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Higher Order Approximate 
Markov Chain Filters 

P.E. KLOEDEN, E. PLATEN and H. SCHURZ 

Abstract. The aim of this paper is to construct higher order approximate 
discrete time filters for continuous time finite-state Markov chains with obser-
vations that are perturbed by the noise of a Wiener process. 

1. Introduction. 

The systematic construction and investigation of filters for Markov chains 
goes back to Wonham [11], Zakai [12] and Fujisaki, Kallianpur and Ku-
nita [2]. Later the question of finding discrete time approximations for the 
optimal filter was considered by Clark and Cameron [1] and Newton [7], [8]. 

At first we introduce in the following filters for continuous time finite 
state Markov chains. Let (0, A, P) be the underlying probability space 
and suppose that the state process { ={et, t E [O, T]} is a continuous time 
homogeneous Markov chain on the finite state space S = {a1, a2, .. ., ad}· 
Its d-dimensional probability vector p(t), with components 

(1) 

for each ai E S, then satisfies the vector ordinary differential equation 

(2) dp 
-=Ap dt 

where A is the intensity matrix. In addition, suppose that the m--dimensional 
observation process W = {Wt, t E [O, T]} is the solution of the stochastic 
equation 

(3) 

where W* = {Wt, t E [0, T]} with W0 = 0 is an m--dimensional standard 
Wiener process with respect to the probability measure P, which is inde-
pendent of the process e. Finally, let Yt denote the er-algebra generated by 
the observations W, for 0 ~ s ~ t. In what follows we shall use superscripts 
to label the components of vector-valued stochastic processes. 
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Our task is to filter as much information about the state process e as we 
can from the observation process W. With this aim we shall evaluate the 
conditional expectation 

E (g (fr) I YT) 
with respect to P for a given function g : S -+ ~. 

By application of the Girsanov transformation we obtain a probability 
measure P where 
(4) 
with 

(5) LT= exp(-~ 1T lh(e,) l2 ds+ 1T h(e,)T dW,) 

such that W is a Wiener process with respect to P. 
Let us introduce the Un-normalized conditional probability x; for the 

state ai E S at time t as the conditional expectation 

(6) 

i E {1, ... , d}, t E [O, T), with respect to the probability measure P, where 
I{a;}(x) is the indicator function taking the value 1 when x =a and the value 
0 otherwise. It follows from a basic assertion in Fujisaki, Kallianpur and 
Kunita [2), also known as Kallianpur-Striebel formula, that the conditional 
probabilities of et given Yt are 

d 

(7) p (et = ai I Yt) = E (I{a;} (et) I Yt) = x: I~ Xf 

for ai ES and t E [O, T], where the d-dimensional process Xt = {Xl, ... , Xf} 
of the un-normalized conditional probabilities satifies the Zakai equation, 

Xt = p(O) + 1t AX, ds + :t 1t Hi X, dWf 
0 i=l 0 

(8) 

for t E [O, T], which is a homogeneous linear Ito equation. Hj is the d x 
d diagonal matrix with iith component hj ( ai) for i = 1, ... , d and j = 
1, ... ,m. 

The optimal least squares estimate for g(et) with respect to the obser-
vations W, for 0 ~ s ~ t, that is with respect to the a-algebra Yt, is given 
by the conditional expectation 

(9) 
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which we call the optimal filter or Markov chain filter. 

2. Approximate Filters. 

To compute the optimal filter (9) we have to solve the Ito equation (8). In 
practice, however, it is impossible to detect W completely on [O, T). Elec-
tronic devices are often used to obtain increments of integral observations 
over small time intervals, which in the simplest case are the increments of 
W in integral form 

1'T1 . 1-r~+1 dWf, ... , dWf, ... , 
to t~ 

for each j = 1, ... , m, Tn = n6 for n = O, 1, 2, .... We shall see in the 
next section that with such integral observations it is possible to construct 
strong discrete time approximations Y 0 with time step 6 of the solution X 
of the Zakai equation (8). Then for the given function g we can evaluate 
the expression 

d d 
II~(g) = {; g (a1:) ~o,le I "'f_~o,le (10) 

for t E [O, T), which we shall define to be the corresponding approximate 
Markov chain filter. 

We shall say that a discrete time approximation Y 6 with step size 6 
converges on the time interval [O, T) with order 'Y > 0 to the corresponding 
solution X of the stochastic differential equation if there exists a finite 
constant K, not depending on 6, and a 60 E (0, 1) such that 

(11) 

for all 6 E (0, 60 ) and Tn E [O, T). We note that the expectation in (11) 
is with respect to the probability measure P under which W is a Wiener 
process. Analogously we say that an approximate Markov chain filter Il0 (g) 
with step size 8 converges on the time interval [O, T) with order 'Y > 0 to 
the optimal filter II(g) for a given function g if there exists a finite constant 
K, not depending on 6, and a 60 E (0, 1) such that 

(12) 

for all 8 E (0, 60) and Tn E [O, T). In contrast with (11) we take the expec-
tation in (12) with respect to the original probability measure P. 

