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Abstract

The interaction of a disperse droplet population (spray) in a turbulent flow field is studied
by combining wind tunnel experiments with simulations based on the model of a popula-
tion balance system. The behavior of the droplets is modeled numerically by a population
balance equation. Velocities of the air and of the droplets are determined by non-intrusive
measurements. A direct discretization of the 4D equation for the droplet size distribution
is used in the simulations. Important components of the numerical algorithm are a varia-
tional multiscale method for turbulence modeling, an upwind scheme for the 4D equation
and a pre-processing approach to evaluate the aggregation integrals. The simulations of
this system accurately predict the modifications of the droplet size distribution from the
inlet to the outlet of the measurement section. Since the employed configuration is simple
and considering that all measurement data are freely available thanks to an Internet-based
repository, the considered experiment is proposed as a benchmark problem for the simu-
lation of disperse two-phase turbulent flows.

1 Introduction

In this paper detailed numerical simulations of systematic experimental studies
concerning droplet populations interacting with a turbulent flow are presented. Such
investigations are important to characterize modifications in the Droplet Size Distri-
bution (DSD) resulting from droplet/droplet interactions induced by turbulent struc-
tures. Water droplets with an initial diameter up to 50 m are injected into a Göttingen-
type wind tunnel with a closed test section. Velocities of both phases (air and
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droplets) are carefully determined by means of non-intrusive measurement tech-
niques. In this way, suitable boundary conditions and data are available to validate
corresponding numerical simulations.

All measurement data are collected in an online database accessible at www.

ovgu.de/isut/lss/metstroem. The raw measurement results are further post-
processed, so that all required data are in a suitable form for comparisons and
validation.

The behavior of the droplet population is modeled by means of a population
balance system, consisting of the Navier–Stokes equations describing the air flow
together with an additional equation for the DSD. In this last equation, the trans-
port, growth, and aggregation of droplets is taken into account. The DSD describes
the spatial evolution of the diameter of the droplets, the so-called internal coordi-
nate, such that the equation for the DSD is finally defined in a 4D domain.

Population balance systems can be applied for modeling many processes in en-
gineering and nature, like precipitation and crystallization processes, or rain for-
mation. The development of accurate and efficient numerical methods for such
simulations is an active field of research. Several suitable approaches have been
proposed in the literature. In particular, moment-based methods like the quadra-
ture method of moments (QMOM) [31], in which the equation in the 4D domain is
replaced by a system of equations for the moments defined in the 3D flow domain,
appears promising. A possible extension of QMOM is the direct quadrature method
of moments (DQMOM) [30]. Further, operator splitting techniques have been stud-
ied recently [8], projecting the solution of the 4D problem onto the solution of a 1D
problem followed by the solution of a 3D problem. Moment-based approaches and
operator splitting schemes are beneficial, since the solution of the 4D equation is
not needed any more. On the other hand, additional errors are introduced.

In the present paper, a direct discretization of the 4D equation for the DSD is
retained, since the accuracy of the results is here more important than the numerical
efficiency of the simulations. Simulations based on the 4D equation can be found
rather rarely in the literature. However, with increasing hardware capabilities and
with modern numerical methods, this is an attractive approach since it does not
require any additional assumptions, e.g., for closing the system, and it does not
introduce an additional modeling error. In the used method, the turbulent flow field
is simulated fully implicitly. A variational multiscale (VMS) method is applied for
turbulence modeling. The backward and forward Euler scheme are used as temporal
discretization for the population balance equation. A pre-processing approach was
applied to compute the aggregation integrals. With this numerical approach, it will
be shown that the experimentally observed evolution of the DSD between the inlet
of the flow domain and its outlet can be reproduced accurately. The robustness of
the prediction with respect to varying numerical methods is demonstrated. To our
best knowledge, the combination of the used methods for simulating a population
balance system cannot be found so far in the literature.

The retained configuration corresponds to an experiment proposed as a bench-
mark problem for the simulation of population balance systems, since

• all data are freely available in the online database at www.ovgu.de/isut/lss/
metstroem,

• the considered geometry and setup is simple,

• first numerical studies are already available, supporting the accuracy of the
experimental measurements.

The paper is organized as follows. The experimental setup is first described
in Section 2, followed by the measurements and the post-processing procedure in
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Section 3. Section 4 describes the population balance system used to model the
experiments. The numerical methods employed to simulate this setup are discussed
in Section 5 and the simulation results are presented in Section 6. A summary is
proposed at the end of the paper.

