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NONLINEAR WAVELET ESTIMATION OF TIME-VARYING 
AUTOREGRESSIVE PROCESSES 

Rainer Dahlhaus1 , Michael H. Neumann2 and Rainer von Sachs3 

ABSTRACT. We consider non parametric estimation of the coefficients <li( ·) , i = 
1, ... , p, of a time-varying autoregressive process. Choosing an orthonormal wa-
velet basis representation of the functions <li(-) , the empirical wavelet coefficients 
are derived from the time series data as the solution of a least squares minimi-
zation problem. In order to allow the <li(·) to be functions of inhomogeneous 
regularity, we apply nonlinear thresholding to the empirical coefficients and obtain 
locally smoothed estimates of the <li(·) . We show that the resulting estimators 
attain the usual minimax L2-:rates up to a logarithmic factor, simultaneously in a 
large scale of Besov classes. 
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1. INTRODUCTION 

Stationary models have always been the main focus of interest in the theoretical tre-
atment of time series analysis. For several reasons autoregressive models form a very 
important class of stationary models: They can be used for modeling a wide variety 
of situations (for example data which show a periodic behavior), there exist several 
efficient estimates which can be calculated via simple algorithms (Levinson-Durbin 
algorithm, Burg-algorithm), the asymptotic properties including the properties of 
model selection criteria are well understood. 
Frequently, people have tried to use autoregressive models also for modeling data that 
show a nonstationary behavior, mainly by fitting AR-models on small segments. This 
method is for example often used in signal analysis for coding a signal (linear pre-
dictive coding) or for modeling data in speech analysis. The underlying assumption 
then is that the data are coming from an autoregressive process with time varying 
coefficients . 
.Suppose we have some observations {X1, ... , XT} from a zero mean, autoregressive 
process with time varying coefficients a1 (·), ... , ap(·). To get a tractable frame for 
our asymptotic analysis we assume that the functions ai are supported on the interval 
[O, 1] and connected to the underlying time series by an appropriate rescaling. This 
leads to the model 

p 

Xt,T + L ai(t/T)Xt-i,T = a(t/T)et, (1.1) 
i=l 

where the et's are independent, identically distributed with Eet = 0 and var(et) = 
1. This time varying autoregressive model is a special locally stationary process as 
defined in Dahlhaus (1993). However, for the main results of this paper we only use 
the representation (1.1) and not the general properties of a locally stationary process. 
The estimation problem now consists of estimating the parameter functions ai( · ). 
Very often these functions are estimated at a fixed time point t 0 /T by fitting a stati-
onary model in a neighborhood of to, e.g. by estimating a1(t0 /T), ... , ap(t0 /T) with 
the classical Yule-Walker (or Burg-) estimate over the segment Xto-N,T, ... , Xto+N,T 
where N /T is small. This method has the disadvantage that it automatically leads 
to a smooth estimate of ai( · ). Sudden changes in the ai( · ), as they are quite common 
e.g. in signal analysis, cannot be detected by this method. Moreover, the performance 
of this method depends on the appropriate choice of the segmentation parameter N. 
Instead, in this paper we develop an automatic alternative, which avoids this a priori 
choice and adapts to local smoothness characteristics of the ai( · ). 
Our approach consists in a nonlinear wavelet method for the estimation of the co-
efficients ai( · ). This concept, based on orthogonal series expansions, has recently 
been entered in the nonparametric regression estimation problem due to Donoho and 
Johnstone (1992) and has been proven very useful if the class of considered functions 
to be estimated exhibits a varying degree of smoothness. Some generalizations can be 
found in Brillinger (1994), Johnstone and Silverman (1994), Neumann and Spokoiny 
(1995) and Neumann and von Sachs (1995a). As usual, the unknown functions, _i.e. 
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ai(u), are expanded by orthogonal series w.r.t. a particularly chosen orthonormal ba-
sis of L2 [O, 1], a wavelet basis. Basically, the basis functions are generated by dilations 
and translations of the so-called scaling function efJ and wavelet function 'lj;, which are 
both localized in spatial position (i.e. temporial, here) and frequency. These basis 
functions, unlike most of the "traditional" ones (Fourier, (non-local) polynomials, 
etc.), are able to optimally compress both functions with rather homogeneous smo-
othness over the whole domain (like Holder or Li-Sobolev) as well as members of 
certain inhomogeneous smoothness classes like Lp-Sobolev or Besov B;,q with p < 2. 
Note that the better compressed a signal is (i.e. being represented by a smaller num-
ber of coefficients), the better performs an estimator of the signal which is optimally 
tuned w.r.t. bias-variance trade-off. A strong theoretical justification for the merits 
of using wavelet bases in this context has been given by Donoho (1993): It was shown 
that wavelets provide unconditional bases for a wide variety of these inhomogeneous 
smoothness classes which yields that wavelet estimators can be optimal in the abo-
vementioned sense. 
To actually achieve this optimality there is need for non-linearly modifying traditional 
linear series estimation rules which are known to be optimal only in case of homo-
geneous smoothness: There the coefficients of each resolution level j are essentially 
of the same order of magnitude, and the loss due to a levelwise inclusion/exclusion 
rule, as opposed to a componentwise rule, is only small. However, under strong in-
homogeneity, not only the coefficients of each fixed level might considerably differ in 
their order of magnitude but also have significant coefficients on higher levels to be 
included by a suitably chosen inclusion rule. Surprisingly enough, this is possible by 
simple and intuitive schemes which are based on comparing the size of the empirical 
(i.e. estimated) coefficents with their variability. Such nonlinear rules can dramati-
cally outperform linear ones for the mentioned cases of sparse signals (i.e. those of 
inhomogeneous function classes being represented in an unconditional bases). 
In this work, we apply these locally adaptive estimation procedures to the particular 
problem of autoregression coefficients which are functions of time. In a first step, 
the empirical wavelet coefficients are derived as a solution of a least squares mini-
mization problem, before, secondly, soft or hard thresholding is applied. We show 
that in this situation, which is considerably more complicated than ordinary regres-
sion, our nonlinear wavelet estimator: attains the usual near-optimal minimax rate of 
L2-convergence, in a large scale of Besov classes. 
Finally, with this adaptive estimation of the time-varying autoregression coeffici-
ents, we immediately provide a parametric estimate for the resulting time- dependent 
spectral density of the process given by (1.1). An alternative, fully nonparametric 
approach for estimating the so-called evolutionary spectrum of a general locally sta-
tionary process (as defined in Dahlhaus (1993)) has been delivered by Neumann and 
von Sachs (1995b ), which is based on nonlinear thresholding in a two-dimensional 
wavelet basis. 
The content of our paper is organized as follows: While in the next section we describe 
details of our set-up and present this main result, in Section 3 the statistical properties 
of the empirical coefficients are given. Section 4 deals with the proof of the main 
theorem. The remaining Sections 5 - 7 collect some auxiliary results, both of own 
interest and in this particular context used to derive the main proof (of Section 4 ). 
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2. ASSUMPTIONS AND THE MAIN RESULT 

