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Abstract

We study a diffusion model of phase field type, consisting of a system of two partial
differential equations encoding the balances of microforces and microenergy; the two un-
knowns are the order parameter and the chemical potential. By a careful development
of uniform estimates and the deduction of certain useful boundedness properties, we
prove existence and uniqueness of a global-in-time smooth solution to the associated
initial/boundary-value problem; moreover, we give a description of the relative ω-limit set.

1 Problem setting

The Cahn-Hilliard system:

∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ), (1.1)

describes diffusion-driven phase-segregation processes in a two-phase material body. Here ρ,
with ρ(x, t) ∈ [0, 1], is an order parameter field interpreted as the scaled volumetric density
of one of the two phases, κ > 0 is a mobility coefficient, and µ is the chemical potential ; f ′

stands for the derivative of a double-well potential f . Customarily, the two equations (1.1) are
combined so as to obtain the Cahn-Hilliard equation:

∂tρ = κ∆(−∆ρ+ f ′(ρ)), (1.2)

a nonlinear high-order parabolic PDE for the order parameter that has been studied extensively.
With this procedure – we note for later reference – the chemical potential is left in the back-
ground; in particular, there is no need to take an a priori decision about its sign.

To achieve their generalization of (1.2), Fried & Gurtin and Gurtin [8, 10] propose: (i) to regard
the second of (1.1) as a balance of microforces:

div ξ + π + γ = 0, (1.3)

where the distance microforce per unit volume is split into an internal part π and an external part
γ, and the contact microforce per unit area of a surface oriented by its normal n is measured
by ξ · n in terms of the microstress vector ξ;1 (ii) to interpret the first equation as a balance law
for the order parameter :

∂tρ = − div h + σ, (1.4)

where the pair (h , σ) is the inflow of ρ; (iii) to restrict the admissible constitutive choices for
π, ξ,h , and the free energy density ψ, to those consistent in the sense of Coleman & Noll [4]

1In [7], the microforce balance is stated under the form of a principle of virtual powers for microscopic motions.
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with an ad hoc version of the Second Law of continuum thermodynamics, namely a postulated
“dissipation inequality that accomodates diffusion”:

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0 (1.5)

(cf. eq. (3.6) in [10]). Within this framework, the following set of constitutive prescriptions is
shown acceptable:

ψ = ψ̂(ρ,∇ρ),
π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ),

ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ),

(1.6)

together with
h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ); (1.7)

moreover, it is shown that the tensor-valued mobility mapping M must satisfy the inequality:

∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

It follows from (1.3), (1.4), (1.6), and (1.7)1 that:

∂tρ = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ

))
+ σ

(cf. eq. (3.17) in [10]); in particular, the Cahn-Hilliard equation (1.2) is arrived at by taking:

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1 , (1.8)

and both the external distance microforce γ and the order-parameter source term σ identically
null.

One of us proposed in [15] a modified version of Fried & Gurtin’s derivation, in which their step
(i) is retained, but the order-parameter balance (1.4) and the dissipation inequality (1.5) are both
dropped and replaced, respectively, by the microenergy balance

∂tε = e+ w, e := − div h + σ, w := −π ∂tρ+ ξ · ∇(∂tρ) (1.9)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh , σ := µσ. (1.10)

The salient new feature of this approach to phase-segregation modeling is that the microentropy
inflow (h , σ) is deemed proportional to the microenergy inflow (h , σ) through the chemical
potential µ, a positive field; consistently, the free energy is defined to be

ψ := ε− µ−1η, (1.11)

with chemical potential playing the same role as coldness in the deduction of the heat equation.2

Combination of (1.9)-(1.11) gives:

∂tψ ≤ −η∂t(µ
−1) + µ−1 h · ∇µ− π ∂tρ+ ξ · ∇(∂tρ), (1.12)

2As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the cold-
ness - measures microscopic quiet ; likewise, as argued in [15], chemical potential can be seen as a macroscopic
measure of microscopic organization.
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an inequality that replaces (1.5) in restricting à la Coleman & Noll the possible constitutive
choices.

On taking all of the constitutive mappings delivering π, ξ, η, and h , dependent in principle on
ρ,∇ρ, µ,∇µ, and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (1.13)

compatibility with (1.12) implies that we must have:

π̂(ρ,∇ρ, µ) = ∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,
η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ)= −µ2ρ,

(1.14)

together with

ĥ(ρ,∇ρ, µ,∇µ) = −Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

If we now choose for Ĥ the simplest expression H = κ1 , implying a constant and isotropic
mobility, and if we once again assume that the external distance microforce γ and the source
σ are null, then, with the use of (1.14) and (1.11), the microforce balance (1.3) and the energy
balance (1.9) become, respectively,

div(∇ρ) + µ− f ′(ρ) = 0 (1.15)

and
2ρ ∂tµ+ µ ∂tρ− κ∆µ = 0, (1.16)

a nonlinear system for the unknowns ρ and µ that we supplement with homogeneous Neumann
conditions at the body’s boundary:

∂νρ = ∂νµ = 0 (1.17)

(here ∂ν denotes the outward normal derivative), and with the initial conditions:

ρ|t=0 = ρ0 , µ|t=0 = µ0 . (1.18)

Needless to say, (1.15) is the same ‘static’ relation between µ and ρ as (1.1)2. Instead, (1.16) is
rather different from (1.1)1, for a number of reasons:

� (1.16) is nonlinear (whereas ∂tρ− κ∆µ = 0 is a linear equation);

� the time derivatives of ρ and µ are both present in (1.16);

� there are nonconstant factors in front of both ∂tµ and ∂tρ.

Moreover, it should be possible to show that the initial/boundary-value problem (1.15)-(1.18) has
solutions ρ ∈ [0, 1] and µ > 0.
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We must confess that we boldly attacked this problem as is, prompted to optimism by the suc-
cessful outcome of a previous joint research effort [5, 6], in which we tackled mathematically
the system of Allen-Cahn type one arrives at via the approach in [15] for processes of phase
segregation in the absence of diffusion. Unfortunately, system (1.15)–(1.18) turned out to be
too difficult for us. Therefore, we decided to study a regularized version of it, obtained by intro-
ducing two extra terms, ε ∂tµ in (1.16) and δ ∂tρ in the left-hand side of (1.15), for small positive
coefficients ε and δ.

The introduction of the first term is motivated by the desire to have a strictly positive coefficient
as a factor of ∂tµ in (1.16), in order to guarantee the parabolic structure of this equation. As
to the other term, on the one hand it gives (1.15) the form of an Allen-Cahn equation with
right-hand side µ; on the other hand, it assimilates our present model to the so-called viscous
Cahn-Hilliard equations (see, e.g., [2, 14, 16] and references therein). With these measures,
and taking κ = 1 for simplicity, we write the following modified version of problem (1.15)–(1.18),
with inversion of the order of the differential equations:

(ε+ 2ρ)∂tµ+ µ ∂tρ−∆µ = 0 in Ω× (0,+∞), (1.19)

δ∂tρ−∆ρ+ f ′(ρ) = µ in Ω× (0,+∞), (1.20)

∂νµ = ∂νρ = 0 on Γ× (0,+∞), (1.21)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω, (1.22)

where Ω ⊂ R3 is a bounded domain with a sufficiently smooth boundary Γ. We remark that
such a regularized system has the typical features of a phase field model, but with a nonstan-
dard equation (1.19) for the chemical potential µ, while quite often phase field systems feature
temperature and order parameter as variables.

By assuming, as we did in [5, 6], that f ′ is the sum of a strictly increasing C1 function f ′1
with domain (0, 1) that is singular at the endpoints, and of a smooth bounded perturbation f ′2
(to allow for a double- or multi-well potential f ), we prove the existence of a strong solution
(µ, ρ) to (1.19)–(1.22) satisfying µ ≥ 0 and 0 < ρ < 1 almost everywhere in Ω × (0,+∞)
(of course, the initial data have to meet the same requirements in Ω). Our existence proof is
rather standard; it is based on an approximation → a priori estimates → passage-to-the-limit
procedure. Under additional assumptions, by using certain delicate iterative estimates, we also
show that the component µ is bounded above; this is probably the most difficult and technical
part of the present paper. Boundedness of µ is expedient to deduce that f ′(ρ) is bounded as
well; as a consequence, ρ stays away from the threshold values 0 and 1. These boundedness
properties are very useful in proving uniqueness of such solutions, since f ′(ρ) can be treated
as a Lipschitz-continuous function of ρ.