2 Experimental Setup

A special wind tunnel available at the laboratory of Fluid Dynamics & Technical
Flows has been used for the present experimental investigation of disperse two-phase
flows corresponding to meteorological conditions found in cumulus clouds [4, 5].
This wind tunnel can be used to investigate a variety of two-phase (air/liquid)
flows [12], see Fig. 1. It is a fully computer-controlled, Göttingen-type wind tun-
nel. Operation with a closed test section enables the controlled and reproducible
investigation of two-phase mixtures in the test section. The test section is of size
H×W×L = 500×600×1500 mm. It includes a measurement section of cross-section
450× 500 mm whose windows are optically transparent in the visible spectrum. In
this manner non-intrusive measurements are possible, which is essential for high-
quality experimental investigations of such flows.

Figure 1: Left: Göttingen-type two-phase wind tunnel with closed test section.
Right: test section, with measurement planes colored.

The disperse phase was added to the air flow with the help of an injection sys-
tem. The sprays were actuated by means of eccentric screw pumps. The number
of revolutions per minute (rpm) was set with the help of a frequency regulator to
a prescribed value by means of a Proportional Integral Derivative (PID) regulation
coded in LabViewr. In order to investigate rain formation and cloud droplet inter-
actions a full cone pneumatic atomizing nozzle was used (Type 166.208.16.12 from
the company Lechler GmbH), relying on the liquid pressure principle and applying
an air gauge pressure of 1.2 bar [3].

Since the influence of the support of the injection system could be noticed es-
pecially in the upper half of the measurement section, the measurement area was
finally restricted to the lower half of the cross-section, see Fig. 2. The resulting ve-
locity inhomogeneity of the air flow was then below 5% with a turbulence intensity
below 7% (mean value of 2.4%). The selected nozzle shows a typical six-hole spray
pattern caused by the six orifices in the nozzle. In order to reduce the influence
of this pattern, the water was injected in counter-flow direction. In this way, the
droplets were more homogeneously distributed, and the relative velocity difference
between continuous and dispersed flow at the entrance of the measurement section
was decreased, suppressing to a large extent the six-hole pattern.
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Figure 2: Mean axial velocity distribution of the air flow at the inlet (x = 0 mm) of
the measurement section, 630 mm downstream of the spray injection nozzle. The
circle denotes the region with a noticeable influence of the injection mount and the
dashed square the finally selected measurement region.

3 Measurement Procedure

The longitudinal coordinate of the beginning of the measurement section is defined
as x = 0 mm. Different measurement planes perpendicular to the main flow direc-
tion were investigated, at x = 0 mm, x = 200 mm, and x = 400 mm, see Fig. 1.
The first plane at x = 0 mm was measured particularly thoroughly, since it provides
the information needed for the boundary condition of the numerical simulations.

Experimental measurements were systematically carried out by means of non-
intrusive measurement techniques. Therefore, a small quantity of suitable tracer
particles must be added to the flow. Such particles follow the structures of the con-
tinuous phase much better [1, 2] than the considered droplets, allowing an indirect
measure of the gas flow properties. For this reason, the velocities of both phases
were measured in two separate steps.

The velocity distribution of the air phase at the entrance plane (x = 0 mm) was
measured by means of Laser-Doppler Velocimetry (LDV). During these measure-
ments in the continuous phase, the nozzle was operating at the same pressure as
in normal (spray) operation, but only with air and without water. Since the mass
flow rate of air and water in normal operation conditions are similar, ṁa/ṁw = 0.4,
only minor flow changes should be induced by this necessary operation.

In order to define the locations of the measurement points for the Laser-Doppler
Velocimetry and the Phase-Doppler Anemometry (PDA) techniques, a measure-
ment grid was generated with 874 (19 in z-direction × 46 in y-direction) measure-
ment points, with 10 mm distance in each direction between them. LDV and PDA
measurements lead to a high temporal resolution. Thus, the velocity components
measured in the mean flow direction (Fig. 3) included the temporal fluctuations as
well. In this way, the determination of turbulence intensity was also possible.

The measured mean velocity of the air flow was U = 2.45 m/s. Based on U
and on the hydraulic diameter of the wind tunnel (DH = 0.5454 m), the Reynolds
number of the flow is

Re =
U ·DH

ν
= 8.7 · 104.

The measured fluctuation of the air flow velocity in main flow direction was in the
average u′ = 0.25 m/s. This leads to a mean turbulence intensity of 10.92%.

