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ABSTRACT. We derive an annealed large deviation principle for the normalised local times of a continuous-time random
walk among random conductances in a finite domain in Zd in the spirit of Donsker-Varadhan [DV75-83]. We work in the
interesting case that the conductances may assume arbitrarily small values. Thus, the underlying picture of the principle is
a joint strategy of small values of the conductances and large holding times of the walk. The speed and the rate function
of our principle are explicit in terms of the lower tails of the conductance distribution. As an application, we identify the
logarithmic asymptotics of the lower tails of the principal eigenvalue of the randomly perturbed negative Laplace operator
in the domain.

1. INTRODUCTION

We introduce the main object of our study in Section 1.1, present our main results in Section 1.2 and give a heuristic
explanation in Section 1.3. The proof of the main theorem is carried out in Sections 2.1 and 2.2.

1.1 Continuous-time random walk among random conductances

Consider the lattice Zd with E = {{x, y} : x, y ∈ Zd, x ∼ y} the set of nearest-neighbour bonds. Assign to any
edge {x, y} ∈ E a random weight ω{x,y} ∈ [0,∞). We will use the notation ω{x,y} = ωxy = ωyx for convenience.
Assume that ω = (ωxy){x,y}∈E is a family of nonnegative i.i.d. random variables. We refer to them as random
conductances. One of the main objects of the present paper is the randomly perturbed Laplacian ∆ω defined by

∆ωf(x) :=
∑

y∈Zd : y∼x

ωxy(f(y)− f(x)), f : Zd → R, x ∈ Zd. (1.1)

This operator is symmetric and generates the continuous-time random walk (Xt)t∈[0,∞) in Zd, the random walk
among random conductances (RWRC) or, as many authors call it, random conductance model (RCM). This process
starts at x ∈ Zd under Pωx and evolves as follows. When located at y, it waits an exponential random time with
parameter

∑
z∼y ωyz (i.e., with expectation 1/

∑
z∼y ωyz) and then jumps to a neighbouring site z′ with probability

ωyz′/
∑

z∼y ωyz . We write Pr for the probability and 〈·〉 for the expectation with respect to ω.

In some recent publications (see, e.g., [BD10]), the above walk is called variable-speed random walk (VSRW) in con-
trast to the constant-speed random walk (CSRW), where the holding times have parameter one, and to the discrete-time
version of the RWRC, where the jumps occur at integer times. Substantial differences between these two variants ap-
pear, for example, in slow-down phenomena. These are typically due to extremely large holding times in the former
case, but to so-called traps (regions of transition probabilities in which the path loses much time) in the two latter
cases. A further aspect is that continuous-time random walks may reach any point in finite time with positive probability,
in contrast to discrete-time walks. All these processes are versions of RWRC.

Let us mention some earlier work on RWRC. For the discrete-time setting, a quenched functional CLT is derived in
[BP07], assuming that the conductances take values in [0, 1]. In [BBHK08] and [FM06], the authors examine the
probability for the random walk to return to the origin in the quenched and annealed case, respectively. Here, the lower
tails of the distribution of the conductances have polynomial decay. The quenched functional CLT has been addressed
for the CSRW in [M08] and for both the CSRW and VSRW in [BD10], the former considering conductances in [0, 1],
the latter requiring the conductances to be bounded away from zero. Weak convergence to some Lévy process after
proper rescaling is established in [BČ10] for conductances bounded away from zero.

The main purpose of this paper is the description of the long-time behaviour of the walk in a given finite connected set
B ⊂ Zd containing the starting point. More precisely, we derive a large deviation principle (LDP) for the local times of
the walk, which are defined by

`t(z) =
∫ t

0
δXs(z) ds, z ∈ Zd, t > 0. (1.2)

In words, `t(z) is the amount of time that the walker spends in z by time t. The speed and the rate function of this LDP
are explicit.
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One application is a characterization of the logarithmic asymptotics of the non-exit probability from B. As this is stan-
dard and well-known under the quenched law Pω0 , we will work under the annealed law 〈Pω0 (·)〉 instead. One of our
motivations are the seminal works [DV75-83] and [G77] on large deviations for the occupation time measures of various
types of Markov processes. Another one is the question of the extremal behaviour of the principal eigenvalue of the
random operator ∆ω in B.