Before we develop nonlinear wavelet estimators for the functions ai, we describe the 
general set-up. It is well-known that the boundary-corrected Meyer wavelets (Meyer 
(1991)) or those developed by Cohen, Daubechies and Vial (1993) form orthonormal 
bases of L2 [0, l]. Accordingly, we can expand ai in an orthogonal series 

( i) ( i) 
ai = L Ctzk <Pzk + L L f3ik 7/;jk, (2.1) 

kEJ? j~l kEI; 

where a~~) = J ai( u )<Pzk( u) du , fJJ~ = J ai( u )7/;jk( u) du are the usual Fourier coeffici-
ents, also called wavelet coefficients. It is known that #1; = 2i and #IP = 2z + N 
for some integer N depending on the regularity of the wavelet basis. 
Assume a degree of smoothness mi for the function ai. In accordance with this, we 
choose compactly supported wavelet functions of regularity r > m := max{mi} , 
that is 

(Al) (i) <P and 'if; are cr[o, 1] and have compact support, 
(ii) J <f>(t) dt = 1, J 'if;(t)tk dt = 0 for 0 ~ k ~ r. 

By the usual approach, as derived in the abovemention~d work on boundary-corrected 
wavelets, we now obtain basis functions of L2[0, 1] as </Jzk = 2tf2<J>(2lx - k) and 7/;jk = 
2il27f;(2ix - k ), with certain modifications of those functions that have a support 
beyond the interval [O, 1]. 
The first step in each wavelet analysis is the definition of empirical versions of the 
wavelet coefficients. Here we obtain such coefficients a~!) and 'S)2 as least squares 
estimators corresponding to some truncated wavelet series expansion of the functions 
ai; see Section 3 for a detailed description of that procedure. 
To treat these coefficients in a statistically appropriate manner, we have to tune the 
estimator in accordance with their distribution. It turns out that this distribution 
actually depends on the (unknown) distribution of the Xt,T's at the.finest resolution 
scales, whereas we can hope to have asymptotic normality if 23 = o(T) . We 
show in Section 3 that we do not lose asymptotic efficiency of the estimator, if we 
truncate the series at some level j = j(T) with 2-i(T) = O(T-112 ). To give a definite 
rule, we choose the highest resolution level j* - 1 such that 2i*-t ~ T 112 < 2i* , 
i.e. we restrict our analysis to coefficients a~!) ( k E I?, i = 1, ... , p) and J3]2 (j ~ l, 
2i+1 ~ T 112 , k E I;, i = 1, ... , p ). Unlike in ordinary regression it is not possible 
in the autocorrelation problem considered here to include coefficients from resolution 
scales j up to 2i x T . This is due to the fact that the empirical coefficients cannot be 
reduced to sums of independent (or sufficiently weakly dependent) random variables, 
which results in some additional bias term. 
In the present paper we propose to apply nonlinear smoothing rules to the coefficients 
'S]2. It is well-known (cf. Donoho and Johnstone (1992)) that linear estimators can be 
optimal w.r.t. the optimal rate of convergence as long as the underlying smoothness of 
ai is not too inhomogeneous. This situation changes considerably, if the smoothness 
varies strongly over the domain. Then we have the new effect that even at higher 
resolution scales a small number of coefficients cannot be neglected, whereas the 
overwhelming majority of them is much smaller than the noise level. This kind of 
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sparsity of the signal is responsible for the need of a nonlinear estimation rule. Two 
commonly used rules to treat the coefficients are 

1) hard thresholding 

and 
2) soft thresholding 

Before we state our main result, we introduce some more assumptions. The constant 
C used here and in the following is assumed to be positive, but need not be the same 
at each occurrence. 