As a final step, we deal with the long-time behavior of the system. We prove that each element
(µω, ρω) of the ω-limit set is a steady state solution of (1.19)–(1.22); therefore, in particular,
µω is a constant (cf. (1.19) and (1.21)). This concludes our description of the contents of this
paper. Needless to say, it would be interesting and challenging to study the singular limit of the
solutions to (1.19)–(1.22) as ε or δ tends to zero, or both parameters do. We plan to undertake
such a study in the near future.
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2 Main results

In this section, we describe the mathematical problem under investigation, make our assump-
tions precise, and state our results. First of all, we assume Ω to be a bounded connected open
set in R3 with smooth boundary Γ (to treat the lower-dimensional cases would only require
minor changes). Moreover, for convenience we set:

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0 on Γ}, (2.1)

and we endow these spaces with their standard norms, for which we use the self-explanatory
notation ‖ · ‖V (but ‖ · ‖H denotes the norm of any power of H). We remark that the embed-
dings W ⊂ V ⊂ H are compact, because Ω is bounded and smooth. Since V is dense
in H , we can identify H with a subspace of V ∗ in the usual way (i.e., so as to have that

V ∗〈u, v〉V = (u, v)H for every u ∈ H and v ∈ V ); the embedding H ⊂ V ∗ is also compact.
As to the potential f , we assume that

f = f1 + f2, where functions f1, f2 : (0, 1) → R are such that (2.2)

f1 is C1 and convex, f2 is C2, f ′′2 is bounded, (2.3)

lim
r↘0

f ′1(r) = −∞ , and lim
r↗1

f ′1(r) = +∞. (2.4)

For the initial data, we stipulate that

µ0 ∈ V and µ0 ≥ 0 a.e. in Ω; (2.5)

ρ0 ∈ W, 0 < ρ0 < 1 in Ω; and f ′(ρ0) ∈ H. (2.6)

We stress that the conditions in (2.6) imply that

ρ0 ∈ C0(Ω) and f(ρ0) ∈ H. (2.7)

Indeed, W ⊂ C0(Ω), assumptions (2.3) hold, and, by convexity, −c ≤ f1(ρ0) ≤ f1(1/2) +
f ′1(ρ0)(ρ0 − 1/2) for some c ∈ R.

Our aim is to solve problem (1.19)–(1.22) in a strong sense, i.e., we want to find a pair (µ, ρ)
of such smooth functions satisfying suitable summability conditions and unilateral constraints
that (1.19)–(1.22) are made fully meaningful. Precisely, we fix a final time T > 0, we set
Q := Ω× (0, T ), and we require that:

µ ∈ H1(0, T ;H) ∩ L2(0, T ;W ), (2.8)

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.9)

µ ≥ 0 a.e. in Q, (2.10)

0 < ρ < 1 a.e. in Q and f ′(ρ) ∈ L∞(0, T ;H). (2.11)

Note that the boundary conditions (1.21) follow from (2.8)–(2.9), due to the definition of W
in (2.1). In conclusion, we look for (µ, ρ) satisfying (2.8)–(2.11) and fulfilling the system

(ε+ 2ρ)∂tµ+ µ ∂tρ−∆µ = 0 a.e. in Q, (2.12)

δ∂tρ−∆ρ+ f ′(ρ) = µ a.e. in Q, (2.13)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (2.14)

Here is our main result.
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Theorem 2.1. Assume that (2.2)–(2.4) and (2.5)–(2.6) are satisfied. Then, there exists a pair
(µ, ρ) satisfing (2.8)–(2.11) and solving problem (2.12)–(2.14).

Once existence is secured, one wonders about uniqueness. We are able to prove it for solutions
having the following additional properties:

µ ∈ L∞(Q); inf ρ > 0 and sup ρ < 1. (2.15)

Theorem 2.2. Assume that (2.2)–(2.4) and (2.5)–(2.6) are satisfied. Then, any two solutions to
problem (2.12)–(2.14) satisfing (2.8)–(2.11) and (2.15) coincide.

Interestingly, the additional boundedness conditions for (µ, ρ) postulated above are fulfilled
whenever the data of the problem have similar boundedness properties, in addition to (2.5)–
(2.6).

Theorem 2.3. Assume that (2.2)–(2.6) and the following conditions are satisfied:

µ0 ∈ L∞(Ω); inf ρ0 > 0 and sup ρ0 < 1. (2.16)

Then, any pair (µ, ρ) satisfing (2.8)–(2.11) and solving problem (2.12)–(2.14) satisfies (2.15)
as well.

Remark 2.4. Even though the regularity of the solution given by (2.8)–(2.11) and (2.15) is com-
pletely satisfactory for our purposes, we observe that some further smoothness can be proved
once the properties (2.15) are established. In that case, equation (2.13) can be read in the form
∂tρ−∆ρ = g with g ∈ L∞(Q), whence further regularity for ρ can be derived, and a bootstrap
procedure can start. Indeed, further regularity for ρ implies that stronger properties for µ can
be proved by (2.12). This improves the regularity of g and leads to an increase of the regularity
of ρ.

Once well-posedness on every finite time interval is ensured, one can study the long-time be-
havior of the solution. In particular, one can try to characterize the ω-limit of any trajectory (µ, ρ)
in some topology. We choose the weak topology ofH×V and define such an ω-limit as follows:

ω(µ, ρ) =
{
(µω, ρω) :

(
µ(tn), ρ(tn)

)
→ (µω, ρω)

weakly in H × V for some sequence tn ↗ +∞
}
. (2.17)

Our last result gives a relationship between such an ω-limit and the set of steady states, i.e.,
the set of the time-independent solutions (µs, ρs) to (2.12)–(2.13) with homogeneous Neumann
boundary condition satisfying natural regularity properties. Note that in such a case µs must be
harmonic, thus constant, since Ω is connected. Therefore, a steady state is a pair (µs, ρs) such
that µs is a nonnegative constant and ρs solves the following problem:

ρs ∈ W, 0 < ρs < 1, f ′(ρs) ∈ H, and −∆ρs + f ′(ρs) = µs a.e. in Ω (2.18)

(there is no reason for ρs to be constant, since f is not required to be convex).
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Theorem 2.5. Assume that conditions (2.2)–(2.4), (2.5)–(2.6), and (2.16), are satisfied. Let
(µ, ρ) be the corresponding solution satisfing (2.8)–(2.11) and (2.15). Then, the ω-limit ω(µ, ρ)
is nonempty, compact, and connected in the weak topology of H × V ; moreover, each of its
elements coincides with a steady state (µs, ρs) (that is to say, µs is a nonnegative constant and
ρs solves (2.18)).

Our paper is organized as follows. In the next section, we prove Theorem 2.1, while Theo-
rems 2.2 and 2.3 are proved in Section 4. Our last section is devoted to the proof of Theorem
2.5.

Throughout the paper, we account for the well-known embedding V ⊂ Lq(Ω) for 1 ≤ q ≤ 6
and the related Sobolev inequality:

‖v‖Lq(Ω) ≤ C‖v‖V for every v ∈ V and 1 ≤ q ≤ 6, (2.19)

where C depends on Ω only, since sharpness is not needed (the embedding V ⊂ Lq(Ω) is
compact if q < 6). Furthermore, we repeatedly make use of the well-known Hölder inequality,
the interpolation inequality

‖v‖Lr(Ω) ≤ ‖v‖ϑ
Lp(Ω) ‖v‖1−ϑ

Lq(Ω) for v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞], ϑ ∈ [0, 1], and
1

r
=
ϑ

p
+

1− ϑ

q
, (2.20)

and the elementary Young inequality

ab ≤ σa2 +
1

4σ
b2 for every a, b ≥ 0 and σ > 0. (2.21)

Finally, throughout the paper we use a small-case italic c for different constants, that may only
depend on Ω, the final time T , the shape of f , the properties of the data involved in the state-
ments at hand, and the coefficients ε and δ; a notation like cσ signals a constant that depends
also on the parameter σ. The reader should keep in mind that the meaning of c and cσ might
change from line to line and even in the same chain of inequalities, whereas those constants
we need to refer to are always denoted by capital letters, just like C in (2.19).

