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NUMERICAL REGULARIZATION FOR SDEs: 

CONSTRUCTION OF NONNEGATIVE SOLUTIONS 

HENRI SCHURZ 

Weierstrass Institute for Applied Analysis and Stochastics 
Mohrenstr. 39, Berlin 10117, Germany 

ABSTRACT: In the numerical solution of stochastic differential equations (SDEs) 
such appearances as sudden, large fluctuations (explosions), negative paths or un-
bounded solutions are sometimes observed in contrast to the qualitative behaviour 
of the exact solution. To overcome this dilemma we construct regular (bounded) 
numerical solutions through implicit techniques without discretizing the state space. 
For discussion and classification, the notation of life time of numerical solutions is 

.introduced. Thereby the task consists in construction of numerical solutions with 
lengthened life time up to eternal one. During the exposition we outline the role 
of implicitness for this 'process of numerical regularization'. Boundedness (N onneg-
ativity) of some implicit numerical solutions can be proved at least for a class of 
linearly bounded models. Balanced implicit methods (BIMs) turn out to be very 
efficient for this purpose. Furthermore, the local property of conditional positivity 
of numerical solutions is shown constructively (by special BIMs ). The suggested 
approach also gives some motivation to use BIMs for the construction of numerical 
solutions for SDEs on bounded manifolds with 'natural conditions' on their bound-
aries. Finally we suggest to apply these methods to population dynamics in Biology, 
innovation diffusion in Marketing and to mean reverting processes in Finance, such 
as stochastic interest rates. 

AMS {MOS) Subject Classifications: 60H10, 65C05, 65C20, 65U05. 

Key words and phrases. Stochastic differential equations, Numerical methods, 
Uniform boundedness, Explosions, Life time of numerical solutions, Algebraic con-
straints. 





1. INTRODUCTION 

Frequently one encounters with practical model equations which require nonnega-
tivity of the solution components. Such stochastic models can be found in popu-
lation dynamics, financial models, marketing structures, in quantum optics or in 

the modelling of water resources. There stochastic differential equations (SDEs) of-
ten describe pathwisely their dynamical behaviour. Mostly exact solutions of these 
'very erratic' objects are not known. Thereby one has to solve numerically these 
equations, but then negative solutions can occur what surely does not make any 
practical sense. Moreover, sudden large :fluctuations which we will also call explo-
sions at finite time are observed in contrast to the behaviour of the exact solution. 
Just, if the numerical solution takes negative values, such explosions occur. In this 
paper we want to examine numerical solutions of SDEs under this situation and 
study conditions which ensure nonnegativity of the components of corresponding 
numerical solutions too, without discretizing the state space. For the sake of discus-
sion and classification we introduce the notion of life time of numerical solutions. 
The main work is aiming at the construction of numerical solutions with eternal 
life time or at least with the largest-possible life time while keeping convergence 
towards the exact solution. In particular, this aim makes sense if one encounters 
with natural boundaries, as e.g. zero for continuous time interest rates in Finance 
or innovatfon diffusion in Marketing. In analogy to continuous time processes (e.g. 
see Khas'minskij (1980)), we also term this aim as regularization of numerical 
solutions. This regularization is possible by using implicit numerical techniques. 
Implicit methods are usually introduced to treat certain problems of numerical sta-
bility caused by stiff differential systems, i.e. such systems where one observes at 

· least two components with 'low' and 'high velocity'. This paper is to show that they 
are also appropriate for the construction of nonnegative numerical solutions for a 
quite general class of both linear and nonlinear SDEs. Besides, to some extent the 
investigation shall be useful to supply appropriate numerical solutions in the more 
general situation of SDEs on bounded manifolds with 'natural boundary conditions', 
such as absorbing or nonattainable boundaries. 
The paper is organized as follows. After brief description of the object, recalling 
some basic facts on SDEs and their numerical analysis and introducing the notion of 
'numerical life time' in sections 2 and 3 we start with a series of instructive examples 
to outline aspects of numerical regularization. The relation between the incorpora-
tion of implicitness and extension of life time of numerical solutions will turn out to 
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be crucial in it. In section 5 the exposition continues with two generalizations and 
their proofs. After that some simulation studies follow for stochastic interest rates 
governed by an extension of the model of Cox, Ingersoll & Ross ( 1985). Eventually 
we give conclusions and remarks in section 7. The paper is closed by an appendix 
on some numerical analysis for a SDE (pinned Brownian motion) with two-sided 
deterministic boundary conditions in section 8. 

2. SDEs AND THEIR NUMERICAL SOLUTION 

Stochastic differential equations driven by a random force {W(t) : t 2:: O} which 
is often interpreted componentwisely as m-dimensional standard Gaussian process 
Wi have the general form 

m 

dX(t) = a(X(t))dt + L ll(X(t))dWi(t) (2.1) 
i=l 

where a and bare Lipschitz continuous functions on IRd. In general, .in contrast to 
deterministic analysis, the solution of these SDEs strongly depends on the choice 
of the integration calculus for the stochastic integrals occuring in (2.1). In this pa-
per we will only take into· consideration the well-known Ito interpretation for the 
corresponding stochastic integration. Note that the different stochastic integral in-
terpretations can be transformed into each other in a natural way, cf. Gardiner 
(1984) and Wong & Zakai (1965). To obtain nonexploding stochastic solution pro-
cesses {X(t) : 0 ~ t ~ T} E JR.d up to a final time T we should additionally require 
some polynomial boundedness of the drift a(x) and diffusion functions ll(x), i.e. 

