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Abstract

In this paper we present some uniqueness results on inverse wave scattering by unbounded ob-

stacles for the two-dimensional Helmholtz equation. We prove that an impenetrable one-dimensional

rough surface can be uniquely determined by the values of the scattered field taken on a line segment

above the surface that correspond to the incident waves generated by a countable number of point

sources. For penetrable rough layers in a piecewise constant medium, the refractive indices together

with the rough interfaces (on which the TM transmission conditions are imposed) can be uniquely

identified using the same measurements and the same incident point source waves. Moreover, a

Dirichlet polygonal rough surface can be uniquely determined by a single incident point source wave

provided a certain condition is imposed on it.

1 Introduction

Inverse rough surface scattering problems have many applications in micro-optics, radar imaging and
non-destruction testing. For instance, the determination of the elevation of the ground, see surface or see
bed are basic problems in remote sensing by sonar or radar. This paper is concerned with the uniqueness
in inverse wave scattering problems for penetrable or impenetrable unbounded obstacles, which can be
modeled by the two-dimensional Helmholtz equation.

There have been several uniqueness results on inverse diffraction problems for both penetrable and
impenetrable periodic structures, which can be viewed as a special case of unbounded rough surfaces.
For the inverse Dirichlet problem with a C2-smooth periodic boundary, we refer to Bao [3] in the case
of a lossy medium (i.e., Imk > 0), Kirsch [23] for using all quasi-periodic incident waves, and Hettlich &
Kirsch [21] for sufficiently small wave number or grating height and one incident plane wave. In the case of
electromagnetic scattering in the TE mode by one periodic interface, Elschner and Yamamoto [20] proved
that measurements corresponding to a finite number of refractive indices above or below the grating profile
uniquely determine the periodic interface. This extends the uniqueness result by Hettlich and Kirsch
based on Schiffer’s theorem [21] to the inverse transmission problem. For two periodic interfaces with
an inhomogeneity between them, it was proved in [28] that the interfaces and transmission coefficients
can be uniquely identified from the scattered fields for all quasi-periodic incident waves, and so can the
refractive index of the inhomogeneity if it only depends on x1 and the interfaces are parallel to the x1-
axis. Note that the measurements in [20, 28] must be taken both above and below the structure. The
mathematical theory of forward scattering by an unbounded rough surface was mainly established by S.
N. Chandler-Wilder and his collaborators over the last fifteen years, using integral equation methods (see,
e.g. [7, 11, 12]) or variational methods ([8, 9]). Concerning uniqueness in inverse rough surface scattering
problem, as far as we know, the only reference is due to Chandler-Wilder & Ross [10] who proved that a
Dirichlet rough surface in a lossy medium can be uniquely determined by the near-field data above the
surface corresponding to only one incident plane wave, which generalizes Bao’s result [3] on periodic
structures to rough surface scattering.
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If the wave number k is a real number, it is well-known that global uniqueness in determining a Dirichlet
surface is impossible in general with only one incident plane wave (see [3] and [21]). Moreover, it is
shown in [14] that, for each incident plane wave, there exist two classes of polygonal periodic structures
which cannot be uniquely determined, one of which is the set of straight lines parallel to the x1-axis.
Non-uniqueness examples can be readily constructed from these two unidentifiable classes provided the
incident angle and the wave number satisfy certain relations.

In this paper we present new uniqueness results using the incident waves generated by point sources. In
section 2.1, we prove that a Dirichlet rough surface can be uniquely determined by near-field data on a line
segment above the surface corresponding to a countable number of incident point source waves, following
the approach of Kirsch & Kress [24] for bounded obstacles and that of Kirsch [23] for periodic structures.
However, when rough surfaces are confined to polygonal periodic structures, the measurements for one
incident point source wave are sufficient to ensure uniqueness. The proof in the latter case is based on the
reflection principle for the Helmholtz equation and the reduction argument from [18]. Such a uniqueness
result also applies to non-periodic rough polygonal surfaces satisfying certain conditions; see section
2.3. Finally, in section 3 we extend the argument of section 2.1 to the TM transmission problem for
penetrable rough layers in a piecewise constant medium. This is motivated by our recent work [16] on
inverse scattering by multilayered bounded obstacles and periodic structures.

In sections 2.1 and 3 we always assume that the non-periodic rough surface or interface is given by the
graph of a C1,1 function. This regularity assumption can be relaxed in section 2.1 (see e.g. [8, 9] for the
direct problem), while it is very necessary in section 3 for the inverse transmission problem in order to
tackle the singularity of the fundamental solution in a half-space.

2 Uniqueness for the Dirichlet problem

In this section, we consider uniqueness in inverse wave scattering by an impenetrable rough surface
on which the Dirichlet boundary condition is satisfied. Such a uniqueness issue arises in acoustic wave
scattering by sound-soft unbounded obstacles and electromagnetic scattering in the TE mode by an
unbounded perfect conductor.