The properties of the disperse phase (water spray) were then measured sepa-
rately in the three vertical planes at x = 0 mm, x = 200 mm, and x = 400 mm,
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Figure 3: Mean longitudinal velocity distribution of the air phase at x = 0 mm,
measured by means of LDV.

of course using the same measurement grid as previously. For a characterization
of the considered two-phase flow, the arithmetic mean diameter (D10) of the water
droplets is particularly important.

Velocities measured by PDA are based on the same principles as LDV. However,
using PDA the simultaneous measurement of the diameter and the velocity values
is possible. This allowed the investigation of the velocity-diameter correlation, as
exemplified in Fig 4. The different flow response of the droplets can be noticed
in this scatter plot. Due to noticeable smaller Stokes numbers, the small droplets
follow much more closely the fluctuations of the turbulent flow and are therefore
associated with larger velocity fluctuations, while larger droplets tend to gather
around the mean velocity value. Having the velocity values of both phases, the
relative velocity difference of the droplets can finally be calculated. This was found
to be 0.3 m/s in average at x = 0 mm. This value reduced as expected to 0.15
m/s as the droplets reached the final measurement plane x = 400 mm, showing
that the droplets are slightly accelerating on the way from the inlet to the outlet
plane. The mean velocity of the droplets, measured by means of PDA for the planes
x = 0 mm, x = 200 mm and x = 400 mm, is shown in Fig 5. These data were
used, in combination with the turbulent air flow, to interpolate the velocity of the
droplets udrop from the measurement planes to the whole domain, see Sect. 4.

Boundary conditions for the droplet size distribution at x = 0 mm have to be
derived from the measurements in order to start the companion simulations. At the
outlet boundary (x = 400 mm), experimental data are needed as well for comparison
purposes. Therefore, a corresponding post-processing of the PDA measurements is
necessary to obtain values for the number density or droplet concentration n [36, 39].
In the present work, the approach described in [13] was finally applied, improved by
a correction factor ηvi allowing to correct errors due to multiple particles occurring
in the detection volume or to non-validation of particles, as described by [37]. The
droplet size dependent calculation of the detection volume [37] was applied as well.
Thus, the number density is finally obtained by

n =
1

Tacq

Nsv∑
i=1

ηvi · tres,i

Vdet
, (1)

where Tacq is the acquisition time at a given measurement position, Nsv is the
number of validated PDA-signals, ηvi is the correction factor described before, tres,i

is the residence time of the ith droplet and Vdet is the size of the PDA detection
volume. The PDA detection volume is droplet size dependent and thus is a function
of the droplet velocity and of the burst duration in the detection volume.
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Figure 4: Velocity-diameter correlation of the water droplets at the point x = 0, y =
5, z = 0.

The average mean droplet number density per unit volume was finally measured
to be 2 000 no./cm3 at x = 0 mm. The corresponding distribution of the mean
values is presented in Fig. 6. Theoretically, with a droplet injection rate of 0.1
l/min and a mean droplet diameter of 12.5 µm, the corresponding droplet number
density per unit volume should be indeed approximately 2 000 no./cm3, supporting
the experimental measurements. This droplet number density per unit volume is in
the range of typical values found in cumulus clouds [28].

The determination of the probability density function nk(dk) is the key link
between experimental data and numerical simulations. The corresponding post-
processing was performed with a MATLABr script, using the previously exported
measurement raw data, and allowing both the computation of the probability den-
sity function of the droplet number density (nk(dk)) and its standard deviation
(σn,k). The droplets are divided into classes (dk) with a diameter resolution of 2
µm. The number density is computed separately for each size class using Eq.(1).
In addition, the number density was calculated for different time scales by dividing
the whole acquisition time Tacq into time intervals ∆t. In this manner, the standard
deviation σn,k can be calculated with

σn,k =

√√√√√
 1

Tacq

Tacq/∆t∑
j=1

n2
k,j ·∆t

− n2
k.

The input data for the simulations are then the droplet concentration as a function
of the droplet diameter, together with the corresponding standard deviation, as
shown in Fig. 7 for the entrance plane (x = 0 mm).

4 Numerical Model of the Process

The experiment is modeled using a coupled equation system consisting of the
Navier–Stokes equations for describing the air flow and a population balance equa-
tion modeling the behavior of the droplet size distribution. Only the lower half of
the test section is simulated, in agreement with the experimental approach described
previously, see again Fig. 2.
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Figure 5: Mean droplet velocity distribution in the planes x = 0 mm, x = 200 mm,
and x = 400 mm measured by means of PDA.
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Figure 6: Droplet number density per unit volume in no./cm3 at x = 0 mm, post-
processed from the PDA results.

