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Abstrat. This paper onerns general singularly perturbed seond order semilin-ear ellipti equations on bounded domains Ω ⊂ R
n with nonlinear natural bound-ary onditions. The equations are not neessarily of variational type. We desribean algorithm to onstrut sequenes of approximate spike solutions, we prove ex-istene and loal uniqueness of exat spike solutions lose to the approximate ones(using an Impliit Funtion Theorem type result), and we estimate the distanebetween the approximate and the exat solutions. Here �spike solution� meansthat there exists a point in Ω suh that the solution has a spike-like shape in aviinity of suh point and that the solution is approximately zero away from thispoint. The spike shape is not radially symmetri in general and may hange sign.1 IntrodutionThe aim of this paper is to study the existene, loal uniqueness and asymptoti behaviour for

ε→ 0 of spike solutions to singularly perturbed ellipti boundary value problems of the type
ε2

(

n
∑

i,j=1

∂xi
(aij(x)∂xj

u) +
n
∑

i=1

bi(x)∂xi
u

)

= f(x, u, ε), x ∈ Ω,

n
∑

i,j=1

aij(x)νi(x)∂xj
u = g(x, u, ε), x ∈ ∂Ω.



















(1.1)Here ε > 0 is a small parameter, Ω ⊂ R
n is a bounded domain with su�iently smoothboundary ∂Ω, and νi are the omponents of the unit outer normal at ∂Ω. The oe�ients aij , bi :

Ω → R, and the right-hand sides f : Ω×R× [0, 1] → R and g : ∂Ω×R× [0, 1] → R are supposedto be su�iently smooth. Further, the di�erential operator in (1.1) is supposed to be uniformlyellipti, i.e. aij = aji and there exists a onstant c0 > 0 suh that
n
∑

i,j=1

aij(x)yiyj ≥ c0|y|2 for all (x, y) ∈ Ω × R
n.Roughly speaking, below we prove the existene, loal uniqueness and asymptoti behaviourfor ε→ 0 of solutions u to (1.1) with the following properties:(i) There exists a point ξ0 ∈ Ω suh that u has a spike-like behaviour in the viinity of ξ0.(ii) In all remaining points x ∈ Ω we have u(x) ≈ 0.Suh solutions turn out to exist under a series of natural assumptions. The assumption, mainlyimplying property (II), is the following:(A1) f(x, 0, 0) = 0 and ∂uf(x, 0, 0) > 0 for all x ∈ Ω.The rest three assumptions implying mainly property (I) we formulate as follows:(A2) There exist a subdomain Ω̃ ⊆ Ω and a smooth map (r, ξ) ∈ [0,∞) × Ω̃ 7→ φξ(r) ∈ Rsuh that for every �xed ξ ∈ Ω̃ the funtion φ = φξ solves the one-dimensional boundary valueproblem

φ′′(r) + n− 1
r φ′(r) = f(ξ, φ(r), 0), 0 < r <∞,

φ′(0) = 0, φ(∞) = 0, φ(0) 6= 0.







(1.2)1



(A3) There exists a non-degenerate solution ξ0 ∈ Ω̃ to the algebrai system
A−1(ξ)b(ξ) + ∇ξ log





√

detA(ξ)

∫

R

φ′ξ(r)
2rn−1dr



 = 0, (1.3)where
A(ξ) := [aij(ξ)]

n
i,j=1 and b(ξ) := [bi(ξ)]

n
i=1 . (1.4)Eah funtion φξ from assumption (A1) orresponds, via Φξ(y) := φξ(|y|), to a radiallysymmetri solution v = Φξ of the following n-dimensional boundary value problem

∆yv(y) = f(ξ, v(y), 0), y ∈ R
n,

v(y) → 0 for |y| → ∞.

} (1.5)In the sope of our onsideration, suh symmetri solutions Φξ will be used to desribe a saledpro�le of the spike whih may appear at point ξ. It is easy to show (see Remark 1.3) that thefuntions v = ∂yj
Φξ0

are solutions of the linearized problem
∆yv(y) = ∂uf(ξ0,Φξ0

(y), 0)v(y), y ∈ R
n,

v(y) → 0 for |y| → ∞.

} (1.6)Our last assumption onerns the following non-degeneray property:(A4) For any solution v to (1.6) it holds v ∈ span
{

∂yj
Φξ0

: j = 1, . . . , n
}.Our main result is of the following type:For small ε > 0 and m = 0, 1, . . . we will onstrut smooth funtions Wε,m : Ω → R whihhave the properties (I) and (II) and whih satisfy (1.1) approximately. Moreover, we will provethat for small ε > 0 there exists an exat solution u = uε to (1.1) suh that for any α ∈ (0, 1)and any m it holds

‖uε −Wε,m‖2+α,ε;Ω = O(εm+1) for ε→ 0,where
‖u‖2+α,ε;Ω :=

2
∑

k=0

εk sup
|µ|=k

sup
Ω

|Dµu| + ε2+α sup
|µ|=2

sup
x,y∈Ω,

x 6=y

|Dµu(x) −Dµu(y)|
|x− y|αis an ε-dependent norm in the Hölder spae C2+α(Ω). Finally, we will prove a loal uniquenessassertion for uε: If ε > 0 is small and u is a solution to (1.1) whih is lose to Wε,0 (in a senseto be made preise) then u = uε.In order to desribe our results more exatly, let us onsider the lowest approximation orderase m = 0. De�ne

Wε(x) := Φξ0
(Tε(x)).Here Tε(x) are strethed oordinates de�ned as follows:

Tε(x) :=
1

ε
A(ξ0 + εx1)

−1/2(x− ξ0 − εx1) for x ∈ Ω.2



Further A(ξ)−1/2 is the inverse square root of the positive de�nite matrix A(ξ) (see nota-tion (1.4)), and x1 is the orretion term of the �rst order to the spike's position determinedfrom Eq. (2.58). Now our result for m = 0 reads as follows:Theorem 1.1 Suppose that assumptions (A1)�(A4) are ful�lled.Then for any α ∈ (0, 1) there exist εα > 0, δα > 0 and cα > 0 suh that the following istrue:(i) For all ε ∈ (0, εα) there exists a solution u = uε to (1.1) suh that
‖uε −Wε‖2+α,ε;Ω ≤ cαε.(ii) If u is a solution to (1.1) with ε ∈ (0, εα) and
‖u−Wε‖2+α,ε;Ω < δαε

2,then u = uε.Existene and multipliity results for problem (1.1) have been objets of systemati investi-gation during last deades. This interest is, in partiular, motivated by the study of standingwaves in the nonlinear Shrödinger equation whih leads typially to the onsideration of on-entrating solutions (so alled bound states) of the following ellipti boundary value problem
ε2∆u = V (x)u − uq, x ∈ Ω,
∂νu = 0, x ∈ ∂Ω,

}where q > 1, and V : Ω → R is a smooth positive potential. Another soure of appliations forproblem (1.1) is onerned with the study of pattern formation in hemial reation-di�usionsystems, inluding well-known Gierer-Meinhardt and FitzHugh-Nagumo models [26℄.One an distinguish two main approahes used systematially in this �eld. A �rst one, ini-tiated by Floer and Weinstein [11℄, relies on a �nite dimensional Lyapunov-Shmidt redution(see also [22, 23, 24℄). A seond one is based on variational methods jointly with a penaliza-tion tehnique (we reall, among many others, [34, 42, 28, 29, 30, 31℄, see also [1℄ for furtherreferenes).Our study di�ers from the above in several points. First, our ellipti equation does not havea divergene form, what makes impossible appliation of variational methods used, for example,for similar equations with bi(x) = 0, see e.g. [37, 32℄. Seond, for arbitrary spae dimension nwe obtain a sequene of approximate solutions with pointwise asymptoti estimates in the L∞-norm up to any power of ε. Note that in ontrary to most of the previous studies onernedwith (1.1), our approximate solutions, in general, omprise non-zero outer expansion parts. Thisfat leads to a more ompliated formulas for the inner expansions of the spike and boundarylayers, but simultaneously shows the universality of our approah. Third, the spike shapesare allowed to hange sign. And �nally, to prove our Theorem 4.6 we do not need eigenvalueestimates for the linearized (in the approximate solution) problem. Instead we use a lemma ofR. Magnus [19, Lemma 1.3℄ whih helps to verify the assumptions of a quite general impliitfuntion theorem (see our Setion 3).Remark 1.2 Various su�ient onditions for the existene of radially symmetri solutions ofproblem (1.5) an be found in literature (see, for example, [5, 6, 12, 39, 8℄). Some of them [5, 6℄3



were obtained with the help of variational methods, when instead of the solution to problem (1.5)one looks for a ritial point of the energy funtional
Eξ(v) :=

∫

Rn

(

1

2
|∇yv(y)|2dy + F (ξ, v(y), 0)

)

dy, where F (ξ, v, ε) :=

v
∫

0

f(ξ, u, ε)du. (1.7)An important role in this analysis is played by the Pohozaev's identity (see [5, Setion 2℄)
n− 2

2

∫

Rn

|∇yv(y)|2dy = −n
∫

Rn

F (ξ, v(y), 0)dy. (1.8)whih is valid, in partiular, for any radially symmetri solution v ∈W 1,2(Rn) of problem (1.5).Remark, the identity (1.8) implies that for any radially symmetri solution of problem (1.5)holds
Eξ(v) =

1

n

∫

Rn

|∇yv(y)|2dy. (1.9)Another method to prove the existene of radially symmetri solutions of problem (1.5) isonerned with the diret analysis of orresponding one-dimensional problem (1.2). It was used,in partiular, in [12, 39, 8℄.Remark 1.3 For the solution φξ to problem (1.2), one an easily show (see [5, Lemma 4℄) that
lim
r→0

φ′ξ(r)

r
= lim

r→0
φ′′ξ (r) =

1

n
f(ξ, φξ(0), 0). (1.10)Sine above we have assumed that φξ(0) 6= 0, limits (1.10) immediately imply that

f(ξ, φξ(0), 0) 6= 0. (1.11)Further, every solution φ = φξ to problem (1.2) orresponds to a solution θ = (φξ , φ
′
ξ)

T ofthe linear system
θ′(r) = Πξ(r)θ(r), where Πξ(r) :=







0 1

1
∫

0

∂uf(ξ, tφξ(r), 0)dt −n− 1
r






.Hene, taking into aount assumption (A1) and applying lassial results of exponential di-hotomy theory [7, Chapter 6, Proposition 1℄, we ome to the onlusion that for every ξ ∈ Ω̃and every κ ∈ (0,

√

∂uf(ξ, 0, 0)) it holds
|φξ(r)|, |φ′ξ(r)|, |φ′′ξ (r)| ≤ C(ξ, κ)e−κr for all r ∈ [0,∞), (1.12)where C(ξ, κ) > 0 is a ertain onstant. Alternatively, one an get exponential estimates (1.12)from the determining system (1.5) for Φξ (see [33℄).4



Moreover, it is easy to show that for eah ξ ∈ Ω̃ the partial derivatives ∂ξj
φξ(r), j = 1, . . . , n,exist, that the orresponding funtions ∂ξj

φξ satisfy the linear inhomogeneous di�erential equa-tion
∂ξj

φ′′ξ (r) +
n− 1

r
∂ξj

φ′ξ(r) − ∂uf(ξ, φξ(r), 0)∂ξj
φξ(r) = ∂ξj

f(ξ, φξ(r), 0), 0 < r <∞,and, hene, that they satisfy estimates analogous to (1.12).Remark 1.4 Note that subdomain Ω̃ in assumption (A2) plays a tehnial role only. In par-tiular, if at the very beginning we know a point ξ0 ∈ Ω and a orresponding solution φ0 ofproblem (1.2), then a straightforward appliation of the Impliit Funtion Theorem guaran-tees the existene of a subdomain Ω̃ ontaining ξ0 and the existene of a smooth map (r, ξ) ∈
[0,∞) × Ω̃ 7→ φξ(r) ∈ R suh that (1.2) is satis�ed for all ξ ∈ Ω̃ and that φ0 = φξ0

.Remark 1.5 One an easily hek that in the ase b(x) = 0 and f(x, u, ε) = V (x)u − uq with
q > 1, V (x) > 0, Eq. (1.3) is equivalent to the equation for spike's position obtained in [32℄ bymeans of variational tehnique. Indeed, in this ase, every solution v = Φξ to problem (1.5)orresponds, via Φξ(y) = V (ξ)1/(q−1)U(

√

V (ξ)y), to a radially symmetri solution U of equation
∆U = U − U q whih deays to zero at in�nity and does not depend on ξ. This implies, inpartiular, that

∫

Rn

|∇yΦξ(y)|2 dy = V (ξ)
q+1

q−1
−n

2

∫

Rn

|∇yU(y)|2 dy,hene our Eq. (1.3) determines the same spike's positions as the Theorem 1.3 in [32℄.Note that, in ontrary to the paper [32℄, we do not restrit our onsideration to positivesolutions only. Moreover, our method provides more aurate pointwise asymptoti estimates(in L∞-norm) for the obtained solutions.Remark 1.6 Sine funtions Φξ are assumed to be radially symmetri, a standard way toverify assumption (A4) is to �nd all bounded solutions of the problem (1.6) by the method ofseparation of variables. This sheme was previously used to demonstrate that assumption (A4)is ful�lled for any positive, radially symmetri solution of the problem (1.5) with the right-handside f(x, u, ε) = V (x)u − uq, q > 1, and V (x) > 0 (see [46, Appendix A℄ and [17℄). Furthergeneralizations of this result an be found in [21℄.Besides, assumption (A4) is always ful�lled in the ase n = 1. This fat follows fromassumption (A1) and well-known results on the exponential dihotomy [7, Chapter 6, Proposi-tion 1℄.Remark 1.7 Below we prove existene of spike solutions to (1.1), where the spike shapes areapproximately radially symmetri, but may hange sign. Remark that, if the solution to (1.5),whih approximately determines the spike shape, is positive, then it is neessarily radially sym-metri (by the famous Gidas-Ni-Nirenberg theorem [15℄).Remark 1.8 Our results an be easily generalized on a broader lass of singularly perturbedellipti equations with non-variational struture. In partiular, they are appliable to equationsof the type
ε2

n
∑

i,j=1

∂xi
(aij(x)∂xj

u) = f(x, u, ε) + εf1(x, u, ε∇xu, ε).5



The proposed asymptoti analysis an also be used to generalize some known results about bound-ary spike solutions in singularly perturbed problems (see [20, 21, 14, 43, 44, 45, 4℄).Remark 1.9 Our results an be easily generalized for the ase of solution to problem (1.1)with a �nite number of distint spike's. The onstrution proedure and the tehnique of proofremain almost the same in this ase.Our paper is organized as follows:In Setion 2 we desribe the algorithm of the onstrution of our approximate solutions. InSetion 3 we formulate and prove a generalized Impliit Funtion Theorem, and in Setion 4we derive from this existene, loal uniqueness and estimates of exat solutions to (1.1) loseto the approximate ones. Finally, some needed tehnial estimates are provided in Appendix.2 Constrution of the approximate solutionsIn this setion, we onstrut approximate solutions to problem (1.1). For this, we assume thatthe onditions (A1)�(A4) are satis�ed and that the funtion f and the oe�ients aij and bi aresu�iently smooth to allow their representation via Taylor's formula with neessary number ofterms.Following standard sheme of singular perturbation theory [25, 40, 41℄, we look for approx-imate solutions of the type
Wε,m(x) = uε,m(x) + vε,m(x) + wε,m(x), (2.1)whih onsist of three di�erent parts: the outer expansion uε,m(x) (whih is de�ned by theproperty Wε,m(x) − uε,m(x) ≈ 0 for all x away from the spike enter and from ∂Ω), the innerexpansion vε,m(x) of the spike (whih is de�ned by the property Wε,m(x) − vε,m(x) ≈ uε,m(x)for all x lose to the spike enter) and the inner expansion wε,m(x) of the boundary layer (whihis de�ned by the property Wε,m(x) − wε,m(x) ≈ uε,m(x) for all x lose to ∂Ω). The ansatz forthe outer expansion and the inner expansion of the spike is

uε,m(x) =

m
∑

k=0

εkuk(x), and vε,m(x) =

m
∑

k=0

εkvk(Tε,m(x)), (2.2)where Tε,m is a strething transformation near the spike, given by
Tε,m(x) =

1

ε
Q(xε,m)(x− xε,m) with xε,m =

m+1
∑

k=0

εkxk and Q(x) := A(x)−1/2 (2.3)(f. notation (1.4)). The ansatz for the inner expansion of the boundary layer is
wε,m(x) =

{

χ
(

δ−1 dist(x, ∂Ω)
)
∑m

k=0 ε
kwk(Sε(x)) for dist(x, ∂Ω) < 2δ,

0 otherwise, (2.4)where χ : [0,∞) → R is a non-inreasing smooth ut-o� funtion suh that χ(r) = 1 for
0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Further, δ > 0 is a parameter, Sε is a strethingtransformation near the boundary given by