3 Existence

In this section, we prove Theorem 2.1. Our method uses an approximation scheme based on
a time delay in the right-hand side of (2.13). Namely, we define the translation operator Tτ :
L1(0, T ;H) → L1(0, T ;H) depending on a time step τ > 0 by setting, for v ∈ L1(0, T ;H)
and for a.a. t ∈ (0, T ),

(Tτv)(t) := v(t− τ) if t > τ and (Tτv)(t) := µ0 if t < τ , (3.1)
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and consider the problem obtained by replacing the right-hand side of (2.13) by Tτµ, i.e., we
look for a pair (µτ , ρτ ) such that

(µτ , ρτ ) satisfies (2.8)–(2.11) (3.2)

(ε+ 2ρτ )∂tµτ −∆µτ + µτ ∂tρτ = 0 a.e. in Q (3.3)

δ∂tρτ −∆ρτ + f ′(ρτ ) = Tτµτ a.e. in Q (3.4)

µτ (0) = µ0 and ρτ (0) = ρ0 a.e. in Ω. (3.5)

For convenience, we allow τ to take just discrete values, namely, τ = T/N , where N is any
positive integer. Our existence proof consists in two parts. Firstly, we check that problem (3.2)–
(3.5) is well-posed (see the next lemma). Secondly, we let τ tend to 0. This is done by proving a
number of a priori estimates and using compactness and monotonicity arguments.

Lemma 3.1. There exists a unique pair (µτ , ρτ ) solving problem (3.2)–(3.5).

Proof. Recall that τ = T/N . Hence, if we set tn := nτ for n = 0, . . . , N , we see that problem
(3.2)–(3.5) becomes equivalent to a finite sequence of N problems that can be solved step
by step. However, instead of considering the natural time intervals [tn−1, tn], n = 1, . . . , N ,
and glueing the solutions together, we solve N problems on the time intervals In = [0, tn],
n = 1, . . . , N , by constructing the solution directly on the whole of In at each step. These
problems are the following:

(ε+ 2ρn)∂tµn −∆µn + (∂tρn)µn = 0 and µn ≥ 0 a.e. in Ω× In (3.6)

∂νµn(t)|Γ = 0 for a.a. t ∈ In and µn(0) = µ0 (3.7)

0 < ρn < 1 and δ∂tρn −∆ρn + f ′(ρn) = Tτµn−1 a.e. in Ω× In (3.8)

∂νρn(t)|Γ = 0 for a.a. t ∈ In and ρn(0) = ρ0. (3.9)

Their solutions are required to satisfy the regularity properties induction obtained by taking tn in
place of T in (2.8)–(2.11). The operator Tτ that appears on the right-hand side of (3.8) acts on
functions that are not defined in the whole of (0, T ). However, its meaning is still given by (3.1)
if n > 1, while we simply set Tτµn−1 = µ0 if n = 1.

Clearly, the solution (µτ , ρτ ) we are looking for is simply given by (µN , ρN). The above prob-
lems can be solved inductively, because the right-hand side of (3.8) is known at each step in the
next lemma: one first solves problem (3.8)–(3.9) for ρn, and then problem (3.6)–(3.7) for µn. We
note that the former problem is quite standard; the latter is a regular linear parabolic problem
(the coefficient of ∂tµn is ≥ ε) provided that ∂tρn is sufficiently smooth. That the inequality
µn ≥ 0 holds is not obvious. The uniqueness of a solution (µn, ρn) satisfying smoothness
properties analogous to (2.8)–(2.11) is clear, and the existence of a variational solution is ex-
pected. However, not even the desired regularity is obviously guaranteed. Therefore, we provide
a few arguments in this direction.

Proceeding at an as-low-as-possible level of formality, we introduce a problem depending on
a positive parameter λ and approximating problem (3.8)–(3.9). To begin with, we regularize
f1 and f2 by constructing certain suitable C2 approximations f1,λ, f2,λ having bounded first
and second derivatives. Precisely, we assume that f ′′2,λ is bounded uniformly with respect to λ;
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moreover, on thinking of f ′1 as a maximal monotone graph in R × R, we assume that f1,λ

is convex and that f ′1,λ is similar to the Yosida regularization of f ′1 (see, e.g., [3, p. 28]), in
order to preserve the main properties of the latter (such a regularization is detailed, e.g., in [9,
Section 3]). Finally, we set fλ = f1,λ + f2,λ. The approximating problem is:

δ∂tρ
λ
n −∆ρλ

n + f ′λ(ρ
λ
n) = Tτµn−1 a.e. in Ω× In, (3.10)

∂νρ
λ
n(t)|Γ = 0 for a.a. t ∈ In, and ρλ

n(0) = ρ0; (3.11)

it has a unique smooth solution, which satisfies sufficiently strong a priori estimates to allow
letting λ tend to zero in (3.10)–(3.11). This leads to a solution ρn to problem (3.8)–(3.9), which
can be used to solve problem (3.6)–(3.7). Needless to say, the desired regularity for ρn will
follow once we prove suitable estimates uniformly with respect to λ. We confine ourselves to
derive the highest-order estimate, the others being quite standard.

With a view toward assembling a proof by induction, we assume that

µn−1 ∈ H1(In−1;H) ∩ L∞(In−1;V ) and µn−1 ≥ 0 for n > 1 (3.12)

and we prove that

‖ρλ
n‖W 1,∞(In;H)∩H1(In;V )∩L∞(In;W ) + ‖f ′1,λ(ρ

λ
n)‖L∞(In;H) ≤ cτ , (3.13)

µn ∈ H1(In;H) ∩ L∞(In;V ) ∩ L2(In;W ) and µn ≥ 0 (3.14)

(as anticipated in closing Section 2, in (3.13) as well as in the following the symbol cτ stands for
one or another of a list of different constants that do not depend on λ, but are allowed to depend
on τ ). We remark that the induction procedure can actually start, because Tτµn−1 = µ0 if
n = 1 and, moreover, properties (2.5) and (2.6) for µ0 and ρ0 are fulfilled; these properties are
also used at each step.

We omit stressing the dependences on n and λ, and write simply u and u0 for, respectively, ∂tρ
λ
n

and ∂tρ
λ
n(0). By differentiating (3.10) with respect to time, we see that u solves the equation:

δ∂tu−∆u+ f ′′1,λ(ρ
λ
n)u = ∂t(Tτµn−1)− f ′′2,λ(ρ

λ
n)u a.e. in Ω× In, (3.15)

and satisfies both the Cauchy condition u(0) = u0 and homogeneous Neumann boundary
condition. Hence, by testing (3.15) by u and using the convexity of f1,λ, we immediately obtain
for t ∈ In that

δ

2
‖u(t)‖2

H +

∫ t

0

∫
Ω

|∇u|2 ≤ δ

2
‖u0‖2

H +
(
1 + sup |f ′′2,λ|

) ∫ t

0

∫
Ω

u2 + ‖∂t(Tτµn−1)‖2
L2(In;H).

(3.16)
Now, we observe that the last norm is finite, in view of our assumption (3.12), and that |f ′′2,λ| ≤ c.
Moreover, due to (3.10), we have that δu0 = µ0 + ∆ρ0− f ′λ(ρ0). Hence, u0 is bounded in H ,
by (2.5)–(2.6) and our choice of the approximation fλ of f . Therefore, thanks to the Gronwall
lemma, we obtain:

‖u‖L∞(In;H)∩L2(In;V ) ≤ cτ , whence ‖ρλ
n‖W 1,∞(In;H)∩H1(In;V ) ≤ cτ .