m 

3K1 > 0: Vx E IRd: lla(x)ll 2 + L lllr'(x)ll 2 ~ K;(1 + llxll 2
). (2.2) 

i=l 

Without loss of generality, we suppose that 11(.)11 denotes the Euclidean vector norm. 
If (2.2) does not hold then it can happen that the solution {X(t) : t 2:: O} only ex-
ists uniquely up to a finite stopping time r. The global requirements of Lipschitz 
continuity and polynomia:l boundedness are rather restrictive for systems modelling 
reality. In this case we point to literature and mention that they can be weak-
ened via 'localization techniques' or construction of stationary measures, e.g. see 
Khas'minskij (1980) or Ikeda & Watanabe (1981). Anyway, throughout this paper 
we assume existence and uniqueness of solutions of SDEs at least on a given mani-
fold. 
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Some of systems (2.1) are explicitely solvable, but, in general, only numerical tech-
niques lead to their solutions. For a massive collection of them see Kloeden & 
Platen (1992). Further details can be found, e.g. in Mil'shtein (1988), Talay (1990), 
Newton (1991), Artemiev (1993) or Kloeden, Platen & Schurz (1994). Throughout 
this paper we concentrate us on 'lower order numerical methods' in order to con-
struct sequences (Y(tn))neIN approximating the solution process {X(t) : t ~ O} at 
finite time-points tn from a given time-discretization of a fixed time-interval (0, T]. 
'Lower order numerical methods' provide values Y(tn) which are defined by an it-
erative scheme along this time-discretization and strongly converge to the exact 
solution with order'"'{= 0.5 or'"'{= 1 as the maximum step size D.. tends to zero. For 
the sake of simplicity we only consider deterministic time-discretizations 

T = T.6.([0,T]) = {ti: i = 0,1, .. .,nT;O =to< i1 < ... <in< tn+l < ... < tnT = T} 

of the interval (0, T] with time step sizes D..n = tn+l - tn. Define D.. := max D..n, 
the largest step size for the fixed time-discretization. Then the criterion of strong 
convergence of sequences (Y(tn))A>O towards the exact solution X(t) requires that 

with a fixed '"Y > 0 called the order of convergence (or methods). This error criterion 
'pathwisely compares' the exact and numerical solution at the discretization points 
tn( = n · D.. for equidistant discretization) on finite time intervals (i.e. T < +oo ), 
and also allows to conclude their convergence in probability. Simple examples of 
numerical methods are given by the family of implicit Euler schemes (see Kloeden 
& Platen (1992)) 

(2.4) 

or the family of balanced methods (BIMs, see Mil'shtein, Platen & Schurz (1992)) 
m 

Y!1 = Y: + a(Y:)D..n + L ll(Y:)D..W~ (2.5) 
j=l 

where a E [O, 1] and 0°, 0 1 are bounded matrices depending on Y: such that 
(I +C0 D..n + ~j=1 CilD..W~lt1 always exists and is uniformly bounded. I represents 
the d x d unit matrix with real entries throughout the paper. Both methods have 
strong convergence order '"Y = !· With Yn we denote Y(tn) above, i.e. the value 
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of the approximate solution Y using integration step sizes l:l.i :> 0( i = 0, 1, 2, ... ) 
at time points tn. l:l.W~ = Wi(tn+i) - Wi(tn) is the abbreviation for. the current 
increment of the corresponding Wien~r process. For very specific systems as systems 
with additive noise, i.e. the diffusi~n functions bi(.) of (2.1) do not depend on the 
state variable x, one even obtains an improvement of the order of strong convergence 
up to "/ = 1.0. 

There are three major reasons why we are not willing to consider numerical methods 
of higher order here. 'Higher order methods' require too much smoothness of the 
drift a(.) and diffusion functions bi as well as more information about the a-algebra 
generated by the underlying Wiener process. This can be illustrated by simple ex-
amples from finance or population dynamics, see also in section 4. In those cases one 
cannot prove the convergence rate as predicted for very smooth drift and diffusion 
functions with respect to fixed terminal times T. Moreover Clark & Cameron (1980) 
have proved that the order of strong convergence cannot exceed the value 1 provided 
that one only makes use of the local increments of the Wiener process. Thirdly, the 
stability behaviour of 'higher order methods' is not clarified so far, except for very 
simple equations, due to the lack of knowledge about appropriate test equations for 
stochastic stability of numerical methods. 

3. LIFE TIME OF NUMERICAL SOLUTIONS 

By numerical experiments confirmed, it seems to exist a relation between nonneg-
ativity and explosions of numerical solutions (In some cases both features exclude 
each another!). Such explosions we consider as unnatural as long as it is not typ-
ical for the analytic solution. Thus we are motivated to introduce the following 
notion in order to classify the numerical solutions with respect to leaving of nat-
ural boundaries, as e.g. the bounded domain of definition of an analytic solution. 
Let (0, F, IP, (Ft)t>o) denote the underlying probability space (sometimes called as 
stochastic basis). 

Definition 3.1 {Life time of numerical solutions} 
Assume that the process {X(t) : t 2:: O} E ffl1 satisfying (2.1} has only nonnegative 
values a.s. provided that X(O) 2:: 0, i.e. it holds 

IP({wEfl:X(t,w)<O})=O Vt>O. (*) 
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Then a numerical solution (Yn)nelN has a finite life time if there is a finite stopping 
time rn( w) ~ 0 such that 

Otherwise we call it a numerical solution with eternal life time. 

The nonnegativity (inequality sign in the definition) is understood in terms of the 
components of those vectors involved. Of course, with this definition we do not 
answer what we should do with the continuation of the numerical solution in the 
case of negative components. We are only interested to prevent this situation by 
numerical techniques or at least to reduce the frequency of such appearances. Thus 
we follow the rule beyond a finite life time it makes no sense to look further at the 
numerical solution, for the sake of practical requirement.s. It may be mentioned that 
conditions ( *) and ( **) are replaced by 

lP({wE11:X(t,w)~ID})=O 'v't>O. (*') 

and 
Yn = Y( Tn) ~ ID ( a.s. ), ( **') 

respectively, in case of more general consideration of SDEs on manifolds ID E lRd 
(assume that X(O) E ID and process X(t) is well-defined on the domain ID), e.g. 
ID= (0, l)d. Thereby we also possess the possibility to characterize and investigate 
the more complex situation of bounded domains of definition. However, a detailed 
discussion on this topic we omit here. We will rather deal with domains of the form 
ID = (0, +oo) or their d-dimensional products. 