We concentrate on the interesting case where the conductances are positive, but can assume arbitrarily small values.
Here the annealed behaviour comes from a combined strategy of the conductances and the walk, and the description
of their interplay is the focus of our study. Losely speaking, the optimal joint strategy of the conductances and the walk
to meet the non-exit condition X[0,t] ⊂ B for large t is that the conductances assume extremely small t-dependent
values and the walker realizes very large t-dependent holding times and/or trajectories that do not leave B. We will
informally describe this picture in greater detail.

1.2 Main result

Our main assumption on the i.i.d. field ω of conductances is that, for any {x, y} ∈ E,

ωxy ∈ (0,∞) and essinf (ωxy) = 0. (1.3)

More specifically, we require some regularity of the lower tails, namely the existence of two parameters η,D ∈ (0,∞)
such that

log Pr(ωxy ≤ ε) ∼ −Dε−η, ε ↓ 0. (1.4)

That is, the edge weights can attain arbitrarily small values with prescribed probabilities.

Our main theorem is the following large deviation principle for the normalised local times before exiting B. That is, we
restrict to the event {X[0,t] ⊂ B} = {supp(`t) ⊂ B}. By

EB := {{x, y} : x ∈ B, y ∈ Zd, y ∼ x} (1.5)

we denote the set of edges connecting the sites of B with their neighbours both in B and outside.

Theorem 1.1 (Annealed LDP for 1
t `t). Assume that ω satisfies (1.3) and (1.4). Fix a finite connected set B ⊂ Zd

containing the origin. Then the process of normalized local times, (1
t `t)t>0, under the annealed sub-probability law

〈Pω0 ( · ∩ {X[0,t] ⊂ B})〉 satisfies an LDP onM1(B), the space of probability measures on B, with speed t
η

η+1 and
rate function J given by

J(g2) := Kη,D

∑
{x,y}∈EB

|g(y)− g(x)|
2η

η+1 , g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1, (1.6)

where Kη,D =
(
1 + 1

η

)
(Dη)

1
η+1 .

The proof of Theorem 1.1 is given in Section 2. More explicitly, it says

lim inf
t→∞

t
− η

η+1 log
〈

Pω0
(

1
t `t ∈ O,X[0,t] ⊂ B

)〉
≥ − inf

g2∈O
J(g2) for O ⊂M1(B) open, (1.7)

lim sup
t→∞

t
− η

η+1 log
〈

Pω0
(

1
t `t ∈ C,X[0,t] ⊂ B

)〉
≤ − inf

g2∈C
J(g2) for C ⊂M1(B) closed, (1.8)

and that the rate function J has compact level sets. Our convention is to extend any probability measure on B trivially
to a probability measure on Zd; note the zero boundary condition in B that is induced in this way.

A heuristic explanation of the speed and rate function is given in Section 1.3. It turns out there that the conductances
that give the most contribution to the LDP are of order t−1/(1+η) and assume a certain deterministic shape.

With the special choice O = C = M1(B), we obtain the following corollary.
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Corollary 1.2 (Non-exit probability from B). Under the assumptions of Theorem 1.1,

lim
t→∞

t
− η

η+1 log
〈

Pω0
(
X[0,t] ⊂ B

)〉
= −Kη,DLη(B), (1.9)

where

Lη(B) = inf
g2∈M1(B)

∑
{x,y}∈EB

|g(y)− g(x)|
2η

η+1 . (1.10)

From Theorem 1.1, we also derive the precise logarithmic lower tails of the principal (i.e., smallest) eigenvalue λω(B)
of −∆ω in B with zero boundary condition.

Corollary 1.3 (Lower tails for the bottom of the spectrum of ∆ω). Under the assumptions of Theorem 1.1,

lim
ε↓0

εη log Pr(λω(B) ≤ ε) = −DLη(B)η+1.