S−1
ε (z, ζ) := ζ − εzν(ζ) with ζ ∈ ∂Ω and 0 ≤ z <

2δ

ε
, (2.5)6



and ν(ζ) is the unit normal vetor of ∂Ω at ζ ∈ ∂Ω pointing out of Ω. We �x δ su�ientlysmall suh that the map (z, ζ) 7→ ζ − εzν(ζ) is bijetive from (0, 2δ/ε)× ∂Ω onto the set of all
x ∈ Ω with dist(x, ∂Ω) < 2δ, and, hene, the de�nitions (2.4) and (2.5) are orret.In the ansatz (2.1)�(2.4) the funtions uk : Ω → R, vk : R

n → R and wk : [0,∞)×∂Ω → R aswell as the vetors xk ∈ R
n are unknown and have to be determined by the algorithm desribedbelow.For the sake of simpliity, in what follows we will use the notation

Eεu := ε2





n
∑

i,j=1

∂xi
(aij(x)∂xj

u) +

n
∑

i=1

bi(x)∂xi
u



for the ellipti di�erential operator in problem (1.1).Roughly speaking, the algorithm is as follows: First we determine the funtions uk suhthat the equation
Eεuε,m − f(x, uε,m, ε) = 0 (2.6)is satis�ed up to an error of order O(εm+1), this will be done in Subsetion 2.1. Then wedetermine the funtions vk and the vetors xk suh that the system

Eεvε,m − f(x, uε,m + vε,m, ε) + f(x, uε,m, ε) = 0,

∇x (uε,m + vε,m) (xε,m) = 0

} (2.7)is satis�ed up to an error of order O(εm+1), this will be done in Subsetion 2.2. The requirement
∇x (uε,m + vε,m) (xε,m) = 0 means that the extremum of the approximate spike uε,m + vε,mis loated in the point xε,m, i.e. that xε,m is approximately the extremum point of the exatspike. And �nally we determine the funtions wk suh that the boundary value problem

Eεwε,m − f(x, uε,m + wε,m, ε) + f(x, uε,m, ε) = 0, x ∈ Ω,
n
∑

i,j=1

aij(x)νi(x)∂xj
(uε,m + wε,m) − g(x, uε,m + wε,m, ε) = 0, x ∈ ∂Ω







(2.8)is satis�ed up to an error of order O(εm+1), this will be done in Subsetion 2.3. In summary,we are going to prove the following theorem.Theorem 2.1 Suppose that assumptions (A1)�(A4) are ful�lled.Then, following the algorithm desribed in Subsetions 2.1�2.3 one an onstrut for any
ε ∈ (0,∞) and for any nonnegative integer m a smooth funtion Wε,m : Ω → R suh that forany α ∈ (0, 1) it holds

‖EεWε,m − f(·,Wε,m, ε)‖α,ε;Ω = O(εm+1), (2.9)
∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·)νi(·)∂xj
Wε,m − g(·,Wε,m, ε)

∥

∥

∥

∥

∥

∥

1+α,ε;∂Ω

= O(εm). (2.10)Moreover, the funtions Wε,m have struture (2.1)-(2.5) with smooth funtions uk : Ω → R,
vk : R

n → R and wk : [0,∞) × ∂Ω → R. 7



Finally, for any κ ∈ (0, κ0) and κ ∈ (0,κ0) with
κ0 :=

√

∂uf(ξ0, 0, 0) and κ0 := min
ζ∈∂Ω

∂uf(ζ, 0, 0)
n
∑

i,j=1

aij(ζ)νi(ζ)νj(ζ)
(2.11)there exists c > 0 suh that for any k = 1, . . . ,m and |µ| ≤ 2 it holds

|Dµvk(y)| ≤ ce−κ|y| for all y ∈ R
n, (2.12)

|Dµwk(z, ζ)| ≤ ce−κz for all (z, ζ) ∈ [0,∞) × ∂Ω. (2.13)2.1 Outer expansionWe substitute the ansatz (2.2) for uε,m into (2.6). Then we expand the left hand side of theresulting equation in the ε-power series. Equating to zero the oe�ients of eah power of ε,we obtain an array of algebrai equations. The lowest order equation is
f(x, u0(x), 0) = 0.Aording to (A1), we hoose u0(x) ≡ 0. Then the equations for uk, k ≥ 1 are given by

∂uf(x, 0, 0)u1(x) + ∂εf(x, 0, 0) = 0, (2.14)
∂uf(x, 0, 0)uk(x) + (funtion depending on u0, . . . , uk−1) = 0, k ≥ 2.Thanks to ondition (A1) eah uk is uniquely determined suessively for k = 1, 2, . . . ,m.Moreover, we have

‖Eεuε,m − f(·, uε,m, ε)‖Cα(Ω) = O(εm+1).2.2 Inner expansion of the spikeInstead of variable x we will work with the strethed variable y given by (f. (2.3))
y = Tε,m(x) =

1

ε
Q(xε,m)(x − xε,m), or x = T−1

ε,m(y) = xε,m + εQ(xε,m)−1y.Obviously, for any smooth funtion v : R
n → R we have

∇x (v ◦ Tε,m) =
1

ε
Q(xε,m)∇yv ◦ Tε,m.As usual, for vetor funtions z : Ω → R

n we denote by z · ∇x :=
n
∑

j=1

zj∂xj
the �rst orderdi�erential operator, generated by z, and by ∇x · z :=

n
∑

j=1

∂xj
zj the divergene of z.8



Now we substitute the ansatz (2.2) for vε,m and the ansatz (2.3) for xε,m into (2.7). Further,we use that for any smooth funtion v : R
n → R it holds

Eε(v ◦ Tε,m)(T−1
ε,m(y)) = ε2 (∇x ·A∇x(v ◦ Tε,m) + (b · ∇x)(v ◦ Tε,m)) (T−1

ε,m(y)) = ∆yv(y)

+ε



Q(xε,m)∇y ·
1
∫

0

(

Q(xε,m)−1y · ∇x

)

A
(

xε,m + εt Q(xε,m)−1y
)

dt Q(xε,m)∇yv(y)





+ε
(

b
(

xε,m + ε Q(xε,m)−1y
)

·Q(xε,m)∇yv(y)
) (2.15)and

[f(·, uε,m + v ◦ Tε,m, ε) − f(·, uε,m, ε)] (T
−1
ε,m(y))

=

1
∫

0

∂uf
(

xε,m + εQ(xε,m)−1y, uε,m(xε,m + εQ(xε,m)y, ε) + tv(y), ε
)

dt v(y). (2.16)This way we get
[Eεvε,m − f(·, uε,m + vε,m, ε) + f(·, uε,m, ε)] ◦ T−1

ε,m = ∆v0 − f(x0, v0, 0)

+

m
∑

k=1

εk (∆yvk − ∂uf(x0, v0, 0)vk − Fk(y, x0, . . . , xk, v0, . . . , vk−1)) +O(εm+1),(2.17)where the right hand sides Fk(y, x0, . . . , xk, v0, . . . , vk−1) depend on the funtions v0, . . . , vk−1via the values in the point y of those funtions and their �rst and seond derivatives only.Moreover,
Fk(y, x0, . . . , xk, 0, . . . , 0) = 0.Similarly, we get

Q(xε,m)−1∇x (uε,m + vε,m) (xε,m) =

m
∑

k=0

εk−1
[

∇yvk(0) + εQ(xε,m)−1∇xuk(xε,m)
]

= ε−1∇yv0(0) + ∇yv1(0) +

m
∑

k=2

εk−1 (∇yvk(0) − dk(x0, . . . , xk−2)) +O(εm),where, beause of the fat that u0(x) = 0 (see Setion 2.1), the right hand sides dk(x0, . . . , xk−2)do not depend on xk−1.We determine the funtions vk and the vetors xk in the following order: In the step numberzero we solve the problem
∆yv0(y) − f(x0, v0(y), 0) = 0,

∇yv0(0) = 0,

v0(y) → 0 for |y| → ∞











(2.18)with respet to v0. In this step x0 is still unknown, i.e. the solution v0 depends on x0.9



In the step number one we solve the problem
∆yv1(y) − ∂uf(x0, v0(y), 0)v1(y) = F1(y, x0, x1, v0),

∇yv1(0) = 0,

v1(y) → 0 for |y| → ∞











(2.19)with respet to v1. Beause the di�erential equation is linear inhomogeneous and beause ofassumption (A4), the right hand side F1(y, x0, x1, v0) has to be orthogonal to an n-dimensionalsubspae. This orthogonality ondition gives a system of n nonlinear algebrai equations tobe solved with respet to x0. Thus, after this step v1 and x0 are determined, but x1 is stillunknown. Moreover, we show that x0 does not depend on x1, and v1 depends on x1 a�nely.In the step number two we solve the problem
∆yv2(y) − ∂uf(x0, v0(y), 0)v2(y) = F2(y, x0, x1, x2, v0, v1),

∇yv2(0) = d2(x0),

v2(y) → 0 for |y| → ∞











(2.20)with respet to v2. For that the right hand side F2(y, x0, x1, x2, v0, v1) has to be orthogonal tothe n-dimensional subspae, again. Although the dependene of F2(y, x0, x1, x2, v0, v1) on x1is not a�ne, the orresponding orthogonality ondition produes a system of n inhomogeneousalgebrai equations whih are a�ne with respet to x1 and an be uniquely solved with respetto x1. Thus, after this step v2 and x1 are determined, but x2 is still unknown, x1 is independenton x2, and v2 depends a�nely on x2.The next steps are as step number two: We have to solve
∆yvk(y) − ∂uf(x0, v0(y), 0)vk(y) = Fk(y, x0, . . . , xk, v0, . . . , vk−1),

∇yvk(0) = dk(x0, . . . , xk−2),

vk(y) → 0 for |y| → ∞











(2.21)with respet to vk (linearly depending on xk, whih is still unknown) and to xk−1 (whih doesnot depend on xk). Remark that we have to work up to step numberm+2 in order to determineall unknowns v0, . . . , vm and x0, . . . , xm+1.Straightforward alulations give the following representations for the right hand sides
F1(y, x0, x1, v0) = (x1 · ∇x)f(x0, v0(y), 0) +G(y, x0, v0(y)) − I(y, x0, v0) (2.22)and

Fk(y, x0, . . . , xk, v0, . . . , vk−1) = (xk · ∇x)f(x0, v0(y), 0)

+(xk−1 · ∇x) (G(y, x0, v0(y)) − I(y, x0, v0)) + ∂uG(y, x0, v0(y))vk−1(y) − I(y, x0, vk−1)

+
2 − δ2k

2
((xk−1 · ∇x) + vk−1(y)∂u) ((x1 · ∇x) + v1(y)∂u) f(x0, v0(y), 0)

+Rk(y, x0, . . . , xk−2, v0, . . . , vk−2) for k ≥ 2, (2.23)where
I(y, x, v) := Q(x)∇y ·

[(

Q(x)−1y · ∇x

)

A(x) Q(x)∇yv(y)
]

+ b(x) ·Q(x)∇yv(y),10



and
G(y, x, u) :=

(

Q(x)−1y · ∇x

)

f(x, u, 0) + ∂uf(x, u, 0)u1(x) + ∂εf(x, u, 0)and eah Rk is a ertain funtion depending on y and xj and vj with j ≤ k − 2 only. Remarkthat for k ≥ 1 funtion Fk depends a�nely on xk. Moreover, for k ≥ 3 it depends also a�nelyon xk−1 and vk−1, but F2 does not depend a�nely on x1 and v1, in general.Now let us show that all the steps of the algorithm an be done rigorously. Besides assump-tions (A1)-(A4) we will need some properties of the linear operator
Lξ0

:= ∆y − ∂uf(ξ0,Φξ0
(y), 0),whih are formulated in the next two lemmas.Lemma 2.2 For any α ∈ (0, 1) the linear operator Lξ0
: C2+α(Rn) → Cα(Rn) is Fredholm ofindex zero.Proof: The operator Lξ0

is Fredholm of index zero beause it an be represented as a sumof invertible and ompat operators
Lξ0

= ∆y − ∂uf(ξ0, 0, 0) +M(y), where M(y) := ∂uf(ξ0,Φξ0
(y), 0) − ∂uf(ξ0, 0, 0). (2.24)Indeed, sine ∂uf(ξ0, 0, 0) > 0 (see assumption (A1)), the operator ∆y − ∂uf(ξ0, 0, 0) atingfrom C2+α(Rn) to Cα(Rn) is invertible (see for example [16, Theorem 3.4.3℄). On the otherhand, the fat that the multipliation by M is a ompat operator from C2+α(Rn) to Cα(Rn)an be veri�ed as follows.Let χ : [0,∞) → R be a non-inreasing smooth ut-o� funtion suh that χ(r) = 1 for

0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Then for eah R > 0 the funtion χR(y) := χ(|y|2/R2) issmooth and has ompat support. Hene the multipliation by χRM is a ompat operator from
C2+α(Rn) to Cα(Rn). Now taking into aount exponential estimates (1.12) for Φξ0

, we easilysee that the operator χRM tends to M in the operator norm of L(C2+α(Rn);Cα(Rn)) when
R → ∞. However, the spae of ompat operators is losed in the operator norm, therefore theoperator M is ompat. ♦Beause of assumption (A4) we have

KerLξ0
= span

{

∂yj
Φξ0

: j = 1, . . . , n
}

.Hene, Lemma 2.2 implies that
RanLξ0

=







F ∈ Cα(Rn) :

∫

Rn

F (y) ∂yj
Φξ0

(y) dy = 0 for all j = 1, . . . , n







,and the restrition of Lξ0
is an isomorphism from C2+α(Rn) ∩ RanLξ0

onto RanLξ0
. The fol-lowing lemma shows that the inverse of this isomorphism maps exponentially deaying funtionsonto exponentially deaying funtions. To formulate our statement, let us de�ne the family ofexponentially deaying funtions

ρκ(y) := e−κ(
√

1+|y|2−1) with y ∈ R
n, (2.25)and reall the notation κ0 =

√

∂uf(ξ0, 0, 0) from Theorem 2.1.11



Lemma 2.3 Suppose that α ∈ (0, 1), κ ∈ (0, κ0), F ∈ RanLξ0
suh that ρ−1

κ F ∈ Cα(Rn), and
v ∈ C2+α(Rn) suh that Lξ0

v = F . Then, ρ−1
κ v ∈ C2+α(Rn).Proof: First, we take use of formula (2.24) and rewrite the equation Lξ0

v = F in thefollowing form
∆yv − ∂uf(ξ0, 0, 0)v = F̃ (y) := M(y)v + F (y) ∈ Cα(Rn).Here due to the exponential estimates (1.12) for Φξ0

we have ρ−1
κ M ∈ Cα(Rn), and this togetherwith the assumption ρ−1

κ F ∈ Cα(Rn) implies ρ−1
κ F̃ ∈ Cα(Rn). Now we write funtion v as theBessel potential (see [38, Chapter V, �3℄)

v(y) = −κn−2
0

∫

Rn

G2(κ0(y − z))F̃ (z)dz, (2.26)where G2 is the Bessel kernel
G2(x) = (2π)−n/2K(n−2)/2(|x|)|x|−(n−2)/2andKν is the modi�ed Bessel funtion of the third kind. Regarding kernel G2 we know that it isan analyti funtion of |x|, exept at x = 0. Moreover, for x→ 0 and for |x| → ∞ one an writeexpliit asymptoti formulas desribing the behaviour of kernel G2 and of all its derivatives(see, for example, [3, Chapter II, �4℄). In partiular, for all j, k = 1, . . . , n it holds

‖G2‖L1(Rn) <∞, ‖∂kG2‖L1(Rn) <∞, (2.27)
|∂k∂jG2(x)| ≤ onst |x|−n for |x| → 0, (2.28)
|G2(x)|, |∂kG2(x)|, |∂k∂jG2(x)| ≤ onst e−|x| for |x| → ∞, (2.29)where ∂kG2(x) denotes the �rst partial derivative of G2(x) with respet to xk, and ∂k∂jG2(x)is the analogous notation for the seond partial derivative with respet to xk and xj .From (2.26) it follows

∣

∣ρ−1
κ (y)v(y)

∣

∣ ≤ κn−2
0

∥

∥

∥ρ−1
κ F̃

∥

∥

∥

L∞(Rn)

∫

Rn

|G2(κ0(y − z))| ρ−1
κ (y)ρκ(z)dz. (2.30)Let us show that the right-hand part of (2.30) is uniformly bounded for all y ∈ R

n, i.e. that
ρ−1

κ v ∈ L∞(Rn). (2.31)Indeed, beause of (2.27) the integrand in (2.30) is integrable over any ompat region inludingthose whih ontain point z = y. Hene, we need to onsider the integrand's behaviour for
|y − z| → ∞ only. Taking into aount that for every x ∈ R

n it holds 0 <
√

1 + |x|2 − |x| ≤ 1we easily obtain
ρ−1

κ (y)ρκ(z) ≤ eκe−κ(|z|−|y|) for all y ∈ R
n and z ∈ R

n.12



Then using asymptoti formula (2.29) we get
|G2(κ0(y − z))| ρ−1

κ (y)ρκ(z) ≤ eκe−κ(|z|−|y|) |G2(κ0(y − z))|

≤ onst e−κ(|z|−|y|+|y−z|)e−(κ0−κ)|y−z| for |y − z| → ∞.Now the triangle inequality |y| ≤ |y − z| + |z| and the assumption κ ∈ (0, κ0) imply theboundedness of the right-hand part in (2.30). Hene, estimate (2.31) is true.Next, we onsider the partial derivatives ∂yk
v. Beause of the properties of Bessel potentials,they are given by integrals