4. CONSTRUCTION OF NONNEGATIVE SOLUTIONS IN IR.1 

4.1 A deterministic one-dimensional model (Motivation) 

In deterministic numerical analysis a very simple example is well-known. Consider 

the equation 

x =Ax with x(O) = xo ~ 0 

and its nonnegative exact solution x(t) = exp(.At) · x0 • Then the Euler scheme gives 
n 

Yn+i = Yn + Ayn/::in = (1 + A/::in)Yn = Yo II (1 + A/::ii) · ( 4.1) 
i=O 
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Obviously, this solution is always positive if y0 > 0 and .X ·;::: 0 or 1-XI < L for all 
i = 0, 1, .:., n. Thus negative values may occur under the assumption y0 > 0, .X < 0 
and !:::..i large enough. In contrast to this scheme, in the case y0 > 0, .X < 0, we can 
always prevent negative outcomes or even 'explosions' in numerical methods with 
arbitrary step sizes !:::..i for that linear differential equation. For this purpose we 
introduce implicit Euler schemes with 

(4.2) 

hence it gives positive values if 1 + (1 - a).X!:::..i > 0 for all i E IN. A generalization 
of these schemes is presented by the deterministic balanced methods 

( 4.3) 

for an appropriate constant c > 0. Consequently, numerical solutions generated by 
( 4.3) with c 2:: l.XI or by ( 4.2) with a= 1 are positive and monotonically decreasing 
for all Yo > 0, .X < 0 and arbitrary step sizes !:::..i 2:: 0. They do not have any 
explosions, and do not vanish for positive start values as well. Hence they possess 
eternal life time. 

4.2 A stochastic bilinear one-dimensional model 

In the following we consider the one-dimensional stochastic equation 

( 4.4) 

driven by the Wiener process Wt. The exact solution of ( 4.4) is known with 

X(t) = exp((.X -12/2)t+1Wt) · X(O), 

hence it is always nonnegative for nonnegative initial values X(O) = x 0 and does 
not change its sign. Without loss of generality we suppose I > 0 for the further 
consideration. 
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Lemma 4.1 Suppose X(t) satisfies (4.4) with X(O) > 0, 'Y > 0 and (1- a.\..6.) > O. 
Then the Euler approximation {2.4} started in YoE = X(O) has finite life time. 

Proof. For simplicity we only consider equidistant approximations. The scheme 
(2.4) takes for model ( 4.4) the form 

Y!1 ynE + a.\Yn~l~ + (1 - a).\YnE~ + 'YynE ~Wn 

_ 1 + (1 - a).\~+ 'Y~Wny:E = y;:E fJ: (1 + (1 - a).\~+ 1'1Eei) 
1 - a.\~ n o i=O 1 - a.\..6. . 

Define the events Ei ~ 11 (whereas (11, F, IP) represents the Gaussian probability 
space attached to the random variable Wt, i E JN) with 

for i.i.d. ei(w) E N(O, 1) (standard Gaussian distributed). Then the event 

E := {w En: 3r(w) < +oo,r(w) E IN·: YT~w) < O} 

can be substituted by the events Ei, and with 

( 
1+(1-a:).\~) IP(Eo)=IP {wE11:fo(w)<- 'Yv.E }· =:p 

one obtains 

IP(E) 1P(E n (Eo U Eo)) 

- IP(EIEo)IP(Eo) + lP(EIEo)lP(Eo) 

- p + (1 - p)IP(EIEo) 

- p + (1 - p)IP(E.n (E1 u Ei)IEo) 

- p + (1 - p) (IP(EIEo, Ei)IP(E1) + IP(EIEo, Ei)IP(E1)) 
_ p + p(l - p) + (1 - p)2IP(EIEo, Ei) 

p + p(l - p) + p(l - p)2 + (1 - p)3IP(EIEo, Ei, E2) 

00 

. ( 1 ) p - p :E(1 - p)' = p = - =i. 
i=O 1 - ( 1 - p) p 

Note that it always holds 0 < p < 1. Thus it must exist ( a.s.) a finite stopping time 
Tn = n(w)..6. such that YE(rn) = ynE < 0. 0 

Remark (Alternative proof). With the help of the well-known lemma of Borel-
Cantelli (or Kolmogorov's 0-1-law) one also finds a short proof of lemma 4.1. For 

this purpose we define 

An= {w E 11: 3i ~ n: fiE < 0} 
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for n E JN+. Then it follows 

Because of JP(An) = (1 - JP(Eo)r (n = 1, 2, ... )we obtain 

00 - 1 E JP(An) = JP(Eo) < +oo 

where 

1 > lP(Eo) - JP({w En: 1 + (1- a);\~ +1~fo(w) < O}) 
1 (-1+(1~).A.) -j 7 A. exp(-x2/2)dx ./'ii -00 

<P ( l+ (~;;)).Ll) > 0 Vll E (0, oo) 

and <'P denotes the probability distribution function of the standard Gaussian distri-
bution, hence the assertion JP( E) = 0. Thus, for the implicit Euler schemes there is 
always a trajectory with negative outcome under the assumptions of the lemma 4.1. 
In contrast to that fact, we find numerical methods which only possess nonnegative 

·values. A corresponding assertion is formulated in lemma 4.2. 

Lemma 4.2 Suppose X(t) satisfies (4.4) with 'Y > 0 and X(O) ~ 0. Then the 
balanced methods with constants c0 and c1 ~ 0 have eternal life time provided that 

1 + (c0 + ;\)~ ~ 0 and c1 ~ 'Y. (4.5) 

Proof. This claim follows immediately from the structure of the methods (2.5) 
applied to the equation ( 4.4). One receives then 

Y!1 - Y,;3 + AY,;3 ~ +1Y,;3 ~Wn + (c0~ + c1 1~Wnl)(Y,;3 - Yn1!-1) 
1 + (c0 + ;\)~ + r~Wn + c1 1~Wnly:B 

1 + cO~ + cll~Wnl n . 