Proof. A Fourier expansion shows that, Pr -almost surely,

Pω0 (X[0,t] ⊂ B) =
|B|∑
i=1

e−tλ
ω
i vωi (0)(vωi , 1l) ≤

|B|∑
i=1

e−tλ
ω
i |B| ≤ |B|2e−tλω(B),

where 0 < λω(B) = λω1 ≤ · · · ≤ λω|B| are the eigenvalues of ∆ω with zero boundary condition in B and

(vωi )i=1,...,|B| a corresponding orthonormal base of eigenvectors. We also have, Pr -almost surely,

e−tλ
ω(B) ≤

|B|∑
i=1

e−tλ
ω
i (vωi , 1l)

2 ≤
∑
z∈B

Pωz (X[0,t] ⊂ B).

Applying Theorem 1.1 to B − z and using the shift-invariance of ω, we see that the expectation of the right-hand side
has the same logarithmic asymptotics as 〈Pω0 (X[0,t] ⊂ B)〉. Therefore, the two above inequalities show that

log
〈
e−tλ

ω(B)
〉
∼ log

〈
Pω0 (X[0,t] ⊂ B)

〉
, t→∞. (1.11)

Now de Bruijn’s exponential Tauberian theorem [BGT89, Theorem 4.12.9], together with (1.9) yields the desired asymp-
totics. �

Theorem 1.1 holds literally true if Zd is replaced by an (infinite or finite) graph andB by some finite subgraph. In future
work we will be interested in extensions of Theorem 1.1 to B ⊂ Zd a t-dependent centred box and ∆ω replaced by
∆ω + ξ with ξ = (ξ(z))z∈Zd an i.i.d. random potential, independent of ω.

1.3 Heuristic derivation

We now give a formal derivation of the LDP in Theorem 1.1. Given a fixed realisation ϕ = {ϕxy : {x, y} ∈
EB} ∈ (0,∞)EB of the conductances, the probability that the normalised local time resembles some realisation
g2 ∈M1(B) is roughly

Pϕ0
(

1
t `t ≈ g2

)
≈ exp

{
− tIϕ(g2)

}
, (1.12)

where the corresponding Donsker-Varadhan rate function is given by

Iϕ(g2) =
(
−∆ϕg, g

)
=

∑
{x,y}∈EB

ϕxy|g(x)− g(y)|2. (1.13)

This is a formal application of the LDP for the normalized occupation times of a Markov process with symmetric
generator ∆ϕ as in [DV75-83] and [G77]; by (·, ·) we denote the standard inner product on `2(Zd). Note that the event
{X[0,t] ⊂ B} is contained in {1

t `t ≈ g2}, therefore we drop it from the notation.



4

Taking random conductances into account, we expect an LDP on a slower scale than t, as small t-dependent values of
the conductances lead to a slower decay of the annealed probability of the event {1

t `t ≈ g2}. Therefore, we rescale
ω by a factor tr with some r > 0 to be determined later, and approximate

Pr
(
trω ≈ ϕ

)
= Pr

(
∀{x, y} ∈ EB : ωxy ≈ t−rϕxy

)
=

∏
{x,y}∈EB

Pr
(
ωxy ≈ t−rϕxy

)
≈ exp

{
− trηH(ϕ)

}
, (1.14)

where the rate function for the conductances is given by

H(ϕ) := D
∑

{x,y}∈EB

ϕ−ηxy . (1.15)

Here we made use of the tail assumptions in (1.4). Hence, combining (1.12) and (1.14),〈
Pω0

(
1
t `t ≈ g2

)
1l{trω≈ϕ}

〉
≈ Pt

−rϕ
0

(
1
t `t ≈ g2

)
Pr

(
ω ≈ t−rϕ

)
≈ exp

{
− tIt−rϕ(g2)− trηH(ϕ)

}
≈ exp

{
−

∑
{x,y}∈EB

(
t1−rϕxy

(
g(x)− g(y)

)2 + trηDϕ−ηxy

)}
. (1.16)