2.1 Uniqueness for general rough surfaces

We begin with some mathematical formulations and solvability results on the forward scattering problem,
and then precisely formulate the inverse Dirichlet problem. For H ∈ R, let UH = {x2 > H} and
ΓH = {x2 = H}. Let C1,1(R) denote the set of functions f : R → R which are bounded and
continuously differentiable, with Lipschitz continuous derivative. Given a function f ∈ C1,1(R), which
satisfies, for some constants f+ > f− > 0,

f− < f(x1) < f+, x1 ∈ R,

we define the two-dimensional region D by

D := {x = (x1, x2) ∈ R
2 : x2 > f(x1)}. (1)

Assume that the one-dimensional scattering rough surface Λ is given by

Λ := ∂D = {(x1, f(x1)) : x1 ∈ R}, (2)
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and that an incident wave uin(x; z) generated by point source z ∈ D,

uin(x; z) := (i/4)H
(1)
0 (k|x − z|), (3)

is incident on Λ from the top region D, with H
(1)
0 (t) being the Hankel function of the first kind of or-

der zero. The above defined incident wave uin(x; z) is nothing else but the fundamental solution to the
Helmholtz equation (∆ + k2)u = 0 in the whole two-dimensional space, and is also referred to as the
incident point source wave throughout this paper. It is supposed that the wave number k is a positive con-
stant, and that the total field u(x; z), which is the sum of the incident field uin(x; z) and the corresponding
scattered field usc(x; z), vanishes on the boundary Λ of D.

Since the region D is unbounded in x2, a radiation condition as x2 → +∞ has to be imposed on
the scattered field. We adopt the upward propagating radiation condition (UPRC), firstly proposed by
Chandler-Wilde and Zhang ([12]), to represent usc explicitly in the upper half-space UH for some H > f+

via its Dirichlet value u|ΓH
, that is,

usc(x) =
1√
2π

∫

R

exp(i[(x2 − H)
√

k2 − ξ2 + x1ξ])F̂H(ξ)dξ, x ∈ UH , (4)

where
√

k2 − ξ2 = i
√

ξ2 − k2 when |ξ| > k, and F̂H denotes the Fourier transformation of usc(x1, H)
with respect to x1 defined by

F̂H(ξ) := F(usc(x1, H))(ξ) =
1√
2π

∫

R

exp(−ix1ξ)u
sc(x1, H)dx1, ξ ∈ R.

The integral in (4) exists in the Lebesgue sense provided usc(x1, H) belongs to L2(R) so that F̂H

belongs to L2(Rn−1). The above UPRC is also referred to as the angular spectrum representation in
the literature, and is equivalent to the pole condition based on the Laplace transform of the solution in
the radial direction. We refer to Arens and Hohage [2] for the details about this equivalence, and the
interpretation of the integral (4) if usc(x1, H) is a bounded continuous function. In addition, we remark
that the UPRC does not depend on the choice of H > f+ (see [9, Remark 2.1]), and generalizes the
standard Rayleigh expansion condition for periodic structures (see [7]). From (4), we observe that usc is
the linear superposition of the upward propagating plane waves exp(i(x2 − H)

√

k2 − ξ2 + ix1ξ) for

|ξ| ≤ k, and the evanescent surface waves exp(−(x2 − H)
√

ξ2 − k2 + ix1ξ]) for |ξ| > k.

Now we can formulate the direct and inverse scattering problems as follows.

(DP) Given Λ and the incident wave uin(x; z) for some z ∈ D, determine the total field u = uin + usc

such that

(∆ + k2)u = −δ(x − z) in D, u = 0 on Λ,

and such that usc(x; z) ∈ C2(D) ∩ C(D) satisfies the UPRC and supx∈D xβ
2 |usc(x)| < +∞

for some β ∈ R.

Using the integral equation method, it is shown in Chandler-Wilde, Ross & Zhang [11, Theorem 5.3] that
the problem (DP) is uniquely solvable provided f ∈ C1,1, with the estimate

|usc(x)| ≤ Cx
1/2
2 ||uin||L∞(Λ)
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for some constant C > 0 independent of the incident field. Recently, Elschner & Chandler-Wilde [8] were
able to prove the well-posedness of (DP) using the variational method in weighted Sobolev spaces for
much more general boundaries. Since surface waves of the scattered field can be hardly detected far
away from the rough surface, the inverse problem always involves in near-field measurements. Given
b > f+ and b∗ > 0, define the line segment Γ∗

b by

Γ∗
b := {(x1, b) : |x1| < b∗}.

We proceed with the inverse problem (IP):

(IP) Given one incident point source wave uin(x; y) for some y ∈ Uf+
, determine the rough surface Λ

from the knowledge of the near-field data {u(x; y) : x ∈ Γ∗
b}.