Thereby, Yi~1 ;?:: 0 iff 

for all i E JN. Obviously, this is true under ( 4.5). 0 
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4.3 A nonlinear diffusion in population dynamics 

Often in population dynamics one encounters with diffusion parts of the form 

b(x) = a.jx(l - x) 

where a positive. For the sake of illustration we only consider the one-dimensional 
diffusion process goyerned by SDE 

( 4.6) 

where a > 0 starting in Xo 2'.: 0. Sometimes model ( 4.6) is also refered to Fisher-
Wright diffusion. It is not hard to verify that for positive initial values X 0 the 
corresponding solution process {X(t) : t 2'.: O} remains still nonnegative with prob-
ability one. Due to problems with the positivity of the term structure under the 
square root of the diffusion part, the system can only live with reasonable interpre-
tation on the interval [O, 1], without loosing the space of real numbers. Thereby it 
is natural to require X 0 E [O, l]. Assume Xo E (0, 1). Then a corresponding BIM is 
given by the scheme 

with specifically choosen c( · ). Natural convergence requirements lead to nonnegativ-
ity and some boundedness conditions for this parameter function c( ·) to be specified. 
Suppose c(.) 2'.: 0 is bounded. Then the scheme can be rewritten to 

Yn + a.JYn(l - Yn).6.Wn + ac(Yn)Ynl.6.Wn.I 
Yn+l = ( )I I · 1 + ac Yn .6.Wn (4.8) 

Let us fix a parameter e with 0 < c < 0.5. This parameter is to express the 
interest that one does not consider such approximate values which fall into a small 
neighbourhood of the boundaries. Thus a reasonable choice would be c < < 0.5. In 
cases of this neighbourhood around the boundaries the process is absorbed, hence 
it becomes stationary. This replicates the behaviour of the exact solution in the 
neighbourhood of the boundary points 0 and 1. Now we choose the parameter 
function 

l V?1 if 

Ce(Y) = ~ if 
11¥ if 

y<c 
c~y~l-c . 

y>l-c 

(4.9) 

In contrast to the previous linear examples here it seems to be very difficult to 
verify global life of approximations within reasonable boundaries. Thus we restrict 
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the main interest to look for an optimizing of the one-step probabilities to live in 
given boundaries. It turns out that one can work out a so-called e-technique. 

Lemma 4.3 For the BIM (4.8) with (4.9} it holds 

while the order 'Y = 0.5 of strong convergence towards the exact solution of (4.6} is 

preserved for fixed e with 0 < e < 0.5. 

Remark. Thereby one is able to construct one-step approximations ranging within 
reasonable boundaries, i.e. without leaving the domain of definition of the diffusion 
function. The proof of this lemma is obvious and can be omitted, because the 
parameter function Ce is positive and bounded, and the convergence is justified by 
a general proof from Mil'shtein et al. (1992). 

2 4 6 8 

"Euler• -
• BIMl • ----· 
"BIM2" ~ 

10 

Figure 1. Paths of two BIMs and Euler method with O' = 5, step size D.. = 0.01 
started in Yo = 0.5. 

In figure 1 the trajectories of two specifically chosen BIMs are compared with that 
of the corresponding Euler method. The BIMs could completely control their move-
ment on the bounded domain of definition of the exact solution for a given path of 
the underlying Wiener process, whereas the corresponding 'Euler path' immediately 
explodes and leaves the interval (0, 1]. 
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4.4 A nonlinear diffusion process with linear drift 

The following nonlinear diffusion process is given by the solution of the SDE 

(4.10) 

where a, b, a ~ 0 and eo > 0. This process belongs to the class of more general 
mean-reverting processes and has positive solutions. 

Once again we suggest a BIM with 

Yn+l = Yn + [a - bYn]~n + aJeo + Y;~Wn 

+ (M.n+a(l+ e~l~nl)l~Wnl)(Yn-Y..+1) ( 4.11) 

where Yo= Yo> 0. e > 0 is again a fixed, small parameter. 

Consequently, we obtain the scheme 

Yn + a~n + a.jeo + Y;~Wn + a(l + ~)Ynl~Wnl 
Yn+l = ( 2t: )I I · 1 + b~n + (]' 1 + ~ ~ Wn 

( 4.12) 

Thus we can construct a numerical solution which has positive outcomes with high 

probability provided that Yo ~ 0. This assertion is supported by the following 
lemma (for a proof in a more general situation, see Theorem 5.2). 

Lemma 4.4 The BIM (4.11} maximizes the conditional one-step e-probabilities of 
positivity, i. e. it holds 

lP(Yn+i > OIYn ~ e) = 1. 

4.5 A mean-reverting process with cubic diffusion 

Mean-reverting processes in Finance satisfy SD Es of type 

where 'lf;( x) 2:: 0 if x 2:: 0. By choosing the special function 

ax3 

'lf;(x) = 1 + x2 

with some positive constant a it leads to SDE 

aX3 

dXt =[a - bXt]dt + l + ~ldWt. 
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For this specific process we recommend to implement the BIM following 

Resolving this algebraic equation one obtains 

( 4.16) 

It is relatively easy to see that with probability one these numerical solutions possess 
only positive outcomes when Yo starts with a positive value. Take a, a, b 2:'.: 0. In 
contrast to the two previous examples this BIM even allows to construct numerical 
solutions with eternal life time. We note that a corresponding 'Euler solution' would 
always provide _numerical solutions with finite life time. 

Lemma 4.5 The numerical solution (Yn)nEIN generated by (4.15) has eternal life 
time if Yo= Yo 2:'.: 0. 

4.6 Diffusion of innovation in Marketing Sciences 

Bass (1969) suggested to model how a product, technology, news, ideas, etc. diffuse 
in a given deterministic media. This model admits to describe the number of adop-
tions Xt in terms of nonlinear differential equations. Stochastic generalizations of 
that model have recently led to the class 

( 4.17) 

started in X 0 E (0, M], where p, q, M, a are positive parameters, e.g. see Karmeshu, 
Lal & Schurz (1995). p can be understood as coefficient of innovation, q as coefficient 
of immitation, M as total adoption size. Under the presumption a 2:'.: 0, {3 2:'.: 1 one 
is able to prove 

Vt 2:'.: 0 IP(Xt E [O,M]) = 1. 