( A2) There exists some I ~ 0 such that 

for all n, t 

(A3) The process {Xt,T} admits an MA( oo )-representation 
00 

Xt,T = 2:: lt,T( s )et-a 
a=O 

with 
00 

2:: sup{lrt,T(s)I} :::; C 
a=O t 

for all T. 

(A4) The ai and u are uniformly continuous with C1 :::; u(s):::; C2 on (0,1) and 
there exists a S > 0 with 

p 

1 + L:: ai(s)zi-/= 0 for all lzl:::; 1 + S and all s E. [O, l]. 
i=l 

Remark 1. Note that, besides the obvious case of the normal distribution, many of 
the distributions that can be found in textbooks satisfy (A2) for an appropriate choice 
of I· In Johnson and Kotz (1970) we can find closed forms of higher order cumulants 
of the exponential, gamma, inverse Gaussian and F-distribution, which show that 
this condition is satisfied for I = 0. The need for a positive I occurs in the case of 
heavier-tailed distribution, which could arise as the distribution of a sum of weakly 
dependent random variables. 
(A4) implies uniform continuity of the covariances of {Xt,T} (Lemma 7.1). We conjec-
ture that the continuity in (A4) can e.g. be relaxed to piecewise continuity. Further-
more, we conjecture that (A4) implies (A3). 

In the following we derive a rate for the risk of the proposed estimator uniformly over 
certain smoothness classes. It is known that wavelet bases induce a norm in the space 
of coefficients which is equivalent to the norm in a Besov space B;,q. Herem 2::: 1 
denotes the degree of smoothness and p, q (1 :::; p, q :::; oo) are shape parameters. Fix 
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any positive constants Ci;, i = 1, ... , p; j = 1, 2. We will assume that ai lies in the 
following set of functions 

~ { f = L Ctzkefilk + L f33k'l/Jik llaz.lloo ~ Ci1, llf3 .. llmi,Pi,qi ~ Ci2} , 
k j,k 

where 

( [ ] 

q/p) 1/q 
. llf3 .. llm,p,q = L 2jsp L lf3iklp ' 

i?:.l kEI; 
s = m + 1/2 - l/p. 
To have enough regularity, we restrict ourselves to 

(AS) Si> 1 where Si= mi+ 1/2 - 1/pi , with Pi= min{pi, 2}. 
In the case of normally distributed coefficients ,8)2 rv N(f3)~, a 2 ) a very popular 
method is to apply thresholds A = ay'2 log n , where n is the number of these 
coefficients. As shown in Donoho et al. (1995), the application of these thresholds 
leads to a near-optimal estimator in a wide variety of smoothness classes. Because 
of the heteroscedasticity of the empirical coefficients in our case, we have to modify 
the above rule slightly. Let JT = {(j, k) jz ~ j, 2i ~ T 1l2 , k E 13} and let al;k be the 
variance of the empirical coefficient ,8)2. Then any threshold Aijk satisfying 

aiik/2log(#:JT) ~ Aiik = O(T-112 /log(T)) (2.2) 

would be appropriate. Particular such choices are the "individual thresholds" 

Aijk = O"ijkV2 log( #JT) 
and the "universal threshold" 

AT(i) = aT(i) · /2 log(#:JT), a(i) = max {a· ·k}· y T (i,k )E.1T i3 

Let Xiik be estimators of Aiik or .:\~), respectively, which satisfy at least the following 
minimal condition 

(A6) (i) Ec;,k)E:TT P (Xiik < {TAijk) = O(T11 ), where 77 < 1/(2mi + 1) for some {T ~ 
1, 

(ii) Ec;,k)e:rT P (Xi;k > cr-112 J1og(T)) = O(T-1 ). 

With such thresholds "5.iik we build the estimator 

ai(u) = I: iif~><Pzk(u) + I: sC·>(,B)~,Xiik)'l/J;k(u), (2.3) 
kE!p (j,k)E.1T 

where S(.) stands for S(h) or S(s), respectively. 
Finally we like to impose an additional condition on the matrix D being defined by 
(6.4) in Section 6.1. Basically, this matrix is the analog to the p x (T - p) matrix 
( ( Xn-m) )n=p+l, ... ,T-p;m=l, ... ,p , as arising in the classical Yule-Walker-equations, which 
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describe the corresponding least squares problem for a stationary AR(p )-process 
{Xt}· 
Here, we assume additionally that 

(A7) Ell(D' Dt1ll2+o = O(T-2-s) 
for some S > 0 . 