Remark 2.1. If the incident point source wave is replaced with a plane wave, then the uniqueness to (IP)
does not hold if k > 0. It is proved in [14] that two incident plane waves are always sufficient to uniquely
determine a non-flat polygonal periodic structure under the Dirichlet boundary condition, while a straight
line parallel to the x2-axis cannot be uniquely determined by a finite number of incident plane waves in
general. Nevertheless, if the medium in D is lossy, i.e., Im k > 0, Chandler-Wilde and Ross [7] proved
that uniqueness to (IP) holds true with one incident plane wave.

As far as we know, the uniqueness to (IP) using one incident point source wave is an open problem. For
numerical inversion in the time-domain, Lines & Chandler-Wilde [26] have explored a time domain point
source method and C. Burkard & R. Potthast [5] have developed a time domain probe method, based on
the singular point source method of Potthast and the probe method of Ikehata et al. for bounded obstacle
scattering problems in the frequency-domain respectively. An alternative algorithm for (IP) is presented in
[6], following the Kirsch-Kress optimization scheme developed firstly for acoustic obstacle scattering.

Next we establish a uniqueness theorem with a countable number of incident point source waves, extend-
ing the idea of Kirsch & Kress [24] for bounded obstacles and that of Kirsch [23] for periodic structures to
rough surface scattering problems.

Theorem 2.2. The near-field data {u(x; zm) : x ∈ Γ∗
b} corresponding to a countable number of incident

point source waves uin(x; zm) with zm ∈ Γ∗
c , m = 1, 2, · · · , can determine the rough surface Λ

uniquely. Here Γ∗
c is another line segment above Λ satisfying Γ∗

b ∩ Γ∗
c = ∅.

Proof. Let Λ̃ be another rough surface lying below Γb and Γc, and denote by ũ(x; z), ũsc(x; z) the total
and scattered fields corresponding to the incident field uin(x; z) and Λ̃, and denote by D̃ the region
above Λ̃. Assuming that

u(x; zm) = ũ(x; zm) for all x ∈ Γ∗
b , m = 1, 2, · · · , (5)

we shall prove Λ = Λ̃ by contradiction.

We first claim that u(x; z) = ũ(x; z) for all x 6= z, x, z ∈ Ω, where Ω denotes the unbounded connected
component of D ∩ D̃. Since u and ũ are both analytic functions in Ω and Γb ⊂ Ω, the identity (5) holds
true for all x ∈ Γb. It follows from the uniqueness of the forward Dirichlet scattering problem over the half-
space Ub that the identity (5) remains valid for all x ∈ Ub, and from the unique continuation of solutions
to the Helmholtz equation that

u(x; zm) = ũ(x; zm) for all x ∈ Ω, m = 1, 2, · · · . (6)
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Recall [25, Theorem 3.1.4] that the solution u(x; z) fulfills the reciprocity relation u(x; z) = u(z; x) for
all x, z ∈ D, x 6= z, and analogously that ũ(x; z) = ũ(z; x) for all x, z ∈ D̃, x 6= z. Hence, by (6)
we see that u(zm; x) = ũ(zm; x) for all x ∈ Ω, m ∈ N. Setting w(z) := u(z; x) − ũ(z; x) for some
fixed x ∈ Ω, we may conclude that w is analytic on Γc, with infinitely many zeros at z = zm, m ∈ N

on the finite line segment Γ∗
c . This implies that w(z) = 0 for all z ∈ Γc, i.e., u(z; x) = ũ(z; x) for all

x ∈ Ω, z ∈ Γc, x 6= z. Repeating the arguments used in the proof of (6), we finally obtain the relation
u(x; z) = ũ(x; z) for all x, z ∈ Ω, x 6= z. Since the scattered fields are continuous up to the boundary,
there holds

usc(x; z) = ũsc(x; z) for all x, z ∈ Ω. (7)

If Λ 6= Λ̃, without loss of generality we may assume that there exists y0 ∈ Λ ∩ D̃ ∩ ∂Ω. Define a
sequence yn := y0 + (1/n)n(y0), n ∈ N, such that yn ∈ Ω for all sufficiently large n ∈ N, where
n(y0) denotes the unit normal to Λ at y0 pointing into D. On one hand, it follows from the smoothness of
ũsc(x; y0) in D̃ that

lim
n→+∞

|ũsc(yn; y0)| = |ũsc(y0; y0)| < +∞. (8)

On the other hand, recalling the Dirichlet boundary condition uin(y0; yn)+usc(y0; yn) = 0 for all n ∈ N,
we have

lim
n→+∞

|usc(yn; y0)| = lim
n→+∞

|usc(y0; yn)| = lim
n→+∞

|uin(y0; yn)| = +∞,

which contradicts (7) and (8). Thus Λ = Λ̃.