We obtain the slowest decay by choosing r such that t1−r = trη , which means r = (1 + η)−1. Then the right-hand

side has scale t
η

η+1 , which is the scale of the desired LDP. In order to find the rate function, we optimize over ϕ and
obtain that the choice ϕ = ϕ(g) with

ϕ(g)
xy = (Dη)

1
η+1 |g(y)− g(x)|−

2
η+1 , {x, y} ∈ EB, (1.17)

contributes most to the joint probability. Therefore, we have the result〈
Pω0

(
1
t `t ≈ g2

)〉
≈ exp

{
− t

η
η+1J(g2)

}
,

where the rate function is identified as

J(g2) = inf
ϕ

[
Iϕ(g2) +H(ϕ)

]
= Iϕ(g)(g2) +H(ϕ(g)) = Kη,D

∑
{x,y}∈EB

|g(y)− g(x)|
2η

η+1 . (1.18)

The tail assumptions we have made on the environment distribution lead to a fairly remarkable interaction between
the random influences of the environment on the one hand and the random walk on the other. Under more general
assumptions, e.g.,

log Pr(ωxy ≤ ε) ∼ −α(ε), ε→ 0

for some sufficiently regular nonincreasing function α : R+ → R+, we would expect an analogous result to hold.
However, if α(ε) is not a polynomial in ε, the scale and rate function of a corresponding LDP certainly would not have
such an explicit form.

2. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. This amounts to showing the two inequalities in (1.7) and (1.8), since the
compactness of the level sets follows immediately from the continuity of J and compactness of the space M1(B).
The two inequalities are proven in the next two sections.
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2.1 Proof of the lower bound

In order to prove (1.7), we need to control the transition from one realization of the environment to another. To this end,
we first identify the density of this transition on process level. We feel that this should be generally known, but could not
find a suitable reference. For ϕ : E → (0,∞) we abbreviate ϕ̄(x) :=

∑
y∼x ϕ(x, y). We also write ϕxy instead of

ϕ(x, y).

Lemma 2.1. Assume that ϕ,ψ : E → (0,∞) are bounded both from above and away from zero. Denote by S(t) the
number of jumps the process X = (Xs)s∈[0,t] makes up to time t and by 0 < τ1 < . . . < τS(t) the corresponding

jump times. Fix some starting point x ∈ Zd and put τ0 = 0. Then, for all t ∈ [0,∞),

Φt(X) :=
S(t)∏
i=1

(
ϕ(Xτi−1 , Xτi)
ψ(Xτi−1 , Xτi)

e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )]
)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)]

is the Radon-Nikodym density of Pϕx with respect to Pψx with time horizon t.

Proof. We will write Φt instead of Φt(X). Obviously, Φt > 0 almost surely. We start showing that, for all t ≥ 0,

the expectation of Φt under Pψx is one. Then, we use Kolmogorov’s extension theorem to show the existence of a
measure Px such that Px(A) = Eψx (Φt1lA) for all A ∈ Ft, where (Ft)t∈[0,∞) is the natural filtration generated by
X . It remains to show that the process X under Px is a Markov process and that it is generated by ∆ϕ, which implies
Px = Pϕx .

Let us start by showing that the expectation of Φt under Pψx is one. Consider the discrete-time process

Zn :=
n∏
i=1

(
ϕ(Xτi−1 , Xτi)
ψ(Xτi−1 , Xτi)

e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )]
)
.

We have, for x ∈ Zd,

Eψx [Z1] =
∑
y∼x

ψxy

ψ̄(x)
ϕxy
ψxy

∫ ∞

0
ψ̄(x)e−ψ̄(x)s−(ϕ̄(x)−ψ̄(x))s ds =

∑
y∼x

ϕxy
ϕ̄(x)

= 1.