Theorem 2 .1. Assume (A 1) through {A 7}. Then 

Remark 2. If only (Al) through (A6) are fulfilled, we can still prove that 

holds. Even without (A 7) we can show that D' D is close to its expectation ED' D, 
and hence Amin(D' D) is bounded away from zero, except for an event with very 
small probability. To take this event into account, the somewhat unusual truncated 
loss function is introduced. 

It is known that the rate T-2m/(2m+l) is minimax for estimating a function with degree 
of smoothness m in a variety of settings (regression, density estimation, spectral 
density estimation). Although we do not have a rigorous proof for its optimality in 
the present context, we conjecture that we cannot do better in estimating the a/s. 
Analogously to Donoho, Johnstone (1992) we can get exactly the rate T-2mi/(2mi+l) 
by the use. of level-dependent thresholds >..(i)(j, T, :h). These thresholds however 
would depend on the assumed degree of smoothness mi and it seems to be difficult 
to determine them in a fully data-dr~yen way. In contrast, the "log-thresholds" are 
much easier to apply, with the small 'loss of a logarithmic factor in the rate. This 
simple threshold scheme is possible because it does not aim to achieve the optimal 
trade-off between bias and variance of the estimator. Rather it is based on a slightly 
conservative significance test applied to the empirical coefficients. 

3. STATISTICAL PROPERTIES OF THE EMPIRICAL COEFFICIENTS 

Before we prove the main theorem in the next section, we give an exact definition of 
the empirical coefficients and state some statistical properties of them. 
First note that our estimator, as a truncated orthogonal series estimator with non-
linearly modified empirical coefficients, involves two smoothing methodologies: one 
part of the smoothing is due to the truncation above some level j*. Whereas such a 
truncation amounts to some linear, spatially not adaptive technique, the more impor-
tant smoothing is due to the pre-test like thresholding step applied to the coefficients 
below the level j*. This step aims at selecting those coefficients which are in absolute 
value significantly above the noise level and sorting the others out. 
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From the definition of the Besov norm we obtain that ( cf. Theorem 8 in Donoho et 
al. (1995)) 

(3.1) 

where Si = mi+ 1/2 - 1/ min{pi, 2} . Hence, our loss due to the truncation is of 
order T- 2mi/(2mi+l) , if j* is chosen such that 2-2i*',;°i = O(T-2mi/(2mi+l)) . It can 
be shown by simple algebra that j* with 2i*-1 ~ T 112 < 2i* is large enough for all 
smoothness classes from the Besov scale with Si ~mi/( mi+ 1/2) . 
We define the empirical coefficients simply as a least squares estimator, i.e. as a 
minimizer of 

p ( ') 1 - ( ') 
T ( [ ·• 1 ] )

2 

t~l Xt,T + ~ k~ a.1~ </i1k(t/T) + ~ kfl; f3;~ 'if;;k(t/T) Xi-i,T . (3.2) 

Since { <Pzkh U {'tPikh~i~i·-1,k form a basis of the subspace VJ• of L2 [0, 1], this 
amounts to an approximation of ai in just this space VJ•. 
A first observation about the statistical behavior of the empirical coefficients is stated 
by the following assertion. 

Proposition 3.1. Assume {At} through {A7). Then 

(i} E(af~> - af~)2 = O(T-1 
), 

(ii} E(tS)~ - ,a)~)2 == o( r-1
) 

hold uniformly in i, k and j < j*. 

In view of the nonlinear structure of the estimator, the above assertion will not be 
strong enough to derive an efficient estimate for the rate of the risk of the estimator. 
If the empirical coefficients were Gaussian, then the number of 0(2i*) coefficients 
would be dramatically reduced by thresholding with thresholds that are larger by 
a factor of J2 log( #:TT) than the noise level. If we want to tune this thresholding 
method in accordance to our particular case with non-Gaussian coefficients, we have 
to inv~stigate the tail behavior of them. Hence, we state asymptotic normality of 

· the coefficients with a special emphasis on moderate and large deviations. To prove 
the following theorem we decompose the empirical coefficients in a certain quadra-
tic form and some remainder terms of smaller order of magnitude. Then we derive 
upper estimates for the cumulants of these quadratic forms, which provide asympto-
tic normality in terms of large deviations due to a lemma by Rudzkis, Saulis and 
Statulevicius (1978), see Lemma 5.2 in Section 5. 
It turns out that we can state asymptotic normality for empirical coefficients ;9)2 
with (j, k) from the following set of indices. Let, for arbitrarily small 8 > 0, 

JT = {(j,k)12i~T6,j<j*,kEI;}. 
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Proposition 3.2. Assume {Al} through {A6}. Then 

P((~~~ - f3}~)/aiik?. x) = (1 - ~(x))(l + o(l)) + O(T->.) 

