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Abstract: We consider a random N -step polymer under the influence of an attractive interaction with the origin
and derive a limit law – after suitable shifting and norming – for the length of the longest excursion towards the
Gumbel distribution. The

embodied law of large numbers in particular implies that the longest excursion is of order log N long. The
main tools are taken from extreme value theory and renewal theory.

1. INTRODUCTION AND MAIN RESULTS

Let (Sn)n∈N0 be a random walk on the lattice Zd starting at the origin and having steps of mean zero. By P and
E we denote the corresponding probability and expectation, respectively. We conceive the walk (n, Sn)n=0,...,N

as an N -step polymer in the (d + 1)-dimensional space. We introduce an attractive interaction with the origin
by introducing the Gibbs measure Pβ,N via the density

dPβ,N

dP
=

eβLN

Zβ,N
with Zβ,N = E

[
eβLN

]
, (1.1)

where β ∈ (0,∞) is a parameter and

LN = |{k ∈ {1, . . . , N} : Sk = 0}| (1.2)

denotes the walker’s local time at the origin, i.e., the number of returns to the origin. The properties of the
polymer under Pβ,N have been studied a lot [dH09, G07]. In particular, the free energy

F (β) = lim
N→∞

1
N

log Zβ,N ∈ (0, β) (1.3)

has been shown to exist and to be positive and strictly increasing in β. Furthermore, it has been shown that the
polymer is localised in the sense that LN is of order N under Pβ,N , and the density of the set of hits of the
origin has been characterised. In particular, the constrained version, i.e., the polymer under

P(c)

β,N (·) =
1

Z(c)

β,N

E
[
eβLN 1l{ · }1l{SN = 0}

]
, where Z(c)

β,N = E
[
eβLN 1l{SN = 0}

]
, (1.4)

has been studied.

In this paper, we consider the length of the longest excursion of the polymer under P(c)

β,N . To introduce this
object, we denote by τ = {τi : i ∈ N0} the set of return times to the origin, where

τ0 = 0 and, inductively, τi+1 = inf{n > τi : Sn = 0}, i ∈ N0. (1.5)

Then P(c)

β,N is the conditional distribution of the polymer given {N ∈ τ}. The length of the longest excursion is
now given as

maxexcN = max{τi − τi−1 : i ∈ N, τi ≤ N}. (1.6)

According to [dH09, Theorem 7.3], maxexcN is of order log N under P(c)

β,N , in the sense that the distribution

of maxexcN/ log N under P(c)

β,N is tight in N . The proof gives the upper bound 2/F (β), which is not sharp,
as we will see below. It is the main goal of this note to derive not only the law of large numbers for maxexcN ,
but also a non-trivial limit law for maxexcN after suitable shifting, in the spirit of extreme value theory.

To formulate our main result, we need to fix our assumptions first.

Assumption (τ ). There are D ∈ (0,∞) and α ∈ (1,∞) such that

K(n) := P(τ1 = n) ∼ Dn−α, n →∞.
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This assumption is fulfilled for most of the aperiodic random walks (Sn)n∈N0 under consideration in the
literature. For random walks with period p ∈ N, one has to work with K(pn) instead of K(n) and with pN -
step polymers and obtains analogous results. Assumption (τ ) can be relaxed with the help of slowly varying
functions, on cost of a more cumbersome formulation and proof of the main result.

The main result of this paper is the following.

Theorem 1.1. Suppose that Assumption (τ ) is satisfied, and fix β ∈ (0,∞). Then, as N →∞, the distribution
of

F (β)maxexcN − log
N

µβ
+ α log log

N

µβ
− C (1.7)

under P(c)

β,N weakly converges towards the standard Gumbel distribution, where

µβ = eβ
∑
n∈N

nK(n)e−nF (β) and C = log
(
F (β)αD

eβ−F (β)

1− e−F (β)

)
. (1.8)

Explicitly, it is stated that, for any x ∈ R,

lim
N→∞

P(c)

β,N

(
maxexcN ≤ γx(N/µβ)

)
= e−e−x

, where γx(N) =
x + C + log N − α log log N

F (β)
.