Combining this equation with the strong Markov property, we see that (Zn)n is a martingale with respect to the filtration
(Fτn)n∈N generated by the jumping times and that

Eψx

[
ϕ(Xt, XτS(t)+1

)
ψ(Xt, XτS(t)+1

)
e−(τS(t)+1−t)[ϕ̄(Xt)−ψ̄(Xt)]

∣∣∣Ft] = EψXt
[Z1] = 1 (2.1)

Pψx -almost surely for all x ∈ Zd. Then, we obtain

Eψx [Φt] = Eψx [ZS(t)+1], x ∈ Zd,

by inserting the first term of (2.1) under the expectation and using that Φt is Ft-measurable. Consequently, it remains
to show that Eψx [ZS(t)+1] = 1. As S(t)+1 is an unbounded, but almost surely finite stopping time with respect to the

filtration (Fτn)n∈N, the optional sampling theorem yields that Eψx [ZS(t)+1] ≤ 1. On the other hand, for all integers
k > 0,

Eψx [ZS(t)+1] ≥ Eψx [ZS(t)+11lS(t)+1≤k] = Eψx [ZS(t)+1∧k]− Eψx [Zk1lS(t)≥k] = 1− Eψx [Zk1lS(t)≥k]. (2.2)

To show that the last term is arbitrarily close to one for large k, we recall that on {S(t) ≥ k}

Zk ≤
(

maxx∈Zd, y∼x ϕxy

minx∈Zd, y∼x ψxy

)k

etmax{|ϕxy−ψxy | : {x,y}∈E} =: αk,
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so Eψx [Zk1lS(t)≥k] is bounded from above by αkPψx (S(t) ≥ k). As all jumping times are exponentially distributed
with a parameter smaller than γ := maxx∈Zd ψ̄(x), we may estimate

Pψx (S(t) ≥ k) ≤ eγt
∞∑
n=k

(γt)n

n!
.

The tail of an exponential series is super-exponentially small, which means αkPψx (S(t) ≥ k) → 0 for k →∞. Since

(2.2) was true for all k, we see that Eψx [ZS(t)+1] = 1.

For arbitrary k ∈ N and t1, . . . , tk ≥ 0 define t̂ = maxi∈{1,...,k} ti and a measure Qt1,...,tk on (Zd)k by

Qt1,...,tk(x1, . . . , xk) = Eψx [Φt̂1l{Xt1=x1,...,Xtk
=xk}], x1, . . . , xk ∈ Zd.

We verify without much effort that Eψx [Φt+s1lA] = Eψx [Φt1lA] for all A ∈ Ft and t, s > 0, which implies consistency
of the family of measures above. Thus, by Kolmogorov’s extension theorem, there exists a measure Px with finite-
dimensional distributions as above, and we have Px(A) = Eψx [Φt1lA] for all t > 0 and A ∈ Ft. We show that the
process X under Px satisfies the Markov property, i.e.,

Ex[1l{Xt+s=y}|Ft] = PXt(Xs = y) Px-a.s. for all y ∈ Zd, s, t > 0 (2.3)

where Ex denotes expectation with regard to Px. Note that PXt is defined as we have considered an arbitrary starting
point x in what we have shown so far. Indeed, for all A ∈ Ft

Ex
[
Ex[1l{Xt+s=y}|Ft]1lA

]
= Ex[1l{Xt+s=y}1lA] = Eψx [Φt+s1l{Xt+s=y}1lA]

= Eψx
[
Eψx [Φt+s1l{Xt+s=y}|Ft]1lA

]
(∗)
= Eψx

[
ΦtEψXt

[Φs1l{Xs=y}]1lA
]

= Ex
[
EXt [1l{Xs=y}]1lA

]
,

where equation (∗) is due to the fact thatX satisfies the Markov property under Pψx and Φt+sΦ−1
t 1l{Xt+s=y} depends

only on X[t,t+s]. Consequently, we have shown (2.3) and X is a Markov process under Px with a unique infinitesimal
generator. Elementary calculations show that

1
t

(
Eψx [f(Xt)Φt]− f(x)

)
t→0−−→ ∆ϕf(x)

for arbitrary x ∈ Zd and f : Zd → R. This implies Px = Pϕx and the proof is complete. �

Now we use Lemma 2.1 to compare probabilities for two environments that are close to each other.