uniformly in (j, k) E JT, x E lR for arbitrary A < oo. 
We now derive the asymptotic variances of the ~J~'s. For simplicity of notation we 
identify 'lj;1 , ••• , 'lj; 6. with 
</J11,. • · , </Jz,2i+N, 7/J11, •.. , 7/Jz,2i, ..• , 7/Ji•-1,i, ..• , 7/J3•-1,2;•-1 and Oli), ... , ~) with 
-(i) -(i) -(i) -(i) -(i) -(i) . a 11 , •.• ,a1,2i+N'··· ,(311 , •.. ,{3112i,··· ,f3j•-t,t,··· ,(33._112r-u respectively. 
Furthermore, let 

-2 

/_

'If. a 2( s) P 
c(s,k) := -- 1 + L:a3(s)exp(i;\j) 

-'lr 27r . 1 J= 

exp( i;\k) d;\. 

c( s, k) is the local covariance of lag k at time s E [ 0, 1] ( cf. Lemma 7 .1). 

Proposition 3.3. Assume {Al} through {AS} and {A7). Then 

(3.3) 

var(JCi)) = r-1 (A-1BA-1) . . + o(T-1 ), (3.4) 
u . p(u-l)+i,p(u-l)+i 

where 

Ap(u-l)+k,p(v-l)+l j 7/Ju( S )7/Jv( S )c( s, k - l) ds, 

Bp(u-l)+k,p(v-1)+1 - j ..Pu( s ),P.( s )u2
( s )c( s, k - l) ds . 

Furthermore, A-1 BA-1 2:: E-1 , where 

Ep(u-1)+k,p(v-1)+l = j 7/Ju( s )7/Jv( s )( a2( s) t 1 c( s, k - l) ds. 

The eigenvalues of E are uniformly bounded. 

Remark 3. The above form of A and B suggests different estimates for the variances 
of B~i) and therefore also for the thresholds. One possibility is to use (3.4) and plug in 
a preliminary estimate (a2 (s) may be estimated by a local sum of squared residuals). 
Another possibility is to use a nonparametric estimate of the local covariances c( s, k ). 
However, these suggestions require more investigations. 

4. PROOF OF THE MAIN THEOREM 

To simplify the treatment of some particular remainder terms which occasionally arise 
in the following proofs, as e.g. in the decomposition (6.5), we introduce the following 
notation. 

Definition 4.1. We write 
Zt = O(TJT), 

if for each ;\ < oo there exists a C = C( ;\) such that 

p (IZTI > CT/T) :::; er->.. 
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(If we use this notation simultaneously for an increasing number of random variables, 
we mean the existence of a universal constant only depending on A.) 

Proof of Theorem 2.1. Using the monotonicity of fi(·)(/3J~, .) in the second argument 
we get 

( s<·)(/3]~ )i;k) - f3]~)2 
(/3J~ - f3J~)2 + ( fi(·)(/3J~, 1'TAijk) - f3J~)2 , 

if Xijk < 1'TAijk 
(8C·)(~J~,1'TAijk) - f3J~) 2 + (SC·)(~J~, CT-1! 2 Jlog(T)) - f3J~) 2 , 

< if 1'TAijk ::; ~iik ::; CT-112 .j..--lo-g(_T_) 
(8C·)(~j~,cT-112 Jlog(T)) - f3J~)2 + (f3J~)2, 

if Xiik > CT-1!2Jlog(T) 

which implies the decomposition 

ElltLi - aill 2 

< l:E(a~~>-af~))2 + l: E(.s<·)(~j2)i;k)-f3J~)2 + l: l:(f3]2)2 
k (j,k)E:h i?:.i* kEI; 

< L E( af ~) - af ~) )2 

k 

+ L E(fi(·)(~j~,1'TAijk)-f3J~) 2 

(j,k)E.1T 
+ l: E(s<·>(~j~, cT-1l 2 J1ogT) -f3}2)2 

(j,k)E.1T 
+ L EI (Xijk < 1'TAijk) (/3]~ - f3J~)2 

(j,k)E.1x 

+ I,: ((3~~)2 P ( J..;;k > CT-1! 2 J1og T) 
(j,k)E.1T 

+ l: I: (f3)~)2 
i?:.i* kEI; 

S1 + ... + Ss. 

By (i) of Proposition 3.1 we get immediately 

S1 = O(T-1). 

Let (j, k) E JT· We choose a constant 1'ijk such that 

fi(·)({3, 1'TAijk) 2:: f3J~, if {3 - f3J~ > 1'ijk, 

s<·)(f3, 1'TAijk) ::; f3J~, if f3 - f3W < 1'iik· 

( 4.1) 

(4.2) 
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(W.l.o.g. we assume 8(·)(Tijk,!TAijk) ~ f3J~-) 
Let 7/T = GT-1l 2Jlog T for some appropriate G. Then we decompose the terms 
occurring in the sum S2 as follows: 

s4~ EI ( rijk ~ ~]~ - f3)~ < 7/T) ( sC·>(fi)~' rTAijk) - f3)~) 2 

s4~ EI (-TJT < fi]~ - f3]~ < rijk) ( sC·>(fi]~' rTAijk) - f3]~) 2 

and 
s4; = EI (lfi]~ - f3]~1 ~ 7/T) (sC·>(fi]~,,TAijk) - f3]2) 2

• 

Using Proposition 3.2 we get, with e)2 rv N(f3J~, aik), due to integration by parts 
w.r.t. x 

s4; - - I ( rijk ~ x < 7/T) ( sC·>(f3jk + x, rTAijk) - f3j1c) d{ p {3jk - {3jk ~ x } J [ (i) (i) 2] (-(i) (i) ) 

