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Abstract

The spatial “rocking” is a dynamical effect converting a phase-invariant oscillatory sys-

tem into a phase-bistable one, where the average phase of the system locks to one of two

values differing by π. We demonstrate theoretically the spatial rocking in experimentally

accessible and practically relevant systems – the broad area semiconductor lasers. By

numerical integration of the laser model equations we show the phase bistability of the op-

tical fields and explore the bistability area in parameter space. We also predict the spatial

patterns, such as phase domain walls and phase solitons, which are characteristic for the

phase-bistable spatially extended pattern forming systems.

1 Introduction

The phenomenon of “rocking” has been proposed as a general effect in physics of dynamical
systems, which converts the phase-invariant oscillatory system into a phase-bistable one where
the average phase of the system locks to one of two values differing by π [1, 2]. Many nonlinear
systems in nature and in technics, such as chemical, mechanical, biological or laser oscillators,
display self-sustained oscillations with a particular amplitude and with free (invariant) phase.
If such system is subjected to a resonant, or nearly-resonant additive signal, then the phase
invariance of oscillations can be broken, and the frequency and phase of the system can lock
to that of the external signal. If, however, the complex amplitude of external injection becomes
periodic in time e.g. follows the harmonic oscillation law cos (Ωt), then a pair of stable states
with similar amplitudes but opposite phases can be obtained. In this case, the phase of the
field averaged over a small time scale τ∝Ω−1 is no more invariant as in autonomous systems,
and no more monostable as in systems with a constant injection, but rather becomes attracted
by one of two values differing by π. In simple terms the phase of the oscillations “avoids” the
states with the phases of injection (say 0 and π) and consequently “prefers” the states with the
phases orthogonal to that of the injection (π/2 and 3π/2). The phenomenon called by “rocking”
was first predicted for a time-periodic injection signal [1] and later for a random in time injection
signal [2]. This resulted in a phase-bistability of a “small”, system with a relatively small number
of the space degrees of freedom, which in optical case corresponds to the resonator with a small
Fresnel number. For the systems of a large number of space degrees of freedom, the “rocking”
results in excitation of spatial patterns such as rolls, phase domain walls and phase solitons [3].
Such patterns are typical for the phase-bistable spatially extended systems [4, 5, 6, 7, 8].

More recently the spatial “rocking” was proposed, where the complex amplitude of injection is a
π-alternating periodic function in space on a relatively small space scale [9]. The spatial rocking,
similarly to the temporal rocking, results in a phase-bistable dynamics of a “small” system, and in
phase-bistable patterns in a spatially extended system. The spatial rocking has been predicted
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[9] for a general case of dynamical systems, on basis of the model of the periodically in space
driven Complex Ginzburg-Landau Equation (CGLE). On one hand this shows the universality of
the phenomenon of spatial rocking, as the CGLE is a universal equation – a normal form of the
Hopf bifurcation in a homogeneous media. On the other hand this does not prove the effect in
any concrete physical system, as no real system is governed exactly by the CGLE. In this way
the spatial rocking has never been demonstrated for any concrete physical system up to now.

The CGLE is a good, however idealized model for a certain type of broad area lasers. Namely,
this model assumes a single longitudinal mode operation and a class-A or class-C laser type,
where the material variables relax faster or at least with the same rate as the optical field in the
resonator. In the present paper we demonstrate numerically that the spatial rocking can be also
obtained in a class-B broad area (BA) semiconductor laser, which is a widespread and practi-
cally relevant system. We show this by simulating the traveling-wave (TW) equation model for
the BA lasers [10, 11, 12] using realistic parameters [12, 13]. To realize the rocking we consider
a periodic in space injection formed by two, coherently interfering at some angle, beams (fig. 1).
We demonstrate typical features of spatial rocking, such as the locking of the phase of emitted
beam to one of two values differing by π. We explore the range of efficient rocking and show that
the effect is robust and could be observed experimentally. We also demonstrate typical spatial
patterns induced by rocking, which are the phase domains and the phase solitons.

injection

backward
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α
α

emitted field
y x

z

Figure 1: Schematic representation of the simulated system. The directions of injection and
emission are shown by arrows.