The following BIM solves the problem of numerical regularization on the bounded 
domain [O, M], provided that a 2:'.: l,{3 2:'.: 1. Take 

Yn+l = Yn+(p+ !Yn)(M-Yn)~n+aYna(M-Yn)~~Wn 
+aK(M)Yna-l(M - Ynl-1 l~Wnl(Yn - Yn+i)) 

where K = K(M) is an appropriate positive constant. Then it holds 
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Lemma 4.6 The numerical solution (Yn)nelN governed by {f 18} has eternal life 
time if Yo E [O, M] and 

1 
K(M) ~ M > O,o: ~ 1,/3~1,0 < ~n ~ -+ (Vn E JN). p q 

Proof. Use induction on n E JN. Then, after explicit rewriting of ( 4.18), one finds 
the following estimation of an upper bound 

Y. (p + ~Yn)~n + aYna(M - Yn}8-1~Wn 
- n + 1 + aK(M)Yna-1(M - Yn}B-ll~Wnl (M - Yn) 

Yn+p·(M-Yn) ~ Yn+M-Yn = M, 

since p ~ 1 if K(M) ~ M. Otherwise, nonnegativity of Yn+i follows from Yn+i = 
Yn + (p + ifYn)(M - Yn)~n + aY:(M - Yn)13- 1((M - Yn)~Wn + K(M)l~Wnl) 

1 + aK(M)Yna-1(M - Yn)/3-lj~Wnl 

if K = K ( M) ~ M. Consequently, we have 

Vn E IN 1P ( 0 ~ Yn ~ M) = 1. 0 

Remark. The boundedness of this sequence of numerical values turns out to be 
essential for both the interpretability within in the framework of Marketing issues 
and the proof of rates of convergence. 

5. TWO THEOREMS FOR LINEARLY BOUNDED DIFFUSIONS 

The numerous examples of the previous section have already indicated that for 
a quite general class of SDEs one is capable to construct nonnegative numerical 
solutions. The following result generalizes all the ideas presented before in this 
respect. In stating the result below we componentwisely understand nonnegativity 
of vectors, hence the occuring inequality signs between vectors. Define b0 ( x) = a( x ). 

Theorem 5.1 Assume that there are bounded, real-valued dx d matrices C0 , ••• ,cm 
with nonnegative entries and positive constants K3 and K 4 such that 
for all real-valued vectors x with nonnegative components 
(1). [a(x) + C0(x )x]i ~ 0 for all i = 1, 2, ... , d, 
(2). [Ci(x)x]i ~ l[bi(x)]il for all i = 1,2, ... ,d;j = 1,2, ... ,m, 
for all real-valued vectors x E R' 
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{9). ~i=o llC3(x)f1(x)ll 2 ~ Ki(l + llxll 2
) 

(4). V( a; 2:: O);=o,1, ... ,m, ao ~ a 
3M-1 with M(x) =I+ ~i=o a;Ci(x) and llM-1(x)ll ~ K4 and 

(5). M-1 has only nonnegative entries for nonnegative vectors x. 

Then, for any choice of step sizes ( .6..n > 0 )neI/'b a numerical method exists which 
only gives nonnegative approximate values provided that it starts with nonnegative 
initial vectors Yo. Furthermore these numerical solutions strongly converge towards 
the exact solution of system {2.1) with order 'Y = 0.5. 

Proof. (Constructive) 

Consider the balanced implicit method (BIM) generated by the scheme (2.5) with 
matrices .Ci(.). Suppose these matrices satisfy the conditions (1) - (5). Then these 
methods provide numerical solutions converging strongly towards the exact solution 
with order 'Y = 0.5 for general SDEs (2.1). This can be immediately concluded from 
the exposition Mil'shtein et al. (1992). Under the condition ( 4) of Theorem 5.1 the 
scheme of BIM (2.5) is rewritten to 

Yn+l = M;1(Yn) (Yn + ~ (ll(Y,.)f1W~ + Ci(Yn)Ynlf1W~I)) (5.1) 

where .6..W~ = .6..n and Mn(x) = I+ L:;!:o Ci(x)j.6..W~I· Suppose that [Yn]i ~ 0. 
Matrix M;;1 preserves the non.negativity because of requirement (5). Thereby we 
only have to check whether the random vector-valued function </J( x). with 

m 

</J(x) = x + L (ll(x)LlW~ + Ci(x)xlLlW~I) (5.2) 
j=O 

takes nonnegative values for nonnegative vectors x E 1Rd. Now we obtain the corn-
. ponentwise estimate 

m 

<Pi(x) > L ([l1(x)]iLlW~ + [C3(x)x]il.6..W~I) 
j=O 

m 

> ([a(x)+C0(x)x]i)Lln+ L ([C3(x)x]i-l[lJ(x)]il)l.6..W~I ~ 0. 
j=l 

Each component of this random sum is nonnegative under assumptions (1) - (2), 
hence function </J takes nonnegative values for any random input Ll W~. Therefore 
the new vector Yn+i only possesses non.negative components. Consequently, the 
proof of Theorem 5.1 can be completed by induction and we have found a numerical 
solution with eternal life time. 0 
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Remark. At the first glance, it seems that the problem of an appropriate choice 
of weight matrices is very complicated while requiring condition ( 4) ~f Theorem 
5.1. However, positive semi-definite matrices Ci or even simpler nonnegative diag-
onal matrices Ci trivially fulfil requirement ( 4). Condition ( 5) seems to be more 
restrictive, but it is satisfied in case of nonnegative diagonal matrices. 

A further result is deduced for one-step approximations of multi-dimensional SDEs 

with specific drift and diffusion functions. But, in stating this assertion below, we 
note that the condition of componentwise, linear boundedness of these functions. by 
their components themself turns out to be rather restrictive for multi-dimensional 
SDEs. 

Theorem 5.2 Assume that the drift and diffusion functions of SDE {2.1} are lin-
early bounded with nonnegative constants KJ and KJ (j = 0, 1, ... , m) such that 

Yi= 1, 2; ... ,d. 

Then there are numerical solutions (Yn)ne!N which strongly converge with order 
I = 0.5 and maximize the one-step e-probabilities of positivity, i. e. 

JP(Yn+i > Oj[Yn]i ~ c, i = 1, 2, ... , d) = 1 

for fixed, small values e > 0. 