Remark 2.3. The above approach does not depend on the kind of boundary conditions on Λ, but re-
quires infinitely many incident point source waves. If the Dirichlet boundary condition is replaced with the
impedance boundary condition, Theorem 2.2 still holds true; note that the well-posedness of (DP) under
the impedance boundary condition is established in [29, Chapter 3] using the variational method.

2.2 Uniqueness for polygonal periodic structures

If rough surfaces are confined to periodic structures, the problem (DP) is always referred to as the grating
diffraction problem. In this case, we can prove uniqueness to (IP) within polygonal periodic structures
using only a single incident point source wave.

Assume that Λ is given by the graph of some 2π-periodic piecewise linear function x2 = f(x1), x1 ∈ R.
A function u : R2 → C is said to be quasi-periodic in x1 with the phase-shift α ∈ R if u(x) exp(−iαx1)
is 2π-periodic with respect to x1, or equivalently,

u(x1 + 2π, x2) = u(x1, x2) exp (i2πα), x1 ∈ R.

An α-quasiperiodic incident wave uin(x; y) due to the point source y ∈ D is defined by

uin(x; y) =
∑

n∈Z

i

4πβn

ei[αn(x1−y1)+βn|x2−y2|], (9)
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where αn = n + α and

βn :=

{

(k2 − α2
n)

1

2 if |αn| ≤ k,

i(α2
n − k2)

1

2 if |αn| > k,
with i =

√
−1.

We assume that βn 6= 0 for all n ∈ Z, i.e., the Rayleigh frequencies are excluded. If the incident wave
uin is α-quasiperiodic in x1 and f(x1) is periodic, it is proved in [8] that the scattered field must be also α-
quasiperiodic and is uniquely solvable for either a plane wave incidence or a point source wave incidence.
Under the α-quasiperiodicity assumption on usc, Chandler-Wilde ([7]) has shown that the UPRC can be
rewritten more explicitly as the well-known Rayleigh expansion of the form

usc =
∑

n∈Z

An exp(iαnx1 + iβnx2) for x2 > f+ := max
x2∈R

f(x1), (10)

where An ∈ C are called the Rayleigh coefficients. The well-posedness of the plane wave scattering
in the diffraction grating case is proved by Kirsch [22] for a C2-smooth boundary ∂D, by Elschner &
Yamamoto [19] for a Lipschitz boundary ∂D, and by Elschner & Chandler-Wilde for more general domains
D fulfilling the condition

x = (x1, x2) ∈ D =⇒ (x1, x2 + s) ∈ D, for all s > 0.

Our main result on uniqueness in determining polygonal periodic structures is as follows.

Theorem 2.4. A polygonal periodic structure Λ can be uniquely determined from the near-field data
{u(x; y) : 0 < x1 < 2π, x2 = b}, b > f+, corresponding to one incident point source wave uin(x; y)
with y2 > f+, y2 6= b.

Let Λ̃ be another 2π-periodic polygonal graph given by some function f̃ satisfying y2, b > f̃+, and let ũ,
ũsc, D̃ and Ω be given as in subsection 2.1. We need to prove that the relation

u(x1, b; y) = ũ(x1, b; y) x1 ∈ (0, 2π) (11)

implies Λ = Λ̃.

Definition 2.5. A straight line l ⊂ D starting from one point and leading to infinity in {x2 > b} is called
a Dirichlet ray of u if u|l = 0.

From the identity (11), one can easily see that u(x; y) = ũ(x; y) for all x ∈ Ω\{y}. According to the
standard elliptic regularity theory, the total field u(x; y) (ũ(x; y)) is infinitely smooth up to Λ (Λ̃) except
for the corner points, and is real-analytic in Ω\{y}. Relying on the analyticity and the fact that both Λ and
Λ̃ are piecewise linear, one can verify that

Lemma 2.6. (i) If the relation (11) holds and Λ 6= Λ̃, then there always exists a Dirichlet ray l ⊂ Ω of
both u and ũ such that l is not parallel to the coordinate axes.

(ii) For non-periodic polygonal graphs Λ and Λ̃, the first assertion still holds true under one of the follow-
ing additional assumptions

(A1): For each angle φ formed by the x1-axis and a line segment of Λ ∪ Λ̃ not parallel to the x1-axis,
we have | tan(φ)| > ǫ for some positive constant ǫ.
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(A2): For each angle φ formed by the x1-axis and a line segment of Λ∪ Λ̃, we have | tan(ϕ)| < M for
some M > 0.

The key tool for proving Lemma 2.6 is the reflection principle for the Helmholtz equation under the Dirich-
let boundary condition (see [1, 13, 18, 27]), which has been used to investigate uniqueness in inverse
scattering by polygonal or polyhedral bounded obstacles with a single incident plane wave (see [1] and
[13]). The reflection principle is stated as follows and will also be used in section 2.3.