2 Model

We consider the following TW model [10, 11, 12] for BA lasers:
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ḡ

2

)

E± +
ḡ
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Here t denotes time, z – longitudinal coordinate, along the propagation direction, x – trans-
verse coordinate. E± (t, x, z) are the complex slowly varying amplitudes of the forward and
backward traveling optical fields, so that |E|2 = |E+|2 + |E−|2 denotes the local photon
density. p± (t, x, z) are the complex slowly varying amplitudes of induced polarization used to
model the Lorentzian wavelength dependence of the optical gain. N (t, x, z) is the real-valued
distribution of excess carrier density. The injection current density J is given by

J (x, z) =

{

I/wl, if (x, z) ∈ S = {
(

−w
2
, w
2

)

× (0, l)}
0, elswhere

,

were S and I denote the laser area and the injection current, respectively. The complex propa-
gation factor β, the peak gain function g, the refractive index change function δn, and the carrier
recombination function R are given by

β = δn(N) + i
g(N,E±)− γ

2
, g(N,E±) =

g′ ln(N/Ntr)

1 + ε|E|2 ,

δn(N) = −k0
√
n′N, R(N) = AN+BN2+CN3.

At the laser facets the optical fields E± (t, x, z) satisfy the following boundary conditions:

E+ (t, x, 0) = r0E
− (t, x, 0) + a (t, x) ,

E− (t, x, l) = rlE
+ (t, x, l) .

Here a (t, x) denotes the optical field injected into the laser through the left facet. We assume
the injection in form of interference of two plane waves of opposite angles α and −α with
respect to the optical axis of the laser, which results in harmonic function of the injection:

a (t, x) = a0e
iωt sin (αk0x) .

Parameter ω is the optical frequency, relative to the reference frequency ω0 = 2πc/λ0, while
a0 is the optical field amplitude determining power of optical injection:

Pinj = |a0|2
∫ w/2

−w/2

sin2 (αk0x) dx × cd

ng

hc

λ0

.

k0 = 2π/λ0, c, q and h denote the central wavenumber, the speed of light in vacuum, the
electron charge, and the Planck constant, respectively. The values and the brief explanation
of laser parameters are given in table 1. They correspond to the experimentally available BA
semiconductor lasers and are discussed in more details in Refs. [12], [13]. Injected field power
Pinj and the frequency detuning ω are the variable parameters of our system.

To resolve long transients and to perform a parameter continuation of the system in reasonable
time we have used high performance parallel distributed computing algorithms [12]. Comparable
computations on a single PC system take nearly 100 times longer.
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Table 1: Parameters used in simulations.

n̄ reference refractive index 3.2262
ng group refractive index 3.66
λ0 central wavelength 973 nm
ḡ Lorentzian gain amplitude 130 cm−1

Γ̄ Lorentzian width at half max. 80 nm
λ̄0 gain peak detuning 0 nm
I injection current 3 A
g′ differential gain 23.4 cm−1

γ internal absorption 1.5 cm−1

r0 left facet ampl. reflectivity -0.3
rl right facet ampl. reflectivity 0.3
Ntr transparency carrier density 1.3·1018 cm−3

ε nonlinear gain compression 5·10−18 cm3

n′ differential index 1.25·10−25 cm3

dN carrier diffusion coefficient 19.672 cm2/s
l length of the laser 1.5 mm
w width of the laser 0.2 mm
d thickness of active region 16 nm
A recombination parameter 0.295·109 s−1

B recombination parameter 1.8·10−10 cm3/s
C recombination parameter 3.28·10−30 cm6/s
α angle of the optical injection 0.05 rad.

3 Phase bistability

First we give a numerical proof of the efficient rocking. For considered injection current I the
laser is pumped well above the threshold and, in the absence of optical injection, results in
1W field emission power. The multi-mode emission is observed, resulting in a random beat of
many longitudinal and transverse modes. In this way the frequency spectrum and the far field
(spatial spectrum) are irregular and broadened. This is a well known behavior of nonstabilized
BA semiconductor lasers. In the presence of the optical injection a(t, x) with properly selected
frequency detuning and power (ω = 0 and Pinj = 0.2W in this particular case) a typical to the
rocked system behavior [9] is observed. Namely, depending on initial conditions, the state of the
system is attracted by one of two stable attractors characterized by similar emitted field intensity
but different field phases. The field intensity distributions shown in fig. 2 have a characteristic
parallel-striped structure, with the stripe separation λ0/2α and a typical alternation between
more and less intensive stripes.