∂yk
v(y) = −κn−1

0

∫

Rn

∂kG2(κ0(y − z))F̃ (z)dz, k = 1, . . . , n. (2.32)Sine eah ∂kG2 obeys estimates (2.27) and (2.29), we apply arguments as above and obtain
ρ−1

κ ∂yk
v ∈ L∞(Rn) for all k = 1, . . . , n. (2.33)To show that ρ−1

κ ∂yk
∂yj

v ∈ Cα(Rn) we need a more deliate analysis, sine the orrespond-ing derivatives are determined by the improper integral
∂yk

∂yj
v(y) = −κn

0 lim
µ→+0

∫

|z−y|≥µ

∂k∂jG2(κ0(y − z))F̃ (z)dz, (2.34)whih is not absolutely onvergent (see asymptotis (2.28)). Nevertheless, aording to thelassial results of potential theory [38, Chapter V, �4℄ it is known that for every F̃ ∈ Cα(Rn)the singular integral (2.34) determines a funtion from Cα(Rn).On the other hand, from (2.34) it follows
ρ−1

κ (y)∂yk
∂yj

v(y) = −κn
0 lim

µ→+0

∫

|z−y|≥µ

ρ−1
κ (y)ρκ(z)∂k∂jG2(κ0(y − z))ρ−1

κ (z)F̃ (z)dz

= Ĝ(y) − κn
0 lim

µ→+0

∫

|z−y|≥µ

∂k∂jG2(κ0(y − z))ρ−1
κ (z)F̃ (z)dz, (2.35)where

Ĝ(y) := −κn
0 lim

µ→+0

∫

|z−y|≥µ

(

ρ−1
κ (y)ρκ(z) − 1

)

∂k∂jG2(κ0(z − y))ρ−1
κ (z)F̃ (z)dz. (2.36)In (2.36), the di�erene in parentheses an be rewritten as follows

ρ−1
κ (y)ρκ(z) − 1 = e

κ
“√

1+|y|2−
√

1+|z|2
”

− 1 = −κ(z − y) · Θ(z − y, y),where Θ : R
n × R

n → R
n is given by

Θ(x, y) :=

1
∫

0

y + tx
√

1 + |y + tx|2
e

κ
“√

1+|y|2−
√

1+|y+tx|2
”

dt. (2.37)13



This identity together with estimates (2.28) and (2.29) implies that the improper integral (2.36)onverges absolutely and it holds
Ĝ(y) = κκn

0

∫

Rn

(x · Θ(x, y)) ∂k∂jG2(κ0x)ρ
−1
κ (x+ y)F̃ (x+ y)dx.Now we an demonstrate that the right-hand part of (2.35) belongs to Cα(Rn). Indeed,sine ρ−1

κ F̃ ∈ Cα(Rn), the rightmost integral in (2.35) determines a Cα(Rn)-funtion (omparewith formula (2.34)). Further, from (2.28), (2.29) and (2.37) we get the estimate
|∂k∂jG2(κ0x)|

(

|Θ(x, y)| + |Θ(x, y) − Θ(x, z)|
|y − z|α

)

≤ onst |x|−ne−(κ0−κ)|x| for all x, y, z ∈ R
n.Then, using ρ−1

κ F̃ ∈ Cα(Rn) again, we easily verify that Ĝ ∈ Cα(Rn). ♦After this preparation we are ready to formulate the onstrution algorithm.Case k = 0. The problem to determine the leading term v0 is (2.18). Due to assump-tion (A2), this problem is solved by
v0(y) = Φx0

(y).Remember that at this step the value of x0 is unknown, and we have obtained atually an
x0-parametri family of funtions v0. If we apply a di�erential operator (c1 · ∇ξ) with any
c1 ∈ R

n to the di�erential equation in (1.5) we obtain
∆y [(c1 · ∇ξ)Φx0

] = ∂uf(x0,Φx0
, 0) [(c1 · ∇ξ)Φx0

] + (c1 · ∇x)f(x0,Φx0
, 0), (2.38)whih implies

∫

Rn

(c1 · ∇x)f(x0,Φx0
, 0)∂yj

Φx0
(y) dy = 0, j = 1, . . . , n. (2.39)Now, we demonstrate that the problems (2.19), (2.20) and (2.21) determine reursively allunknown funtions vk and all unknown vetors xk.Case k = 1. Obviously, a neessary ondition for solvability of problem (2.19) is

∫

Rn

F1(y, x0, x1, v0)∂yj
Φx0

(y) dy = 0, j = 1, . . . , n.Notie that beause of (2.22) and (2.39) this system of equations does not depend on thevetor x1. Atually it is equivalent to
∫

Rn

(

G(y, x0, v0(y)) − I(y, x0, v0)
)

∂yj
Φx0

(y) dy = 0, j = 1, . . . , n, (2.40)whih we are going to rewrite in terms of the data A, b, f and the spike's pro�le Φξ only. Forthis, we use a series of relations olleted in the lemma below.14



Lemma 2.4 We have
∫

Rn

h(y) ∂yj
Φξ(y) dy = 0 for any radially symmetri h ∈ L∞(Rn),

∫

Rn

(

∂yj
Φξ(y)

)

(∂yk
Φξ(y)) dy =

δjk

n

∫

Rn

|∇yΦξ(y)|2dy,

∫

Rn

yj ∂xl
f(ξ,Φξ(y), 0) ∂yk

Φξ(y) dy = −∂ξl





δjk

n

∫

Rn

|∇yΦξ(y)|2dy



 ,

∫

Rn

ys (∂yk
∂yl

Φξ(y))
(

∂yj
Φξ(y)

)

dy =
1

2n
(δklδsj − δksδlj − δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.Proof: 1) Sine all the derivatives ∂yj
Φξ(y) deay exponentially for |y| → ∞ (see Re-mark 1.3), for any h ∈ L∞(Rn) it holds h∂yj
Φξ ∈ L1(Rn). Moreover, beause of Φξ(y) = φξ(|y|)we have

∂yk
Φξ(y) =

yk

|y|φ
′
ξ(|y|), (2.41)and this implies the laimed identity.2) Similarly beause of (2.41) we obtain

∫

Rn

(

∂yj
Φξ

)

(∂yk
Φξ) dy =

∫

Rn

yjyk

|y|2 φ
′
ξ(|y|)dy = δjk

∫

Rn

(∂y1
Φξ)

2 dy =
δjk

n

∫

Rn

|∇yΦξ|2dy. (2.42)3) Again, beause of (2.41) we have
Jjkl :=

∫

Rn

yj ∂xl
f(ξ,Φξ(y), 0) ∂yk

Φξ(y) dy =

∫

Rn

yjyk

|y| ∂xl
f(ξ,Φξ(y), 0) φ′ξ(|y|) dy

= δjk

∫

Rn

y1 ∂y1







Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du






dy.Then, integrating the latter expression by parts with respet to y1 and taking into aount theexponential deay property of Φξ (see Remark 1.3), we obtain

Jjkl = −δjk

∫

Rn

dy

Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du.On the other hand, due to the de�nition (1.7) we have

∂ξl

[

F (ξ,Φξ(y), 0)
]

=

Φξ(y)
∫

0

∂xl
f(ξ, u, 0)du+ f(ξ,Φξ(y), 0) ∂ξl

Φξ(y).15



Moreover, sine Φξ solves problem (1.5) and deays exponentially at in�nity together with its�rst derivatives (see Remark 1.3), the following identity holds
∫

Rn

f(ξ,Φξ, 0) ∂ξl
Φξ dy =

∫

Rn

∆yΦξ ∂ξl
Φξ dy = −

∫

Rn

∇yΦξ · ∇y∂ξl
Φξ dy = −1

2
∂ξl

∫

Rn

|∇yΦξ|2dy.Thus, olleting together the latter three formulas and applying identity (1.9), we �nally obtain
Jjkl = −δjk∂ξl

∫

Rn

(

1

2
|∇yΦξ|2 + F (ξ,Φξ, 0)

)

dy = −δjk

n
∂ξl

∫

Rn

|∇yΦξ|2dy.4) Di�erentiating formula (2.41) with respet to yl, we obtain
∂yk

∂yl
Φξ(y) =

δkl

|y|φ
′
ξ(|y|) +

ykyl

|y|
d

d|y|

(

φ′ξ(|y|)
|y|

)

. (2.43)This identity together with formulas (2.41) and (2.42) implies that
∫

Rn

ys∂yk
∂yl

Φξ(y)∂yj
Φξ(y) dy =

1

n
δklδsj

∫

Rn

|∇yΦξ(y)|2dy+

∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy.On the other hand, di�erentiating the left-hand side of previous relation by parts with respetto yj, we obtain
∫

Rn

ys∂yk
∂yl

Φξ∂yj
Φξ dy = −δks

∫

Rn

∂yl
Φξ∂yj

Φξ dy −
∫

Rn

ys∂yk
∂yj

Φξ∂ym
Φξ dy

= − 1

n
(δksδlj + δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy −
∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy.Now, omparing the latter two formulas with eah other, we easily �nd
∫

Rn

ykylysyj

|y|2 φ′ξ(|y|)
d

d|y|

(

φ′ξ(|y|)
|y|

)

dy = − 1

2n
(δklδsj + δksδlj + δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.Hene,
∫

Rn

ys∂yk
∂yl

Φξ(y)∂yj
Φξ(y) dy =

1

2n
(δklδsj − δksδlj − δkjδsl)

∫

Rn

|∇yΦξ(y)|2dy.And this ends the proof. ♦Lemma 2.4 implies that the system of equations (2.40) an be written as follows
Jj(x0) :=

∫

Rn

|∇yΦx0
|2dy





1

2

n
∑

k,r,s=0

q−1
jk (x0) a

−1
rs (x0) ∂xk

ars(x0) +

n
∑

r=1

br(x0) qrj(x0)





+

n
∑

k=1

q−1
jk (x0) ∂ξk

∫

Rn

|∇yΦx0
|2dy = 0, j = 0, . . . , n. (2.44)16



Here we denote by q−1
jk (x0) and a−1

rs (x0) the omponents of the matries Q(x0)
−1 = A(x0)

1/2(f. (2.3)) and A(x0)
−1 (f. (1.4)), respetively. Next, transforming the �rst term in parenthesiswith the help of Jaobi's formula

∂xk
(detA) = tr(A−1∂xk

A),we write equations (2.44) in a matrix form
(

1

2
Q(x0)

−1∇x(log detA(x0)) +Q(x0)b(x0)

)∫

Rn

|∇yΦx0
|2dy +Q(x0)

−1∇ξ

∫

Rn

|∇yΦx0
|2dy = 0.Multiplying the latter equation by the non-degenerate matrix Q(x0) and taking into aountthat Q(x0)

2 = A(x0)
−1, and

∫

Rn

|∇yΦξ|2dy =
Σn−1

n

∞
∫

0

φ′ξ(r)
2rn−1dr,where Σn−1 is the surfae area of the n-dimensional unit ball, we obtain (1.3) whih, thus, isequivalent to the system (2.40). Hene, by assumption (A3) we an hoose

x0 = ξ0, i.e. v0 = Φξ0
. (2.45)Now, we show that the problem (2.19) with x0 and v0 determined by (2.45) has, for anygiven x1 ∈ R

n, a unique solution v1, and for any α ∈ (0, 1) we have
ρ−1

κ v1 ∈ C2+α(Rn) for all κ ∈ (0, κ0). (2.46)Indeed, due to equation (2.38) and the linear superposition priniple any solution of prob-lem (2.19) an be written in the following form
v1(y) = v1(y) + (x1 · ∇ξ)Φξ0

(y), (2.47)where v1 solves the problem
∆yv1(y) − ∂uf(ξ0,Φξ0

(y), 0)v1(y) = F1(y, ξ0, 0,Φξ0
)

= G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

),

∇yv1(0) = 0,

v1(y) → 0 for |y| → ∞.



















(2.48)But, the latter problem does have a unique solution. To see this notie �rst that Lemma 2.3implies the existene of a unique ṽ1 ∈ C2+α(Rn) ∩ RanLξ0
suh that Lξ0

ṽ1 = F1(y, ξ0, 0,Φξ0
).This means that general solution of problem (2.48) reads

v1(y) = ṽ1(y) + (c1 · ∇y)Φξ0
(y), c1 ∈ R

n, (2.49)where c1 ∈ R
n is a free parameter. Then, substituting representation (2.49) into ondition

∇yv1(0) = 0, we obtain
∇y ṽ1(0) + ∇y(c1 · ∇y)Φξ0

(0) = 0. (2.50)17



This relation determines an n-dimensional linear system with respet to the unknown vetor c1.Sine Φξ is a radially symmetri solution of problem (2.18), diret alulation with the help offormulas (1.10) and (2.43) yields
∂yj

∂yk
Φξ0

(0) =
δjk

n
f(ξ0,Φξ0

(0), 0), (2.51)where f(ξ0,Φξ0
(0), 0) 6= 0 due to (1.11). Formula (2.51) says that the matrix of n-dimensionallinear system (2.50) is non-degenerate, hene (2.50) has a unique solution c1.Now, let us prove (2.46): From (1.12) it follows that ρ−1

κ Φξ0
∈ C2+α(Rn) for all κ ∈ (0, κ0).Therefore, from assumption (A1) and from (2.14) we obtain ρ−1

κ G(y, ξ0,Φξ0
) ∈ Cα(Rn) for all

κ ∈ (0, κ0). Similarly taking into aount that for any j = 1, . . . , n and any κ ∈ (0, κ0) it holds
yjρκ(y) ∈ Cα(Rn), we easily get that ρ−1

κ I(y, ξ0,Φξ0
) ∈ Cα(Rn) for all κ ∈ (0, κ0). Hene,(2.22) yields

ρ−1
κ F1(y, ξ0, x1,Φξ0

) ∈ Cα(Rn) for all κ ∈ (0, κ0). (2.52)Therefore Lemma 2.3 implies (2.46).Similarly to (2.52) one an show that, for any given funtions v0, . . . , vk ∈ C2+α(Rn) suhthat ρ−1
κ v0, . . . , ρ

−1
κ vk ∈ C2+α(Rn) for all κ ∈ (0, κ0), we have

ρ−1
κ Fk(y, ξ0, x1, . . . , xk,Φξ0

, v1, . . . , vk) ∈ Cα(Rn) for all κ ∈ (0, κ0).Case k = 2. We ontinue to onstrut the inner expansion of the spike and onsider nowthe problem (2.21) with k = 2. First, we need to reveal exatly the dependene of the right-hand side F2 on the unknown vetor x1. With this aim in view we substitute v1 from (2.47)into the formula (2.23) for k = 2 and obtain
F2(y, ξ0, x1, x2,Φξ0

, v1 + (x1 · ∇ξ)Φξ0
)

= (x2 · ∇x)f(ξ0,Φξ0
(y), 0) + (x1 · Ψ(y)) +

1

2
ψ(y, x1, x1) + F 2(y), (2.53)where Ψ : R

n → R
n and ψ : R

n × R
n × R

n → R are funtions de�ned by
(c1 · Ψ(y)) := (c1 · ∇x)(G(y, ξ0,Φξ0

(y)) − I(y, ξ0,Φξ0
))

+ ∂uG(y, ξ0,Φξ0
(y)) [(c1 · ∇ξ)Φξ0

] − I(y, ξ0, (c1 · ∇ξ)Φξ0
)

+
(

(c1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(c1 · ∇ξ)Φξ0

]
)

v1, (2.54)
ψ(y, c1, c2) := ((c1 · ∇x) + [(c1 · ∇ξ)Φξ0

] ∂u) ((c2 · ∇x) + [(c2 · ∇ξ)Φξ0
] ∂u) f(ξ0,Φξ0

, 0),(2.55)and F 2(y) is a funtion whih depends neither on x1 nor on x2. Note that aording tode�nitions (2.23), (2.53)�(2.55) and estimates (2.12), for any κ ∈ (0, κ0) it holds
|(c1 · Ψ(y))| ≤ c(κ)|c1|e−κ|y|, |ψ(y, c1, c2)| ≤ c(κ)|c1||c2|e−κ|y| for all y ∈ R

n, (2.56)
|F 2(y)| ≤ c(κ)e−κ|y| for all y ∈ R

n,18



where c(κ) is a ertain positive onstant independent of c1, c2 and y.Formula (2.53) shows that the dependene of the right-hand side F2 on the vetor x1 isnot a�ne. However, applying the di�erential operator (c1 · ∇ξ)(c2 · ∇ξ) with any onstantoe�ients c1 ∈ R
n and c2 ∈ R

n to the di�erential equation in (1.5) and writing a onsistenyondition by analogy with (2.39) we get
∫