Boundary conditions for the flow field have to be prescribed at the whole bound-
ary of the domain used in the simulations. It is not clear if the used outflow
boundary condition, associated with zero normal stresses, introduces a notice-
able modeling error. For this reason, the domain for the simulations was chosen
to be somewhat longer than the real measurement domain, so that the outflow
boundary condition did not influence the computational results at the locations
where comparisons are possible. The final computational domain was set to be
Ω = (0, 500) × (−225, 225) × (−180, 0) mm3 for x, y and z, respectively, with z
corresponding to standard elevation.

The incompressible Navier–Stokes equations have the form

ρut − 2µ∇ · D(u) + ρ(u · ∇)u +∇p = 0 in (0, te)× Ω,
∇ · u = 0 in (0, te)× Ω,

(2)

where u (m/s) is the fluid velocity vector, p (Pa) is the pressure, ρ = 1.2041 kg/m3,
assumed to be constant due to the extremely low Mach number considered here, is
the density of air at 293.15 K, µ = 18.15 ·10−6 kg/(m s) is the dynamic viscosity of
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Figure 7: Probability density function of the calculated droplet number density as
a function of the size class, including the measured standard deviation as an error
bar.

air at the same temperature, D(u) = (∇u + (∇u)T )/2 is the velocity deformation
tensor, and te denotes the final time. The gravitational acceleration term is included
into the pressure.

The Navier–Stokes equations (2) have to be combined with boundary conditions
and an initial condition. The inlet condition at Γin = {0}× (−225, 225)× (−180, 0)
was directly prescribed using the time-averaged experimental velocity uexp(0, y, z)
and standard deviation σexp(0, y, z)

u(t, 0, y, z) = uexp(0, y, z) + randnormal(t, 0, y, z)σexp(0, y, z)e1,

where randnormal(t, 0, y, z) denotes a normally distributed random number and e1

the Cartesian unit vector in x direction. The computation of the random number
is performed with the Box–Muller scheme. The second and third component of the
inlet velocity are set to be zero. At the outlet Γout = {500}×(−225, 225)×(−180, 0),
outflow boundary conditions

(2νD(u)− pI) · n = 0

were used. Here, n denotes the outward pointing normal vector on the bound-
ary. Along the top boundary Γtop = {0, 500} × (−225, 225) × {0} [m3], a free slip
boundary condition without penetration is implemented

u · n = 0 on Γtop,
nT (2νD(u)− pI) τ k = 0 on Γtop, k = 1, 2,

where (n, τ 1, τ 2) is an orthonormal system of vectors. This boundary condition
models a symmetry plane. On all other boundaries Γ = ∂Ω \ (Γin ∪ Γout ∪ Γtop),
free slip with penetration conditions were used

nT (2νD(u)− pI)n = 0 on Γ,
nT (2νD(u)− pI) τ k = 0 on Γ, k = 1, 2.

This boundary conditions model the case that there are fluctuations on Γ which
are directed inside and outside the domain. This corresponds to the experimental
setup since the measured volume is just inside the wind tunnel and its boundaries
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are slightly away from the walls of the wind tunnel. To obtain an initial condition,
the flow was simulated until it was fully developed. An instantaneous flow field was
then saved and used as initial flow field in all simulations.

The DSD was modeled by a population balance equation. This model includes
transport, growth, and agglomeration of droplets. It has the form

∂f

∂t
+

∂

∂d

(a
d
f
)

+ udrop · ∇f

=
d2

2

∫ d

dmin

κagg

((
d3 − (d′)3

)1/3
, d′
)

(d3 − d′3)2/3
f
(
·,
(
d3 − (d′)3

)1/3)
f(·, d′) dd′

−f(·, d)

∫ dmax

dmin

κagg(d, d′)f(·, d′) dd′ in (0, te)× Ω× (dmin, dmax), (3)

where f (m4) is the droplet size distribution, d (m) is the diameter of the droplets
with d ∈ [dmin, dmax], udrop (m/s) is the velocity of the droplets, a (m2/s) is the
growth rate, and κagg (m3/s) is the aggregation kernel.

Experimental data are available for the time-averaged first component of the
droplet velocity at the planes x = 0 mm, x = 200 mm, and x = 400 mm, see
Fig. 5. These values are subtracted from the experimental data of the time-averaged
velocity of air, giving a time-averaged velocity difference between the dilute (water
droplets) and continuous (air) phases. This difference was interpolated in [0, 400]
(mm) and the values at the plane x = 400 mm were used as extrapolation in the
domain [400, 500] mm, extending beyond the measured region. Then, this difference
was subtracted from the first component of the velocity computed by the Navier–
Stokes equations (2) to define the first (longitudinal) component of the droplet
velocity udrop. The other components of the droplet velocity were just prescribed
as the velocity components coming from the solution of Eq.(2).