Proof. (Constructive) 

Take the BIM with diagonal matrices Ci(x) = (cf,i) and elements 

. 2K9 T 
c!i(x)= (I +K,~, x=(x1, ... ,xd) ;j=O,l, ... ,m;i=l,2, ... ,d. ' e+ Xi 

Thus these functions are bounded and satisfy the conditions for the strong conver-
gence stated in Mil'shtein et al. (1992) with the order 0.5. The nonnegativity of the 
one-step approximation a.s. follows by means of the same analysis as in the proof 

above. 0 

6. AN EXTENDED MODEL OF COX-INGERSOLL-ROSS 

For modelling of the behaviour of interest rates one often makes use of special 
mean-reverting processes. Such processes have been considered by many authors, 
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e.g. Vasicek (1977), Courtadon (1982) or Cox, Ingersoll & Ross (1985). Somehow 
it seems to be natural that one exclusively models with nonnegative interest rates 
r(t). Nonnegativity of them ensures monotonicity of the pricing functional of an 
asset, option, etc., e.g. when 

Price( t) = exp ( - { r( s) ds) , 0 :'.':: t :'.':: T 

as price of zero. coupon bond normalized to one at maturity-time T. In one factor 
models one encounters with SDEs for interest rates governed by the general class 

dr(t) = [a0 - a1r(t)]dt + a(r(t))PdW(t) (6.1) 

starting in r(O) = r0 2:'.: 0 where a0 , a1 , a and p 2:'.: 0. Vasicek (1977) started with ana-
lytic examinations of effects on corresponding term structures under the presumption 
p = 0. The drawback of his model lies in the presence of negative interest rates. Af-
ter Courtadon (1982) with p = 1.0, Cox, Ingersoll &·Ross (1985) have investigated 
term structures using interest rates (6.1) with p = 0.5. The latter two models only 
possess nonnegative outcomes for the interest rate. Meanwhile, some real data anal-
ysis has shown that exponents close top = 1.5 are somehow more realistic within 
the framework of model (6.1), cf. remarks in Chan et al. (1992) and Jaschke (1994). 
Anyway, for the sake of illustration, our numerical studies shall mainly concern with 
the situation p = 0.5. 
An analytic solution of (6.1) uniquely exists for almost all parameter constellations, 
but it is very complicated. For p = 0.5 the solution process {r(t) : t ~ O} belongs 
to the class of Bessel-type diffusions. This can be motivated by computation of 
stationary solutions and their probability density. In general (i.e. except for the 
special cases p = 0, p = 1 or a0 = ~a2 and p = 0.5), an explicit expression for the 
pathwise solution of this SDE is not known up to now. Note that for a0 = ~a2 and 
p = 0.5, via Ito formula, the solution is found to be a squared Ornstein-Uhlenbeck 
process, namely 

Even in this special case, although the probability distribution is completely known, 
one has to approximate pathwisely a stochastic integral for given increments of the 
underlying Wiener process. 
In Ikeda & Watanabe (1981) one finds a corresponding justification (argumentation) 
that this model only lives on the nonnegative real axis. Thus the equation is well-
defined. Consequently, the requirement of nonnegativity on numerical solutions 
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makes sense and is an urgent task for construction procedures. Following the ideas 
of the previous sections one tries to find an appropriate BIM for the construction of 
nonnegative numerical solutions. Naturally, one should make use of the very specific 
structure. After analyzing the scheme 

we find several recommendations, among them 

-
{ 

yP-1 if y ;::: e 
c!(Y) 

eP-l if y < e 

c~(y) = I+ 21 I . e+ Y 

(6.2) 

(6.3) 

(6.4) 

The first recommendation exploits the specific structure of the given SDE, whereas 
the second corresponds to the general one arising from Theorem 5.2. This exam-
ple shows how difficult it is to control the 'erratic' behaviour of nonlinear diffusion 
terms, although they are linearly bounded. Thus we cannot generally expect to pro-
vide nonnegative numerical solutions with probability one through Balanced implicit 
methods with constant integration step size. However, we succeed in maximizing 
the one-step e-probabilities, as predicted by Theorem 5.2. Moreover, one gains 

numerical solutions with nonnegative oll:tcomes with larger probability than that 
of the usual Euler method. This suspicion can be supported by some numerical 
experiments where one estimates the corresponding probabilities at discrete times 
tn. We receive the inequality 

for all time points tn provided that YoE = YoB1 = YoB2 2:: 0. 

Numerical Experiments for an Explicitly Solvable SDE. 

A very simple example with known pathwise solution is given by 

dr(t) = dt + 2.;:;wdW(t) (6.5) 

within the class of processes mentioned above. After using the Ito formula one 
encounters with its solution expression 

r(t) = ( {r(O) + W(t)r , r(O) = r 0 ;::: 0. (6.6) 

In passing, we remark that this SDE seems to be the only SDE of type ( 6.1) where its 
solution expression does not have to be approximated for its pathwise description 
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in any form, while the underlying Wiener path is given at discrete time points. 
Only for the sake of some illustration we carry out numerical experiments for this 
example. In the following two figures we compare the numerical behaviour of the 
explicit Euler method with that of BIMs B1 and B2 with recommendations c! and 
c~, respectively. 

0.8 

0.7 

0.6 

Prob(Explicit Euler < 0) ~ 
0.5 

Prob(Specified BIM < 0) ----· 
0.4 

0.3 
Prob (General BIM < 0 J •••••• 

0.2 

0.1 
___________________ .;. _________________________________ ... _______________ _ 

O"----==~;;...i_~~~----'~~~~-L-~~~--1..~~~----1 

0 2 4 10 

Figure 2. Evolution of estimates for the probability falling into negative 
approximation values started in r 0 = 0.5 and using step size /:),,, = 0.01, e = 0.03 

and sample size N = 10000. 

Figure 2 shows the estimates for the corresponding probabilities falling into nega-
tive real axis. There a significant difference between those methods is visible. The 
method B2 seems to have no paths with negative outputs, whereas B1 possesses neg-
ative outcomes with positive probability. However, the explicit Euler method has 
the highest probability of negativity. This obviously contradicts to the behaviour 
of the exact solution. The basic assertion of figure 2 can be confirmed by any other 
choice of step sizes, but in detail we observe a strong dependence of results on the 
amount of initial value r 0 • For very small step sizes one receives the predicted con-
vergence, and the three methods above approximately merge into the same scheme 
evaluation. Of course, because the class of BIMs tries to correct the explicit Euler 
method with terms of 'neighboured order', we do not expect a decisive improvement 
of the strong error e(tn) = IE lr(tn) - Ynl itself. In these experiments we obtain a 
slight worsening of the estimates of this error behaviour at an initial period of time, 
whereas the long term error even becomes smaller than that of Euler method. This 
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is visualized in figure 3. 