Next, coming back to (3.10), we deduce that −∆ρλ
n + f ′1,λ(ρ

λ
n) is bounded in L∞(In;H)

and hence, by a standard argument (for instance, by testing (3.10) by f ′1,λ(ρ
λ
n)), that each of

9



−∆ρλ
n and f ′1,λ(ρ

λ
n) is bounded. With this, given that theW -estimate follows from elliptic theory,

(3.13) is established, and we can let λ tend to zero. We obtain:

ρn ∈ W 1,∞(In;H)∩H1(In;V )∩L∞(In;W ), 0 < ρn < 1, and f ′1(ρn) ∈ L∞(In;H).

At this point, we should prove (3.14). However, we confine ourselves to derive a formal estimate
that clearly shows that the desired regularity for µn can be deduced by regularizing the linear
problem (3.6)–(3.7) (if the coefficient ∂tρn is replaced by a smooth function and the initial datum
is regularized, by the same token ∂tµn is an admissible test function). For convenience, we
write (3.6) in the form:

(ε+ 2ρn)∂tµn + µn −∆µn = (1− ∂tρn)µn;

next, we multiply this relation by ∂tµn and use the result in the calculation given below. Since
ρn ≥ 0, we find, for t ∈ In,

ε

∫ t

0

∫
Ω

|∂tµn|2 +
1

2
‖µn(t)‖2

V ≤
∫ t

0

∫
Ω

(ε+ 2ρn)|∂tµn|2 +
1

2
‖µn(t)‖2

V

=

∫ t

0

∫
Ω

(ε+ 2ρn)|∂tµn|2 +
1

2
‖µ0‖2

V +
1

2

∫ t

0

∫
Ω

∂t

(
|µn|2 + |∇µn|2

)
=

1

2
‖µ0‖2

V +

∫ t

0

∫
Ω

(
(ε+ 2ρn)|∂tµn|2 + µn ∂tµn +∇µn · ∇∂tµn

)
=

1

2
‖µ0‖2

V +

∫ t

0

∫
Ω

(1− ∂tρn)µn ∂tµn

≤ 1

2
‖µ0‖2

V +

∫ t

0

‖1 + |∂tρn(s)|‖L4(Ω) ‖µn(s)‖L4(Ω) ‖∂tµn(s)‖L2(Ω) ds

≤ 1

2
‖µ0‖2

V +
ε

2

∫ t

0

∫
Ω

|∂tµn|2 +
C2

2ε

∫ t

0

‖1 + |∂tρn(s)|‖2
V ‖µn(s)‖2

V ds,

by the Sobolev and Young inequalities (2.19) and (2.21). Then, the Gronwall lemma yields that

‖∂tµn‖L2(In;H) + ‖µn‖L∞(In;V ) ≤ cM , (3.17)

where M is a constant satisfying M ≥ ‖u0‖V + ‖∂tρn‖L2(In;V ). By comparison in (3.8),
even ∆µn is estimated in L2(In;H), since a bound for µn∂tρn in the same space follows
from (3.17). By elliptic regularity, we derive the desired estimate for µn in L2(In;W ). So, the
first assertion in (3.14) is established; it remains for us to show that µn ≥ 0. This is done by
testing (3.6) by −µ−n . We obtain, for t ∈ In, that

1

2

∫ t

0

∫
Ω

∂t

(
(ε+ 2ρn)|µ−n |2

)
+

∫ t

0

∫
Ω

|∇µ−n |2

=

∫ t

0

∫
Ω

(
(ε+ 2ρn)∂tµn(−µ−n ) + (∂tρn)µn(−µ−n ) +∇µn · ∇(−µn)−

)
= 0.

As ρn ≥ 0 and µ0 ≥ 0, we deduce that

ε

∫
Ω

|µ−n (t)|2 ≤
∫

Ω

(ε+ 2ρn(t))|µ−n (t)|2 ≤
∫

Ω

(ε+ 2ρ0)|µ−0 |2 = 0,

10



whence it immediately follows that µ−n = 0, i.e., that µn ≥ 0. Thus, the lemma is proved. �

Now that the well-posedness of problem (3.2)–(3.5) is established, we perform a number of
a priori estimates of its solution. These estimates allow us to let τ tend to zero, so as to prove
our existence result for problem (2.12)–(2.14). In order to make the formulas to come more
readable, we shall omit the index τ in the calculations, waiting for writing (µτ , ρτ ) only when
each estimate is established.

First a priori estimate. We observe that ∂t

(
(ε/2)µ2 + ρµ2

)
=

(
(ε + 2ρ)∂tµ + µ ∂tρ

)
µ.

Thus, testing (3.3) by µ and integrating, we obtain, for t ∈ (0, T ), that∫
Ω

(ε
2
µ2 + ρµ2

)
(t) +

∫ t

0

∫
Ω

|∇µ|2 =

∫
Ω

(ε
2
µ2

0 + ρ0µ
2
0

)
= c. (3.18)

This implies that
‖µτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.19)

Second a priori estimate. This standard estimate for phase field equations can be derived
by testing (3.4) by ∂tρ. We get:

‖ρτ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f(ρτ )‖L∞(0,T ;L1(Ω)) ≤ c. (3.20)

Third a priori estimate. We rewrite (3.4) as

−∆ρ+ f ′1(ρ) = −δ∂tρ− f ′2(ρ) + Tτµ, (3.21)

and notice that the right-hand side is bounded in L2(0, T ;H). Then, by applying a standard
procedure (for instance, testing by f ′1(ρ)), and counting on elliptic regularity, we deduce that

‖ρτ‖L2(0,T ;W ) + ‖f ′1(ρτ )‖L2(0,T ;H) ≤ c. (3.22)

Fourth a priori estimate. To derive the next inequality, we prefer to proceed formally, avoiding
the λ-regularization we used in the proof of Lemma 3.1. As for (3.16), we obtain the following
estimate:

δ

2
‖∂tρ(t)‖2

H +

∫ t

0

∫
Ω

|∇∂tρ|2

≤ δ

2
‖∆ρ0 − f ′1(ρ0) + µ0‖2

H + sup |f ′′2,λ|
∫ t

0

∫
Ω

|∂tρ|2 +

∫ t

0

∫
Ω

(∂tTτµ) ∂ρ. (3.23)

Once this inequality is established, our procedure is rigorous. The estimate of the last term
requires now more care than before, because we aim to obtain bounds that are uniform with
respect to τ . We have:∫ t

0

∫
Ω

(∂tTτµ) ∂tρ =

∫ t

τ

∫
Ω

∂tµ(s− τ) ∂tρ(s) ds =

∫ t−τ

0

∫
Ω

∂tµ(s) ∂tρ(s+ τ) ds,
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and we compute ∂tµ from (3.6). On recalling that ρ ≥ 0, we can continue as follows:∫ t

0

∫
Ω

(∂tTτµ) ∂tρ =

∫ t−τ

0

∫
Ω

( 1

ε+ 2ρ

(
∆µ− µ ∂tρ

))
(s) ∂tρ(s+ τ) ds

=

∫ t−τ

0

∫
Ω

{
−

( ∇µ
ε+ 2ρ

)
(s) · ∇∂tρ(s+ τ) + 2

∂tρ(s+ τ)

(ε+ 2ρ(s))2
∇µ(s) · ∇ρ(s)

− ∂tρ(s)µ(s) ∂tρ(s+ τ)
1

ε+ 2ρ(s)

}
ds

≤ 1

4

∫ t

0

∫
Ω

|∇∂tρ|2 + c‖µ‖2
L2(0,T ;V )

+ c

∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

+ c

∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖µ(s)‖L4(Ω) ‖∂tρ(s)‖H ds. (3.24)

We need to estimate the last two integrals. As to the first, we begin by using the Sobolev in-
equality (2.19) and the elementary Young inequality (2.21). We find that∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

≤ 1

8

∫ t−τ

0

‖∂tρ(s+ τ)‖2
V ds+ c

∫ t

0

‖∇µ(s)‖2
H ‖∇ρ(s)‖2

V ds

≤ 1

8

∫ t

0

∫
Ω

|∇∂tρ|2 +
1

8
‖∂tρ‖2

L2(0,T ;H)