Rn

ψ(y, c1, c2)∂yj
Φξ0

dy = 0, j = 1, . . . , n. (2.57)Hene, taking into aount relations (2.39) and (2.57) we ome to a neessary ondition forsolvability of problem (2.20) in the following form
0 =

∫

Rn

F2(y, ξ0, x1, x2,Φξ0
, v1 + (x1 · ∇ξ)Φξ0

) ∂yj
Φξ0

dy

=

∫

Rn

(x1 · Ψ(y)) ∂yj
Φξ0

dy +

∫

Rn

F 2(y) ∂yj
Φξ0

dy, j = 1, . . . , n. (2.58)Below we demonstrate that this system an be written as follows
(x1 · ∇x)Jj(x0) = (terms independent of x1). (2.59)For this, we apply the partial derivative operator ∂yj

to both sides of (2.38) and get after simpletransformations the identity
∆y

[

(x1 · ∇ξ)∂yj
Φξ0

]

− ∂uf(ξ0,Φξ0
(y), 0)

[

(x1 · ∇ξ)∂yj
Φξ0

]

=
(

(x1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(x1 · ∇ξ)Φξ0

]
)

∂yj
Φξ0

. (2.60)Then, multiplying both sides of (2.60) by v1, integrating obtained equation by parts and takinginto aount the di�erential equation in (2.48), we obtain
∫

Rn

(

(x1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(x1 · ∇ξ)Φξ0

]
)

v1 ∂yj
Φξ0

dy

=

∫

Rn

(

∆y

[

(x1 · ∇ξ)∂yj
Φξ0

]

− ∂uf(ξ0,Φξ0
(y), 0)

[

(x1 · ∇ξ)∂yj
Φξ0

]

)

v1 dy

=

∫

Rn

(

∆yv1 − ∂uf(ξ0,Φξ0
(y), 0)v1

)

[

(x1 · ∇ξ)∂yj
Φξ0

]

dy

=

∫

Rn

(

G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)
)

[

(x1 · ∇ξ)∂yj
Φξ0

]

dy. (2.61)
19



Combining (2.61) with (2.54), we get
∫

Rn

(x1 · Ψ(y)) ∂yj
Φξ0

dy = (x1 · ∇ξ)





∫

Rn

[G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)] ∂yj
Φξ0

dy





= (x1 · ∇ξ)Jj(ξ0). (2.62)Hene, solvability ondition (2.58) does have the form (2.59).Sine due to assumption (A3) the Jaobian matrix
H(ξ0) := {∂xk

Jj(ξ0)}n
j,k=1 (2.63)is non-degenerate, system (2.58) determines x1 in a unique way. Knowing x1 we proeedfurther as in the ase k = 1. Due to the de�nition (2.23) and estimates (2.12) we have

ρ−1
κ F2(y, ξ0, x1, 0,Φξ0

, v1) ∈ Cα(Rn) for any κ ∈ (0, κ0). Hene, Lemma 2.3 implies that theproblem (2.21) with k = 2 and x2 = 0 has a unique solution v2 suh that ρ−1
κ v2 ∈ C2+α(Rn) forall κ ∈ (0, κ0). Therefore the omplete problem (2.21) with k = 2 has an x2-dependent familyof solutions

v2(y) = v2(y) + (x2 · ∇ξ)Φξ0
(y), (2.64)and ρ−1

κ v2 ∈ C2+α(Rn) for all κ ∈ (0, κ0).Case k ≥ 3. By analogy with (2.47) and (2.64), we know at this step that
vk−1(y) = vk−1(y) + (xk−1 · ∇ξ)Φξ0

(y), (2.65)where the funtion vk−1 does not depend on xk−1. Substituting this into the de�nition of Fk(see (2.23)) we separate again the terms depending on xk and xk−1 as follows
Fk(y, ξ0, x1, ..., xk,Φξ0

, v1, . . . , vk−1 + (xk−1 · ∇ξ)Φξ0
)

= (xk · ∇x)f(ξ0,Φξ0
(y), 0) + (xk−1 · ∇x) (G(y, ξ0,Φξ0

(y)) − I(y, ξ0,Φξ0
))

+∂uG(y, ξ0,Φξ0
(y)) [(xk−1 · ∇ξ)Φξ0

] − I(y, ξ0, [(xk−1 · ∇ξ)Φξ0
]) + ψ(y, xk−1, x1)

+
(

(xk−1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(xk−1 · ∇ξ)Φξ0

]
)

v1 + F k(y),(2.66)where F k(y) is a funtion olleting all the rest terms whih are independent of xk−1 and xk.Now, arguing in a similar way as in (2.61), we obtain
∫

Rn

(

(xk−1 · ∇x)∂uf(ξ0,Φξ0
(y), 0) + ∂2

uf(ξ0,Φξ0
(y), 0) [(xk−1 · ∇ξ)Φξ0

]
)

v1 ∂yj
Φξ0

dy

=

∫

Rn

(

G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)
)

[

(xk−1 · ∇ξ)∂yj
Φξ0

]

dy.
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Using this identity and relations (2.57), we write a neessary ondition for solvability of prob-lem (2.21) in the following form
0 =

∫

Rn

Fk(y, ξ0, x1, ..., xk,Φξ0
, v1, . . . , vk−1 + (xk−1 · ∇ξ)Φξ0

) ∂yj
Φξ0

dy

= (xk−1 · ∇ξ)





∫

Rn

[G(y, ξ0,Φξ0
(y)) − I(y, ξ0,Φξ0

)] ∂yj
Φξ0

dy



+

∫

Rn

F k(y) ∂yj
Φξ0

dy.Hene, due to assumption (A3) the latter system determines a unique value of xk−1. Thensolving problem (2.21) we obtain an xk-dependent family of funtions vk whih also an bewritten in the form (2.65), and ρ−1
κ vk ∈ C2+α(Rn) for any κ ∈ (0, κ0).It follows immediately from the above onstrution proedure that the inner expansion vε,msatis�es

‖Eεvε,m − f(·, uε,m + vε,m, ε) + f(·, uε,m, ε)‖Cα(Tε,m(Ω)) = O(εm+1).2.3 Inner expansion for the boundary layerThe outer expansion uε,m does not neessarily satisfy the boundary ondition on ∂Ω. In orderto ompensate this disrepany, we orret our asymptotis adding to it a boundary layerterm wε,m.Reall that above (see (2.5)) we have introdued a loal oordinate system near the bound-ary ∂Ω. In this way every point x ∈ Ω with dist(x, ∂Ω) < 2δ is parameterized by the stretheddistane to the boundary z = ε−1 dist(x, ∂Ω) and the orresponding point ζ ∈ ∂Ω for whih thisdistane is attained, i.e. dist(x, ∂Ω) = dist(x, ζ). Thus, substituting the ansatz (2.2) for uε,mand the ansatz (2.4) for wε,m into (2.8), and moving into the loal oordinate system, we get
[Eεwε,m − f(·, uε,m + wε,m, ε) + f(·, uε,m, ε)] ◦ S−1

ε = N(ζ)∂2
zw0 − f(ζ, w0, 0)

+

m
∑

k=1

εk
(

N(ζ)∂2
zwk − ∂uf(ζ, w0, 0)wk −Hk(z, ζ, w0, . . . , wk−1)

)

+O(εm+1), (2.67)where
N(ζ) :=

n
∑

i,j=1

aij(ζ)νi(ζ)νj(ζ),and the right hand sides Hk(z, ζ, w0, . . . , wk−1) depend on the funtions w0, . . . , wk−1 via thevalues in the point (z, ζ) of those funtions and their �rst and seond derivatives. Moreover,
Hk(z, ζ, 0, . . . , 0) = 0.Similarly we rewrite the boundary ondition of problem (1.1) in the loal oordinates (z, ζ)and obtain





n
∑

i,j=1

aij(x)νi(x)∂xj
(uε,m + wε,m) − g(x, uε,m + wε,m, ε)



 ◦ S−1
ε = −ε−1N(ζ)∂zw0(0, ζ)

−
m
∑

k=1

εk−1 (N(ζ)∂zwk(0, ζ) + gk(ζ, w0, . . . , wk−1)) +O(εm). (2.68)21



Here the right hand sides gk(ζ, w0, . . . , wk−1) depend on the funtions w0, . . . , wk−1 via thevalues in the point (0, ζ) of those funtions and their �rst derivatives.Now, we proeed as follows. First, we solve the problem
N(ζ)∂2

zw0(z, ζ) − f(ζ, w0(z, ζ), 0) = 0,

∂zw0(0, ζ) = 0,

w0(z, ζ) → 0 for z → ∞,











(2.69)whih is atually a one dimensional boundary value problem with respet to z, with variable ζplaying the role of parameter only. Due to assumption (A1), we an hoose
w0(z, ζ) = 0.Remark that problem (2.69) may have other, nonzero solutions. Those other solutions to (2.69)would produe other approximate solutions and, via the proedure of Setion 4, other exatsolutions to (1.1). Note that those exat solutions to (1.1) would not belong to the domains ofloal uniqueness, desribed by Theorems 1.1 and 4.1, of ourse.After w0 has been �xed, we solve in the next steps the linear boundary value problems whihdetermine the funtions wk:

N(ζ)∂2
zwk(z, ζ) − ∂uf(ζ, 0, 0)wk = Hk(z, ζ, w0, . . . , wk−1),

N(ζ)∂zwk(0, ζ) = −gk(ζ, w0, . . . , wk−1),

wk(z, ζ) → 0 for z → ∞.











(2.70)Sine the oe�ients of orresponding homogeneous di�erential equation do not depend on zand beause of assumption (A1), one an easily onstrut Green's funtion G(z, z′, ζ) and writethe unique solution to problem (2.70) in the following integral form
wk(z, ζ) = N(ζ)−1µ(ζ)−1gk(ζ, w0, . . . , wk−1)e

−µ(ζ)z +

∞
∫

0

G(z, z′, ζ)Hk(·)dz′, (2.71)where
G(z, z′, ζ) :=







−[µ(ζ)N(ζ)]−1e−µ(ζ)z′

cosh(µ(ζ)z) for 0 ≤ z ≤ z′,

−[µ(ζ)N(ζ)]−1 cosh(µ(ζ)z′)e−µ(ζ)z for z′ < z,and µ(ζ) := [∂uf(ζ, 0, 0)/N(ζ)]
1/2. Using formula (2.71) we easily derive the exponential esti-mates (2.13). Indeed, due to assumption (A1) we have H1(z, ζ, 0) = 0. Hene, formula (2.71)for k = 1 determines w1 whih obviously satis�es estimate (2.13). Now, we proeed by indu-tion. Suppose that all funtions wj , j = 0, . . . , k − 1, satisfy estimate (2.13). Then expansionformulas (2.67) and (2.68) implies that for all κ ∈ (0,κ0) there exists a onstant c > 0 suhthat

|Hk(z, ζ, 0, . . . , wk−1)| ≤ ce−κz for all (z, ζ) ∈ [0,∞) × ∂Ω.This means, in partiular, that integral formula (2.71) determines orretly a solution wk toproblem (2.70), and the exponential estimate (2.13) holds.22



Now, we obtain immediately from the above onstrution proedure that the inner expan-sion wε,m satis�es
‖Eεwε,m − f(·, uε,m + wε,m, ε) + f(·, uε,m, ε)‖Cα(Sε(Ω)) = O(εm+1), (2.72)
∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·)νi(·)∂xj
(uε,m + wε,m) − g(·, uε,m + wε,m, ε)

∥

∥

∥

∥

∥

∥

C1+α(Sε(∂Ω))

= O(εm).Indeed, in the δ-viinity of boundary ∂Ω the relation (2.72) is ful�lled beause of the determiningproblems (2.69) and (2.70). In the rest of domain Ω this relation is satis�ed sine exponentialestimates (2.13) hold.3 A generalized Impliit Funtion TheoremIn this setion we formulate and prove an impliit funtion theorem with minimal assumptionsonerning ontinuity with respet to the ontrol parameter.Our impliit funtion theorem is very lose to those of P. C. Fife andW. M. Greenlee [9,Theorem 4.2℄ and of R. Magnus [19, Theorem 1.2℄. For other impliit funtion theorems withweak assumptions onerning ontinuity with respet to the ontrol parameter see also [2,Theorem 7℄ and [10, Theorem 3.4℄. For appliations of our impliit funtion theorem to othersingularly perturbed problems see [35, 27℄.Theorem 3.1 Let for any ε ∈ (0, ε0) be given Banah spaes Uε and Vε and maps Fε ∈
C1(Uε, Vε) suh that

‖Fε(0)‖ → 0 for ε→ +0, (3.1)
‖F ′

ε(u) − F ′
ε(0)‖ → 0 for |ε| + ‖u‖ → 0 (3.2)and there exist ε1 ∈ (0, ε0] and c > 0 suh that for all ε ∈ (0, ε1)the operators F ′

ε(0) are invertible and ‖F ′
ε(0)−1‖ ≤ c.

} (3.3)Then there exist ε2 ∈ (0, ε1) and δ > 0 suh that for all ε ∈ (0, ε2) there exists exatly one
u = uε with ‖u‖ < δ and Fε(u) = 0. Moreover,

‖uε‖ ≤ 2c ‖Fε(0)‖. (3.4)Proof: For ε ∈ (0, ε1) we have Fε(u) = 0 if and only if
Gε(u) := u− F ′

ε(0)−1Fε(u) = u. (3.5)Moreover, for suh ε and all u, v ∈ Uε we have
Gε(u) −Gε(v) =

∫ 1

0

G′
ε(su+ (1 − s)v)(u − v)ds

= F ′
ε(0)−1

∫ 1

0

(F ′
ε(0) − F ′

ε(su + (1 − s)v)) (u− v)ds.23



Hene, assumptions (3.2) and (3.3) imply that there exist ε2 ∈ (0, ε1) and δ > 0 suh that forall ε ∈ (0, ε2)

‖Gε(u) −Gε(v)‖ ≤ 1

2
‖u− v‖ for all u, v ∈ Kδ

ε := {w ∈ Uε : ‖w‖ ≤ δ}.Using this and (3.3) again, for all ε ∈ (0, ε2) we get
‖Gε(u)‖ ≤ ‖Gε(u) −Gε(0)‖ + ‖Gε(0)‖ ≤ 1

2
‖u‖ + c‖Fε(0)‖. (3.6)Hene, assumption (3.1) yields that Gε maps Kδ

ε into Kδ
ε for all ε ∈ (0, ε2), if ε2 is hosen su�-iently small. Now, Banah's �xed point theorem gives a unique in Kδ

ε solution u = uε to (3.5)for all ε ∈ (0, ε2). Moreover, inequality (3.6) yields ‖uε‖ ≤ 1/2‖uε‖ + c‖Fε(0)‖, i.e. (3.4). ♦The following lemma is [19, Lemma 1.3℄, translated to our setting. It gives a riterion howto verify the key assumption (3.3) of Theorem 3.1:Lemma 3.2 Let F ′
ε(0) be Fredholm of index zero for all ε ∈ (0, ε0). Suppose that there do notexist sequenes ε1, ε2 . . . ∈ (0, ε0) and u1 ∈ Uε1

, u2 ∈ Uε2
. . . with ‖uk‖ = 1 for all k ∈ N and

|εk| + ‖F ′
εk

(0)uk‖ → 0 for k → ∞. Then (3.3) is satis�ed.Proof: Suppose that proposition (3.3) is not true. Then there exists a sequene ε1, ε2 . . . ∈
(0, ε0) with εk → 0 for k → ∞ suh that either F ′

εk
(0) is not invertible or it is but ‖F ′

εk
(0)−1‖ ≥ kfor all k ∈ N. In the �rst ase there exist uk ∈ Uεk

with ‖uk‖ = 1 and F ′
εk

(0)uk = 0 (beause
F ′

εk
(0) is Fredholm of index zero). In the seond ase there exist vk ∈ Vεk

with ‖vk‖ = 1 and
‖F ′

εk
(0)−1vk‖ ≥ k, i.e.