A model for the growth rate was derived in [35] by considering individual droplets

a =
4(S − 1)[(

L
RνT
− 1
)
LρL
KT + ρLRνT

Des(T )

] ,
where S is the saturation, L = 2.453 · 106 J/kg the latent heat, Rν = 461.5 J/(kg
K) is the gas constant for water vapor, T = 293.15 K is the temperature, ρL =
998.21 kg/m3 is the density of water, K = 2.55 · 10−2J/(m s K) is the thermal
conductivity of air at the considered temperature [35], D = 2.52 · 10−5 m2/s is the
diffusion coefficient of water vapor in air at T = 293.15 K and 100 kPa [35], and
es(T ) = 2338.54 Pa is the equilibrium vapor pressure at 293.15 K. The factor 4
occurs in the previous equation because the diameter of the droplets is considered
instead of the radius, as in [35]. In all present simulations, a super saturation of
1% (S = 1.01), was assumed, which is a typical value for clouds (see Chapter 13
in [33]) and corresponds to an estimation of the maximum value found in the wind
tunnel experiments, leading to

a = 5.0613 · 10−12 m2/s.

The model employed for the aggregation follows [16, 32]. The first term mod-
els the production of droplets of diameter d due to the agglomeration of smaller
droplets. The second term in the model accounts for the disappearance of droplets
of diameter d because of their agglomeration with other droplets. For the aggrega-
tion kernel κagg (in m3/s), two physical processes (Brownian motion and shear) are
combined, leading to the sum of two separate contributions

κagg(d, d′) = Cbrown
2kBT

3µ
(d+ d′)

(
1

d
+

1

d′

)
+ Cshear

√
2∇u : ∇u (d+ d′)

3
. (4)
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Here, kB = 1.38065 10−23 J/K is the Boltzmann constant. The two dimension-
less model parameters, Cbrown and Cshear, will be later calibrated by fitting the
numerical results to experimental data.

The experimental data obtained for the droplet number density n (in no./cm3),
see Eq.(1), have to be converted first to a droplet size distribution f (in no./m4).
This is achieved in the following way. For each class, the number of drops ni (in
no./cm3) is experimentally given as well as its standard deviation σn,i (in no./cm3).
Following for instance [35] (Eq.2.3.2), the total number of drops per unit volume of
physical space is given by

ntot(t,x) =

∫ dmax

dmin

f(t,x, d) dd.

For the time–averaged values at the inlet, it is

ntot,in(x) =

∫ dmax

dmin

fin,exp(x, d) dd =

nd∑
i=0

ni. (5)

Assuming fin,exp(x, d) to be for each x a continuous function, the composite mid-
point rule of numerical quadrature gives∫ dmax

dmin

fin,exp(x, d) dd =

nd∑
i=0

∫ di+1

di

fin,exp(x, d) dd ≈
nd∑
i=0

(di+1−di)fin,exp(x, di+1/2).

(6)
From Eq.(5) and Eq.(6) follows

fin,exp(x, di+1/2) ≈ ni
di+1 − di

[
no.

µm cm3

]
= 1012 ni

di+1 − di

[no.

m4

]
. (7)

For the conversion of the experimental number density to the droplet size distri-
bution, equality in the first step of relation Eq.(7) is assumed and the droplet size
distribution is linearly interpolated. The standard deviation is scaled the same way,
i.e.,

σf,i(x, di+1/2) = 1012 σn,i
di+1 − di

[no.

m4

]
.

The initial condition is given by

f(0,x, d) = 0 in Ω× (dmin, dmax),

i.e. there are no droplets in the flow domain.
Due to the boundary conditions for the flow field at the boundary Γ, which

allow fluctuations on Γ to be directed outside the domain, droplets might leave the
computational domain. The transport of droplets through the lateral walls because
of fluctuations which are directed into the domain is not taken into account since no
experimental data are available for this process. In all numerical studies, it turned
out that the loss of droplets due to the outflow through the lateral boundaries is
negligible. In addition, because of the positive growth rate, a boundary condition
for the smallest droplet size dmin is necessary, as a simple model for the nucleation
of droplets. For this issue, experimental data are not available. To circumvent this
difficulty, an artificial smallest diameter of the droplets is introduced, dmin,art = 0
m, and the boundary condition for the inlet are finally set

f(t,x, d) =

{
fin,exp(0,x, d) + randnormal(t,x)σf (x, d), x = (0, y, z) ∈ Γin

0, at d = dmin,art.
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The boundary condition at the inlet is thus defined as a normally distributed per-
turbation of the time-averaged experimental data which is linearly interpolated. In
[dmin,art, dmin), the DSD was set to be f(d) = 0. Values of the DSD for such small
parameters are needed in the production term of the agglomeration integral since(
d3 − (d′)3

)1/3
tends to zero for d′ → d. This definition prevents the kernel and the

terms in the integrals from being singular.