Lemma 2.7. (Reflection principle) Assume that Ω ⊂ R
2 is a symmetric domain with respect to the

line l, and that u satisfies the Helmholtz equation (∆ + k2)u = 0 in Ω with u = 0 on l. Then u(x) =
u(Refl(x)) in Ω, where Refl(·) denotes the reflection with respect to the line l. In particular, if l′ ⊂ Ω is
another line (or line segment) such that u|l′ = 0, then u also vanishes on Ref l(l

′) ∩ Ω.

We refer to [18, Lemma 2] for a detailed proof of Lemma 2.6 (i) in periodic case, where the existence
of the positive lower bound in (A1) is always guaranteed . With necessary modifications, the proof can
be readily carried over to general non-periodic polygonal structures which fulfill condition (A2). Note that
(A2) implies that both Λ and Λ̃ are given by piecewise linear functions with uniformly bounded Lipschitz
constants. Based on Lemma 2.6 and the reduction argument in [18, Lemma 3], we next prove Theorem
2.4 using a single incident point source wave.

Proof of Theorem 2.4 We begin with decomposing the incident point source wave uin(x; y) into upward
modes and downward modes by

uin(x; y) =

{
∑

n∈Z
B+

n (y) exp(i(αnx1 + βnx2)) in x2 ≥ y2,
∑

n∈Z
B−

n (y) exp(i(αnx1 − βnx2)) in x2 < y2,
x 6= y,

where B±
n (y) := exp(i(−αny1 ∓ βny2))i/(4πβn). If (11) holds but Λ 6= Λ̃, by Lemma 2.6 we may

assume without loss of generality that there exists a Dirichlet ray l := {(t, at) : t > 0} for some a > 0.
Hence, for t ∈ T := {t > 0 : at > y2}, there holds

0 = U(t) := u(t, at; y) = uin(t, at; y) + usc(t, at; y)

=
∑

n∈Z

B+
n (y) exp(i(αnt + βnat)) +

∑

n∈Z

An(y) exp(i(αnt + βnat))

=
∑

|αn|≤k

(B+
n (y) + An(y)) exp(i(αnt + βnat)) +

∑

|αn|>k

(B+
n (y) + An(y)) exp(iαnt − |βn|at)

=: V (t) + W (t). (12)

One can observe that W (t) consists of exponentially decaying functions as t → +∞. Thus, for any
ǫ > 0, there exists t0 ∈ T sufficiently large such that |W (t)| < ǫ for all t > t0. Together with (12), this
leads to |V (t)| < ǫ for t > t0. However, since V (t) is an almost periodic function on R, it holds that

max
t∈R

|V (t)| = lim sup
t→+∞

|V (t)| < ǫ.

Thus, by the arbitrariness of ǫ, we arrive at V (t) = 0 for all t ∈ R , which implies that W (t) = 0 for all
t ∈ T . Now, using the argument employed in [18, Lemma 3], we can conclude that B+

n (y)+An(y) = 0
for |αn| > k. Therefore, the total field can be reduced to a finite number of propagating modes

u(x; y) = uin(x; y) + usc(x; y) =
∑

|αn|≤k

(B+
n (y) + An(y)) exp(i(αnx1 + βnx2)) in x2 > y2,
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which is an analytic function in the region x2 > y2. Moreover, the solution u(x; y) remains bounded as x
tends to y in the half-space Uy2

. However, since usc(x; y) is smooth in a neighborhood of y and uin(x, y)
has the same singularity as the free-space fundamental solution of the two-dimensional Helmholtz equa-
tion (see [22]), the limit of u(x; y) as x → y must be unbounded. This contradiction implies that Λ = Λ̃.
2

Remark 2.8. Theorem 2.4 remains valid for the Neumann boundary condition. Analogously, one can
prove that one incident quasi-periodic point source wave is sufficient to determine a bi-periodic polyhedral
grating profile under the perfect conductor boundary condition (the tangential components of electric field
vanish) and under the third or fourth kind boundary conditions of linear elasticity. Note that in all these
cases, one incident plane wave is not enough in general to determine a grating profile uniquely; see
[4, 14, 15, 18]. However, such a reduction argument relies heavily on the Rayleigh expansion of the
scattered fields, and it seems impossible to extend this argument to non-periodic polygonal structures
where the UPRC is used.

In the next section, we adopt another approach to prove uniqueness for rough polygonal surfaces, pro-
viding a new proof of Theorem 2.4.