J { p (fi]~ - f3]~ ~ x) }d [I ( rijk ~ x < 7/T) ( 5C·>(f3J~ + x, rTAijk) - f3]~)2] 

+ P (~]~ - f3]~ ~ rij1c) (c5<·>(f3J~ + rij1c,1TAij1c) -f3]~)2 

< GT{! {P ( e)2 - f3)2 ~ x) }d [1 (!ijk ~ x < 1/T )( o<·l(f3)2 + x, TT>.i;k) - f3)2) 2
] 

+ P (e]~ - f3]~ ~ riik) (s<·>(f3J~ + rijk,rTAijk) - f3J~)2 } 
+ O(T->.) 
GTEI (rijk ~ e)2 - f3]~ < 7/T) (8C·>(e)2,1TAijk) - f3]~) 2 + o(T-~) 

for some GT ~ 1. Analogously we get 

s4; ~ GTE! (-TJT ~ e]2 - f3]~ < rijk) (c5<·>(e)~,!TAijk) - f3]~)2 ~ O(T->.). 

Finally, we have for any 81 with 0 < 81 < 8 and c5 as in (A 7) that 

which implies 

From Lemma 1 in Donoho and Johnstone (1994) we can immediately derive the 
formula (if var( e)2) = af;k ) 
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where cp denotes the standard normal density. This implies, by Theorem 7 in Donoho 
et al. (1995), that 

:E JE( sC·> ( e)2 >)'TAijk) - !3)2)2 

(i,k)EJT 

= 0 (r-1( #:IT ) 1 --r~ /log(T) + 2: _ min{(f3]2)2, ( /TAiik) 2}) 

(i,k)E:JT 
= 0 ( (log(T)/T)2mi/(2mi+l)) . 

Therefore, in conjunction with ( 4.3), we obtain that 

2: E ( s<·>(,8)2, /TAiik) - f3)2)2 = 0 ( (log(T)/T)2mi/(2mi+i)) . ( 4.5) 
(i,k)EJT 

Further we get, because of jSC·>(f3, .\) - f31 ~ ,\ , that 

I: E ( s<·>(,8)2, /TAijk) - 13)2) 
2 

(i,k)E:JT\JT 

< (-o 0) 2 L [ 2E {3j~ - 13j~ + 2( /TAijk) 2 
] 

(i,k)E:JT\JT 

- #(JT \ JT) O(T-1 log T). 

If we define JT in such a way that S < 1/(2mi + 1), we get 

2: E ( sC.>(,8)~, /TAiik) - 13]2) 
2 = 0 ( T-2mi/(2mi+i)) . ( 4.6) 

(j,k)E:JT\JT 
By analogous considerations we can show that 

83 = 0 ( (log(T)/T)2mi/(2mi+l)) .. 

From (6.14) and (6.21) we have 

iJj~ - f3}~ = 0 ( T-1!2 J1og( T) + r; l2T-1l2 1og( T)) , 

which implies by (A6)(i) and Lemma 7.2 that 

84 = O (r-1(log(T))2) I: P (~iik < /TAiik) 
(j,k)E:JT 

(4.7) 

+ C :E (P (1,B]~ - 13)~1 > cr-112 log(T)))21
<
2
+o

1
) (El,8]2 -13]212+o1)21

<
2
+oi> 

(j,k)E:JT 
- 0 ( r-2mi/(2mi+l)) . ( 4.8) 

The relation 

(4.9) 
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is obvious, due to (A6)(ii). Finally, it can be shown by simple algebra that 

s6 = o(2-2;•;i) = O(r-2mi/(2mi+1>), ( 4.lO) 

which completes the proof. D 

5. A GENERAL LEMMA ON THE CUMULANTS OF QUADRATIC FORMS 

In this section we list the basic technical lemmas which are necessary to prove 
asymptotic normality or to find stochastic estimates for quadratic forms. First, we 
quote a lemma that provides upper estimates for the cumulants of quadratic forms 
that satisfy a certain condition on their cumulant sums. This result is a generaliza-
tion of Lemma 2 in Rudzkis (1978), which was formulated specifically for quadratic 
forms that occur in periodogram-based kernel estimators of a spectral density. We 
obtain a slightly improved estimate, which turns out to be important, e.g., for certain 
quadratic forms with sparse matrices. 
We consider the quadratic form 

where 

XT (X1, ... ,XT)' 
A ((a,:;))i,i=l, ... ,T, a,:i = a;,:. 