‖F ′
εk

(0)uk‖ ≤ 1

k
with uk :=

F ′
εk

(0)−1vk

‖F ′
εk

(0)−1vk‖
.But this ontradits to the assumptions of the lemma. ♦4 Existene and loal uniqueness of exat solutionsIn Setion 2, we have onstruted a sequene of formal approximate solutions Wε,m to prob-lem (1.1). Now we are going to prove the existene of a loally unique exat solution uε toproblem (1.1) suh that Wε,m is lose to uε for small ε. It will be shown that all Wε,m approx-imate the same exat solution uε, and the larger is m the loser is Wε,m to uε. In order toobtain suh results we rewrite problem (1.1) in abstrat form and then apply our generalizedImpliit Funtion Theorem. As a result we obtainTheorem 4.1 Suppose that assumptions (A1)�(A4) are ful�lled. Then for any m ≥ 0 and any

α ∈ (0, 1) there exist εm,α > 0, δm,α > 0 and cm,α > 0 suh that the following is true:(i) For all ε ∈ (0, εm,α) there exists a solution u = uε to (1.1) suh that
‖uε −Wε,m‖2+α,ε;Ω ≤ cm,αε

m+1. (4.1)24



(ii) If u is a solution to (1.1) with ε ∈ (0, εm,α) and
u ∈ Bm,α :=

{

u ∈ C2+α(Ω) : ‖u−Wε,m‖2+α,ε;Ω < δm,αε
2
}

.then u = uε.We postpone the proof of Theorem 4.1 to the end of this setion, sine it is based onTheorem 4.6 to be formulated below.Remark 4.2 Theorem 1.1 is just Theorem 4.1 in the speial ase m = 0.Remark 4.3 Suppose that the Hölder onstant α is �xed. Then applying Theorem 4.1 withdi�erent m = 0, . . . , k we obtain an array of solutions um
ε to problem (1.1), eah of whih isunique in the orresponding ball Bm,α. Sine min

m≤k
δm,α > 0 and it holds

‖Wε,m −Wε,m+1‖2+α,ε;Ω = O(εm+1) for ε→ 0, (4.2)one an hoose ε0 > 0 suh that for every ε ∈ (0, ε0) all the solutions um
ε oinide. In otherwords, for su�iently small ε, Theorem 4.1 provides di�erent asymptotis for the same solutionto problem (1.1) whih is unique in ∪k

m=0Bm,α.In the rest of this setion, we assume that the Hölder onstant α ∈ (0, 1) is a �xed number.Our main purpose is to reveal the ε-dependene of solution uε to problem (1.1). Thereforewriting any estimate we will not monitor whether onstants appearing there depend on α,although suh a dependene is typially present.Auxiliary family of approximate solutions Uε,m,σ. In Setion 2, we have onstruted asequene of approximate solutions Wε,m(x) onsisting of three di�erent parts: the outer expan-sion uε,m(x), the inner expansion wε,m(x) of the boundary layer and the inner expansion vε,m(x)of the spike. Reall that the inner expansion of the spike is determined as the sum (2.2) ofexponentially deaying funtions vk depending on the strethed variable Tε,m(x), and the latteris given by formula (2.3) whih ontains the approximate spike's position xε,m as a parameter.Keeping the outer expansion uε,m and the inner expansion wε,m of the boundary layerunhanged, we de�ne the σ-parametri family of funtions
Uε,m,σ(x) := uε,m(x) + wε,m(x) + vε,m,σ(x), (4.3)where

vε,m,σ(x) := ε(σ · ∇ξ)Φξ0
(Tε,m,σ(x)) +

m
∑

k=0

εkvk(Tε,m,σ(x)),

Tε,m,σ(x) :=
1

ε
Q(xε,m + εσ)(x − xε,m − εσ), (4.4)and σ ∈ R

n is a parameter. Compared with the approximate solution Wε,m, we performedthe following modi�ations. To obtain Tε,m,σ from the de�nition of Tε,m, we shifted the ap-proximate spike's position xε,m in the diretion of vetor εσ. Respetively, we replaed vε,mwith vε,m,σ, where all the terms vk are idential to those in de�nition of vε,m (f. (2.2)), but25



the strethed variable Tε,m,σ is di�erent. Finally, in de�nition of vε,m,σ we introdued theadditional term ε(σ · ∇ξ)Φξ0
(Tε,m,σ(x)) whih guarantees that the resulting funtion Uε,m,σsatis�es the di�erential equation of problem (1.1) with a disrepany of order O(ε2) for all σon ompat sets. Indeed, following the onstrution algorithm desribed in Subsetion 2.2 (see,in partiular, formulas (2.17), (2.22), (2.23) and (2.53)), we get

(

Eεvε,m,σ − f(·, uε,m + vε,m,σ, ε) + f(·, uε,m, ε)
)

◦ T−1
ε,m,σ(y) =

−ε2
(

σ · Ψ(y) +
1

2
ψ(y, x1 + σ, x1 + σ) − 1

2
ψ(y, x1, x1)

)

+ ε3r(y, σ, ε), (4.5)where the funtions Ψ and ψ are de�ned in (2.54) and (2.55), and r : R
n × R

n × R → Ris the remainder term in the orresponding Taylor formula. Taking into aount exponentialestimates (2.12) we easily verify that for any κ ∈ (0, κ0) and any multi-indies |µ1| ≤ 2 and
|µ2| ≤ 1 it holds

|Dµ1

y Dµ2

σ r(y, σ, ε)| ≤ c(κ, σ0, ε0) e
−κ|y| for all y ∈ R

n, (4.6)where c(κ, σ0, ε0) is a positive onstant independent of y, |σ| < σ0 and ε ∈ (0, ε0).Remark 4.4 Aording to de�nition (5.6) from Appendix, for every non-negative integer k andevery λ ∈ (0, 1) we have ‖u‖k+λ,ε;Ω = ‖u ◦ T−1
ε ‖Ck+λ(Tε(Ω)). Sine

(

Tε,m,σ ◦ T−1
ε

)

(y) = Q(xε,m + εσ)
(

y − xε,m

ε
− σ

) for all y ∈ Tε,m,σ(Ω),and u ◦ T−1
ε =

(

u ◦ T−1
ε,m,σ

)

◦
(

Tε,m,σ ◦ T−1
ε

), it is easy to verify that there exist two positiveonstants c1 and c2 suh that for any ε ∈ (0, ε0), any |σ| < σ0 and all u ∈ Ck+λ(Ω) it holds
c1‖u ◦ T−1

ε,m,σ‖Ck+λ(Tε,m,σ(Ω)) ≤ ‖u‖k+λ,ε;Ω ≤ c2‖u ◦ T−1
ε,m,σ‖Ck+λ(Tε,m,σ(Ω)).This means that norms ‖u‖k+λ,ε;Ω and ‖u◦T−1

ε,m,σ‖Ck+λ(Tε,m,σ(Ω)) are equivalent uniformly withrespet to ε and σ.Estimates for approximate solutions Uε,m,σ. Below we are going to derive some es-timates for approximate solutions Uε,m,σ. Our main tool will be the di�erentiation formulapresented in the followingRemark 4.5 For every smooth funtion v(y, σ) : R
n × R

n → R and every σ ∈ R
n it holds

(σ · ∇σ)
(

v(·, σ) ◦ Tε,m,σ

)

◦ T−1
ε,m,σ(y) = (σ · ∇σ)v(y, σ) −

(

σ ·Q(xε,m + εσ)∇y

)

v(y, σ)

+ε
(

(σ · ∇x)Q(xε,m + εσ)Q(xε,m + εσ)−1y · ∇y

)

v(y, σ). (4.7)Aording to de�nition of Uε,m,σ we have∇σUε,m,σ = ∇σvε,m,σ. Applying here formula (4.7)and taking into aount exponential estimates (2.12) we onlude that for any κ ∈ (0, κ0) andany multi-index |µ| ≤ 3 it holds
∣

∣

∣Dµ
y

(

∂σj
Uε,m,σ ◦ T−1

ε,m,σ(y)
)∣

∣

∣ ≤ c(κ, σ0, ε0)e
−κ|y| for all y ∈ R

n, j = 1, . . . , n, (4.8)26



where c(κ, σ0, ε0) > 0 is a onstant independent of y, |σ| < σ0 and ε ∈ (0, ε0). The pointwiseestimate (4.8) implies two orollaries formulated in terms of ε-dependent Hölder norms. Namely,for every m ≥ 0 and every ε ∈ (0, ε0), |σ| < σ0 it holds
max

j

∥

∥∂σj
Uε,m,σ

∥

∥

2+α,ε;Ω
≤ c0(ε0, σ0), (4.9)

max
j

∥

∥∂σj
Uε,m,σ

∥

∥

2+α,ε;∂Ω
≤ c0(ε0, σ0)e

−c(ε0,σ0)/ε, (4.10)where c0(ε0, σ0) and c(ε0, σ0) are positive onstants independent of ε, σ and Ω. Moreover,applying the mean value theorem and formulas (4.9) we get
∥

∥

∥Uε,m,σ − Uε,m,0

∥

∥

∥

2+α,ε;Ω
≤ c0(ε0, σ0)|σ| for all |σ| ≤ σ0. (4.11)Remark also that in a similar way we obtain the estimate for the seond derivative

max
i,j

∥

∥∂σi
∂σj

Uε,m,σ

∥

∥

2+α,ε;Ω
≤ onst (4.12)for all ε ∈ (0, ε0) and all |σ| ≤ σ0.Finally we prove that

∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε)
)

+ σ · Ψ(Tε,m,σ) + ψ(Tε,m,σ, x1 + σ, σ)
∥

∥

∥

α,ε;Ω

≤ c(σ0, ε0)|σ|(|σ| + |ε|), (4.13)where c(σ0, ε0) is a onstant independent of |σ| < σ0 and ε ∈ (0, ε0). For this, we di�erentiateformula (4.5) with the help of identity (4.7). Then, taking into aount estimates (2.56), (4.6)and the identity
(σ · ∇σ)ψ(y, x1 + σ, x1 + σ) = 2ψ(y, x1 + σ, σ)following from de�nition (2.55), we obtain (4.13).Reformulation of problem (1.1). For every ε ∈ (0,∞) let us de�ne the pair of Banahspaes
Uε :=

(

C2+α(Ω), ‖ · ‖2+α,ε;Ω

)

× (Rn, | · |)and
Vε :=

(

Cα(Ω), ‖ · ‖α,ε;Ω

)

×
(

C1+α(∂Ω), ‖ · ‖1+α,ε;∂Ω

)

× (Rn, | · |) ,where | · | denotes Eulidian norm in R
n.Now, instead of the original boundary value problem (1.1) we onsider the following abstratequation
Fε(v, σ) = 0, (4.14)where the operator Fε : Uε → Vε reads

Fε(v, σ) :=















ε−2

(

Eε(ε
2v + Uε,m,σ) − f(·, ε2v + Uε,m,σ, ε)

)

ε−1

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
(ε2v + Uε,m,σ) − g(·, ε2v + Uε,m,σ, ε)

)

ε−1
(

∇x(ε2v + Uε,m,σ)
)

(xε,m + εσ)















,27



and where solution u to problem (1.1) was represented via the following ansatz
u = ε2v + Uε,m,σ with (v, σ) ∈ Uε. (4.15)In what follows we shall assume that m ≥ 2. This restrition as well as the appearane ofadditional fators ε2 and ε−2 in the de�nition of operator Fε re�ets, roughly speaking, the fatthat to determine parameter σ during the onstrution of approximate solution one needs toonsider the seond order approximation equation (2.20) of the algorithm desribed in Setion 2.De�nition of operator Fε ontains three omponents: the �rst and the seond omponentsoinide with the di�erential equation and boundary ondition of problem (1.1), while the thirdomponent means that the point xε,m + εσ is an extremum of solution u. Hene, it is easyto see that every solution (v, σ) of augmented equation (4.14) determines via formula (4.15) asolution to problem (1.1). Further every ‖ ·‖2+α,ε;Ω-viinity of Wε,m is naturally projeted ontothe viinity of origin in Uε, therefore proving the following theorem we simultaneously justifyTheorem 4.1.Theorem 4.6 Suppose that assumptions (A1)�(A4) are ful�lled.Then there exist ε0 > 0, δ > 0 and c > 0 suh that for all ε ∈ (0, ε0) there exists exatly onesolution (vε, σε) of equation Fε(v, σ) = 0 with ‖(vε, σε)‖Uε

< δ. Moreover,
‖(vε, σε)‖Uε

≤ 2c ‖Fε(0, 0)‖Vε
.Proof: We are going to apply Theorem 3.1, therefore we verify its assumptions.Veri�ation of assumption (3.1). The onstrution of funtion Uε,m,σ implies that

Uε,m,0 = Wε,m and Tε,m,0 = Tε,m. Hene, we get
Fε(0, 0) =















ε−2

(

EεWε,m − f(·,Wε,m, ε)

)

ε−1

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
Wε,m − g(·,Wε,m, ε)

)

ε−1(∇xWε,m)(xε,m)















. (4.16)Now estimates (2.9) and (2.10) from Theorem 2.1 imply that for ε→ 0 it holds
‖Fε(0, 0)‖Vε

≤ onst εm−1. (4.17)In partiular, ‖Fε(0, 0)‖Vε
→ 0 for ε→ 0 provided m ≥ 2.Veri�ation of assumption (3.2). We alulate the derivative operator
F ′

ε(v, σ)(v, σ) =









[F ′
ε(v, σ)(v, σ)]1

[F ′
ε(v, σ)(v, σ)]2

[F ′
ε(v, σ)(v, σ)]3









.
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Its �rst omponent reads as follows
[F ′

ε(v, σ)(v, σ)]1 = Eεv − ∂uf(·, ε2v + Uε,m,σ, ε)v + ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε)
)

+ ε−2(σ · ∇σ)
(

f(·,Uε,m,σ, ε) − f(·, ε2v + Uε,m,σ, ε)
)

.Similarly we alulate the seond omponent
[F ′

ε(v, σ)(v, σ)]2 = ε





n
∑

i,j=1

aij(·) νi(·) ∂xj
v − ∂ug(·, ε2v + Uε,m,σ, ε)v





+ ε−1(σ · ∇σ)





n
∑

i,j=1

aij(·) νi(·) ∂xj
Uε,m,σ − g(·,Uε,m,σ, ε)





+ ε−1(σ · ∇σ)
(

g(·,Uε,m,σ, ε) − g(·, ε2v + Uε,m,σ, ε)
)

.Finally, applying de�nition (4.3) we get
(∇xUε,m,σ)(xε,m + εσ) = (∇xuε,m)(xε,m + εσ)

+ ε−1Q(xε,m + εσ)

(

ε(σ · ∇ξ)∇yΦξ0
(0) +

m
∑

k=0

εk∇yvk(0)

)

,and this together with the fat that (σ · ∇ξ)∇yΦξ0
(0) = 0 results in

[F ′
ε(v, σ)(v, σ)]3 = ε (∇xv) (xε,m + εσ) + ε2

(

(σ · ∇x)∇xv
)

(xε,m + εσ)

+
(

(σ · ∇x)∇xuε,m

)

(xε,m + εσ) +
(

(σ · ∇x)Q(xε,m + εσ)
)

(

m
∑

k=0

εk−1∇yvk(0)

)

.Using obtained formulas for omponents of the derivative operator F ′
ε(v, σ) we shall verifythat ‖F ′

ε(v, σ)(v, σ) − F ′
ε(0, 0)(v, σ)‖Vε

→ 0 for ε + ‖(v, σ)‖Uε
→ 0, uniformly with respet to

‖(v, σ)‖Uε
= 1. In partiular, for the �rst omponent we write the inequality
∥

∥

∥ [F ′
ε(v, σ)(v, σ)]1 − [F ′

ε(0, 0)(v, σ)]1

∥

∥

∥

α,ε;Ω

≤
∥

∥

∥

(

∂uf(·, ε2v + Uε,m,σ, ε) − ∂uf(·,Uε,m,0, ε)
)

v
∥

∥

∥

α,ε;Ω

+
∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε) − EεUε,m,0 + f(·,Uε,m,0, ε)
)∥

∥

∥

α,ε;Ω

+
∥

∥

∥ε−2(σ · ∇σ)
(

f(·, ε2v + Uε,m,σ, ε) − f(·,Uε,m,σ, ε)
)

∥

∥

∥

α,ε;Ω
(4.18)29



and estimate separately eah term in the right-hand part of (4.18). First, employing inequali-ties (4.11), (5.9) and (5.11), we easily get the following estimate
∥

∥

∥

(

∂uf(·, ε2v + Uε,m,σ, ε) − ∂uf(·,Uε,m,0, ε)
)

v
∥

∥

∥

α,ε;Ω

=

∥

∥

∥

∥

∥

∥

1
∫

0

∂2
uf
(

·, ε2tv + tUε,m,σ + (1 − t)Uε,m,0, ε
)

dt ·
(

ε2v + Uε,m,σ − Uε,m,0

)

v

∥

∥

∥

∥

∥

∥

α,ε;Ω

≤ onst ‖v‖α,ε;Ω ·
∥

∥ε2v + Uε,m,σ − Uε,m,0

∥

∥

α,ε;Ω
≤ onst ‖v‖α,ε;Ω ·

{

ε2‖v‖α,ε;Ω + |σ|
}

.In a similar way we onsider the third term in the right-hand part of (4.18) and onlude thatit obeys the inequality
∥

∥

∥ε−2(σ · ∇σ)
(

f(·, ε2v + Uε,m,σ, ε) − f(·,Uε,m,σ, ε)
)

∥

∥

∥

α,ε;Ω

=

∥

∥

∥

∥

∥

∥

(σ · ∇σ)