2.3 Uniqueness for non-periodic polygonal surfaces

Theorem 2.9. Let Γ∗
c (c > 0) and Γ∗

b (b > 0) be two different line segments parallel to the x1-axis
satisfying Γ∗

b ∩ Γ∗
c = ∅, and define the incident point source waves uin(x; y) for some y ∈ Γ∗

c as in
(3). Suppose that the scattering surface Λ is the graph given by some piecewise linear function f(x1),
satisfying |f(x1)| < min{b, c} for all x1 ∈ R and one of the conditions (A1) and (A2) in Lemma 2.7 (ii).
Then, the near-field data {u(x; y) : x ∈ Γ∗

b} determine the rough surface Λ uniquely.

Proof. Assume Λ̃ is another one-dimensional scattering surface satisfying all the conditions imposed on
Λ in Theorem 2.9. Denote by ũ(x; y) the total field corresponding to uin and Λ̃. If u(x; y) = ũ(x; y)
on Γ∗

b , then similarly to the proof of (6), one arrives at u(x; y) = ũ(x; y) for all x ∈ Ω\{y}, where Ω
denotes again the unbounded connected component of D ∩ D̃.

Assume Λ 6= Λ̃, and write y = (y1, y2). It follows from Lemma 2.6 (ii) that there exists at least one
Dirichlet ray l, which without loss of generality we denote by l = {(t, at) : t > 0} for some a > 0. The
case a < 0 can be treated similarly. Since u = uin + usc vanishes on l and the incident field is singular
at x = y, we see that l cannot pass through the point source y. If y lies below the Dirichlet ray l, i.e.,
y2 < ay1, then the point Ref l(y) must lie above l, which implies that Refl(y) ∈ Uc := {x2 > c} ⊂ Ω.
Then, applying the reflection principle of Lemma 2.7 yields the relation u(x; y)|x=y = u(x; y)|x=Refl(y),
which is impossible since u(x; y) is singular at x = y, while u(x; y) remains bounded as x → Ref l(y).
Thus it remains to consider the case when y lies above l, where the point Ref l(y) may lie in R2\Ω.
However, we claim that in this case there exists another Dirichlet ray l′ = {a′t + c′ : t ≥ t0} for
some a′, c′ > 0, t0 ∈ R such that a′y1 + c′ > y2, i.e., y lies below l′, which would lead to the same
contradiction. In fact, since ∂Ω is a graph which is unbounded in the positive x1-direction, we can always
find a line segment A1A2 ∈ ∂Ω with the end points A1, A2 ∈ R2 such that the slope of A1A2 is positive
and Ref l(A1A2) ⊂ Uc. Since u vanishes on both A1A2 and l, by the reflection principle we know that u
also vanishes on Refl(A1A2). Thus Ref l(A1A2) can be extended to a Dirichlet ray l′ below which the
point source y is located. The proof is thus complete.
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3 Uniqueness for the transmission problem

In this section, we assume that a time-harmonic electromagnetic wave due to a point source is scat-
tered by several rough layers in a piecewise homogeneous isotropic medium. Suppose further that the
medium varies only in x1-direction and is constant in x3-direction. We restrict ourselves to the case of two
rough interfaces, and consider the TM mode (transverse magnetic polarization) where the time-harmonic
Maxwell equations can be reduced to a two-dimensional scalar Helmholtz equation with the TM transmis-
sion conditions imposed on each rough interface.

Let the cross-sections Λj of the rough interfaces in the (x1, x2)-plane be given by graphs of disjoint C1,1

functions Λj := {x2 = fj(x1), x1 ∈ R}, j = 1, 2, satisfying

f1(x̃) > f2(x̃), |fj(x̃) − fj(ỹ)| ≤ Lj |x̃ − ỹ|, for all x̃, ỹ ∈ R
n−1, (13)

with Lj > 0, j = 1, 2. Denote the region above Λ1 by D0, the one below Λ2 by D2, and that between
Λ1 and Λ2 by D1; see Figure 1. The three distinct constant refractive indices corresponding to Dj are

Figure 1: The geometric figure of the background medium.

denoted by kj (i = 0, 1, 2), respectively, satisfying kj > 0, and k0 6= k1, k1 6= k2. Let

Λ+
1 := max

x1∈R

{f1(x1)}, Λ−
2 := min

x1∈R

{f2(x1)}.

Suppose that from the top region D0 we have an incident wave uin(x; y) due to the point source y ∈ D0

defined by (3) with k replaced by k0. Then, the total field u = u(x; y) satisfies

∆u + k2
ju = 0 in Dj\{y}, j = 0, 1, 2, (14)

u+ = u−,
1

k2
j−1

∂u+

∂n
=

1

k2
j

∂u−

∂n
on Λj, j = 1, 2, (15)

u = uin(x; y) + usc(x; y) in D0, (16)

where n denotes the unit normal to Λj pointing into Dj−1, and u+, ∂u+

∂ν
(resp. u−, ∂u−

∂ν
) denote the limits

of u on Λj from above (resp. below). The scattered field usc is required to satisfy the UPRC (4) in D0

for some H > Λ+
1 with k replaced with k0, while the field u in D2 is required to satisfy the downward

propagating radiation condition (DPRC):

u(x) =
1

2π

∫

R

exp(i[−(x2 − h)
√

k2
2 − ξ2 + x1ξ])F̂h(ξ)dξ, x ∈ R

2\Uh, (17)
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where Fh := u|Γh
∈ L2(Γh) for some h < Λ−

2 , and
√

k2
2 − ξ2 = i

√

ξ2 − k2
2 when |ξ| > k2.