Further, let 
fr= Y~AYT, 

where Y T = (Yi, ... , YT )' is a zero mean Gaussian vector with the same covariance 
matrix as XT. 
Lemma 5.1. Assume EX"t = 0 and, for some "Y ~ 0, 

sup { t Jcum(Xt11 ••• ,Xt.)I} ~ Ck(k!)H.., for all T and k = 2, 3, ... 
l~t1~T t2, ... ,t11=l 

Then, for n ~ 2 , 

where 

(i) 
(ii} 

cumn(TJT). = cumn(fr) + Rn, 

lcumn(fr )I ~ var(fr )2n-2 (n - 1)! [Amax (A Cov(XT ))t-2 

Rn ~ 2n-2c2n((2n)!)H'Y max{laatl} A llAll~-2 , 
s,t 

A= ~m;u{Ja,tJ}, llAJJoo = m:x{ ~ Ja,tJ}. 

The proof of this lemma is given in Neumann (1994). 

Using the above lemma we obtain useful estimates for the cumulants, which can be 
used to derive asymptotic normality. For reader's convenience we quote two basic 
lemmas on the asymptotic distribution of T/T· The first one, which is due to Rudzkis, 
Saulis and Statulevicius (1978), states asymptotic normality under a certain relation 
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between variance and the higher order cumulants of 'T/T. Even if such a favorable 
relation is not given, we can still get estimates for probabilities of large deviations on 
the basis of the second lemma, which is due to Bentkus and Rudzkis (1980). 

Lemma 5.2. {Rudzkis, Saulis, Statulevicius {1918)) 
Assume for some ~T ~ 0 

for n = 3,4, ... 

Then 
P ( ±('TJT - E'T/T )/ Jvar('T/T) ~ x) 
------------~ ~ 1 

1 - ~(x) 

holds uniformly over 0 S x S VT, where VT= o(~i((3+&y)). 

Lemma 5.3. {Bentkus, Rudzkis {1980)) 
Let 

(
n!)l+"'f HT lcumn( 1}T) I S 2 x;,-2 for n = 2, 3, ... 

Then, for x ~ 0 , 

P( ±'T/T > x) < exp ( x
2 

) 
- - 2[HT + (x/ ~~(1+2...,))( 1 +2"'f)/(l+"'t)] 

< { exp (- 4~Tl' if 0 s x s (H~+"'f ~T )l/(1+2"'f) 

- exp (-Hx~T )1/(i+...,)), if x ~ (H~+..., ~T )1f(l+2"'f) 

6. DERIVATION OF THE ASYMPTOTIC DISTRIBUTION OF THE EMPIRICAL 
COEFFICIENTS 

6.1. Preparatory considerations. Before we turn directly to the proofs of the 
Propositions 3.1 through 3.3, we represent the empirical coefficients in a form that 
allows to recognize easily the nature of every remainder term. Note that throughout 
the rest of the paper, for notational convenience we now omit the double index in the 
sequence { Xt,T}, i.e. in the following let Xt := Xt,T. 
Although it is essential for our procedure to have a multiresolution basis, i.e. empiri-
cal coefficients from different resolution levels, it turns out to be easier to analyze the 
statistical behavior of such coefficients coming from a single level. Since the empirical 
coefficients of the multiresolution basis can be obtained as linear combinations of co-
efficients of an appropriate monoresolution basis, we are able to derive the asymptotic 
distribution of them. 
Since both {c/>ll, ... , </>c,2i+N,'lj;l1, ... ,'l/;c,2i, ••• ,'l/;;•-1,1, ... ,'l/;;•-1,2;•-1} and 
{ c/>;•1, ... , </>;• ,2;• +N} are orthonormal bases of the same space Vj., the minimization 
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of (3.2) is equivalent to that of 

(6.1) 

· Th 1 t· - - (-(i) -(p) -(i) -(p) )' e sou ion a - a;.1, ... , a;.1, ... , aj*A> ... , a;•A , 
be written as the lea~t squares estimator 

!:::,. = #IJ. = 2i* + N , can 

(6.2) 

in the linear model 

Y = Da + 7, (6.3) 

where 

D 
( 

</J;•1(f )Xp 
_ </>;•1(~)Xp+t 

</J;•1 ( ~ )XT-1 

</J;•A(~ )X1 ) 
</J;•A(~)X2 

</>;•t>.(~)XT-p ' 
(6.4) 

and 

"{ = ('Yp+l> · · · , 'YT )'. 

The residual term in (6.3) can, for t = p + 1, ... , T, be written as 

'Yt Xt - ( Da )t-p 
p p p 

- - L ai(t/T)Xt-i + et + L L a~~)1r.f/J;•1r.(t/T)Xt-i = L ~(t/T)Xt-i + et, 
i=l i=l kEI9. i=l 

J 

where 
~(u) = -ai(u) + L a~91r.efJ;•1r.(u) = - L L f3)~7/J;1r.(u). 

kEij. i'?.i* kEI; 

Using (6.3) we decompose the right-hand side of (6.2) as 

a - (D1Dt1 D1Da + (JED'Dt 1D1e + [(D'Dt1 -(JED1Dt1
] D'e + (D1Dt1 D1S 

- a + Ti + T2 + T3, ( 6.5) 
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where 

Because of the abovementioned relation between the two orthonormal bases of V;•, 
there exists an orthonormal (D. x D.)-matrix r with 

(ef>n, ... ,c/>z,2i+N,'l/Jz~, ... ,'l/Jz,2i, ... ,'l/Jj•-1,i, ... ,'l/Jj•-1,2;•-1)' = r(ef>j•1, ... ,c/>j•A)'. 