(1.9)
In particular, we have the law of large numbers: maxexcN/ log N → 1/F (β) in P(c)

β,N -probability as N →∞.

2. THE PROOF

It is well-known that the free energy F (β) is characterised by the equation

eβ =
∑
n∈N

K(n)e−nF (β), (2.1)

and that it actually holds that Z(c)

β,N ∼ eNF (β) 1
µβ

as N →∞. In particular, F (β) is also the exponential rate of

Z(c)

β,N . The first step, which is basic to all investigations of the polymer, is a change of measure to the measure
Qβ , under which the excursion lengths Tk = τk+1 − τk, are i.i.d. in k ∈ N0 with distribution

Qβ(T1 = n) = e−βK(n)e−nF (β), n ∈ N.

Since maxexcN is measurable with respect to the family of the Tk ’s, it is easy to see from the technique
explained in [G07, p. 9] that

P(c)

β,N (maxexcN ≤ γN ) ∼ µβQβ(maxexcN ≤ γN , N ∈ τ), N →∞, (2.2)

for any choice of the sequence (γN )N∈N, where µβ =
∑

n∈N nQβ(T1 = n) ∈ [1,∞) is the expectation of
the length of the first excursion under Qβ . Introducing

Mn =
n

max
k=1

Tk and σN = inf{k ∈ N : τk ≥ N}, (2.3)

we see that maxexcN = MσN on {N ∈ τ} for any N ∈ N. (Note that σN = LN on the event {N ∈ τ}.)
Hence, Theorem 1.1 is equivalent to

lim
N→∞

Qβ(MσN ≤ γx(N/µβ), N ∈ τ) =
1
µβ

e−e−x
, x ∈ R. (2.4)

The proof of this consist of a combination of three fundamental ingredients:

(1) an extreme value theorem for Mn under Qβ ,
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(2) a law of large numbers for σN under Qβ ,
(3) a renewal theorem for τ under Qβ .

Items (2) and (3) are immediate: We have from renewal theory that σN/N → 1/µβ in Qβ-probability and
limN→∞Qβ(N ∈ τ) = 1/µβ . The first item needs a bit more care:

Lemma 2.1.
lim

N→∞
Qβ(MN ≤ γx(N)) = e−e−x

, x ∈ R.

Proof. Note that MN is the maximum of N independent random variables with the same distribution as
T1 = τ1 under Qβ . Observe that the tails of this distribution are given by

Qβ(τ1 > k) = eβ
∑
n>k

K(n)e−nF (β) ∼ eβD
∑
n>k

n−αe−nF (β)

= eβDe−kF (β)k−α
∑
n∈N

(1 + n
k )−αe−nF (β)

∼ e−kF (β)k−αD
eβ−F (β)

1− e−F (β)
, k →∞,

where in the last step we used the monotonous convergence theorem and the geometric series. Hence, replac-
ing k by γx(N), we see that, as N →∞,

Qβ(τ1 > γx(N)) ∼ e−γx(N)F (β)γx(N)−αD
eβ−F (β)

1− e−F (β)

=
1
N

e−C−x(log N)α
(x + C + log N − α log log N

F (β)

)−α
eCF (β)−α

∼ e−x

N
.

From this the assertion easily follows. �

Hence, Theorem 1.1 is easily seen to follow from the above three ingredients, as soon as one shows that σN

may asymptotically be replaced by N/µβ and that the two events in (2.4) are asymptotically independent. This
is what we show now. First we show that MσN and MN/µβ

have the same limiting distribution.

Lemma 2.2.
lim

N→∞
Qβ(MσN ≤ γx(N/µβ)) = e−e−x

, x ∈ R.