For y ∈ R
2\(Λ1 ∪ Λ2), the function G(x; y) is called the fundamental solution to the above scattering

problem if there holds

LxG(x; y) := ∇ · (a∇G(x; y)) + G(x; y) = −δ(x − y), in R2,

G+ = G−, a+ ∂G+

∂n
= a− ∂G−

∂n
, on Λj, j = 1, 2,

G(x; y) satisfies the UPRC (4) with k = k0 and the DPRC (17),







(18)

where a(x) = 1/(k2
j ) for x ∈ Dj , j = 0, 1, 2. One can further observe that the fundamental solution

G(x; y) coincides with the function k2
0u(x; y) if the point source y ∈ D0. We next prove that the funda-

mental solution exists and is unique under some monotonicity conditions imposed on kj , from which the
well-posedness of our transmission problem (14)-(17) also follows. We assume that, for y /∈ Λ1∪Λ2, the
function

x 7→ (1 − χ(||x − y||ǫ−1))G(x; y)

belongs to H1(Uh\UH) for each ǫ > 0. Here χ(t) is a smooth function on [0, +∞) satisfying χ(t) = 1
for t ≤ 1/2 and χ(t) = 0 for t ≥ 1.

Lemma 3.1. For y /∈ Λ1 ∪ Λ2, the Green function G(x; y) exists and is unique if one of the following
conditions is satisfied:

(i) k0 > k1 > k2; (ii) k0 > k1, k1 < k2; (iii) k0 < k1 < k2. (19)

Proof. Without loss of generality, we may assume that y ∈ DN , N ∈ {0, 1, 2}, is a fixed point source.
Let η > 0 denote the Hausdorff distance between y and Λ1 ∪ Λ2, and choose a smooth function
χ̃(t) ∈ C∞(R+) satisfying χ̃(t) = 1 for t < η/4, and χ̃(t) = 0 for t > η/2. Setting V (x; y) =

G(x; y) − U(x; y), where U(x; y) := (i/4)H
(1)
0 (kN |x − y|)χ(|x− y|)k2

N , we see that

∆xV (x; y) + k2
j V (x; y) = g, in Dj , j = 0, 1, 2,

where g(x) is some C∞ smooth function on R2 compactly supported in DN . Moreover, V (x) satisfies
the TM transmission conditions (18) on Λj , the UPRC (4) with k = k0 and the DPRC (17). Thus, under
one of the conditions in (19) it follows from [17, Corollary 2.3] that V (x) ∈ H1(Uh\UH) is the unique
solution to this transmission problem and satisfies the estimate ||V ||H1(Uh\UH) ≤ C||g||L2(DN ) for some
constant C > 0 depending on H, h, kj (j = 0, 1, 2) and Λj (j = 1, 2). Thus, G(x; y) = V (x; y) +
U(x; y) is the unique fundamental solution to the transmission problem (14)-(17).

Our inverse problem in this section is

(IP’) Given k0 > 0 and the infinitely many incident waves uin(x; zm) generated by point sources zm ∈
Γ∗

c (m = 1, 2, · · · ), determine the rough interfaces Λj and the refractive indices kj (j = 1, 2)
from the knowledge of the near-field data {u(x; zm) : x ∈ Γ∗

b , m ∈ N}, where Γ∗
c ∩ Γ∗

b = ∅.

We next extend the arguments from section 2.1 to prove uniqueness in (IP’).

Theorem 3.2. Under one of the conditions in (19), the rough interfaces Λj with j = 1, 2, and the constant
refractive indices kj , j = 1, 2, can be uniquely determined from the near-field data {u(x; zm) : x ∈
Γ∗

b , m ∈ N} corresponding to the infinitely many incident point source waves uin(x; zm), m ∈ N.

10



Since the approach of Kirsch and Kress for proving uniqueness using point sources only applies to im-
penetrable bounded obstacles, we need to explicitly determine the leading singularity of the fundamental
solution G(x; y) at x = y for y ∈ R2 in order to extend that approach to our transmission problem.

Given two functions f(x) and g(x), we say that f(x) ∼ g(x) as x → x0 if limx→x0
f(x)/g(x) = 1.

