <£<a)‘1)\ gty ZTw L, 0 (4.2)

@ el Ty et w S

Pick some open set G C M (B) such that G = G N M(B). Fixe > 0. Denote by G- = {u € G: d(p, G°) > ¢}
the inner &-neighbourhood of G. Hence, for any M > 0, on the event {d ({1, 0) < M} N A, where

Co(prson) — Lot € 5
A= {d(%a()) < E,gt(b—o—ég]l)(U) - ftb(U) < a;l}, (4.3)

we have, for sufficiently small d1, > > 0, that the event {¢/¢(U) € G} contains the event { £ ¢y, € G.}. Thus, we
have the following lower bound.

P(aé) €G,UU) > a)

> P(ti,,ztb € Gora < Ly(U) < a(1+ %), d(5 0, 0) < M, A, Vi: th; < 73 < t(bi + 52)) (4.4)
= E(1{tn € Gol < Hall) < L+ 4 .d(0,0) < M.Yi: th < m}F(WS . W) ).
where we used the Markov property at times tb1, . . ., tb, and introduced
1)
F(x) =P, (d(tipétgﬂ,()) < %,ft(;Qn(U) < tPEI,VZ': T < tbi(SQ);

we recall that [P, denotes expectation with respect to the p motions starting in the sites x1, . .., 7, respectively. It is
easy to see, by chosing some appropriate joint strategy of the p motions, that lim inf; ., % loginf,epr F(x) > 0.
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To the remaining term on the right-hand side of (4.4), we can apply the lower bound in the LDP for (? Z 1 bi i)~ L
from Corollary 1.2 and obtain

liminf —~ 1 logIP(

a—00 al/

1
) e G, L) >a)

S R .
> —inf { — szvaH% wz S H&(B), ||1/JZH2 = 1\77,,
2 Z.f

p

H( lwl)eG€,1</H bw?) < 1+ %, d( [Jbwd),0) < M},

=1 =1

where we conceive the function []:_, (b;1?) as a measure on B. Now let M — o0 to see that the last condition is
immaterial, let 91 | 0, substitute qb? = bﬂj}? and take the supremum over by, .. ., b, on the right-hand side (i.e., drop
the condition ||¢;]|3 = b;), to see that

¢
hggf T logp(f(U) € G LU) > a)
1< & > -
> —inf {53 IVeil3: 6: € HY(B) Vi, ][ o7 € Gei1 = /UI—W}
i=1 i=1 i=1
= —infj,
G.

where J is the extension of J defined in (1.10) from My (B) to M(B) with .J (1) = oo for p € M(B) \ My (B).
Now let e | 0 and use the lower semicontinuity of .J to see that (4.1) holds. This concludes the proof of Lemma 4.1. [

Now we handle the upper bound part.

Lemma 4.2 (Upper bound). For every closed set F' C My (B),

14
; U < — .
hrﬁsup al/ logP <£(U) e F,(U) > ) ﬁrelf J (). (4.5)

Proof. Forany R € (0,00) and ¢; € (0, 00), we have the following upper bound estimate:

14 12
Pl—— € F < P(—— € F,a(l j—1)6 14 <a(l+y
(g e Pt >a)< 3 B(gmy e Fall+ (-1 < (V) <all +6)) "
JENN[0,R/81]
+ ]P)(E(U) > aR).
The exponential rate of the second probability is known from [KMO02], see (1.4):
P({(U) > aR) = exp (— a*/PRY?(65(U) + o(1))), 4.7)

where ©p(U) € (0, 00) is the variational formula appearing in (1.5).

With this in mind, let us now focus on one of the summands of the first term on the right-hand side of (4@). By
monotonicity in j, is sufficient to consider the event for j = 1, as this gives the dominant term. Then, for any R € N
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and d2 € (0, 00),

IP’(L € Fa<U)<a(l+ 51))

(u)
l
< Pl——€eFa</{fU)<a(l+9 ,W:al/pbi<n<a1/pbi+5
< X g () < a(1+4) <aPbitd)
bl,...,bPG(SQNﬁ[O,R]
P _ P
+ ZP(TZ' > al/pR) + ZP(E(U) >a,7 < al/pég).
i=1 i=1
The first probability on the last line has a strongly negative exponential rate for large R:
]P)(TZ‘ > al/pé) = exp ( — Ra'"xq + o(al/p)), al oo, (4.9

A1 € (0, 00) being the principal eigenvalue of —%A in B with zero boundary condition. Furthermore, the last proba-
bility on the last line has a strongly negative exponential rate for small o, since

lim lim sup —— log}P’(E(U) >a, < al/p52) = —00, ie{l,...,p}. (4.10)