5 Numerical Methods

The numerical studies presented below are based on non-dimensional equations
using the following reference values

l∞ = 1 m, u∞ = 1 m/s, t∞ =
l∞
u∞

s, p∞ = ρu2
∞ Pa, f∞ = 1012 1/m

4
,

d∞ = dmax = 1.71 · 10−4 m.

The minimal diameter of the droplets was taken from the experimental data to be
dmin = 10−6 m.

The domain Ω was triangulated with a 50 × 45 × 18 hexahedral grid, equi-
distant in each direction. With this grid, the positions of the measurement points
were located at nodes. In addition, the mesh for the internal coordinate was chosen
in such a way that a direct fitting of the experimental data was possible. Since the
data were given for equi-distributed diameters, the grid for the internal coordinate
was defined in the same way. Only the interval (0, dmin) had a different length.

An implicit time stepping scheme and an inf-sup stable finite element method
formed the basis of the discretization of the Navier–Stokes equations (2). As time
stepping scheme, the Crank–Nicolson method was applied. This scheme is widely
used since it leads to a good compromise between accuracy and efficiency [24]. The
length of the equi-distant time step was set to be ∆t = 0.001 s or alternatively
∆t = 0.0005 s with a final time te = 1 s.

After having applied the Crank–Nicolson scheme and a fixed point iteration as
linearization, the equations were discretized in each discrete time with the Q2/P

disc
1

finite element method. Hence, the velocity was approximated with continuous piece-
wise second order polynomials and the pressure with discontinuous piecewise linear
functions. This pair of finite element spaces has been identified as one of the best
performing finite element approaches for the simulation of incompressible Navier–
Stokes equations in numerous studies [11, 17, 19]. On the used grid, this finite
element discretization leads to 1 020 201 degrees of freedom for the velocity and
to 162 000 degrees of freedom for the pressure. The implementation of the slip
and penetration boundary conditions in the framework of finite element methods is
described in [18].

Since the flow is turbulent, numerical simulations require the application of a
turbulence model. In the simulation presented in Section 6, a finite element vari-
ational multiscale (VMS) method was applied [6, 7]. In VMS methods, the scale
separation is obtained by projections in appropriate function spaces. In this way,
resolved large scales Pu, resolved small scales (I − P )u, and unresolved scales u′

are defined, where u = Pu + (I − P )u + u′, P is an L2–projector and I is the
identity operator. The resolved scales u will be simulated. The idea of scale sepa-
ration in resolved and unresolved scales is like in traditional large eddy simulation
(LES). However, the application of a projection for defining the scale separation is
a fundamental difference to LES, as in LES the large scales are defined by spatial
averaging. There are meanwhile a number of realizations of VMS methods, see
[9, 25] for overviews. A number of studies show that the VMS approach is com-
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petitive with LES methods and that it leads often even to better results, e.g., see
[10, 15, 34].

In the simulation presented below, the method from [20] was applied, together
with the extension of choosing the projection space adaptively which was introduced
in [22]. The VMS methods from [20, 22] require the definition of a tensor-valued
projection space and the use of an eddy viscosity model. In the method from [20],
the projection space is the same in the whole domain. Usually, piecewise constant
tensors (VMS-P0) or discontinuous piecewise linear tensors are applied. Experience
shows that the constant tensors should be preferred [21, 25]. An a posteriori and
adaptive choice of the projection space was proposed in [22]. This choice is based
on an indicator for the local turbulence intensity. In the simulations presented in
Section 6, the same parameters in the adaption process were used as suggested in
[22].

A main feature of the projection–based VMS methods is that the eddy viscosity
model acts directly only on the resolved small scales. This is another fundamental
difference to LES methods, where the eddy viscosity model acts on all resolved
scales. In a number of studies, it was observed that rather simple eddy viscosity
models applied within the framework of VMS methods often lead to good results
[10, 14]. In the simulations presented below, the static Smagorinsky model [38] was
used

CSδ
2‖D(u)‖

with CS = 0.005 and δ being the length of the shortest edge of a mesh cell.
The number of grid points for discretizing the equation for the DSD is 3 967 086.