Corollary 2.2. Let ϕ,ψ : E → (0,∞) with 0 < ψxy − ε ≤ ϕxy ≤ ψxy + ε for some ε > 0 and all {x, y} ∈ E.
Moreover, let F be some event that depends on the process (Xs)s∈[0,t] up to time t only. Then

Pϕ0
(
F

)
≥ e−4dεtPψ−ε0

(
F

)
.

Proof. Let Φt denote the Radon-Nikodym density of Pϕ0 with respect to Pψ−ε0 up to time t. Employing the representation
given in Lemma 2.1, we have

Φt ≥
S(t)∏
i=1

(
e−(τi−τi−1)[ϕ̄(Xτi−1 )−ψ̄(Xτi−1 )+2dε]

)
e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)+2dε]

≥
S(t)∏
i=1

(
e−(τi−τi−1)4dε

)
e−(t−τS(t))4dε ≥ e−4dεt.
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The desired inequality follows immediately. �

Remark 2.3. If the event A is contained in {supp(`t) ⊂ B}, it suffices to require 0 < ψxy − ε ≤ ϕxy ≤ ψxy + ε
for some ε > 0 and all {x, y} ∈ EB .

Let us now show (1.7). Fix an open setO ⊂M1(B). As the event {X[0,t] ⊂ B} is contained in {1
t `t ∈ O}, we omit

it in the notation. Observe that the distributions of 1
t `t under Pω0 and 1

t1−r `t1−r under Ptrω0 coincide for all 0 < r < 1.
Hence

lim inf
t→∞

1

t
η

η+1

log
〈

Pω0
(

1
t `t ∈ O

)〉
= lim inf

t→∞

1
t

log
〈

Pt
1
η ω

0

(
1
t `t ∈ O

)〉
,

which will simplify the application of a classical Donsker-Varadhan LDP for random walks in fixed environment later.
Choose an element g2 ∈ O arbitrarily. For M > 0 define ϕ(g)

M : EB → (0,∞) by

ϕ(g)

M (x, y) =

{
(Dη)

1
η+1 |g(y)− g(x)|−

2
η+1 if |g(y)− g(x)| > 0,

M otherwise.

Next, we introduce the set

A =
{
ϕ : EB → (0,∞)

∣∣ϕ(g)

M − ε ≤ ϕ ≤ ϕ(g)

M

}
, (2.4)

where ε > 0 is picked smaller than 1
2 minEB

ϕ(g)

M . By dint of Corollary 2.2,〈
Pt

1
η ω

0

(
1
t `t ∈ O

)〉
≥

〈
Pt

1
η ω

0

(
1
t `t ∈ O

)
1l{

t
1
η ω∈A

}〉
≥ inf

ϕ∈A
Pϕ0

(
1
t `t ∈ O

)
Pr

(
t

1
ηω ∈ A)

≥ e−4dεtPϕ
(g)
M −ε

0

(
1
t `t ∈ O

)
Pr

(
t

1
ηω ∈ A). (2.5)

Using the tail assumption in (1.4), we see that

lim
t→∞

1
t

log Pr
(
t

1
ηω ∈ A) = −H(ϕ(g)

M ),

where H is given in (1.15). Furthermore, we apply the lower bound of the classical Donsker-Varadhan LDP (see
[DV75-83] or [G77]) to get

lim inf
t→∞

1
t

log Pϕ
(g)
M −ε

0

(
1
t `t ∈ O

)
≥ − inf

O
I
ϕ

(g)
M −ε,

where Iϕ is given in (1.13). Hence, from (2.5) we obtain

lim inf
t→∞

1
t

log
〈

Pt
1
η ω

0

(
1
t `t ∈ O

)〉
≥ −4dε− inf

O
I
ϕ

(g)
M −ε −H(ϕ(g)

M )

≥ −4dε− inf
O
I
ϕ

(g)
M

−H(ϕ(g)

M )

≥ −4dε− I
ϕ

(g)
M

(g2)−H(ϕ(g)

M ),

since I
ϕ

(g)
M −ε ≤ I

ϕ
(g)
M

and g2 ∈ O. Now we send ε to zero and M to ∞, to obtain

lim inf
t→∞

1
t

log
〈

Pt
1
η ω

0

(
1
t `t ∈ O

)〉
≥ −Iϕ(g)(g2)−H(ϕ(g)) = −J(g2),

where ϕ(g) = limM→∞ ϕ(g)

M is given in (1.17), and we used (1.18). The desired lower bound follows by passing to the
infimum over all g2 ∈ O.