6210 aloo @ /
This is shown as follows. For any K € (0, 00), estimate

P(UU) > a,7 < a'/Poy) <PUU) > a,7 < a'/P65,¥j # i 7 < aPK) + Y "P(r; > a'PK).
J#i
The last term has a very negative exponential rate for large K (see (4.9)), and for fixed K, we estimate the first term
on the right against P(¢,1/,,,(U) > a), where v is the vector in (0, c0)P with d2 in the i-th component and K in all

the other p — 1 components (we use the notation introduced in (1.1)). Now use the Markov inequality to estimate, for
anym € N,

P(ﬁal/pv(U) > a) S a_mE [€a1/pv(U)m] S a_mE() [ﬁal/pv(Rd)m]
< ameO [gal/P(SQ]l(Rd)m] l/pEO [Eal/PKII(]Rd)m} (P—l)/P,

where we used the fact that the total mass of the intersection local time is stochastically larger if all the p motions
start from the origin (see [C09, (2.2.24)]) and used Hélder’s inequality in the last step (see [C09, (2.2.12)]); recall the
notation 1 = (1,...,1) € {1}”. Now use the Brownian scaling property and the bound

(p 2p—d(p—1)

mEy [fy(RY™] < mt 5 (al/PCy) T2

2p— dp 1)

Eo [Ca1/p5,1(RY)™] = (a'/702)

with some Cj, satisfying lims, |0 Cs, = 0 and an analogous bound for Eq [Eal/pKﬂ(Rd)m] (see [C09, (2.2.22)] and
the last display in the proof of [C09, Theorem 2.2.9]), and pick m ~ a'/P and summarize to see that (4.10) holds.

Hence, we focus on one of the summands of the first sum on the right hand side of (4.8), for fixed d2, Re (0, 00).
Sett =a'/Pandb = (by,...,b p)- We want to replace £/£(U) by 3 L ¢,,. The difference is estimated as in (4.2) on the
event {a < {(U) < a(1461)} N(_;{th; < 7 < t(b;+2)}; this difference is small on the event {d (7 (s, 0) <
M}NA, with A asin (4.3), for any M and small §1. Furthermore, note that, on the event (\_, {tb; < 7; < t(bi+d2)},

{a<U) < a(l+61)} C {a— (s (U) — €p(U)) < lp(U) < a(1+81)}. (4.11)

Fix ¢ > 0. Note that F' is also closed in M(B). Denote by F. = {u € M(B): d(u, F') < e} the outer closed
e-neighborhood of F'. Hence, for any M > 0, on the event {d(tp U, 0) < M} N A, we have, for sufficiently small
&1 > 0, that the event {¢/¢(U) € F} is contained in the event { +/y, € F.}, and furthermore we may estimate
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Ci(v+6,1)(U) — £p(U) < ad1/2 and use this on the right-hand side of (4.11). Thus,

P(g(é) € Foa < ((U) <a(l+6&),Yi: a'/Pb; <7 < a'/P(b; + 52))
1 1
< P(Egtb € FE7 1— 5

+ P(d(tipztb,o) > MVi: 7 > tbi) + P(A)

1 1 .
< (V) <1+ 61,d<t—p£tb,0> < M,ANi: 7> tbi)

(4.12)

1 1
]P’(t—pﬁtb €F1-5 <

n P(d(tipetbﬁ) > MVi: 7, > tbi)

+ P(Cl(t%(ft(wm) - ftb),O) > %) +P<%p(ft(b+521)(U) —ly(U)) > %)

Note that the exponential rates of the last three terms are strongly negative for large M, respectively for small d5. For

1 .
tipgtb(U) <146, Vi:m> tbi>

the first of these this follows from an application of the LDP for ﬁtp Ly (with 3 = H ;) from Corollary 1.2 noting
that large values of d(u, 0) imply large values of p(B). For the two latter terms, this foIIows from our proof of (4.10)
(use the Markov property at times tb1, . . . , tb, respectively).

For the first term on the right-hand side of (4.12), we put 3 = Hle b;, use the upper bound for the LDP of ﬂ%pﬁtb
from Corollary 1.2 and the continuity of the map . — (U (recall that U is a Lebesgue-continuity set), to see that

Fl—* 1 1—|—(51
w5 5 “aplV) <3

p
< —inf {2 BIVGlE: 6 € HAB), [l = 19
=1
F.1-% / P 1+6
2 € 2 2
Pe=, < P
[Tvie —5 < | vi<—57)

P P p
)
2, 1 2 1 2
Eﬁ |V¢i]2.qbl,...,qprHO(B),l|1¢)2- GFg,lf—2 S/(J||1¢Z §1+51},

lim sup —— log P (

a— 00 CL

JVii T > tbi)

.
—_

l\')\»i

~inf

where we substituted ¢? = b;1)? and dropped the condition [|1/;||2 = 1. Now let §; | 0 and note that the right-hand
side converges to — inf .. .J, where J is the extension of J defined in (1.10) from My (B) to M (B) with J (1) = 0o
for u € M(B) \ My (B). By lower semicontinuity, this in turn tends to the right-hand side of (4.5). Collecting all
preceding steps, this concludes the proof of Lemma 4.2. O
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