In [26, 27], it was shown that different discretizations for this equation might lead to
considerably different results for quantities of interest. However, the best method
from these studies, a finite element flux-corrected transport scheme from [29], is
simply too expensive to be applied on the given grid. Finite element methods
require numerical quadrature for assembling the system matrices and the costs of
this quadrature grow exponentially with the dimension of the domain. For this
reason, an upwind finite difference method, together with a forward Euler time
stepping scheme (FWE-FDM) or a backward Euler scheme (BWE-FDM), was used.
For the considered experiment, much less differences in the results obtained with
different discretizations are expected, since the residence time of the droplets in
the domain is much shorter compared with the experiments simulated in [26, 27].
For the Euler schemes, the same time steps were applied as they were used in the
temporal discretization of the Navier–Stokes equations.

The evaluation of the agglomeration integrals on the right hand side of Eq.(3)
was based on a pre-processing step. This step will now be described exemplarily for
the second term in Eq.(3). In this discussion, the dependency of the DSD on time
and space will be neglected.

Let 0 = d0 < d1 = dmin < . . . < dN = dmax be the grid points with respect to
the internal coordinate. As explained above, f(d) vanishes in (d0, d1). Otherwise,
the DSD is assumed to be continuous. Then, the integral for the second term in
Eq.(3) at the diameter dj , j ∈ {1, . . . , N}, is approximated by

f(dj)

∫ dmax

dmin

κagg(dj , d)f(d′) dd′

= f(dj)

N−1∑
i=1

∫ di+1

di

κagg(dj , d
′)f(d′) dd′

≈ f(dj)

N−1∑
i=1

f(di+1) + f(di)

2

∫ di+1

di

κagg(dj , d
′) dd′.
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The remaining integrals depend only on the kernel and the grid for the internal
coordinate∫ di+1

di

κagg(dj , d
′) dd′ = Cbrown

2kBT

3µ

∫ di+1

di

(d+ d′)

(
1

d
+

1

d′

)
dd′

+Cshear

√
2∇u : ∇u

∫ di+1

di

(d+ d′)
3
dd′, i = 1, . . . , N − 1.

Since the grid is given, the integrals on the right hand side can be computed in a
pre-processing step. A similar approach can be performed for the first integral in
Eq.(3). For the evaluation of the integrals, the package MAPLE was used, since it
was not possible to evaluate all integrals analytically. The numerical computation
of the integrals in MAPLE was performed with the option to be exact for 14 digits.

6 Numerical Studies

All simulations were performed with the code MooNMD [23]. Figure 8 presents as
an example an instantaneous view of the computed velocity field. It can be clearly
seen that the flow in the center of the channel is slower due to the nozzle mount
placed upstream of the measurement section. The residence time of a droplet in the
measurement volume is typically below 0.5 s.

Figure 8: Instantaneous velocity field obtained from the simulation, with the outflow
boundary of the measurement section (x = 400 mm) on the right hand side.

The main purpose of these numerical studies was the calibration of the unknown
parameters Cbrown and Cshear in the aggregation kernel, Eq.(4). In addition, such
investigations are useful to quantify the robustness of the results with respect to
the different numerical methods presented in the previous section. The calibra-
tion was performed by fitting the computed DSD to the experimental data. From
the experiments, the DSD was available at each measurement point of the outlet
plane (x = 400 mm). Due to the turbulent character of the flow, the experimental
data, which are already time-averaged, are rather different in different measurement
points. For this reason, an averaging in space was applied to the data, leading to
one space-time-averaged curve to compare with. The same space-time-averaging
was applied for the computational results, were the time averaging was performed
in the interval [0.5, 1] s.

Figure 9 presents results for the calibration of the parameters Cbrown and Cshear.
After a manual trial and error procedure, it has been found that for appropriately
chosen parameters, i.e., Cbrown ' 1.5 106 and Cshear ∈ [0.01, 1], the change of the
droplet size distribution observed in the experiments from the inlet to the outlet
is very well reproduced by the numerical simulations. When considering the order
of magnitude difference between Cbrown and Cshear, remember that the term of
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the aggregation kernel Eq.(4) referring to Brownian motion contains as well the
extremely small factor kB . For small droplets, the third factor in this term becomes
large so that in this case the aggregation associated to Brownian motion dominates,
as expected from the physics. On the other hand, for larger droplets (typically for
d & 7 µm), shear-induced aggregation and hence the parameter Cshear becomes
essential to fit the experimental data correctly (Fig. 9). It should be noted that the
used model for the DSD possesses only one direction, namely that larger droplets are
created from smaller ones, by aggregation or by growth. Hence, a good prediction
of the small droplets is a necessary basis for a good prediction of the large droplets.
From the setup of the experiments, it can be expected that aggregation is the
dominating mechanism. This dominance was numerically verified by comparing
results without the growth term in Eq. (3) and with including this term using a
realistic value for the supersaturation. Fig. 10 shows that the impact of the growth
term on the simulated DSDs is negligible.