Error(Explicit Euler) ~ 

6 Error (Specified BIM) ----· •••. •·······•·· 

4 

Error (General BIM) ·•···· ....... ·····, •• /'··' 

;;=;::;;;/' 
,,, .. ' ,,, 

: ,,:-;;;:;:-:.···········:;:;::~:,/· ,,,,'' 
0 2 4 8 10 

Figure 3. Evolution of strong error estimates for the Euler method and BIMs 
started in r0 = 0.5 and using step size 6. = 0.01, e = 0.03 and sample size 

N::::: 10000. 

Adequate incorporation of implicitness plays an essential role for the process of 
numerical regularization. It is reasonable to take into account the requirements of 
controlling both error and nonnegativity of numerical solutions. This can be also 
made visible as follows. We consider once again BIMs (6.2) with weights 

cp(Y) = p, p ~ 0 

and estimate probabilities of the corresponding numerical solutions leaving the nat-
ural boundary zero. As in figure 4 we observe that increasing implicitness, i.e. 
increasing parameter p ~ 0, reduces the probabilities of 'numerical negativity' with 
fixed step size. Thereby effects of incorporated implicitness on the process of numer-
ical regularization have been confirmed, as already underlined in previous sections. 
Now it is worth noting that such increasing parameter p of implicitness (at least from 
a certain critical value on) can also effect large strong errors up to their divergence. 
For confirmation of this fact one could repeat numerical experiments in analogy to 
figure 3. Thus the 'art of numerical regularization' consists of finding appropriate 
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parameters or weights to control both error and nonnegativity! 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 
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0.1 ,,,,' 

....................... 

Prob(BIM(rho=O) < 0) -

Prob(BIM(rho=l) < 0) •••••· 
................................. .................... .................................... 

Prob ( BIM ( rho=2) < 0) ----· 

-----------------------------
,_....---,-- Prob ( BIM (rho= 3) < 0 ) -
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0 2 4 10 

Figure 4. Evolution of estimates for the probability of BIMs falling into negative 
approximation values started in r 0 = 0.5 and using step size !i = 0.01, parameters 

p = 0, 1, 2, 3 and sample size N = 10000. 

All in all we succeeded in improving the qualitative behaviour of the paths of nu-
merical solutions. Which method has to be finally prefered depends on the model 
issue and task to be solved. Consequently, this decision is left to the user himself. 
For the simulation of the class of special mean-reverting processes discussed in this 
section we suggest to take the BIMs using correction weights c! or c~ with a small 
e. Once again we stress that e > 0 is to be fixed, due to convergence requirements. 
In passing we note, for more systematic investigation of numerical methods with 

· lower order of convergence applied to model (6.1), we point to a forthcoming paper 
of Kuchler & Schurz (1994). There aspects of stochastic numerical analysis of term 
structures of interest rates following equation (6.1) with general nonnegative expo-
nent p will be collected, as well as some simulation studies for this specific model in 
view of its application in Mathematical Finance. For an analytic investigation us-
ing stochastic Lyapunov-type methods we refer to a forthcoming manuscript of the 
author. There pathwise existence, uniqueness, regularity, stationarity and nonnega-
tivity will be enlightened within a general framework. Besides, another approach to 
discrete time analysis of interest rates is presented in Pfann, Schotman & Tschernig 
(1994). They use nonlinear, autoregressive models to explore effects of nonlinearity 
on discrete time term structures. 
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7. CONCLUSIONS AND REMARKS 

For very specific SDEs one is able to construct positive numerical solutions ( a.s.) 
without loss of the order of strong convergence and without discretizing the domain 
of definition of exact solutions. The class of Balanced Implicit Methods (BIMs) 
turns out to be already efficient to solve this task. The role of implicitness for 
the construction of adequate numerical solutions on the positive real half space has 
been outlined in this exposition ( cf. figure 4). As a by-product, we have found the 
hand rule 'Increasing implicitness in the numerical solution implies increasing time 
staying on the positive axis' for a certain class of SDEs. 

For qualitative judgement about numerical solutions we introduced the notion of life 
time. The well-known Euler method fails to provide approximations with eternal 
life time, i.e. there are simple examples where this method leads to values outside the 
domain of definition of the exact solution at a finite stopping time with probability 
one. This message is important in so far that the Euler method represents the 
most-known, simplest and frequently used, stochastic numerical method. 

Usual discrete time methods (as strong Taylor or explicit methods, even methods 
with higher order of convergence) would mostly lead to the problem of having ap-
proximate values outside the domain of definition of the exact solution. This is par-
ticularly precarious for the construction of numerical solutions for SDEs on bounded 
manifolds or with algebraic constraints. To prevent this appearance or reduce its 
frequency we recommend to work out corresponding implicit techniques, above all 
appropriate BIMs. In this respect this paper exhibits a first trial to handle with 
numerical analysis for Stochastic Differential Algebraic Equations (SDAEs) with 

. nonanticipating algebraic constraints (see also in appendix). 

Balanced implicit methods (BIMs) are appropriate to treat at least the linear influ-
ence caused by drift and diffusion functions of SDEs in numerical methods. Besides, 
their justified application requires relatively low smoothness conditions on the co-
efficients of considered SDE (i.e. drift and diffusion) and the smallest information 
on the a-algebra generated by the underlying Wiener process. Therefore their im-
plementation costs lesser computational effort than that of corresponding methods 
of higher order of strong co.nvergence. The gap how the weight matrices Ci ( x) have 
to be chosen in BIMs can be filled by using 'local linearization techniques', e.g. by 
the use of current Jacobi matrices of drift and diffusion functions or their positive 
semi-definite regularizations - a kind of stochastic Rosenbrock methods (sometimes 

21 



called linear-implicit methods, cf. Artemiev (1993)). Thus we may encourage the 
reader to apply the techniques described herein to models for dynamics in Biol-
ogy, in Hydrology, in Marketing Sciences or in Finance. For example, by them 
one is able to construct discrete time approximations which only possess nonnega-
tive values (almost surely) for interest rates following the continuous time models 
of Dothan (1978) or Courtadon (1982), see Hull (1989) or Duffie (1992) for their 
definition and role in Finance. 