8

2.2 Proof of the upper bound

In this section we prove (1.8). Let us first fix some configuration ϕ ∈ (0,∞)E and start with an estimate for the
probability Pϕ0 (1

t `t ∈ ·). This approach has actually been used by other authors before, but we provide an independent
proof for the sake of completeness.

Lemma 2.4. Fix an arbitrary set A ⊂M1(B). Then

Pϕ0
(

1
t `t ∈ A

)
≤ f(0)

minB f
exp

{
t sup
h2∈A

∑
x∈B

∆ϕf(x)
f(x)

h2(x)
}

(2.6)

for arbitrary f : Zd → [0,∞) with supp(f) = B and t > 0.

Proof. We consider the Cauchy problem{
∂tu(x, t) = ∆ϕu(x, t) + V (x)u(x, t), x ∈ Zd, t > 0,
u(x, 0) = f(x), x ∈ Zd,

(2.7)

with

V = −∆ϕf

f
1lB.

Obviously, u(·, t) ≡ f(·) solves (2.7). On the other hand, by the Feynman-Kac formula, any nonnegative solution u
satisfies

u(x, t) = Eϕx
[
e

R t
0 V (Xs)dsu(Xt, t)

]
, x ∈ Zd, t ≥ 0. (2.8)

Therefore, we may estimate

f(0) = Eϕ0
[
e−

R t
0

∆ϕf(Xs)
f(Xs)

ds
f(Xt)

]
≥ Eϕ0

[
e−

P
x∈B

∆ϕf(x)
f(x)

`t(x)f(Xt)1l{ 1
t
`t∈A}

]
≥ min

B
f exp

{
− t sup

h2∈A

∑
x∈B

∆ϕf(x)
f(x)

h2(x)
}

Pϕ0
(

1
t `t ∈ A

)
,

which is a rearrangement of the assertion. �

Now fix some closed setC ⊂M1(B). As a closed subset of a finite-dimensional space,C is compact with respect to
the Euclidean topology. We are going to apply a standard compactness argument, which is in the spirit of the proof of
the upper bound in Varadhan’s lemma [DZ98, Thm. 4.3.1]. The idea is to cover C with certain open balls, where ‘open’
refers to the Euclidean topology.

Fix δ > 0. For g2 ∈ C define

dg = min
{
|g(y)− g(x)| : {x, y} ∈ E, g(x) 6= g(y)

}
∈ (0,∞),

where we recall that g2 is defined on the entire Zd and is zero outside B. Consider the open ball in M1(B) of radius
δg := min{d4

g, δ} centered at g2. Fixing a configuration ϕ ∈ (0,∞)E , we can apply Lemma 2.4 with f(·) :=
g(·) +

√
δg1lB and obtain

Pϕ0
(

1
t `t ∈ Bδg(g

2)
)
≤

1 +
√
δg√

δg
exp

{
t sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x)
}
. (2.9)

In what follows, we show

sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x) ≤ −Iϕ(g2)(1− 7δ
1
4 ), (2.10)
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where we recall from (1.13) that Iϕ(g2) =
∑
{x,y}∈E ϕxy|g(x)− g(y)|2 = −(∆ϕg, g). To that end, we replace h2

by (g +
√
δg1lB)2 and control the error terms.

sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x)

=
∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(g(x) +
√
δg)2

+ sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

[
(h2(x)− g2(x))− 2

√
δgg(x)− δg

]
. (2.11)

The first sum is easily estimated against the standard Donsker-Varadan rate function:

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(g(x) +
√
δg)2 =

(
∆ϕ(g +

√
δg1lB), g +

√
δg1lB

)
≤

(
∆ϕg, g

)
= −Iϕ(g2),

where we have used the symmetry of the operator ∆ϕ and that g = 0 outside B. In order to estimate the last term in
(2.11), we treat the contribution of every summand within the square brackets separately. We begin with the first part
and observe that |h2(x)− g2(x)| = |h(x)− g(x)| |h(x) + g(x)| ≤ 2δg for all h2 ∈ Bδg(g2) and x ∈ B. Thus

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(h2(x)− g2(x))

=
∑

{x,y}∈E :
x,y∈B

ϕxy
g(y)− g(x)
g(x) +

√
δg

(h2(x)− g2(x))−
∑

{x,y}∈E:
x∈B,y 6∈B

ϕxy(h2(x)− g2(x))

≤
∑

{x,y}∈E
x,y∈B

ϕxy
|g(x)− g(y)|√

δg
2δg +

∑
{x,y}∈E:
x∈B,y 6∈B

ϕxy2δg

≤ 4δ
1
4 Iϕ(g2).

The last step is due to the fact that δ
1
4
g ≤ g(x)− g(y) whenever g(x)− g(y) > 0. Secondly,

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(−2
√
δgg(x))

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|
∣∣∣ 2

√
δgg(x)

g(x) +
√
δg
−

2
√
δgg(y)

g(y) +
√
δg

∣∣∣ +
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√
δgg(x)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|2 2δg√
δgdg

+
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√
δg|g(x)− g(y)|

≤ 2δ
1
4 Iϕ(g2).
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Here, we have used δ
1
4
g ≤ dg . The only part left is∑

x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(−δg)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|
∣∣∣ 1
g(x) +

√
δg
− 1
g(y) +

√
δg

∣∣∣δg +
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|2 1√
δgdg

δg +
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤ δ
1
4 Iϕ(g2).

Combining (2.11) with the last three estimates, we obtain (2.10) and in particular

Pϕ0
(

1
t `t ∈ Bδ(g

2)
)
≤

1 +
√
δg√

δg

∏
{x,y}∈E

exp
{
− t ϕxy|g(x)− g(y)|2(1− 7δ

1
4 )

}
. (2.12)

The balls Bδg(g
2) with g2 ∈ C cover C and since this set is compact, we may extract a finite subcovering of C .

Denote by (g2
i )i=1,...,N the centers of the balls in this subcovering. Then, applying (2.12) for ϕ = t

1
ηω, we obtain

lim sup
t→∞

1
t

log
〈

Pt
1
η ω

0

(
1
t `t ∈ C

)〉
≤ max
i=1,...,N

lim sup
t→∞

1
t

log
〈

Pt
1
η ω

0

(
1
t `t ∈ Bδgi

(g2
i )

)〉
≤ max
i=1,...,N

∑
{x,y}∈EB

lim sup
t→∞

1
t

log
〈

exp
{
− t

1+η
η ωxy|gi(y)− gi(x)|2(1− 7δ

1
4 )

}〉
.

According to de Bruijn’s exponential Tauberian theorem [BGT89, Theorem 4.12.9], the tail assumption (1.4) is equiva-
lent to the condition that, for any M > 0 and {x, y} ∈ E,

lim
t→∞

1
t

log
〈

exp
{
− t

1+η
η ωxyM

}〉
= −Kη,DM

η
1+η , (2.13)

where we recall Kη,D =
(
1 + 1

η

)
(Dη)

1
η+1 from Theorem 1.1. Thus, with δ so small that 1− 7δ

1
4 > 0, we obtain

lim sup
t→∞

1
t

log
〈

Pt
1
η ω

(
1
t `t ∈ C

)〉
≤ max

i=1,...,N

∑
{x,y}∈EB

−Kη,D|gi(y)− gi(x)|
2η

1+η (1− 7δ
1
4 )

η
1+η

≤ −(1− 7δ
1
4 )

η
1+η inf

g2∈C
J(g2)

with J as in (1.18). Since we may choose δ arbitrarily small, the proof of (1.8) is complete.
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