Figure 9: Calibration of the model parameters Cbrown and Cshear, with VMS-ADAP,
FWE-FDM and ∆t = 0.001. The green curves are the averaged data at the outlet
of the measurement volume.

Figure 10: Impact of the growth term in Eq. (3) on the DSD.

The sensitivity of the computed DSD with respect to the various numerical
methods is illustrated in Fig. 11. It can be seen that neither the length of the time
step, nor the turbulence model, nor the discretization of the equation for the DSD
lead to noticeable differences in the results. Hence, the results can be considered to
be reliable and the employed numerical techniques are robust.

7 Summary

The properties of a turbulent two-phase flow (air with a spray of water droplets
smaller than 50 µm in diameter) has been experimentally investigated in a dedi-
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Figure 11: Sensitivity of the DSD. Upper left: with respect to ∆t, with VMS-ADAP,
FWE-FDM. Upper right: with respect to the turbulence model, with FWE-FDM
and ∆t = 0.001. Bottom: with respect to the discretization of the equation for the
DSD, with VMS-ADAP and ∆t = 0.001. Note, often the curves are on top of each
other.

cated wind tunnel. The velocity of both phases have been measured as well as the
Droplet Size Distribution for different positions within the test section. The droplet
diameters measured as a function of time have been converted into a droplet number
density as a function of different size classes using a post-processing method. The
velocity of the air flow, including its temporal change is used as boundary condition
for the continuous phase at the inlet, which is modeled by the Navier–Stokes equa-
tions. The turbulent flow field is simulated by a finite element variational multiscale
(VMS) method.

The measured droplet size distribution (in the form of number density) and
velocity information are used in the simulations both as inflow boundary condition
for the disperse phase and for a quantitative comparison between experiments and
numerical predictions at the outlet. The evolution of the droplet population is
modeled by an equation for the DSD, including transport, growth, and aggregation
of droplets. The equation for the DSD is defined directly in a 4D domain, including
the diameter of the droplets, since the accuracy of the results is more important
than the efficiency of the simulations.

After calibrating the unknown parameters of the aggregation kernel by fitting the
computed DSD to experimental data, the resulting comparison between experiments
and simulations is very promising. Furthermore, the developed numerical techniques
appear to be reliable and robust, since neither the length of the time step, nor
the turbulence model nor the disretization of the DSD equation lead to noticeable
differences in the results, as long as reasonable parameters are considered.

The resulting computational procedure will now be used to investigate in more
detail similar issues of increasing complexity, first considering the interaction be-
tween two sprays with different initial Droplet Size Distributions, in order to quan-
tify the observed modifications concerning droplet collision and growth. The influ-
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ence of the saturation parameter will also be investigated, in parallel to correspond-
ing experiments in the same setup.
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[5] R. Bordás and D. Thévenin. Modeling cumulus clouds in a two-phase wind
tunnel. In European Geosciences Union General Assembly EGU 2009, Vienna,
Austria, Poster 4722, 2009.

[6] M. Farge and K. Schneider. Coherent Vortex Simulation (CVS), a semi-
deterministic turbulence model using wavelets. Flow Turb. Combust., 66:393 –
426, 2001.

[7] M. Farge, K. Schneider, G. Pellegrino, A.A. Wray, and R.S. Rogallo. Coherent
vortex extraction in three-dimensional homogeneous turbulence. Phys. Fluids,
15:2886 – 2896, 2003.

[8] S. Ganesan. An operator-splitting heterogeneous finite element method for pop-
ulation balance equations: Stability and convergence. Preprint 1531, WIAS,
2010.

[9] V. Gravemeier. The variational multiscale method for laminar and turbulent
flow. Arch. Comput. Meth. Engrg., 13:249 – 324, 2006.

[10] V. Gravemeier. Variational multiscale large eddy simulation of turbulent flow
in a diffuser. Comput. Mech., 39:477 – 495, 2007.

[11] P.M. Gresho and R.L. Sani. Incompressible Flow and the Finite Element
Method. Wiley, Chichester, 2000.

[12] T. Hagemeier, R. Bordás, P. Bencs, B. Wunderlich, and D. Thévenin. Deter-
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