+ c

∫ t

0

‖µ(s)‖2
V

(
‖ρ(s)‖2

V + ‖∆ρ(s)‖2
H

)
ds,

the last inequality holding because, thanks to elliptic regularity, ‖v‖W ≤ c(‖v‖V + ‖∆v‖H)
for any v ∈ V such that ∆v ∈ H and ∂νv|Γ = 0. At this point, we recall that ρ is bounded in
H1(0, T ;H) ∩ L∞(0, T ;V ), and µ in L2(0, T ;V ), by (3.20) and (3.19). Moreover, we notice
that (3.21) entails (formally, by testing it by −∆ρ(s)):

‖∆ρ(s)‖2
H ≤ δ2‖∂tρ(s)‖2

H + c
(
1 + ‖Tτµ(s)‖2

H

)
≤ δ2‖∂tρ(s)‖2

H + c for a.a. s ∈ (0, T ),

the last inequality being a consequence of (3.19). Therefore, we can infer that∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

≤ 1

8

∫ t

0

∫
Ω

|∇∂tρ|2 + c+ c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds. (3.25)
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Passing now to estimate the last integral in (3.24), we have that∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖µ(s)‖L4(Ω) ‖∂tρ(s)‖H ds

≤ 1

8

∫ t−τ

0

‖∂tρ(s+ τ)‖2
V ds+ c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds

≤ 1

8

∫ t

0

∫
Ω

|∇∂tρ|2 +
1

8
‖∂tρ‖2

L2(0,T ;H) + c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds

≤ 1

8

∫ t

0

∫
Ω

|∇∂tρ|2 + c+ c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds.

With this and (3.25), we see that (3.24) yields:∫ t

0

∫
Ω

(∂tTτµ) ∂tρ ≤ c+
1

2

∫ t

0

∫
Ω

|∇∂tρ|2 + c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds,

so that (3.23) takes the form:

δ

2
‖∂tρ(t)‖2

H +
1

2

∫ t

0

∫
Ω

|∇∂tρ|2 ≤ c+ c

∫ t

0

‖µ(s)‖2
V ‖∂tρ(s)‖2

H ds.

Since µ has been estimated in L2(0, T ;V ), the Gronwall lemma can be applied, so as to have
that

‖∂tρτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.26)

Finally, the same argument as in the derivation of (3.22) yields that

‖ρτ‖L∞(0,T ;W ) + ‖f ′1(ρτ )‖L∞(0,T ;H) ≤ c. (3.27)

Fifth a priori estimate. We formally test (3.3) by ∂tµ, and obtain:

ε

∫ t

0

∫
Ω

|∂tµ|2 +
1

2

∫
Ω

|∇µ(t)|2

≤ 1

2
‖∇µ0‖2

H −
∫ t

0

∫
Ω

∂tρ µ ∂tµ

≤ c+
1

2ε

∫ t

0

‖∂tρ(s)‖2
L4(Ω) ‖µ(s)‖2

L4(Ω) ds+
ε

2

∫ t

0

‖∂tµ(s)‖2
H ds

≤ c+ c

∫ t

0

‖∂tρs(s)‖2
V

(
‖µ(s)‖2

H + ‖∇µ(s)‖2
H

)
ds+

ε

2

∫ t

0

‖∂tµ(s)‖2
H ds

≤ c+ c

∫ t

0

‖∂tρs(s)‖2
V ‖∇µ(s)‖2

H ds+
ε

2

∫ t

0

‖∂tµ(s)‖2
H ds,

where the last inequality follows from (3.26) and (3.19). Using (3.26) once more, we can apply
the Gronwall lemma and conclude that

‖µτ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (3.28)
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Sixth a priori estimate. Recalling that 0 < ρ < 1, and using the Sobolev inequality (2.19),
we get:

‖(ε+ 2ρ)∂tµ+ µ ∂tρ‖L2(0,T ;H)

≤ (ε+ 2)‖∂tµ‖L2(0,T ;H) + ‖µ‖L∞(0,T ;L4(Ω)) ‖∂tρ‖L2(0,T ;L4(Ω))

≤ c
(
‖∂tµ‖L2(0,T ;H) + ‖µ‖L∞(0,T ;V ) ‖∂tρ‖L2(0,T ;V )

)
.

Since the right-hand side is bounded by (3.28) and (3.26), a comparison in (3.3) shows that ∆µ
is bounded in L2(0, T ;H). Consequently, by elliptic regularity we deduce that

‖µτ‖L2(0,T ;W ) ≤ c. (3.29)

Conclusion. Collecting all the estimates we have proved, we see that

µτ → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

ρτ → ρ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

f ′1(ρτ ) → ξ weakly star in L∞(0, T ;H),

at least for some subsequence τk ↘ 0. Thanks to the Aubin-Lions lemma (cf. [13, Thm. 5.1,
p. 58]) and to similar results to be found in [17, Sect. 8, Cor. 4], we also deduce the following
strong convergences:

µτ → µ strongly in C0([0, T ];H) ∩ L2(0, T ;V )

ρτ → ρ strongly in C0([0, T ];V ).

In particular, having recourse to a well-known monotonicity technique (see, e.g., [1, Lemma 1.3,
p. 42]), we conclude that 0 < ρ < 1 and ξ = f ′1(ρ) a.e. in Q. The strong convergence shown
above also entails that f ′2(ρτ ) converges to f ′2(ρ), e.g., strongly in C0([0, T ];H) (because f ′2
is Lipschitz continuous), and that Tτµτ converges to µ, e.g., strongly in L2(0, T ;H). Finally,
a combination of the above weak and strong convergence results with the Hölder and Sobolev
inequalities yields that

µτ ∂tρτ → µ ∂tρ weakly in L1(0, T ;H),

ρτ ∂tµτ → ρ ∂tµ weakly in L2(0, T ;L3/2(Ω)).

Indeed, µτ → µ strongly inL2(0, T ;L4(Ω)), ∂tρτ → ∂tρ weakly inL2(0, T ;L4(Ω)), ρτ → ρ
strongly in C0([0, T ];L6(Ω)), and ∂tµτ → ∂tµ weakly in L2(0, T ;L2(Ω)). Therefore, it is
straightforward to conclude that the pair (µ, ρ) is a solution to problem (2.12)–(2.14) having the
desired regularity (2.8)–(2.11), that is to say, Theorem 2.1 is proved.

4 Uniqueness and boundedness

In this section, we prove Theorem 2.2 and Theorem 2.3. We first show our uniqueness result.
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Proof of Theorem 2.2. We take two solutions to problem (2.12)–(2.14) satisfying (2.15) in
addition to (2.8)–(2.11) and label their components with the subscripts 1 and 2; in the following,
the values of constants c may depend on these solutions. Moreover, we choose constants such
M ≥ 0 and r∗, r∗ ∈ (0, 1) that µ ≤ M a.e. in Q and r∗ ≤ ρi ≤ r∗ a.e. in Q, for i = 1, 2.
Finally, we denote byL the Lipschitz constant of the function r 7→ r−f ′(r), r ∈ [r∗, r

∗]. Having
done this, we write (2.12) for both solutions and take the difference. Then, we set µ := µ1−µ2

and ρ := ρ1 − ρ2, test the resulting equality by µ, and integrate, using the boundary condition.
Due to the identity:{

(∂tρ1)µ1+2ρ1∂tµ1−(∂tρ2)µ2−2ρ2∂tµ2

}
µ = ∂t(ρ1µ

2)+2(∂tµ2) ρ µ+µ2 (∂tρ)µ, (4.1)

we obtain:∫
Ω

(ε
2

+ ρ1(t)
)
|µ(t)|2 +

∫ t

0

∫
Ω

|∇µ|2 = −2

∫ t

0

∫
Ω

(∂tµ2) ρ µ−
∫ t

0

∫
Ω

µ2 (∂tρ)µ. (4.2)

Furthermore, we write (2.13) for both solutions, take the difference, test the resulting equality
by ∂tρ, and add ρ ∂tρ to both sides, for convenience. Then, we integrate, using the boundary
condition, and easily obtain that