Proof. The upper bound is proved as follows. Fix a small ε > 0, then we have, as N →∞,

Qβ(MσN ≤ γx(N/µβ)) ≤ Qβ

(
MσN ≤ γx(N/µβ), σN ≥ N

µβ + ε

)
+ Qβ

(
σN <

N

µβ + ε

)
≤ Qβ

(
MN/(µβ+ε) ≤ γx(N/µβ)

)
+ o(1).

(2.5)

Observe that, as N →∞,

γx(N/µβ)− γx(N/(µβ + ε)) =
1

F (β)
log(1 + ε

µβ
) +

α

F (β)
log

log N − log(µβ + ε)
log N − log µβ

=
1

F (β)
log(1 + ε

µβ
) + o(1).

Hence, we may replace, as an upper bound, γx(N/µβ) on the right of (2.5) by γx+Bε(N/(µβ + ε)) for some
suitable B ∈ R, use Lemma 2.1 for N replaced by N/(µβ + ε) and x replaced by x + Bε and make ε ↓ 0
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in the end. This shows that the upper bound of the assertion holds. The lower bound is proved in the same
way. �

Proof of Theorem 1.1. It is convenient to introduce a Markov chain (Yn)n∈N0 with

Yn =
(
Y (1)

n , Y (2)
n

)
=

(
Tσn , τσn − n

)
on the state space I = {(i, j) ∈ N × N0 : j ≤ i}, where we recall (2.3). In words, the first component is
the size of the step over n, and the last is the size of the overshoot. This Markov chain is ergodic and positiv
recurrent with invariant distribution π(i, j) = Qβ(τ1 = i)/µβ for (i, j) ∈ I . We denote by Q̃i,j the distribution

of this chain given that it starts in Y0 = (i, j); note that Qβ = Q̃i,0 with an unspecified value of i, which we
put equal to 1 by default. The event {N ∈ τ} is identical to {Y (2)

N = 0} = {YN ∈ N×{0}}; by ergodicity, its

probability under Q̃i,j converges, as N → ∞, to π(N × {0}) = 1
µβ

, for any (i, j) ∈ I , which is one way to
prove the renewal theorem.

Now let ε > 0 be given. Pick Kε ∈ N so large that π(Ic
Kε

) < ε/2, where Ik = {(i, j) ∈ I : i ≤ k}
for any k ∈ N. Furthermore, pick Rε ∈ N with Rε > Kε so large that Q̃i,j(Rε ∈ τ) ≤ 1

µβ
+ ε for any

(i, j) ∈ IKε . Now pick Nε ∈ N so large that Nε > Rε and Q̃1,0(YN−Rε ∈ Ic
Kε

) < π(Ic
Kε

) + ε/2 for any

N ≥ Nε. The latter is possible, since Q̃1,0(YN−Rε ∈ Ic
Kε

) = 1 − Q̃1,0(YN−Rε ∈ IKε) converges towards
1− π(IKε) = π(Ic

Kε
) as N →∞ by ergodicity.

Recall that we only have to prove (2.4). We calculate, with the help of the Markov property at time N − Rε,
for N > Nε,

Qβ(MσN ≤ γx(N/µβ), N ∈ τ) = Q̃1,0

(
N

max
k=1

Y (1)

k ≤ γx(N/µβ), Y (2)

N = 0
)

≤ Q̃1,0

(
N−Rεmax
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε ∈ IKε , Y
(2)

N = 0
)

+ Q̃1,0(YN−Rε ∈ Ic
Kε

)

≤
∑

(i,j)∈IKε

Q̃1,0

(
N−Rεmax
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε = (i, j)
)

Q̃i,j(Y
(2)

Rε
= 0) + π(Ic

Kε
) + ε/2

≤ Q̃1,0

(
N−Rεmax
k=1

Y (1)

k ≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε

≤ Qβ

(
MσN−Rε

≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε.

Now apply Lemma 2.2 for N replaced by N − Rε and observe that limN→∞(γx(N/µβ) − γx((N −
Rε)/µβ)) = 0. Afterwards letting ε ↓ 0 shows that the upper bound in (2.4) holds. The proof of the corre-
sponding lower bound is similar, and we omit it. �
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