A confirmation of the efficient rocking is given in fig. 3, where thin black lines and dots show the
computed near fields for both bistable states. Whereas the field intensities of both stable states
(panels a and c) are similar, their phases (panels b and d) oscillate in space around one of
two values differing by π. The computed fields are strongly modulated on a small spatial scale,
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Figure 2: The characteristic 2D intensity distributions of the forward (a) and backward (b) waves,
corresponding to one of bistable states. ω = 0, Pinj = 0.2W. Other parameters as in table 1.
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Figure 3: The intensity (a,c) and the phase (b,d) profiles of the fields emitted by laser for both
(a,b) and (c,d) bistable states. The thin black and thick grey lines or dots represent the full- and
small-scale-averaged distributions, respectively. All parameters as in fig. 2.
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corresponding to the period of injection. This is what we call small scale modulation. As these
field oscillations can cause confusion, we have also plotted the amplitudes and the phases of
the fields averaged over the small space scale:1 see thick grey lines and dots in fig. 3. After
this averaging we get the relatively homogeneous distributions displaying no spatial patterns on
the large space scale. The averaged field intensities approximately follow the lower border of
the envelope of the computed oscillating field intensities. At the same time, the averaged field
phases of both stable states are nearly constant within the central part of the simulated laser
device and differ by π (grey dots in panels b and d).

4 Rocking area

To determine a parameter domain where the spatial rocking is efficient, we have performed a
series of simulations varying the injected field power Pinj and the detuning ω.

We have started our simulations from the state reported in figs. 2 and 3(a,b). Then we have
integrated the model equations for the time interval t ∈ [0, N · T ] (N : number of small steps
of parameter Pinj) estimating the simulated lasing state and slightly increasing (decreasing)
parameter Pinj after each T -transient. This procedure allows to stay close to the same attractor
in the phase space, to follow the deformations of this attractor in the parameter space, to detect
its bifurcations and eventual transitions to another attractor. The results of this one-parameter
continuation are summarized in Figs. 4a-c.

By performing similar 1-parameter continuations for several fixed frequency detuning ω we de-
termine a border of the rocking area in two parameter plane. Fig. 4(d) presents this area in
parameter space of the injected field frequency detuning and power (ω, Pinj).

The spatially rocked state is a continuous wave state possessing a single sharp line in the
optical spectra (fig. 4a) and a non-vanishing zero-angle contribution in its far field (fig. 4b). The
emitted field intensity shows no significant temporal oscillations (fig. 4c). The left (low injection)
border of the rocking area is characterized by occurrence of temporal oscillations of the emitted
field intensity and multiple modes in optical spectrum. The right (large injection) border can be
recognized by a full suppression of the central peak in the far field.

Panels (a-c) of fig. 5 show different characteristics of typical rocked (b) and non-rocked (a,c)
states. The analysis of all these states show:

i) moderate power of the injection, where the rocking is obtained (panel b). Typical for the
spatial rocking is the emission consisting of three well distinguishable far field peaks.
While the side-peaks correspond mainly to the injected optical field, the central peak
represents the space averaged lasing components, the phase of which is locked to one
of two values differing by π. In this way, for the efficient rocking the existence of the central
far-field peak is relevant. The optical frequency of the emitted field is determined by the
optical injection frequency ω.

1We performed the averaging by i) transforming the fields into space Fourier domain, ii) filtering out the high
spatial frequency components implied by the optical injection and retaining only the radiation around the central
peak, and iii) transforming fields back to the space domain.
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Figure 4: Stability area of the spatial rocking. Mappings of optical spectra (a), far fields (b),
maximal, minimal and mean value of emitted power (c) for tuned injection power Pinj and fixed
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ii) too large power of the injection (panel a). In this case the central (lasing) component of
the far field is suppressed, and the laser is completely enslaved by the injection. The
laser does not emit by itself, but acts as an amplifier of the injected field. The behavior, in
principle, corresponds to that of injection locked laser, while the far field and the optical
spectrum of laser follows that of the injection.

iii) too small power of the injection (panel c). In this case the injection is too weak to achieve
a locking of the laser field phase to one of two bistable values. The spatial-temporal
dynamics of the system resembles the random and noisy dynamics of the free-running
broad emission area laser. However, not very far from the border of the rocking domain,
one can recognize the concentration of the temporally evolving field phases at one of two
values, which is a precursor of the phase bistability.

Typically the boundary of the rocking area from the left side shows a resonance-like shape,
resembling the well known Arnold tongue in parametrically driven system. In the simplest cases
the rocking area from the left follows a0 ∝ |ω| [9], however here the situation is more involved.
Most importantly the rocking area is asymmetric with respect to the frequency detuning. The
increasing optical injection power implies a decrease of the mean carrier density. This in turn
causes a nonlinear refractive index shift, i.e., the nonlinear red-wavelength shift of the resonance
frequency. As the consequence the rocking area is “tilted” in the plane of (ω, Pinj).