δ

∫ t

0

∫
Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2

V =

∫ t

0

∫
Ω

(
(ρ1 − f ′(ρ1))− (ρ2 − f ′(ρ2)) + µ

)
∂tρ

≤ L

∫ t

0

∫
Ω

|ρ| |∂tρ|+
∫ t

0

∫
Ω

|µ| |∂tρ|. (4.3)

Now, adding (4.2) and (4.3) and taking into account that ρ1 is nonnegative, we get

ε

2

∫
Ω

|µ(t)|2 +

∫ t

0

∫
Ω

|∇µ|2 + δ

∫ t

0

∫
Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2

V

≤ 2

∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖L4(Ω) ‖µ(s)‖L4(Ω) ds

+

∫ t

0

‖µ2(s)‖L∞(Ω) ‖∂tρ(s)‖H ‖µ(s)‖H ds

+ L

∫ t

0

‖ρ(s)‖H ‖∂tρ(s)‖H ds+

∫ t

0

‖µ(s)‖H ‖∂tρ(s)‖H ds. (4.4)

To estimate the first integral on the right-hand side, we use the Sobolev inequality (2.19) with
q = 4 and C the Sobolev constant, and we invoke the elementary Young inequality (2.21) to
obtain that∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖L4(Ω) ‖µ(s)‖L4(Ω) ds ≤ C2

∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖V ‖µ(s)‖V ds

≤ 1

2

∫ t

0

‖µ(s)‖2
V ds+

C4

2

∫ t

0

‖∂tµ2(s)‖2
H ‖ρ(s)‖2

V ds

=
1

2

∫ t

0

∫
Ω

|∇µ|2 + c

∫ t

0

∫
Ω

|µ|2 + c

∫ t

0

‖∂tµ2(s)‖2
H ‖ρ(s)‖2

V ds.
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The remainder of the right-hand side of (4.4) is estimated as follows:∫ t

0

‖µ2(s)‖L∞(Ω) ‖∂tρ(s)‖H ‖µ(s)‖H ds

+ L

∫ t

0

‖ρ(s)‖H ‖∂tρ(s)‖H ds+

∫ t

0

‖µ(s)‖H ‖∂tρ(s)‖H ds

≤ δ

2

∫ t

0

∫
Ω

|∂tρ|2 + c

∫ t

0

(
‖µ(s)‖2

H + ‖ρ(s)‖2
V

)
ds.

Combining these estimates with (4.4), we immediately get

ε

2

∫
Ω

|µ(t)|2 +
1

2

∫ t

0

∫
Ω

|∇µ|2 +
δ

2

∫ t

0

∫
Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2

V

≤ c

∫ t

0

(
1 + ‖∂tµ2(s)‖2

H

)
‖ρ(s)‖2

V ds+ c

∫ t

0

‖µ(s)‖2
H ds.

Since the function s 7→ ‖∂tµ2(s)‖2
H belongs to L1(0, T ), we can apply the Gronwall lemma

and deduce that both µ and ρ vanish. Hence, the two solutions coincide. �

We now turn to proving our boundedness result.

Proof of Theorem 2.3. Let (µ, ρ) be any solution to problem (2.8)–(2.11) and (2.12)–(2.14)
whose initial data have, in addition to (2.5)–(2.6) , the further properties (2.16). We show that
the boundedness claims in (2.15) actually hold true.

With a view to proving that µ satisfies the specified lower bound, we set:

µ∗0 := ‖µ0‖L∞(Ω) = sup ess
x∈Ω

µ0(x) ; (4.5)

we take any real constant k such that k ≥ µ∗0; and we introduce the auxiliary function χk ∈
L∞(Q) defined for a.a. (x, t) ∈ Q by the formula:

χ
k(x, t) = 1 if µ(x, t) > k, and χ

k(x, t) = 0 otherwise.

Then, we test (2.12) by (µ − k)+ and integrate over Ω × (0, t) for any t ∈ (0, T ). The result
is: ∫

Ω

(ε
2

+ ρ(t)
) ∣∣(µ(t)− k

)+∣∣2 +

∫ t

0

∫
Ω

|∇(µ− k)+|2

=

∫ t

0

∫
Ω

∂tρ |(µ− k)+|2 −
∫ t

0

∫
Ω

∂tρ µ (µ− k)+ = −
∫ t

0

∫
Ω

k ∂tρ (µ− k)+.

Given that ρ is nonnegative, this equality and the Hölder inequality with ad hoc exponents
lead to:

ε

2
‖(µ(t)− k)+‖2

H +

∫ t

0

∫
Ω

|∇(µ− k)+|2

≤ k

∫ t

0

‖χk(s)‖L7/2(Ω) ‖∂tρ(s)‖L14/3(Ω) ‖(µ− k)+(s)‖L2(Ω) ds.
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Now, we use the Gronwall-Bellman lemma as in [3, Lemma A.4, p. 156], and find that{
ε‖(µ− k)+‖2

C0([0,T ];H) +

∫ T

0

∫
Ω

|∇(µ− k)+|2
}1/2

≤ k√
ε

∫ T

0

‖χk(t)‖L7/2(Ω) ‖∂tρ(t)‖L14/3(Ω) dt

≤ k√
ε
‖∂tρ‖L7/3(0,T ;L14/3(Ω)) ‖χk‖L7/4(0,T ;L7/2(Ω)) .

Next, we observe that the interpolation inequality (2.20) (with p = 2, q = 6, r = 14/3, and
ϑ = 1/7), together with the Sobolev inequality (2.19), gives that

‖v‖L7/3(0,T ;L14/3(Ω)) ≤
(∫ T

0

‖v(t)‖1/3

L2(Ω) ‖v(t)‖
2
L6(Ω) dt

)3/7

= ‖v‖1/7
L∞(0,T ;H)

(∫ T

0

‖v(t)‖2
L6(Ω)

)3/7

= ‖v‖1/7
L∞(0,T ;H) ‖v‖

6/7

L2(0,T ;L6(Ω))

≤ c‖v‖1/7
L∞(0,T ;H) ‖v‖

6/7

L2(0,T ;V ),

and we denote by D0 the rightmost side of this inequality chain, when evaluated for v = ∂tρ.
We also remark that

‖χk‖L7/4(0,T ;L7/2(Ω)) =
{∫ T

0

(∫
Ω

|χk(x, t)|7/2 dx
)1/2

dt
}4/7

=
{∫ T

0

(∫
Ω

|χk(x, t)|4 dx
)1/2

dt
} 1

2
· 8
7

= ‖χk‖8/7

L2(0,T ;L4(Ω)).

Hence, our estimate for (µ− k)+ yields the following basic inequality:

|||(µ− k)+||| ≤ kD1‖χk‖8/7

L2(0,T ;L4(Ω)) for every k ≥ µ∗0, (4.6)

where D1 = D0/min{ε, 1}, and where the norm |||·||| is defined by

|||v|||2 := sup
t∈[0,T ]

‖v(t)‖2
H +

∫
Q

|∇v|2 for v ∈ C0([0, T ];H) ∩ L2(0, T ;V ).

We notice that the Sobolev inequality (2.19) implies that

‖v‖L2(0,T ;L4(Ω)) ≤ D2|||v||| for every v ∈ C0([0, T ];H) ∩ L2(0, T ;V ), (4.7)

where D2 depends on Ω and T , only. At this point, we select a sequence {kj} depending on a
real parameter m > 1 as follows:

kj := M
(
2− 2−j

)
for j = 0, 1, . . . , with M := mµ∗0; (4.8)

note that k0 = M > µ∗0. Then, owing to (4.6) and (4.7), it is not difficult to check that(
kj+1 − kj

)
‖χkj+1

‖L2(0,T ;L4(Ω)) ≤ ‖(µ− kj)
+‖L2(0,T ;L4(Ω)) ≤ D2|||(µ− kj)

+|||
≤ kj D1D2‖χkj

‖8/7

L2(0,T ;L4(Ω)). (4.9)
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Therefore, if we set
Sj := ‖χkj

‖L2(0,T ;L4(Ω)) for j = 0, 1, . . . ,

then the following inequality holds:

Sj+1 ≤
kj

kj+1 − kj

D1D2S
8/7
j ≤ 4D1D2 2jS

8/7
j for j = 0, 1, . . . .