1
∫

0

∂uf(·, tε2v + Uε,m,σ, ε)dt



 v

∥

∥

∥

∥

∥

∥

α,ε;Ω

≤ onst |σ| · ‖v‖α,ε;Ω.Finally, we apply formula (4.13) to estimate the seond term in the right-hand part of (4.18),and onsidering the di�erene ψ(y, x1 +σ, σ)−ψ(y, x1, σ) with the help of de�nition (2.55) andinequalities (2.56) we obtain
∥

∥

∥ε−2(σ · ∇σ)
(

EεUε,m,σ − f(·,Uε,m,σ, ε) − EεUε,m,0 + f(·,Uε,m,0, ε)
)∥

∥

∥

α,ε;Ω
≤ onst |σ| (|σ| + |ε|) .The estimate for ‖[F ′

ε(v, σ)(v, σ)]2 − [F ′
ε(0, 0)(v, σ)]2‖1+α,ε;∂Ω is even simpler to obtain, sinethe approximate solution Uε,m,σ and all its partial derivatives involved into the de�nitionof [F ′

ε(v, σ)(v, σ)]2 are exponentially small near the boundary ∂Ω (see inequalities (4.10)).Finally, we analyze the third omponent of the derivative operator F ′
ε(v, σ). Aording to theonstrution proedure desribed in Setion 2, we know that u0 = 0, ∇yv0(0) = ∇yv1(0) = 0.Then taking into aount de�nition (5.6), we easily obtain

∥

∥

∥ [F ′
ε(v, σ)(v, σ)]3 − [F ′

ε(0, 0)(v, σ)]3

∥

∥

∥

Rn
≤ onst (|σ| ‖v‖2+α,ε;Ω + ‖v‖2+α,ε;Ω + ε) → 0.Hene, we have shown that assumption (3.2) is also satis�ed.Veri�ation of assumption (3.3). We are going to apply Lemma 3.2. For this we �rstwrite operator F ′

ε(0, 0) in the matrix form
F ′

ε(0, 0)(v, σ) =









F11v F12σ

F21v F22σ

F31v F32σ









,

30



where








F11v

F21v

F31v









=













Eεv − ∂uf(·,Wε,m, ε)v

ε

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
v − ∂ug(·,Wε,m, ε)v

)

ε (∇xv) (xε,m)











and








F12σ

F22σ

F32σ









=























ε−2(σ · ∇σ)

(

EεUε,m,σ − f(·,Uε,m,σ, ε)

)∣

∣

∣

∣

σ=0

ε−1(σ · ∇σ)

(

n
∑

i,j=1

aij(·) νi(·) ∂xj
Uε,m,σ − g(·,Uε,m,σ, ε)

)∣

∣

∣

∣

∣

σ=0

((σ · ∇x)∇xuε,m) (xε,m) + ((σ · ∇x)Q(xε,m))

(

m
∑

k=0

εk−1∇yvk(0)

)























.

Aording to lassial results on boundary value problems for linear ellipti equations (seefor example [18℄), the operator
(

F11v

F21v

)

: C2+α(Ω) → Cα(Ω) × C1+α(∂Ω)is a Fredholm operator of index zero. On the other hand all the rest omponents
F31 : C2+α(Ω) → R

n, F12 : R
n → Cα(Ω), F22 : R

n → C1+α(∂Ω) and F32 : R
n → R

nare operators with �nite-dimensional ranges. Hene, the omposite operator F ′
ε(0, 0) is a Fred-holm operator of index zero from Uε to Vε, and to apply Lemma 3.2 we yet need to verify itsseond assumption only.We perform this veri�ation by ontradition. For this we suppose that εk ∈ (0,∞) and

(uk, σk) ∈ Uεk
are two sequenes with

‖(uk, σk)‖Uεk
= ‖uk‖2+α,εk;Ω + ‖σk‖Rn = 1 (4.19)and

εk +
∥

∥

∥F ′
εk

(0, 0)(uk, σk)
∥

∥

∥

Vεk

→ 0 for k → ∞. (4.20)Then our strategy will be to demonstrate that assumptions (4.19) and (4.20) lead to the limit
‖(uk, σk)‖Uεk

→ 0 for k → ∞, whih obviously ontradits to (4.19).Before we proeed further, let us write expliitely the meaning of limit (4.20) for eahomponent of the operator F ′
εk

(0, 0)(uk, σk). To simplify the resulting formulas we neglet ineah of them all the terms that vanish for ε→ 0. Notie that beause of (4.19) without loss ofgenerality we may assume that there exists σ∗ ∈ R
n suh that

σk → σ∗ in R
n for k → ∞.31



To this end, we onsider the �rst omponent of operator F ′
εk

(0, 0)(uk, σk) whih reads
[

F ′
εk

(0, 0)(uk, σk)
]

1
= Eεk

uk − ∂uf(·,Wεk,m, εk)uk

+ ε−2
k (σk · ∇σ)

(

Eεk
Uεk,m,σ − f(·,Uεk,m,σ, εk)

)∣

∣

∣

∣

∣

σ=0

.Then taking into aount assumptions (4.19) and (4.20), and simplifying the last term with thehelp of estimate (4.13), we get
∥

∥

∥Eεk
uk − ∂uf(·,Wεk,m, εk)uk − σ∗ · Ψ(Tεk,m) − ψ(Tεk,m, x1, σ∗)

∥

∥

∥

α,εk;Ω
→ 0. (4.21)For the seond omponent [F ′

εk
(0, 0)(uk, σk)

]

2
, we take use of the fat that funtion Uε,m,σand all its partial derivatives are exponentially small near boundary ∂Ω (see inequality (4.10)).Combining this with assumption (4.19) and negleting in the limit

∥

∥

[

F ′
εk

(0, 0)(uk, σk)
]

2

∥

∥

1+α,εk;∂Ω
→ 0all the terms vanishing for ε→ 0, we obtain

∥

∥

∥

∥

∥

∥

εk

n
∑

i,j=1

aij(·) νi(·) ∂xj
uk

∥

∥

∥

∥

∥

∥

1+α,εk;∂Ω

→ 0. (4.22)Finally, we onsider the meaning of limit (4.20) for the third omponent [F ′
εk

(0, 0)(uk, σk)
]

3
.Here, sine the outer expansion uε,m starts with a term of order O(ε) and beause of identities

∇yv0(0) = ∇yv1(0) = 0 (see onstrution proedure in Setion 2), we easily get
∥

∥

∥εk (∇xuk) (xεk,m)
∥

∥

∥

Rn
→ 0. (4.23)In the rest of proof we will show that as a onsequene of assumptions (4.19) and (4.20) wehave two limits

σk → 0 (4.24)and
∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

∂xi
(aij(·) ∂xj

uk) − ∂uf(·, 0, 0)uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

→ 0. (4.25)Regarding the latter limit, we remark that in ontrary to (4.21) it ontains the positive oe�-ient ∂uf(x, 0, 0) (see assumption (A1)) instead of the sign-hanging oe�ient ∂uf(x,Wεk,m, εk).Therefore, as soon as we prove (4.25) we an apply the ε-dependent Shauder-type estimatesfrom Appendix to onlude that ‖uk‖2+α,εk;Ω → 0 for k → ∞. Then this limit togetherwith (4.24) will onstitute the neessary ontradition ‖(uk, σk)‖Uεk
→ 0 for k → ∞.For the sake of learness we divide further argumentation into few steps.Step 1. Operator Pε,s. For every s ∈ (0, κ0), where κ0 is given by (2.11), we de�ne anoperator

Pε,s : Cα(Ω) → Cα(Rn) ∩ L2(Rn),32



by
Pε,su := ((χ0u) ◦ T−1

ε,m)ρs. (4.26)Here
ρs(y) = e−s(

√
1+|y|2−1) with y ∈ R

nis the exponentially deaying funtion de�ned previously in (2.25), and χ0 : Ω → R is a smoothut-o� funtion suh that
χ0(x) = 1 for |x− ξ0| < δ and χ0(x) = 0 for |x− ξ0| > 2δ, where δ =

1

4
dist(ξ0, ∂Ω).Note, in de�nition (4.26) we assume that the produt χ0u is extended by zero on the whole R

n.Then the argument of resulting funtion is strethed aording to the transformation T−1
ε,m andthe obtained funtion is �nally multiplied by the fator ρs.Taking into aount Remark 4.4 and inequalities (5.8), (5.9) from Appendix, we easily verifythat for any ε0 > 0 there exists c0(ε0) > 0 suh that for all ε ∈ (0, ε0) and u ∈ Cα(Ω) it holds

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

Cα(Rn)
≤ c0(ε0)‖u‖α,ε;Ω (4.27)and

‖Pε,su‖Cα(Rn) ≤ ‖ρs‖Cα(Rn)

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

Cα(Rn)
≤ c0(ε0)‖ρs‖Cα(Rn)‖u‖α,ε;Ω.Moreover, sine de�nition (4.26) ontains exponentially deaying fator ρs ∈ L2(Rn) the esti-mate (4.27) implies

‖Pε,su‖L2(Rn) ≤ ‖ρs‖L2(Rn)

∥

∥(χ0u) ◦ T−1
ε,m

∥

∥

L∞(Rn)
≤ c0(ε0)‖ρs‖L2(Rn)‖u‖α,ε;Ω. (4.28)Hene, for all ε ∈ (0, ε0) and all u ∈ Cα(Ω) we have Pε,su ∈ Cα(Rn) ∩L2(Rn), provided s > 0.Similarly one shows that the operator Pε,s maps C2+α(Ω) into C2+α(Rn) ∩W 2,2(Rn). Inpartiular, for any s > 0 and ε0 > 0 there exists c1(s, ε0) > 0 suh that for all ε ∈ (0, ε0) and

u ∈ C2+α(Ω) it holds
‖Pε,su‖C2+α(Rn) + ‖Pε,su‖W 2,2(Rn) ≤ c1(s, ε0)‖u‖2+α,ε;Ω, (4.29)Now let us de�ne the sequene

v̂k := Pεk,suk.In fat eah v̂k depends also on s. But later on we will �x s independently of k, therefore wedo not mention the s-dependene in the notation of v̂k for the sake of simpliity.Beause of (4.19) and (4.29) the sequene v̂k is bounded in the Hilbert spae W 2,2(Rn).Without loss of generality we may assume that there exists v∗ ∈ W 2,2(Rn) suh that
v̂k ⇀ v∗ in W 2,2(Rn) for k → ∞. (4.30)Step 2. Derivation of equation for v∗ and σ∗. From (2.15) it follows

∣

∣(Eεk
uk)

(

T−1
εk,m(y)

)

− ∆y

(

uk ◦ T−1
εk,m

)

(y)
∣

∣ ≤ onst εk(1 + |y|)‖uk‖2+α,εk;Ω (4.31)33



for all y ∈ Tεk,m(Ω). Further, aording to the de�nitions of χ0 and Tε,m, for any ε0 > 0 thereexists δ̂ = δ̂(ε0) > 0 suh that
χ0

(

T−1
ε,m(y)

)

= 1 for all ε ∈ (0, ε0) and |y| ≤ δ̂/ε.Hene, assumption (4.19) implies for all η ∈ L2(Rn)

∫

|y|≤δ̂/εk

(

Pεk,s

(

Eεk
uk

)

− ρs∆y

(

uk ◦ T−1
εk,m

)

)

η dy → 0,provided s > 0. Beause of uk ◦ T−1
εk,m = ρ−1

s v̂k this yields
∫

|y|≤δ̂/εk

(

Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s

)

η dy → 0. (4.32)But assumption (4.19) and the inequalities (5.8), (5.9) from the Appendix imply
‖Eεk

uk‖α,εk;Ω ≤ onst,whereas the de�nition of ρs results in the inequalities
‖ρs ∂yj

ρ−1
s ‖L∞(Rn) ≤ s, ‖ρs∆ρ

−1
s ‖L∞(Rn) ≤ s(s+ 2n− 1).Hene, in (4.32) the limits of integration may be extended to R

n and we get
∫

Rn

(

Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s

)

η dy → 0. (4.33)In other words, we have
Pεk,s

(

Eεk
uk

)

− ∆v̂k − 2(ρs∇ρ−1
s · ∇v̂k) − ρsv̂k∆ρ−1

s ⇀ 0 in L2(Rn). (4.34)Similarly one shows that
Pεk,s

(

∂uf(·,Wεk,m, εk)uk

)

− ∂uf(ξ0,Φξ0
, 0)v̂k ⇀ 0 in L2(Rn). (4.35)Indeed, as above we an replae the integrals over R

n by integrals over |y| ≤ δ̂/εk beause of
∣

∣∂uf(·,Wεk,m, εk) ◦ T−1
εk,m − ∂uf(ξ0,Φξ0

, 0)
∣

∣ ≤ onst εk(1 + |y|) for all y ∈ Tεk,m(Ω).The latter estimate follows diretly from the struture of the formal asymptotis Wε,m.Finally, we have
Pεk,s

[

σ∗ · Ψ(Tεk,m) + ψ(Tεk,m, x1, σ∗)
]

−
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs ⇀ 0 in L2(Rn), (4.36)where the funtions Ψ and ψ are de�ned in (2.54) and (2.55), respetively. This weak onver-gene is true beause the left hand side of (4.36) vanishes for |y| ≤ δ̂/εk.34



Colleting together the limits (4.34)�(4.36) and using (4.21) and (4.28) we get
∆v̂k + 2(ρs∇ρ−1

s · ∇v̂k) −
(

∂uf(ξ0,Φξ0
, 0) − ρs∆ρ

−1
s

)

v̂k

−
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs ⇀ 0 in L2(Rn).This gives the desired equation for v∗ and σ∗
Dsv∗ := ∆v∗ + 2(ρs∇ρ−1

s · ∇v∗) −
(

∂uf(ξ0,Φξ0
(y), 0) − ρs∆ρ

−1
s

)

v∗

=
(

σ∗ · Ψ + ψ(·, x1, σ∗)
)

ρs for almost all y ∈ R
n. (4.37)Step 3. Proof of the fat that σ∗ = 0. Assumption (A1) and exponential estimate (2.12)imply that f(ξ0,Φξ0

, 0) ∈ Cα(Rn) and (σ∗ · Ψ + ψ(·, x1, σ∗))ρs ∈ Cα(Rn), therefore every solu-tion v∗ ∈ W 2,2(Rn) to Eq. (4.37) belongs simultaneously to C2+α(Rn). Below we demonstratethat an appropriate hoie of s guarantees that σ∗ = 0 and v∗ ∈ span
{

ρs∂yj
Φξ0

: j = 1, . . . , n
}.To this end, we use the following lemma.Lemma 4.7 There exists s0 > 0 suh that for every s ∈ [0, s0) the operator Ds (f. (4.37))mapping C2+α(Rn) into Cα(Rn) is a Fredholm operator with dimKerDs = codimRanDs = n.Moreover,

KerDs = span
{

ρs∂yj
Φξ0

: j = 1, . . . , n
}

,

RanDs =







v ∈ Cα(Rn) :

∫

Rn

v(y)ρ−1
s (y)∂yj

Φξ0
(y)dy = 0 for all j = 1, . . . , n







.Proof: Straightforward alulation yields
lim
s→0

∥

∥2(ρs∇ρ−1
s · ∇) − ρs∆ρ

−1
s

∥

∥

L(C2+α(Rn);Cα(Rn))
= 0. (4.38)Sine small perturbations do not violate Fredholm property and do not inrease the dimensionof kernel and the odimension of range (see, for example, [36, Theorem 5.11℄), estimate (4.38)together with Lemma 2.2 and assumption (A4) imply that for su�iently small s > 0 theoperator Ds is Fredholm of index zero and dimKerDs = codimRanDs ≤ n.Above we have assumed that s ∈ (0, κ0), where the onstant κ0 is given by (2.11). Thereforeexponential estimates (2.12) guarantee that ρs∂yj

Φξ0
∈ C2+α(Rn). Moreover, taking intoaount assumption (A4) we easily verify that ρs∂yj

Φξ0
∈ KerDs. The only remaining pointregarding KerDs is to show that dimKerDs = n, i.e. that funtions ρs∂yj

Φξ0
, j = 1, . . . , n,are linearly independent. To hek this we write the Gram matrix G(s) with elements

[G(s)]jk :=

∫

Rn

ρs∂yj
Φξ0

ρs∂yk
Φξ0

dy.35



It is lear that G(0) is non-degenerate (see assumption (A4)). On the other hand, simplealulation shows that the matrix derivative G′(0) with respet to s is bounded. Thereforefor su�iently small s matrix G(s) is non-degenerate too, hene, for suh values s funtions
ρs∂yj

Φξ0
, j = 1, . . . , n, are linearly independent.Now let us prove the statement regarding RanDs. For this we remark that due to exponen-tial estimates (2.12), for any s ∈ (0, κ0) and any v ∈ C2+α(Rn) we an perform integration byparts in the following formula
∫

Rn

(

∆v(y) + 2
(

ρs(y)∇ρ−1
s (y) · ∇v(y)

))

ρ−1
s (y)Φξ0

(y) dy

=

∫

Rn

v(y)
(

∆
(

ρ−1
s Φξ0

)

(y) − 2
(

∇ρ−1
s (y) · ∇Φξ0

(y)
)