In linearly bounded models, i.e. where drift and diffusion functions of the considered 
SDE are bounded by polynomials of degree one, one can carry out a so-called local 
£-technique for probabilities of numerical positivity. However, in some models the 
suggested numerical methods lead to a slight worsening of the global errors at an 
initial period of time, whereas they reduce the 'long term error'. These facts can 
be easily seen within the class of stochastic processes based on an extended model 
of Cox, Ingersoll & Ross (1985) in Finance ( cf. figure 3). Nevertheless, the rate 
of strong convergence could be preserved. Consequently, there is the challenge of 
getting a balance between the requirements of strong convergence and positivity of 
numerical solutions. 

At the end we point out that all the examinations and results of this paper only 
make sense if the exact solutions have positive outcomes with high probability, or 
more general, if they move on bounded manifolds and do not leave them. We are also 
conscious that the present knowledge when one should discretize the domain of def-
inition and when not is very little for such stochastic differential systems. Another 
alternative is performed,by stochastic adaptation of step size selection depending 
on the current distance to the boundaries. However, this procedure without trun-
cation rules assumes the possibility of 'almost infinite refinement' of discretization. 
Hence an arbitrary access to the source of random noise is required then. This can 
represent an impractical requirement (except for short term problems, pure simula-
tion purposes or stochastic adaptive techniques with appropriate truncation rules). 
Thus the question 'Which method has to be prefered when?' has to be left to the 
experience of the reader. 

8. APPENDIX: DISCUSSION ON BROWNIAN BRIDGES 

In this appendix we briefly report about an observation during discussion on SDEs 
and their numerical analysis with two-sided boundary conditions, i.e. with deter-
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ministic initial and deterministic terminal conditions. Such solutions can be gener-

ated by discontinuities in the drift part of SDEs. As a simple example, we analyze 
approximations of Brownian Bridges, cf. Karatzas & Shreve (1991). This stochas-
tic process. - sometimes also called pinned Brownian motion - can be described by 
the one-dimensional equation 

b-Xt 
- T-t dt+dWt, (8.1) 

started in Xo = a, pinned to XT = b and defined on t E [O, T], where a and b are 

some fixed real numbers. According to Corollary 6.10 of Karatzas & Shreve (1991), 
the process 

{ !a
t dW 

a(l - ~) + b~ + (T - t) -T a if 0 ~ t < T 
Xt = o -s 

b if t = T 
(8.2) 

is the pathwise unique solution of (8.1) which is Gaussian distributed with continu-
ous paths ( a.s.) and expectation function 

t t 
m( t) - IE Xt = a( 1 - T) + b T (8.3) 

on [O, T]. 
Surely, up to any terminal time T* < T, we can provide numerical solutions which 
are pathwisely converging towards the exact solution (8.2). But what happens with 
these numerical solutions when one takes the time-limit towards the terminal time 
T? Can we achieve a preservation of boundary condition XT = bin the numerical 
solution Y under nonboundedness of drift part of the underlying SDE? 
For a first numerical approach, one may discuss the behaviour of numerical solutions 

given by the family of implicit Euler methods (2.4). This class of numerical 
methods applied to equation (8.1) lies in the class of Balanced implicit methods and 
is governed by the scheme 

[ 
b - Yn+l b - Yn] Yn+i = Yn + Cl.T + (1 - a)T ~n + ~Wn 

- in+l - tn 
(8.4) 

where a E JR+ = [O, +oo ), Yo = a and n = 0, 1, ... , nT - 1. Obviously, in the case 

a = 0, it holds 
(8.5) 

Thus, explicit Euler method ends in random terminal values, which is a 
contradiction to the behaviour of exact solution (8.2)! Otherwise, in the case a > 0, 
one may explicitly rewrite (8.4) to Yn+l = 

T - tn+i Y. _ (1 - a)(T - tn+i)~n Y. . T - tn+i ~W, 
T - tn+l + Cl.~n n (T - tn)(T - tn+l + Cl.~n) n + T - tn+l + Cl.~n n 
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(1 - a)(T - tn+t)~n b a~n b 
+ (T -tn)(T - tn+t + a~n) + T - tn+t + a~n . 

(8.6) 

A simple analysis of (8.6) shows that 

(8.7) 

Thus, implicit Euler methods can preserve (a.s.) the right terminal con-
ditions! Once again we have demonstrated that implicit techniques are favourable 
in order to guarantee algebraic constraints (Of course, this fact has been known in 
deterministic analysis since a long time!). Summarizing the displayed results, one 
arrives at the following assertion. 

Theorem 8.1 It holds 

1. fEYnT b if a2'.:0 
2. JE (YnT - b)2 - ~nT-1 if a=O 
3. JP(YnT = b) 0 if a=O 
4. JP(YnT = b) 1 if a>O 

for any choice of step sizes ~n > 0, n = 0, 1, ... , nT-1, where sequence (Yn)n=O,l, .. .,nT 

satisfies {8.4.). 

Remark. Item 2 of Theorem 8.1 represents a remarkable fact. Discontinuities in the 
. . 

drift part of SDEs can significantly reduce the order I of mean square convergence of 
the Euler method which is identical with the Mil'shtein method under additive noise 
(i.e. state-independent diffusion part) to I = 0.5! Note, under classical existence 
and uniqueness conditions on coeffcients of SDEs with additive noise one proves 

. order I= 1.0 of both mean square and pathwise convergence. In contrast to that, 
implicit Euler methods can obviously preserve this order (even exact replication of 
boundary conditions, cf. item 4 of Theorem 8.1). 
Same results hold for Brownian Bridges when one supposes random boundary values 
a and b which are independent of a-algebras 

Ft= a({W,,: O~s~t}), t E [O, T]. 
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