Using [12, Lemma 5.6, p. 95], we conclude that Sj → 0 as j →∞, provided that

S0 = ‖χk0‖L2(0,T ;L4(Ω)) ≤ (4D1D2)
−72−49. (4.10)

On the other hand, we notice that χk0 = χ
M , and we recall that M > µ∗0 and m = M/µ∗0,

by (4.8). Moreover, we observe that χM = 1 < (µ − µ∗0)/(M − µ∗0) when µ > M , and that
χ

M = 0 otherwise. Therefore, using (4.7) and (4.6) with k = k0 = M , we have:

S0 ≤
1

M − µ∗0
‖(µ− µ∗0)

+‖L2(0,T ;L4(Ω)) ≤
D2

M − µ∗0
|||(µ− µ∗0)

+|||

D1D2

m− 1
‖χµ∗0

‖8/7

L2(0,T ;L4(Ω)) ≤
D1D2

m− 1
|Ω|

1
4
· 8
7 T

1
2
· 8
7 .

We are now in a position to choose m := 1 + D1D2|Ω|2/7T 4/7(4D1D2)
7249. Then, m > 1

and (4.10) is satisfied. Consequently,

‖χ2M‖L2(0,T ;L4(Ω)) = lim
j→∞

Sj = 0,

due to Beppo Levi’s Monotone Convergence Theorem. This implies that µ ≤ 2M a.e. in Q ,
and the boundedness of µ claimed in (2.15) is established.

We are left with the task of proving that the limitations for ρ in (2.15) do hold. We find it con-
venient to set: ρ∗ := infΩ ρ0 (recall that we assumed ρ∗ to be strictly positive). Moreover, we
rewrite (2.13) in the form:

δ∂tρ−∆ρ+ f ′1(ρ) = g, where g := µ− f ′2(ρ), (4.11)

and we notice that g ∈ L∞(Q), in view of the above proof and (2.3). Consequently, in view also
of (2.4), we can choose r∗ ∈ (0, ρ∗) such that f ′1(r∗) ≤ g a.e. in Q. Then, we test (4.11) by
−(ρ− r∗)

− and deduce that

δ

2

∫
Ω

|(ρ− r∗)
−(t)|2 +

∫ t

0

∫
Ω

|∇(ρ− r∗)
−|2 −

∫ t

0

∫
Ω

(
f ′1(ρ)− f ′1(r∗)

)
(ρ− r∗)

−

=

∫ t

0

∫
Ω

(
f ′1(r∗)− g

)
(ρ− r∗)

− ≤ 0.

We conclude that (ρ− r∗)
− = 0 and ρ ≥ r∗ a.e. in Q. In a similar way, for a suitable r∗ < 1,

we show that ρ ≤ r∗ a.e. in Q by testing (4.11) by (ρ− 1 + r∗)+. We conclude that solutions
satisfy all of the requirements stated in (2.15). �
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5 Long-time behavior

In this section, we prove Theorem 2.5. To this end, we fix any solution (µ, ρ) to problem (2.12)–
(2.14). Our proof of the properties of the ω-limit ω(µ, ρ) relies on a number of a priori estimates
for (µ, ρ), and on a well-known tool. For (µω, ρω) any element of ω(µ, ρ), and {tn} a corre-
sponding time sequence of type (2.17), we set

µn(t) := µ(tn + t), ρn(t) := ρ(tn + t) for t ≥ 0, (5.1)

and we study the sequence {(µn, ρn)} on a fixed finite time interval [0, T ]. Clearly, the pair
(µn, ρn) enjoys the same regularity as (µ, ρ), and solves the equations

(ε+ 2ρn)∂tµn + µn ∂tρn −∆µn = 0 a.e. in Q (5.2)

δ∂tρn −∆ρn + f ′(ρn) = µn a.e. in Q; (5.3)

moreover, it satisfies the homogeneous Neumann boundary conditions and the Cauchy condi-
tions:

µn(0) = µ(tn) and ρn(0) = ρ(tn) a.e. in Ω. (5.4)

Our argument also relies on two basic identities, to be proved in the next lemma.

Lemma 5.1. The following identities hold:

δ(∂tρ)
2 − ∂tρ∆ρ+ f ′(ρ) ∂tρ = ε∂tµ+ 2∂t(ρµ)−∆µ a.e. in Q; (5.5)

δ

∫ t

0

‖∂tρ(s)‖2
H ds+

1

2
‖∇ρ(t)‖2

H +

∫
Ω

f(ρ(t))

=
1

2
‖∇ρ0‖2

H +

∫
Ω

f(ρ0) + ε

∫
Ω

µ(t)− ε

∫
Ω

µ0 + 2

∫
Ω

(ρµ)(t)− 2

∫
Ω

ρ0µ0, (5.6)

for every t ∈ [0, T ].

Proof. We have from (2.12) that

µ ∂tρ = ∆µ− ε∂tµ− 2ρ ∂tµ = ∆µ− ε∂tµ− 2∂t(ρµ) + 2∂tρ µ .

By a simple rearrangement, we deduce that

µ ∂tρ = ε∂tµ+ 2∂t(ρµ)−∆µ.

On the other hand, multiplication of (2.13) by ∂tρ yields:

δ(∂tρ)
2 − ∂tρ∆ρ+ f ′(ρ) ∂tρ = µ ∂tρ,

so that (5.5) immediately follows by comparison. Next, identity (5.6) is arrived at by integrating
(5.5) over Ω × (0, t) and by noting that, in view of the homogeneous Neumann boundary
condition, ∆µ does not contribute to the integral. �
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We proceed with proving some a priori estimates. In so doing, we depart from our general rule,
and write c for constants that do not depend on the final time T , although they are allowed to
depend on the element (µω, ρω) of the ω-limit under consideration. Whenever a dependence
of c on the parameter T cannot be excluded, we stress this possibility by writing cT . Morever,
without any loss of generality, we assume that ε ≤ 1.

First a priori estimate. Just as we did for (3.18), we immediately deduce that∫ t

0

‖∇µ(s)‖2
H ds+

ε

2
‖µ(t)‖2

H +

∫
Ω

(ρµ2)(t) ≤ c for every t > 0. (5.7)

This implies, in particular, that∫ +∞

0

‖∇µ(t)‖2
H dt < +∞ and ‖µn‖L∞(0,T ;H) ≤ c. (5.8)

Second a priori estimate. We recall (5.6) and estimate some terms of its right-hand side. We
have:

ε

∫
Ω

µ(t)+2

∫
Ω

(ρµ)(t) ≤ ε1/2

∫
Ω

µ(t)+2

∫
Ω

(ρ1/2µ)(t) ≤ 2|Ω|+ε‖µ(t)‖2
H +

∫
Ω

(ρµ2)(t).

On the other hand, (5.7) holds and f is bounded from below. Hence, (5.6) yields:

δ

∫ t

0

‖∂tρ(s)‖2
H ds+

1

2
‖∇ρ(t)‖2

H ≤ c for every t > 0, (5.9)

whence we have that∫ +∞

0

‖∂tρ(t)‖2
H dt < +∞ and ‖ρn‖L∞(0,T ;V ) ≤ c. (5.10)

Third a priori estimate. We formally test (2.13) by −∆ρ and integrate over Ω× (tn, tn + t).
Due to the convexity of f1 and the boundedness of f ′′2 (compare with the derivation of (3.16)),
we get

δ

2
‖∇ρ(tn + t)‖2

H +

∫ tn+t

tn

∫
Ω

|∆ρ|2

≤ δ

2
‖∇ρ(tn)‖2

H + c

∫ tn+t

tn

∫
Ω

|∇ρ|2 +
1

2

∫ tn+t

tn

∫
Ω

|∆ρ|2 +
1

2

∫ tn+t

tn

∫
Ω

|µ|2.

We note that the first term on the right-hand side is bounded, since ρ(tn) is weakly convergent
to ρω in V . Hence, owing to (5.9) and (5.7), we can conclude that

‖∇ρ(tn + t)‖2
H +

∫ tn+t

tn

∫
Ω

|∆ρ|2 ≤ cT for every t ∈ [0, T ] and every n.
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By comparison with (2.13), and by exploiting elliptic regularity, we deduce that∫ tn+t

tn

‖f ′1(ρ)‖2
H dt+

∫ tn+t

tn

‖ρ(t)‖2
W dt ≤ cT .