− 2Φξ0
(y)∆ρ−1

s (y)
)

dy

=

∫

Rn

v(y)
(

ρ−1
s (y)∆Φξ0

(y) − Φξ0
(y)∆ρ−1

s (y)
)

dy.With the help of this identity we easily see that for any s ∈ (0, κ0) and any v ∈ C2+α(Rn) itholds
∫

Rn

(Dsv)(y) ρ
−1
s (y)∂yj

Φξ0
(y) dy = 0 for all j = 1, . . . , n.Moreover, in omplete analogy with our onsideration of funtions ρs∂yj

Φξ0
(see the Grammatrix argument above) we an show that for all s > 0 small enough funtions ρ−1

s ∂yj
Φξ0

,
j = 1, . . . , n, are linearly independent. ♦Let us assume that the parameter s of funtion ρs satis�es the inequality 0 < s < min(κ0, s0).(Note that this is the only restrition that we impose on s in our proof!) Then regardingEq. (4.37), Lemma 4.7 and the Fredholm alternative imply that

∫

Rn

(σ∗ · Ψ + ψ(·, x1, σ∗))ρs ρ
−1
s ∂yj

Φξ0
dy = 0, j = 1, . . . , n. (4.39)These equations already appeared in Setion 2, when we transformed system (2.58). Usingidentities (2.57) and (2.62) obtained there, we rewrite system (4.39) as follows

H(ξ0)σ∗ = 0,where H(ξ0) is the Jaobian matrix of system (1.3) at point ξ0 (see de�nition (2.63)). Due toassumption (A3) this matrix is non-degenerate. Hene, σ∗ = 0 and v∗ ∈ KerDs, i.e.
v∗ =

n
∑

j=1

Cj ρs∂yj
Φξ0

,where Cj ∈ R are some onstants.Step 4. Proof of the fat that v∗ = 0. With the help of limit (4.23), below we show that
v∗ = 0. To this end, we again de�ne a non-inreasing smooth ut-o� funtion χ : [0,∞) → R36



suh that χ(r) = 1 for 0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2. Then for every R ∈ (0,∞) we de�nethe funtion χR(y) := χ(|y|2/R2) that satis�es the inequality
‖χR‖C2+α(Rn) ≤ onst for all R ≥ 1.Sine v̂k ⇀ v∗ in W 2,2(Rn), for every R > 0 we also have χRv̂k ⇀ χRv∗ in W 2,2(Rn). Thenthe ompat imbedding W 2,2(Rn) →֒ L2(supp(χR)) implies
‖χRv̂k − χRv∗‖L2(Rn) → 0 for k → ∞. (4.40)On the other hand, beause of (4.19) and (4.29), for every R ≥ 1 it holds

‖χRv̂k‖C2+α(Rn) ≤ onst. (4.41)Hene, from (4.40) and (4.41) we easily get
‖χRv̂k − χRv∗‖C1+α(supp(χR)) → 0 for k → ∞. (4.42)Indeed, suppose that (4.42) is not true. Then there exists c > 0 and a subsequene χRv̂kjof χRv̂k suh that

‖χRv̂kj
− χRv∗‖C1+α(supp(χR)) ≥ c for all j = 1, 2, . . . . (4.43)Taking into aount the ompat imbedding C2+α(supp(χR)) →֒ C1+α(supp(χR)) and the esti-mate (4.41), we derive from the sequene χRv̂kj

a subsequene onverging in C1+α(supp(χR)) toa ertain funtion ωR suh that ‖ωR−χRv∗‖C1+α(supp(χR)) ≥ c (f. (4.43)). But this ontraditsto the limit (4.40). Hene, the limit (4.42) holds true.In partiular, it implies
∇y v̂k(0) → ∇yv∗(0) =

n
∑

j=1

Cj∇y∂yj
Φξ0

(0) for k → ∞, (4.44)where we have used the fat that ρs(0) = 1 and ∇yρs(0) = 0. On the other hand, diretalulation with the help of de�nition (4.26) and limit (4.23) yields
∇y v̂k(0) = ∇y

(

uk

(

T−1
εk,m(y)

)

ρs(y)
)∣

∣

∣

y=0
= εkQ(xεk,m)−1∇xuk(xεk,m) → 0,where we took into aount that Q(ξ0) is a non-degenerate matrix and that xε,m → ξ0 for

ε → 0. Now omparing the latter limit with formula (4.44) we obtain ∇yv∗(0) = 0. Thereforeonsidering the right-hand part of (4.44) as an n-dimensional linear system with respet to Cj ,and taking into aount that the (n × n)-matrix ∂yj
∂yk

Φξ0
(0) is non-degenerate (see (2.51)and (1.11)) we ome to the onlusion that C1 = . . . = Cn = 0, and hene v∗ = 0.The latter result has an important onsequene: If we substitute v∗ = 0 into limit (4.42)and apply de�nition (4.26), we easily get that for every �xed R ≥ 1 it holds

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

C1+α(supp(χR))
≤ onst ‖χRv̂k‖C1+α(supp(χR)) → 0 for k → ∞. (4.45)This limit plays the ruial role in the next step.37



Step 5. Constrution of ontradition. Now we have all neessary ingredients to demonstratethat assumptions (4.19) and (4.20) do result in limit (4.25). In partiular, above we have provedthat σ∗ = 0. Substituting this into formula (4.21) we obtain
∥

∥

∥
Eεk

uk − ∂uf(·,Wεk,m, εk)uk

∥

∥

∥

α,εk;Ω
→ 0 for k → ∞.The latter limit an be further redued to limit (4.25) if we show that the following two relationshold true

∥

∥

∥

∥

∥

ε2k

n
∑

i=1

bi(·) ∂xi
uk

∥

∥

∥

∥

∥

α,εk;Ω

→ 0 for k → ∞, (4.46)
∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf(·, 0, 0)
)

uk

∥

∥

∥

α,εk;Ω
→ 0 for k → ∞. (4.47)Limit (4.46) is trivial. Indeed, it follows from the estimate

∥

∥

∥

∥

∥

ε2k

n
∑

i=1

bi(·) ∂xi
uk

∥

∥

∥

∥

∥

α,εk;Ω

≤ onst εk max
i

‖εk∂xi
uk‖α,εk;Ω ≤ onst εk ‖uk‖2+α,εk;Ω ,beause of assumption (4.19) and inequalities (5.8), (5.9) and (5.11) from Appendix.To justify limit (4.47), we write the triangle inequality

∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf(·, 0, 0)
)

uk

∥

∥

∥

α,εk;Ω

≤
∥

∥

∥

(

∂uf(·,Wεk,m, εk) − ∂uf (·,Φξ0
◦ Tεk,m, 0)

)

uk

∥

∥

∥

α,εk;Ω

+
∥

∥

∥

(

∂uf (·,Φξ0
◦ Tεk,m, 0) − ∂uf(x, 0, 0)

)

uk

∥

∥

∥

α,εk;Ω
. (4.48)Sine the struture of formal asymptotis Wε,m (see Theorem 2.1) implies that

‖Wε,m − Φξ0
◦ Tε,m‖α,ε;Ω = O(ε) for ε→ 0,we easily get the estimate

∥

∥

∥∂uf(·,Wε,m, ε) − ∂uf (·,Φξ0
◦ Tε,m, 0)

∥

∥

∥

α,ε;Ω
= O(ε) for ε→ 0.Hene, applying inequalities (5.9) and (5.11) and taking into aount that ‖uk‖2+α,εk;Ω ≤ 1,we see that the �rst term in the right-hand part of formula (4.48) vanishes for k → ∞.For the last term in the right-hand part of formula (4.48), we write the inequality

∥

∥

∥

(

∂uf (·,Φξ0
◦ Tεk,m, 0) − ∂uf(·, 0, 0)

)

uk

∥

∥

∥

α,εk;Ω

=

∥

∥

∥

∥

∥

∥

1
∫

0

∂2
uf (·, tΦξ0

◦ Tεk,m, 0) dt (Φξ0
◦ Tεk,m) uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

≤ onst ‖(Φξ0
◦ Tεk,m)uk‖α,εk;Ω ≤ onst ∥∥Φξ0

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))
,38



where the norm ‖ · ‖α,ε;Ω was estimated by ‖ · ‖Cα(Tεk,m(Ω)) aording to Remark 4.4. Nowemploying the notation of the ut-o� funtion χR (see above), we get
∥

∥Φξ0

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))
≤ ‖Φξ0

‖Cα(Tεk,m(Ω))

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(Tεk,m(Ω))

+ ‖(1 − χR)Φξ0
‖Cα(Tεk,m(Ω))

∥

∥uk ◦ T−1
εk,m

∥

∥

Cα(Tεk,m(Ω))

≤ ‖Φξ0
‖Cα(Rn)

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(supp(χR))
+ ‖(1 − χR)Φξ0

‖Cα(supp(1−χR)) ‖uk‖α,εk;Ω , (4.49)The sum in the right-hand part of (4.49) tends to zero for k → ∞ due to the following argument.Beause of the exponential deay of Φξ0
(see Remark 1.3), for arbitrarily small γ > 0 we an�rst take R su�iently large suh that it holds

‖(1 − χR)Φξ0
‖Cα(supp(1−χR)) ‖uk‖α,εk;Ω ≤ γ for all k = 1, 2, . . . .Then �xing this R and applying relation (4.45), we an hoose su�iently large k to obtain

‖Φξ0
‖Cα(Rn)

∥

∥χR

(

uk ◦ T−1
εk,m

)∥

∥

Cα(supp(χR))
≤ γ.Thus we have justi�ed limit (4.47).Reall that obtained limits (4.46) and (4.47) guarantee that another limit (4.25) holds true.Therefore we an apply Theorem 5.2 from Appendix to relations (4.22) and (4.25). As a resultwe get ‖uk‖2+α,εk;Ω → 0 and this together with another limit σk → 0 onstitutes the neessaryontradition. Now, Lemma 3.2 provides us with the required estimate for the inverse operator

F ′
ε(0, 0)−1 and the laimed assertion follows from our generalized Impliit Funtion Theorem. ♦Proof of Theorem 4.1: Translating the assertion of Theorem 4.6 into original settings weobtain the solution to problem (1.1)

uε = ε2vε + Uε,m,σε
,where ‖(vε, σε)‖Uε

= ‖vε‖2+α,ε;Ω + |σε| = O(εm−1) for ε → 0 (see estimate (4.17)). Thenrealling that Uε,m,0 = Wε,m and taking into aount inequality (4.11) we derive the estimate
‖uε −Wε,m‖2+α,ε;Ω ≤ ε2‖vε‖2+α,ε;Ω + ‖Uε,m,σε

− Uε,m,0‖2+α,ε;Ω = O(εm−1).Note that the auray of di�erene Uε,m,σε
− Uε,m,0 is dominating in the latter expression.Now sine m ≥ 2, diret alulation with the help of relation (4.2) yields

‖uε −Wε,m−2‖2+α,ε;Ω ≤ ‖uε −Wε,m‖2+α,ε;Ω + ‖Wε,m −Wε,m−2‖2+α,ε;Ω = O(εm−1),and this after reindexing m′ = m− 2 gives the laimed result (4.1).The seond assertion of theorem is trivial, sine for every ε ∈ (0,∞) and every u ∈ C2+α(Ω)we have
∥

∥

(

ε−2(u−Wε,m), 0
)∥

∥

Uε
= ε−2‖u−Wε,m‖2+α,ε;Ω.That ends the proof. ♦
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5 Appendix: Shauder type estimates in Hölder spaeswith ε-dependent normsLet Ω be a bounded domain in R
n with smooth boundary ∂Ω and ε a salar positive parameter.We onsider the singularly perturbed linear ellipti operator

Lεu := ε2
n
∑

i,j=1

∂xi

(

aij(x, ε)∂xj
u
)

+ c(x, ε)u (5.1)de�ned in Ω, whih is equipped with the natural boundary operator
Nεu := ε

n
∑

i,j=1

aij(x, ε)νi(x)∂xj
u (5.2)de�ned on ∂Ω, where νi are the omponents of the unit outer normal at ∂Ω. Introduingweighted ε-dependent norms in Hölder spaes, we modify some well-known results of theShauder theory for the omposite operator (Lε,Nε) in a way to produe the upper boundestimate for inverse operator (Lε,Nε)

−1, whih is uniform with respet to ε→ 0.For this we reall that for any λ ∈ (0, 1) funtion u is alled Hölder ontinuous with expo-nent λ in Ω if the seminorm
[u]λ;Ω := sup

x,y∈Ω,
x 6=y

|u(x) − u(y)|
|x− y|λ (5.3)is �nite. Respetively, for any integer k ≥ 0 we de�ne the Hölder spae Ck+λ(Ω) as a subspaeof Ck(Ω) onsisting of all funtions u with the �nite norm

‖u‖k+λ;Ω := ‖u‖k;Ω + sup
|µ|=k

[Dµu]λ;Ω , (5.4)where
‖u‖k;Ω :=

k
∑

j=0

sup
|µ|=j

sup
Ω

|Dµu|and a standard notation for multi-index µ was adopted.If domain Ω belongs to a lass Ck+λ with k ≥ 1 (see orresponding de�nition in [13, Se. 6.3℄),then one an naturally de�ne a Banah spae Ck+λ(∂Ω) with the norm
‖u‖k;∂Ω := inf

U
‖U‖k;Ω, (5.5)where U denotes a Ck+λ(Ω)-extention of funtion u on Ω and the in�mum is taken over allpossible extensions U . Sine the set of suh extensions U is nonempty (see Lemma 6.38 in [13℄),de�nition (5.5) is always orret.To eliminate the singularity ourring for ε→ 0 in operators Lε and Nε, one might employa simple oordinate transformation Tε : R

n → R
n de�ned for all ε ∈ (0,∞) with the formula40



Tεx := x/ε. Indeed, in the new oordinates these di�erential operators have regular oe�ientsand read as follows
L̃εv :=

n
∑

i,j=1

∂yi

(

aij(εy, ε)∂yj
v
)

+ c(εy, ε)v,

Ñεv :=

n
∑

i=1

aij(εy, ε)νi(εy)∂yj
v.However, the former ats now in the ε-dependent domain Ω/ε := Tε(Ω), whereas the latterats on the ε-dependent surfae ∂Ω/ε := Tε(∂Ω). Taking this into aount we de�ne the new

ε-dependent norms
‖u‖k+λ,ε;Ω := ‖u ◦ T−1

ε ‖k+α;Ω/ε =

k
∑

j=0

εj sup
|µ|=j

sup
Ω

|Dµu| + εk+λ sup
|µ|=k

[Dµu]λ;Ω (5.6)and
‖u‖k+λ,ε;∂Ω := ‖u ◦ T−1

ε ‖k+λ;∂Ω/ε, (5.7)in Hölder spaes Ck+λ(Ω) and Ck+λ(∂Ω), respetively. Suh norms turn out to be a naturalsetting for analysis of singularly perturbed omposite operator (Lε,Nε). In partiular, theysatisfy a series of inequalities with a simple expliit dependene on parameter ε. We presentthese inequalities in the following lemma.Lemma 5.1 Let k ≥ 0 be an integer and λ ∈ (0, 1). Then for any ε ∈ (0,∞) it holds:
min(1, εk+λ)‖u‖k+λ;Ω ≤ ‖u‖k+λ,ε;Ω ≤ max(1, εk+λ)‖u‖k+λ;Ω for all u ∈ Ck+λ(Ω), (5.8)
‖uv‖λ,ε;Ω ≤ ‖u‖λ,ε;Ω ‖v‖λ,ε;Ω for all u, v ∈ Cλ(Ω). (5.9)Moreover, if k ≥ 1 then it holds:

min(1, εk+λ)‖u‖k+λ;∂Ω ≤ ‖u‖k+λ,ε;∂Ω ≤ max(1, εk+λ)‖u‖k+λ;∂Ω for all u ∈ Ck+λ(∂Ω),(5.10)
‖u‖k−1+λ,ε;Ω ≤ C(n, k, λ)‖u‖k+λ,ε;Ω for all u ∈ Ck+λ(Ω), (5.11)where C(n, k, λ) is a onstant independent of ε and Ω.Proof: Inequalities (5.8)-(5.10) follow diretly from de�nitions (5.5)-(5.7).To verify the inequality (5.11) we �rst write the estimate

εk−1+λ sup
|µ|=k−1

[Dµu]λ;Ω ≤ εk−1+λ sup
|µ|=k−1



sup
Ω

(2|Dµu|)1−λ
sup

x,y∈Ω,

x 6=y

|Dµu(x) −Dµu(y)|λ
|x− y|λ





≤ sup
|µ|=k−1

(

sup
Ω

(

2εk−1|Dµu|
)1−λ

)

sup
|µ|=k

(

sup
Ω

(

nεk|Dµu|
)λ
)