PROPOSITION. An approzimate Markov chain filter IT 6 (g) with step size 
8 converges on the time interval [O, T) with order 'Y > 0 to the optimal filter 
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II(g) for a given bounded function g if the discrete time approzimation Y 0 

used in it converges on [O, T] to the solution X of the Zakai equation (8) 
with the same order 'Y. 

PROOF. In view of (12) we need to estimate the error 

(13) E (IIIT,.(g) - II~,.(g)I) 

E (LT,. IIIT,.(g) - II~,.(g)I) 

for all Tn E [O, T). We shall write 

d 

(14) GT,.(!) = L f (a1,) x:,, 
k=l 

and 
d 

(15) G~,, (!) = L f (a1:) Y:~k 
k=l 

for any bounded function f : S -+ ~. {j E (0, 60 ) and Tn E [O, T). Then 
similarly to Picard (9) we can use (6), (9) and (10) to rewrite the error (13) 
in the form 

F;,. (g) E (GT,.(1) IIIT,.(g) - rr;Jg)I) 

(16) E ( GT,.(1) I GT~(l) (GT,.(g)- G~,.(g) 
+ II~,.(g) (G~,.(1) - GT,.(1))) I) 

< E (IGT,.(g) - G~Jg)I) + E (III~jg)l I G~jl) - GT,.(1)1) 
d 

< Ki LE (I Y:~.1: - x:J). 
k=l 

Finally, using (11) in (16) gives the estimate F:Jg)::; K2 {j"I and hence the 
desired convergence rate. D 

3. Explicit Filters. 

It remains to describe discrete time approximations converging with a given 
order 'Y > 0 to the solution of the Zakai equation (8) which can be used in a 
corresponding approximate filter. A systematic presentation of such discrete 
time approximations can be found in Kloeden and Platen [3). Given an 
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equidistant time discretization of the interval [O, T] with step size {j = b.. = 
T/N for some N = 1, 2, ... , we define the partition er-algebra P]; as the 
er-algebra generated by the increments 

(17) ... , 
N6. 

b..WN-1 = l . dWJ 
(N-1)6. 

for all j = 1, ... , m. Thus Pj, contains the information about the increments 
of W for this time discretization. The simplest discrete time approxima-
tion obtained from the Euler scheme (see Maruyama [5]) has for the Zakai 
equation (8) the form 

(18) 

with 
m 

(19) Gn = LHi b..W~ 
j=l 

and initial value Yo= X0 , where I is the dxd unit matrix. The scheme (18) 
converges under the given assumptions with order 'Y = 0.5. For a general 
stochastic differential equation this is the maximum order of convergence 
that can be achieved under the partition er-algebra P];, as was shown by 
Clark and Cameron [1]. However, the special multiplicative noise structure 
of the Zakai equation (8) allows the order 'Y = 1.0 to be attained with the 
information contained in Pj,. Milstein [6] proposed a scheme of order 'Y = 
1.0, which for equation (8) has the form 

(20) 

where 

(21) 
1 m 

A=A--'°"'H2 • - 26 J 
j=l 

Newton [7] searched for a scheme which is asymptotically the "best" in the 
class of order 1.0 schemes in the sense that it has the smallest leading error 
coefficient in an error estimate similar to (11). He obtained the scheme 

6 - [ b..2 2 b.. b.. 1 2 1 3] 6 Yr,.+i - I+A b..+Gn+2A +z- A Gn-z- Gn A+GnA.b..+2 Gn+6Gn Yr,. 

(22) 
which is called asymptotically efficient under Pj,. 
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We can obtain higher order convergence by exploiting additional in-
formation about the observation process such as contained in the integral 
observations 

(23) t::..Z~ = 1t:i. 1• dWj ds, ... ' 
. Ntl • 

t::..zi = j j dWi ds N-1 T 
(N-l)tl (N-l)tl 

for all j = 1, ... , m, easily measu.red in practice by digital devices. We 
shall define as the partition a-algebra P]:/ the a-algebra generated by Pj,. 
together with the multiple integrals t::..Z~, .. ., t::..Z~_ 1 for all j = 1, .. ., m. 
The order 1.5 strong Taylor scheme described in Platen [10] and Kloeden 
and Platen [3] uses for the Zakai equation (8) only the information contained 
in Pj/. It takes the form 

Y-r:+, = [I+A_ll+Gn+ ~2 A2 +AMn-MnA+GnA.ll+~ G~+~G!] Y:,. 
(24) 
where 

m 

(25) Mn= LHit::..Z~. 
j=l 

We note that we obtain the order 1.0 scheme (22) from (24) if we replace 
the t::..Z/, by their conditional expectations under Pj,. with respect to the 
probability measure P, that is we substitute 1Gn !:::.. for Mn in (24). 