Obviously, if f(x), g(x) → ∞ as x → x0 and f(x) − g(x) is bounded in a neighborhood of x0, then
f(x) ∼ g(x) as x → x0. Analogously, given two sequences fn and gn, we say that fn ∼ gn as
n → +∞ if limn→∞ fn/gn = 1. If y0 ∈ Dj for some j ∈ {0, 1, 2}, it can be readily deduced from the
fundamental solution to the two-dimensional Laplace equation that

G(x; y0) ∼ − k2
j

2π
ln ||x − y0|| as x → y0. (20)

Note that the relation (20) only depends on the wave numbers kj corresponding to Dj . However, we do
not know the existence of the Green function G(x; y) in the case that y belongs to the interfaces Λj

(j = 1, 2). Given y0 ∈ Λj , j ∈ {1, 2}, define a sequence yn by

yn = y0 +
1

n
n(y0), n = 1, 2, · · · . (21)

The reciprocity relation for G(x; y) allows us to define G(yn; y0) for fixed n by

G(yn; y0) := G(y0; yn) = lim
m→+∞

G(y0 +
1

m
n(y0); yn);

note that the limit exists because Λj is C1,1-smooth and the function G(·; yn) is continuous up to Λj . We
recall the following lemma on the limit of G(yn; y0) for y0 ∈ Λ1 ∪ Λ2 as n → +∞, which is proved in
[16, Lemma 2.5] by employing Fourier transform under the condition that Λj are C2-smooth. The result
remains valid if Λj are given by C1,1-smooth functions.

Lemma 3.3. For fixed y0 ∈ Λj , j ∈ {1, 2}, we have

G(yn; y0) ∼ − k2
jk

2
j−1

π(k2
j−1 + k2

j )
ln ||yn − y0|| as n → +∞,

where the sequence yn is defined by (21).

Now, based on Lemma 3.3 and the relation (20), we sketch the proof of Theorem 3.2, following the steps
in the proof of [16, Theorem 2.1 ] for multilayered bounded obstacles.

Proof of Theorem 3.2 Let Λ̃j (j = 1, 2) be another two disjoint rough interfaces separating the regions
D̃j (j = 0, 1, 2), with the wave number k̃j in D̃j (j = 1, 2) satisfying k0 6= k̃1, k̃1 6= k̃2. Analogously, we
use ũ, ũsc and G̃(x; y) to denote the corresponding fields and fundamental solution related to the rough
layers characterized by Λ̃1, Λ̃2 and k̃1, k̃2. Supposing that the identity (5) holds, we shall prove Λj = Λ̃j

and kj = k̃j for j = 1, 2.

Assume Λ1 6= Λ̃1. Without loss of generality, we may assume that there exists y0 ∈ Λ̃1 ∩ D0 ∩ ∂Ω,
where Ω denotes the unbounded connected component of D0 ∩ D̃0. Let yn be defined as in (21), and
let the functions F (x), F̃ (x) be given by

F (x) := −2πG(x; y0)/ ln ||x − y0||, F̃ (x) := −2πG̃(x; y0)/ ln ||x − y0||. (22)
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Since yn ∈ D0 ∩ Ω for sufficiently large n, it follows from (20) and Lemma 3.3 with Λj = Λ1 that

lim
n→+∞

F (yn) = k2
0, lim

n→+∞
F̃ (yn) = 2k2

0k̃
2
1/(k2

0 + k̃2
1),

leading to

lim
n→+∞

[F (yn) − F̃ (yn)] = k2
0(k

2
0 − k̃2

1)/(k2
0 + k̃2

1). (23)

However, using the same argument as in the proof of Theorem 2.2, one can derive from the equality (5)
that G(x; y) = G̃(x; y) for all x, y ∈ Ω, and thus that F̃ (yn) = F (yn) for all sufficiently large n ∈ N,
which contradicts (23) because k0 6= k̃1. Hence Λ1 = Λ̃1.

We next prove k1 = k̃1. Choose y0 ∈ Λ1 = Λ̃1, and define yn, F (x), F̃ (x) in the same way as in (21)
and (22). Applying Lemma 3.3 again yields the identity

0 = lim
n→+∞

[F (yn) − F̃ (yn)] =
2k2

0k
2
1

k2
0 + k2

1

− 2k2
0k̃

2
1

k2
0 + k̃2

1

=
2k4

0(k
2
1 − k̃2

1)

(k2
0 + k2

1)(k
2
0 + k̃2

1)
,

from which k1 = k̃1 follows.

Finally, applying Holmgren’s uniqueness theorem gives G(x; y) = G̃(x; y) for all x, y ∈ Ω0, where Ω0

denotes the unbounded connected component of (R2\D2)∩ (R2\D̃2). Proceeding in a similar way, we
can prove that Λ2 = Λ̃2 and k2 = k̃2. 2
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