In terms of ρn, all this reads:

‖ρn‖L2(0,T ;W ) ≤ cT and ‖f ′1(ρn)‖L2(0,T ;H) ≤ cT . (5.11)

Fourth a priori estimate. By rewriting (5.2) in the form

∂tµn = −µn ∂tρn

ε+ 2ρn

+
∆µn

ε+ 2ρn

, (5.12)

and owing to the homogeneous Neumann boundary condition, we are entitled to write the fol-
lowing equation in V ∗ in the framework of the Hilbert triplet (V,H, V ∗):∫

Ω

∂tµ(t) v = −
∫

Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)
−

∫
Ω

∇µn(t) · ∇ v

ε+ 2ρn(t)
, (5.13)

for a.a. t ∈ (0, T ) and for every v ∈ V . Starting from this equation, we can prove a bound for
∂tµn in Lp(0, T ;V ∗) for some p > 1. For a while, we argue for a.a. t ∈ (0, T ) and estimate
each term on the right-hand side separately. Owing to the Sobolev inequality (2.19), we get∣∣∣∫

Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)

∣∣∣ ≤ ε−1‖µn(t)‖L4(Ω) ‖∂tρ(t)‖L2(Ω) ‖v‖L4(Ω)

≤ c‖µn(t)‖L4(Ω) ‖∂tρ(t)‖L2(Ω) ‖v‖V . (5.14)

On the other hand, using the interpolation inequality (2.20) and the Sobolev inequality once
more, we obtain that

‖µn(t)‖L4(Ω) ≤ ‖µn(t)‖3/4

L6(Ω) ‖µn(t)‖1/4

L2(Ω) ≤ c‖µn(t)‖3/4
V ‖µn(t)‖1/4

H .

Consequently, by accounting for the L∞ bound of (5.8), we derive from (5.14) that∣∣∣∫
Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)

∣∣∣ ≤ c‖µn(t)‖3/4
V ‖∂tρ(t)‖H ‖v‖V . (5.15)

This takes care of the first addendum in on the right-hand side of (5.13). As to the second, we
have: ∣∣∣∫

Ω

∇µn(t) · ∇ v

ε+ 2ρn(t)

∣∣∣ ≤ ‖µn(t)‖V ‖∇
(
(ε+ 2ρn(t))−1 v

)
‖H , (5.16)

where it remains for us to estimate the last norm. By applying the Leibniz rule and making use
of the Hölder interpolation and the Sobolev inequalities, we get:

‖∇((ε+ 2ρn(t))−1 v)‖H ≤ 2ε−2‖v∇ρn(t)‖H + ε−1‖∇v‖H

≤ c
(
‖v‖L4(Ω) ‖∇ρn(t)‖L4(Ω) + ‖∇v‖H

)
≤ c

(
‖∇ρn(t)‖L4(Ω) + 1

)
‖v‖V

≤ c
(
‖∇ρn(t)‖3/4

L6(Ω) ‖∇ρn(t)‖1/4

L2(Ω) + 1
)
‖v‖V ≤ c

(
‖ρn(t)‖3/4

W ‖ρn(t)‖1/4
V + 1

)
‖v‖V .
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Hence, on accounting for the L∞ bound of (5.10), we see that (5.16) becomes:∣∣∣∫
Ω

∇µn(t) · ∇ v

ε+ 2ρn(t)

∣∣∣ ≤ c‖µn(t)‖V

(
‖ρn(t)‖3/4

W + 1
)
‖v‖V . (5.17)

Since v ∈ V is arbitrary, by combining (5.13), (5.15), and (5.17), we arrive at:

‖∂tµn(t)‖V ∗ ≤ c
(
‖µn(t)‖3/4

V ‖∂tρ(t)‖H + ‖µn(t)‖V ‖ρn(t)‖3/4
W + ‖µn(t)‖V

)
, (5.18)

for a.a. t ∈ (0, T ) and for every n; by estimating each term on the right-hand side, we are going
to find some p > 1 such that

‖∂tµn‖Lp(0,T ;V ∗) ≤ cT . (5.19)

Now, due to (5.8), the last term is bounded in L2(0, T ). As to the first, we observe that the
functions

t 7→ ‖µn(t)‖3/4
V and t 7→ ‖∂tρ(t)‖H

are bounded, respectively, inL8/3(0, T ) by (5.8), and inL2(0, T ) by (5.10); hence, their product
is bounded in L8/7(0, T ), by the Hölder inequality. Finally, the middle term of (5.18) can be
treated in a similar way, with the use of (5.8) and the first inequality in (5.11). Therefore, (5.19)
does hold, with p = 8/7.

Conclusion. Our estimates (5.8), (5.10), and (5.19) ensure that (µ, ρ) is a bounded and
weakly continuous (H, V )-valued function. Hence, the first part of the statement in Theorem
2.5 follows from the general theory (see, e.g., [11, p. 12]). We pass to the study of the ω-limit.

Recalling (5.11) and using standard weak and weak star compactness results, we see that there
is a triplet (µ∞, ρ∞, φ∞) such that

µn → µ∞ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (5.20)

ρn → ρ∞ weakly star in H1(0, T ;H)∩L∞(0, T ;V ) ∩ L2(0, T ;W ), (5.21)

f ′1(ρn) → φ∞ weakly in L2(0, T ;H), (5.22)

at least for some subsequence. Our first aim is to prove that µ∞ is a nonnegative constant, i.e.,
that µ∞(x, t) = µs for a.a. (x, t) ∈ Q for some µs ∈ [0,+∞); and, to prove that ρ∞ is time
independent, i.e., that ρ∞(t) = ρs for a.a. t ∈ (0, T ) for some ρs ∈ W . Secondly, we want to
prove that the pair (µs, ρs) found in such a way is indeed a steady state and coincides with the
given pair (µω, ρω).

From the first bounds of (5.8) and (5.10), we immediately deduce that

|∇µn| → 0 and ∂tρn → 0 strongly in L2(0, T ;H).

This implies that µ∞ is space independent and ρ∞ is time independent. Thus, we can write
ρ∞(t) = ρs for a.a. t ∈ (0, T ), for some ρs ∈ W . Moreover, (5.21) implies strong conver-
gence:

ρn → ρ∞ strongly in C0([0, T ];H)∩L2(0, T ;V ) (5.23)

(see, e.g., [17, Sect. 8, Cor. 4]). Therefore, f ′2(ρn) converges to f ′2(ρ∞), e.g., strongly in
L2(0, T ;H), and it is clear that

−∆ρ∞ + φ∞ = µ∞ − f ′2(ρ∞) a.e. in Q. (5.24)
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Collecting (5.23) and (5.22), and recalling Lemma 1.3, p. 42, in [1], we conclude that 0 < ρ∞ <
1 and φ∞ = f ′1(ρ∞) a.e. in Q. Therefore, (5.24) becomes:

0 < ρs < 1 and −∆ρs + f ′(ρs) = µ∞ a.e. in Q,

and we deduce that µ∞ is time independent as well. Thus, µ∞(x, t) = µs for a.a. (x, t) ∈ Q
for some constant µs. Furthermore, µs is nonnegative, since µn ≥ 0 for every n. This concludes
the proof that (µs, ρs) is a steady state.

It remains for us to show that (µs, ρs) coincides with (µω, ρω). From (5.23) we see that ρn(0)
converges strongly in H to ρ∞(0) = ρs; on the other hand, ρn(0) = ρ(tn) converges weakly
in V to ρω, by assumption; hence, ρs = ρω. A similar argument holds for µs and µω, because
µn converges strongly in C0([0, T ];V ∗). Indeed, µn is bounded in L∞(0, T ;H), by (5.8); on
the other hand, (5.19) holds with p = 8/7 > 1, and the embedding H ⊂ V ∗ is compact;
hence, the desired convergence follows from [17, Sect. 8, Cor. 4]. This completes the proof of
Theorem 2.5.
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