In order to form a scheme of order / = 2.0 we need the information 
from the observation process expressed in the partition a-algebra P'J.r which 
is generated by Pj;5 together with the multiple Stratonovich integrals 

Ju ,,;,,o),n 

(26) 

for all n = 0, 1, .. ., N - 1 and ji, h = 1, .. ., m. Here the symbol 
"o" denotes the Stratonovich integration. Electronic devices can extract 
these Stratonovich integrals from the observation measurements in practical 
filtering situations. Using this information we can apply the order 2.0 strong 
Taylor scheme in Kloeden and Platen [3] to the Zakai equation (8) to obtain 
the approximation 
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(27) 

m 

+ I: ( AHj,H;, J(j,,J,,o},n. + Hj,AHj, J(j,,o,;,),n. 
j,,j,=1 

+H;,H;,A(D..J(j,,j,) - J(j,,h,o) - J(j,,o,;.))] Y:,.. 

7 

We remark that the corresponding orders of strong convergence of the 
schemes described above follow from a convergence theorems in Platen (10] 
or Kloeden, Platen [3]. · 

4. Implicit Filters. 

Explicit discrete time approximations can sometimes behave numerically 
unstable. In such a situation control is lost over the propagation of errors 
and the approximation is rendered useless. We can then use an implicit 
discrete time scheme to obtain a numerically stable approximation. Here 
we state some of the implicit discrete time schemes from Kloeden and Platen 
[3], (4] applied to the Zakai equation (8). These express an iterate in terms 
of itself and its predecessor, but since the Zakai equation is linear they can 
all be rearranged algebraically to express the next iterate just in terms of 
its predecessor. After rearranging we have from the family of implicit Euler 
schemes 

(28) Y:,.+, = (1 - aA D..)- 1 [1 + (1 - a) AD..+ Gn.] Y,/,. 
where a E [O, 1] denotes the degree of implicitness. The scheme (28) con-
verges with order -y = 0.5. The family of implicit Milstein schemes, all of 
which converge with order -y = 1.0, gives us 

(29) Y:,.+, = (1 - aA D..)- 1 [1 + (1- a)AD.. + Gn. (1 + ~ Gn.)] Y:,.. 
In principle to each explicit scheme there corresponds a family of implicit 

schemes by making implicit the terms involving the nonrandom multiple 
stochastic integrals such as D.. or t D.. 2 • As a final example we mention the 
order 1.5 implicit Taylor scheme yielding 

yo 
7'-n.+1 

(30) 
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5. A Numerical Example. 

We consider the random telegraphic noise process, that is the two state 
continuous time Markov chain ~ on the state space S = { -1, + 1} with 
intensity matrix 

A= [ -50.0 50.0 l 
50.0 -50.0 

and initial probability vector p(O) = (0.9, 0.1). Further, we suppose that the 
observation process W satisfies the stochastic equation (3) with h(l) = 5 
and h{-1) = 0. · 

Our task is to determine the actual state of the chain on the basis of 
these observations. We could say that ~t has most likely the value +1 if 
P (~t = +l jY1) 2: 0.5. We evaluate the ~onditional probability 

P1(t) = p (~t = +1 !Yt) = E (I{+l} (~t) IYt) = Ilt (I{+l}) I 

· which is the optimal filter here. To obtain an approximation of I11 (I{+l}) 
we can use a filter rr: (I{ +i}) based on a discrete time approximation. For 
a comparison of approximate filters we shall suppose that we have here a 
scenario of a realization of the Markov chain on the interval [O, 4) with ~t = 1 
for 0:::; t < 0.5 and ~t = -1 for 0.5:::::; t :::; 4.0. Using this realization of the 
Markov chain Wt computed the approximate filters Hf (I{ +1}) for the same 
realization of the Wiener process w· using the above mentionc!d schemes 
with equidistant step size {J = t::.. = 2- 7 . 

P<t> 

o.s 

0.5 

0 

2 0 
3 ·s e 

7 
a 

Figure 1. p 1(t) for the explicit order 1.5 strong Taylor filter. 

Two calculated p 1(t) paths are plotted in Figures 1 and 2 respectively. 
The result for the order 1.5 Tn.ylor filter which is an explicit one is plotted in 
Figure 1. Considerably more sensitive detections of the jump of the ~farko\' 
chain from state 1 to state -1 at t = 0.5 were obtained by implicit. schemes. 
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r< t) 
1 

o.s 

o.s 

0 

0 2 
3 s s 

? 
a 

Figure 2. p1(t) for the implicit order 1.5 Taylor filter. 

9 

Figure 2 shows the result with the implicit order 1.5 Taylor scheme. 
The above numerical example underlines the importance of implicit stochas-
tic numerical schemes. Also the additional information given by multiple 
stochastic integrals turns out to be substantial for a sensitive detection of a 
signal. 
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