≤ C∗(n, k, λ)‖u‖k+λ,ε;Ω,41



where C∗(n, k, λ) > 0 is a onstant independent of ε and Ω. Denoting C(n, k, λ) = 1+C∗(n, k, λ)and taking into aount de�nition (5.6) we obtain the laimed inequality (5.11). ♦Now we are ready to formulate and prove the main statement onerning the upper boundestimate of inverse operator (Lε,Nε)
−1.Theorem 5.2 Let Ω be a bounded domain in R

n of lass C2+α with α ∈ (0, 1). Suppose thatthe following assumptions hold:(i) For every ε > 0 it holds aij(·, ε) ∈ C1+α(Ω) and c(·, ε) ∈ Cα(Ω). Furthermore, thereexists a onstant M > 0 suh that
‖aij(·, ε)‖1+α;Ω , ‖c(·, ε)‖α;Ω ≤M for all ε ∈ (0,∞). (5.12)(ii) There exist onstants κ > 0 and c0 > 0 suh that

n
∑

i,j=1

aij(x, ε)ξiξj ≥ κ|ξ|2 for all (x, ε, ξ) ∈ Ω × (0,∞) × R
n, (5.13)and

c(x, ε) ≤ −c0 for all (x, ε) ∈ Ω × (0,∞). (5.14)Then there exist ε0 > 0 and C0 > 0 suh that for all ε ∈ (0, ε0) and all u ∈ C2+α(Ω) it holds
‖u‖2+α,ε;Ω ≤ C0(‖Lεu‖α,ε;Ω + ‖Nεu‖1+α,ε;∂Ω).Proof: We base our proof on Lemma 3.2. First we remark that inequality (5.8) implies theequivalene of norms ‖ · ‖k+α,ε;Ω and ‖ · ‖k+α;Ω for any k ≥ 0. Similarly, from inequality (5.10)follows the equivalene of norms ‖ · ‖k+λ,ε;∂Ω and ‖ · ‖k+λ;∂Ω with k ≥ 1. Hene, taking intoaount lassial results of the theory of linear ellipti operators (see Theorem 3.2 in [18℄), weeasily see that the omposite operator

(Lε,Nε) :
(

C2+α(Ω), ‖ · ‖2+α,ε;Ω

)

→
(

Cα(Ω), ‖ · ‖α,ε;Ω

)

×
(

C1+α(∂Ω), ‖ · ‖1+α,ε;∂Ω

)is a Fredholm operator of index zero.Let εk ∈ (0,∞) and uk ∈ C2+α(Ω) be sequenes with
‖uk‖2+α,εk;Ω = 1 (5.15)and

εk + ‖Lεk
uk‖α,εk;Ω + ‖Nεk

uk‖1+α,εk;∂Ω → 0 for k → ∞. (5.16)We are going to demonstrate that these two assumptions atually imply
‖uk‖2+α,εk;Ω → 0 for k → ∞ (5.17)what is the neessary ontradition.First we will show that assumption (5.16) together with properties (5.12)�(5.14) results inthe uniform estimate
‖uk‖0;Ω → 0 for k → ∞. (5.18)42



Indeed, for eah uk we an onstrut two funtions of the following form
u±k (x) := uk(x) ± K

(

‖Lεk
uk‖α,εk;Ω + ‖Nεk

uk‖1+α,εk;∂Ω

)

± ‖Nεk
uk‖1+α,εk;∂Ω χ(x) exp

(

− 1

εκ
dist(x, ∂Ω)

)

,where K is a positive onstant to be hosen later, and χ : [0,∞) → R is a smooth ut-o�funtion suh that
χ(r) = 1 for 0 ≤ r ≤ δ and χ(r) = 0 for r ≥ 2δ,with δ > 0 being a �xed number, small enough to guarantee that for every x ∈ Ω satisfying

dist(x, ∂Ω) < 2δ there exists the only point ζ ∈ ∂Ω suh that dist(x, ζ) = dist(x, ∂Ω). Thensimple alulation and estimate (5.13) yield
±Nεk

u±k (x) = ±Nεk
uk(x)+‖Nεk

uk‖1+α,εk;∂Ω
1

κ

n
∑

i,j=1

aij(x, εk)νi(x)νj(x) ≥ 0 for all x ∈ ∂Ω.On the other hand, using assumption (5.12) we easily hek that
∥

∥

∥

∥

∥

∥

ε2
n
∑

i,j=1

∂xi

(

aij(x, ε)∂xj

(

χ(x) exp

(

− 1

εκ
dist(x, ∂Ω)

)))

∥

∥

∥

∥

∥

∥

0;Ω

≤ onst for all ε ∈ (0, 1).Hene, assumption (5.14) allows us to hoose K > 0 suh that for all k with εk ∈ (0, 1) it holds
Lεk

u+
k (x) ≤ 0 and Lεk

u−k (x) ≥ 0 for all x ∈ Ω.Now Strong Maximum Priniple for linear ellipti operators (see [13, Theorem 3.5℄) implies
u+

k (x) ≥ 0 and u−k (x) ≤ 0 for all x ∈ Ω,and this gives (5.18). The latter limit an be easily transformed into a stronger one. Indeed,sine the following inequality holds
εα

k [uk]α;Ω ≤ εα
k sup

Ω
(2|uk|)1−α

sup
x,y∈Ω,

x 6=y

|uk(x) − uk(y)|α
|x− y|α ≤ (2‖uk‖0;Ω)

1−α

(

nεk sup
|µ|=1

sup
Ω

|Dµuk|
)α

,assumption (5.15) and limit (5.18) guarantee that
‖uk‖α,εk;Ω → 0 for k → ∞. (5.19)To proeed further we remark that for every ε ∈ (0, 1) estimates (5.8) and (5.10) imply

εα‖u‖α;Ω ≤ ‖u‖α,ε;Ω ≤ ‖u‖α;Ω for all u ∈ Cα(Ω),

ε1+α‖u‖1+α;∂Ω ≤ ‖u‖1+α,ε;∂Ω ≤ ‖u‖1+α;∂Ω for all u ∈ C1+α(∂Ω), (5.20)43



respetively. Hene, assuming without loss of generality that εk < 1, and applying inequal-ity (5.9), we get the limit
ε2+α

k

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, εk)∂xi
∂xj

uk

∥

∥

∥

∥

∥

∥

α;Ω

≤

∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

aij(·, εk)∂xi
∂xj

uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

≤ ‖Lεk
uk‖α,εk;Ω

+

∥

∥

∥

∥

∥

∥

ε2k

n
∑

i,j=1

∂xi
aij(·, εk)∂xj

uk

∥

∥

∥

∥

∥

∥

α,εk;Ω

+ ‖c(·, εk)‖α;Ω ‖uk‖α,εk;Ω → 0 for k → ∞, (5.21)where all the terms in the right hand part of (5.21) vanish beause of assumptions (5.12), (5.15)and limits (5.16), (5.19).Aording to lassial Shauder estimates for linear ellipti operators (see for example The-orem 6.30 in [13℄), there exists a onstant C1 = C1(n, α, κ,M,Ω) > 0 whih is independent of εsuh that for every u ∈ C2+α(Ω) it holds
‖u‖2+α;Ω ≤ C1





∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)∂xi
∂xj

u

∥

∥

∥

∥

∥

∥

α;Ω

+

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)νi(·)∂xj
u

∥

∥

∥

∥

∥

∥

1+α;∂Ω

+ ‖u‖0;Ω



 .Multiplying both sides of this inequality with ε2+α we get
ε2+α‖u‖2+α;Ω ≤ C1



ε2+α

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij(·, ε)∂xi
∂xj

u

∥

∥

∥

∥

∥

∥

α;Ω

+ ε1+α

∥

∥

∥

∥

∥

∥

ε

n
∑

i,j=1

aij(·, ε)νi(·)∂xj
u

∥

∥

∥

∥

∥

∥

1+α;∂Ω

+ ε2+α‖u‖0;Ω



 . (5.22)Hene, taking into aount previously obtained estimate (5.21), assumptions (5.15), (5.16) andinequality (5.20) we obtain from (5.22) that
ε2+α

k ‖uk‖2+α;Ω → 0 for k → ∞. (5.23)Now, the last step is to derive from limits (5.19) and (5.23) the neessary ontradition (5.17).For this we employ the interpolation inequality (see Lemma 6.3.1 in [16℄)
εs‖u‖s;Ω ≤ C2

(

ε2+α‖u‖2+α;Ω + (εs + 1)‖u‖0;Ω

)that holds true for all 0 ≤ s ≤ 2+α and ε ∈ (0,∞) with the onstant C2 = C2(n, α, s,Ω) whihis independent of ε. Indeed, due to limits (5.19) and (5.23) we easily get
εk‖uk‖1;Ω → 0 and ε2k‖uk‖2;Ω → 0 for k → ∞.Thus, all terms in the de�nition of norm ‖uk‖2+α,εk;Ω vanish when k → ∞ and limit (5.17)does hold. This means that Lemma 3.2 works and this ends the proof. ♦44



Remark 5.3 The prove of Theorem 5.2 an be easily modi�ed to over the ase of Dirihletboundary onditions. In result we obtain the following statement.Suppose that all assumptions of Theorem 5.2 are ful�lled. Then there exist ε0 > 0 and
C0 > 0 suh that for all ε ∈ (0, ε0) and all u ∈ C2+α(Ω) it holds

‖u‖2+α,ε;Ω ≤ C0(‖Lεu‖α,ε;Ω + ‖u‖2+α,ε;∂Ω).AknowledgmentsAuthors thank V.F. Butuzov, N.N. Nefedov and K.R. Shneider for many helpful disussions.Referenes[1℄ Ambrosetti, A., Malhiodi, A. (2006). Perturbation methods and semilinear ellipti prob-lems on R
N . Progr. Math., Vol. 240. Basel: Birkhäuser.[2℄ Appell, J., Vignoli, A., Zabrejko, P.P. (1996). Impliit funtion theorems and nonlinearintegral equations. Expo. Math. 14:384�424.[3℄ Aronszajn, N., Smith, K.T. (1961). Theory of Bessel potentials. I. Ann. Inst. Fourier11:385�475.[4℄ Bates, P.W., Daner, E.N., Shi, J. (1999). Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability. Adv. Di�. Eqs. 4:1�69.[5℄ Berestyki, H., Lions, P.L. (1983). Nonlinear salar �eld equations. I. Existene of aground state. Arh. Rat. Meh. Anal. 82:313�345.[6℄ Berestyki, H., Lions, P.L. (1983). Nonlinear salar �eld equations. II. Existene of in-�nitely many solutions. Arh. Rat. Meh. Anal. 82:347�375.[7℄ Coppel, W.A. (1978). Dihotomies in stability theory. Leture Notes in Math., Vol. 629.Berlin: Springer-Verlag.[8℄ Cortázar, C., Garia-Huidobro, M., Yarur, C.S. (2009). On the uniqueness of the seondbound state solution of a semilinear equation. Ann. Inst. H. Poinaré Anal. Non Linéaire26:2091�2110.[9℄ Fife, P.C., Greenlee, W.M. (1974). Transition layers for ellipti boundary value problemswith small parameters. Uspehi Mat. Nauk 24:103�130.[10℄ Fife, P.C. (1976). Boundary and interior transition layer phenomena for pairs of seond-order di�erential equations. J. Math. Anal. Appl. 54:497�521.[11℄ Floer, A., Weinstein, A. (1986). Nonspreading wave pakets for the ubi Shrödingerequation with a bounded potential. J. Funt. Anal. 69:397�408.[12℄ Franhi, B., Lanonelli, E., Serrin, J. (1996). Existene and uniqueness of nonnegativesolutions of quasilinear equations in R

N . Adv. Math. 118:177�243.45



[13℄ Gilbarg, D., Trudinger, N.S. (2001). Ellipti partial di�erential equations of seond order.Berlin: Springer-Verlag.[14℄ Gui, C. (1996). Multi-peak solutions for a semilinear Neumann problem. Duke. Math. J.84:739�769.[15℄ Gidas, B., Ni, W.M., Nirenberg, L. (1981). Symmetry of positive solutions of nonlinearellipti equations in R
N . Adv. Math. Suppl. Stud. 7A:369�402.[16℄ Krylov, N.V. (1996). Letures on ellipti and paraboli equations in Hölder spaes. Prov-idene: AMS.[17℄ Kwong, M. K. (1989). Uniqueness of positive solutions of ∆u− u+ up in R

n. Arh. Rat.Meh. Anal. 105:243�266.[18℄ Ladyzhenskaya, O.A., Ural'tseva, N.N. (1968). Linear and quasi-linear ellipti equations.New York: Aademi Press.[19℄ Magnus, R. (2006). The impliit funtion theorem and multi-bump solutions of periodipartial di�erential equations. Pro. Roy. So. Edinburgh 136A:559�583.[20℄ Ni, W.M., Takagi, I. (1991). On the shape of least-energy solution to a semilinear Neu-mann problem. Comm. Pure Appl. Math. 41:819�851.[21℄ Ni, W.M., Takagi, I. (1993). Loating the peaks of least-energy solutions to a semilinearNeumann problem. Duke Math. J. 70:247�281.[22℄ Oh, Y.G. (1988). Existene of semilassial bound states of nonlinear Shrödinger equa-tions with potentials of the lass (V )α. Comm. Part. Di�. Eqs. 13:1499�1519.[23℄ Oh, Y.G. (1989). Corretion to "Existene of semilassial bound states of nonlinearShrödinger equations with potentials of the lass (V )α". Comm. Part. Di�. Eqs. 14:833�834.[24℄ Oh, Y.G. (1990). On positive multi-lump bound states of nonlinear Shrödinger equationsunder multiple well potential. Comm. Math. Phys. 131:223�253.[25℄ O'Malley, R.E. (1991). Singular perturbation methods for ordinary di�erential equations.Berlin: Springer-Verlag.[26℄ Murray, J. (2001). Mathematial biology, I: An introdution, II: Spatial models andbiomedial appliations. Berlin: Springer-Verlag.[27℄ Omel'henko, O.E., Reke, L. (2009). Boundary layer solutions to singularly perturbedproblems via the impliit funtion theorem. Asymptoti Anal. 62:207�225.[28℄ del Pino, M., Felmer, P. (1996). Loal mountain passes for semilinear ellipti problems inunbounded domains. Cal. Var. Part. Di�. Eqs. 4:121�137.[29℄ del Pino, M., Felmer, P. (1997). Semi-lassial states for nonlinear Shrödinger equations.J. Funt. Anal. 149:245�265. 46



[30℄ del Pino, M., Felmer, P. (1998). Multi-peak bound states for nonlinear Shrödinger equa-tions. Ann. Inst. H. Poinaré Anal. Non Linéare 15:127�149.[31℄ del Pino, M., Felmer, P. (2000). Semi-lassial states of nonlinear Shrödinger equations:a variational redution method. Math. Ann. 324:1�32.[32℄ Pomponio, A., Sehi, S. (2004). On a lass of singularly perturbed ellipti equations indivergene form: existene and multipliity results. J. Di�. Eqs. 207:229�266.[33℄ Rabier, P.J., Stuart, S.A. (2000). Exponential deay of the solutions of quasilinear seond-order equations and Pohozaev identities. J. Di�. Eqs. 165:199�234.[34℄ Rabinowitz, P. (1992). On a lass of nonlinear Shrödinger equations. Z. Angew. Math.Phys. 43:270�291.[35℄ Reke, L., Omel'henko, O.E. (2008). Boundary layer solutions to problems with in�nitedimensional singular and regular perturbations. J. Di�. Eqs. 245:3806�3822.[36℄ Shehter, M. (2002). Priniples of funtional analysis, Providene: AMS.[37℄ Squassina, M. (2003). Spike solutions for a lass of singularly perturbed quasilinear elliptiequations. Nonlinear Anal. 54:1307�1336.[38℄ Stein, E.M. (1970). Singular integrals and di�erentiability properties of funtions. NewJersey: Prineton Univ. Press.[39℄ Troy, W. (2005). The existene and uniqueness of bound state solution of a semilinearequation. Pro. Roy. So. 461A:2941�2963.[40℄ Vasil'eva, A.B., Butuzov, V.F., Kalahev, L.V. (1995). Boundary funtion method forsingular perturbation problems. Philadelphia: SIAM.[41℄ Vasil'eva, A.B., Butuzov, V.F., Nefedov, N.N. (1998). Contrast strutures in singularlyperturbed equations (in Russian). Fund. Prikl. Mat. 4:799�851.[42℄ Wang, X. (1993). On onentration of positive bound states of nonlinear Shrödingerequations. Comm. Math. Phys. 153:229�244.[43℄ Wei, J. (1997). On the boundary spike layer solutions of singularly perturbed semilinearNeumann problem. J. Di�. Eqs. 134:104�133.[44℄ Wei, J., Winter, M. (1998). Stationary solutions for the Cahn-Hilliard equation. Ann.Inst. H. Poinaré Anal. Non Linéaire 15:459�492.[45℄ Wei, J., Winter, M. (1999). Multiple boundary spike solutions for a wide lass of singularperturbation problems. J. London Math. So. 59:585�606.[46℄ Weinstein, M. (1985). Modulational stability of ground states of nonlinear Shrödingerequations. SIAM J. Math. Anal. 16:472�491.47