The latter diagram indicates that the rocking can be experimentally realized as the bistability
area is sufficiently large in parameter space. The injection amplitude can be varied substantially,
i.e. can be increased to the values comparable with the amplitude of the free running laser. The
detuning can be varied over a substantial part of the free spectral range (around 12% for this
concrete sample).

5 Patterns

Next we report the spatial patterns emerging on a large space scale. These patterns are typical
for the systems with phase bistability, in particular, in parametrically driven systems [7]. The
geometry of the laser simulated by us is such that the system is neither of “large”, nor of “small”
aspect ratio, as the Fresnel number of the resonator F = n̄w2/ (λ0l) ≈ 88. In this way the
system displays the phase-bistable homogeneous states (reported above), but also contains
sufficient amount of spatial degrees of freedom for most simple transverse patterns.

The most simple pattern of the phase bistable system is the phase domain boundary: if in two
neighboring lateral regions both stable solutions with opposite values of the averaged phase
are realized, then in between a domain boundary must appear separating these two phase
domains. The domain boundary obtained by numerical integration is shown in figs. 6a and b.
The amplitude and the phase distributions of the averaged fields clearly indicate the presence
of the domain wall with tanh (x/x0) shape, which is typical for the Ising domain boundaries [7].
It is a heteroclinic connection between two phase bistable states, where the complex field goes
through zero of the complex plane: see the intensity of the small-scale-averaged field dropping
down to zero at x ≈ 0 in fig. 6a.
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Figure 6: The spatial patterns: (a, b)-the Ising phase domain boundaries; (c, d)-phase solitons.
The meaning of all dots and lines as in fig. 3. All parameters as in fig. 2.

When two Ising domain boundaries of the opposite polarities tanh (x/x0) and tanh (−x/x0)
are located sufficiently close one to another, they may mutually lock, resulting in spatial phase
soliton [14]. Such phase soliton is a homoclinic connection where the order parameter starts
and ends on one bistable state and “visits” the other phase state passing two times the zero of
complex plane. Such stable solitons were obtained in our system, and are presented in figs. 6c
and d. We note, that we have located these solitons only in a limited part of the rocking domain.
This is in agreement with Ref. [14], where the conditions ensuring a relatively strong mutual
locking of the phase fronts of different polarity were calculated. The detailed analysis of the
phase solitons in spatially rocked system, however, is behind the scope of the present letter.

6 Conclusions

Summarizing, we show numerically that the spatial rocking is realizable in realistic physical sys-
tem – the broad area semiconductor laser. The substantial size of calculated phase-bistability
area in parameter space let us believe that the spatial rocking in BA lasers can be observed
experimentally. The homogeneous (on a large space scale) bistable solutions were found in the
whole rocking area, and the patterns, characteristic to phase-bistable extended systems, were
obtained in a part of the area.

We demonstrated the phase domains and phase-solitons. For the realization of more compli-
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cated patterns of phase-bistable systems, like rolls, or soliton ensembles [6] the size of the
simulated system was too small.

We note, that the effect of spatial rocking is substantially stronger for semiconductor laser, than
the temporal rocking. The temporal rocking is known to be quite inefficient in stiff systems, such
as class-B lasers, where the rocking area shrinks critically around the frequency of relaxation
oscillations [15]. The semiconductor lasers belong to the class-B, where the material relaxation
time is by three orders of magnitude larger than the photon live time in resonator. However we
find that the spatial rocking is indeed very efficient here. Generally the spatial rocking seems
to be not influenced by stiffness. Whereas in temporal rocking case one always deals with fast
oscillation in time, in the spatial rocked states the temporal dynamics is eliminated, and the
relaxation rates do not play a role in the process any more.

The spatial rocking in this particular system can have a practical relevance. The large active
region of BA laser enables the high power of output field, which, however, usually is composed
from multiple lateral modes, therefore the beam is of poor spatial and temporal quality [16].
Stabilization of some lateral mode in a BA laser can be achieved, for example, by a striped
electrical contact design, by injection of the optical beam at some angle to the longitudinal axis
[17] or by the external optical feedback from the corresponding off-axis mirror or grating [13].
The spatial rocking, apart from the phase bistability and the spatial patterns, allows also to
improve the selectivity of the lateral modes and, therefore, the quality of the emitted beam.
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