This implies 

</Jz1 

( 

c/>j•1 ) (i) (i) , _ (i) (i) / 
(o:j*l> · · · > O:j*.6.) : - (o:j*l> · · · > O:j•A)r 

cPj•A 

Hence, having the least squares estimator ( a~91 , ••• , a~9 A) according to the basis 
{ c/>j•i, ... , c/>j•.6.}, we obtain the least squares estimator in model (3.2) as 

(
-(i) -(i) -(i) -(i) -(i) -(i) ) I _ (-(i) -(i) ) I 
O:z1 > · · · > O:z,2t+N> f3z1 > · · · > f3z,2t> · · · > f3;•-l,l > · · · > f3;•-1

1
2j•-1 - r o:j*l > · · · > o:j*.6. · 

in other words, every empirical coefficient P)2 which is part of the solution to (3.2) 
can be written as 

{3-(i) r' -
"k = ··ka J 'l.J ' 

where jjriikllz2 = 1. (Analogously, af~ = r~ka.) 
6.2. Proofs of the Propositions 3.1, 3.2 and 3.3. 

(6.6) 

Proof of Proposition 3.1. For notational convenience we write down the proof for em-
pirical coefficients P)2 only. The proof for the af!)'s is analogous. 
According to (6.5) we have 

P)2 = f3)~ + r~jkT1 + ... + r~jkT3. (6.7) 

Fro:m (i) and (iii) of Lemma 7.3 we conclude 

E(r~ikT1 )2 = r~ik(ED' Dt1 Cov(D'e)(ED' Dt1riik 
~ llriikll~ll(ED' Dt1 ll~ll Cov(D'e)l12 = O(T-1

). (6.8) 
The vector riik has a length of support of 0(2i*-i), which implies 

I: l(rijk)zl ~ 11rijkll2V#{l I (ri;k)z f= o} = 0(2U*-i)l2). (6.9) 
l 
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We have, by Taylor expansion of the matrix (D' D)-1 , T2 = T21 + T22 , where 

T21 = (ED' Dt1(ED1 D) - D' D)(ED' Dt1 D'e 
and 

llT22ll2 = 0 (ll(ED' Dt1 ll~ll(ED' D) - D'Dll~llD'e1l2) · 
Using (i) of Lemma 7.3, (7.8) and (7.9) we get 

llT211loo ~ ll(ED'Dt1 ll~ll(ED'D)-D'DlloollD'elloo 
= O (2i*/2r-1 log(T)). (6.10) 

Since we have enough moment assumptions, we obtain the analogous rate, but wit-
hout the logarithmic factor, for the second moment of r~;kT21 , i.e. 

(6.11) 

Further, we have 

r~;kT22 = 8 ( 23i* l 2r-312 1og(T)) . (6.12) 

Using (i) of Lemma 7.3 and (i) of Lemma 7.4 we get 

ll(D'Dt1112 ~ ll(ED' Dt1 ll2 + ll(D' Dt1-(ED' Dt1ll2 = O(T-1
) + 0(2i*l2T-312 Jlog(T)), 

which yields, in conjunction with Lemma 7.5, that 

I'~;kT3 - 0 (ll(D'Dt1ll2llD'Sll2) 
_ Q ( ( r;· min{6;} + T-1f2r;· min{m;-1/2-1/(2p,)})y'log(T)) 

- 0 (r-1/2-T) (6.13) 

for some T > 0. Now we infer from (6.7), (6.8) and (6.11) through (6.13) that 

EJ(no) ((fi)~ - 13)~)2) = O(T-1 
), 

where n0 is an appropriate event with P(no) 2:: 1 - O(n-A) for A < oo chosen 
sufficiently large. This implies in conjunction with Lemma 7.2, with 0 < 61 < S , 
that 

EJ(n~) ((fi)~ -13)~)2) ~ (Elfi)~ -/3)~12+o1 )21'2+oi) (P(n~))1-21<2+o1 ) = O(T-1
), 

which finishes the proof. D 

Proof of Proposition 3.2. It will turn out that the asymptotic distribution of fi)~ -13)~ 
is essentially determined by the behavior of I'~;kT1 • By (6.9), (6.10), (6.12) and (6.13) 
from the proof of Proposition 3.1 we infer that 

r~jk(T2 + T3) = 8 ( 2-il2r-1!21og(T) + r-112-K.) (6.14) 

for some K- > 0. 
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Now we turn to the derivation of the asymptotic distribution of riikT1. It is clear 
that, because of the MA( oo )-representation of the process, riikT1 can be rewritten 
as .l:u,v Au,veuev for some symmetric matrix A= A(i,j, k). In the following, without 
writi~g down the explicit form of this matrix, we derive upper estimates for l1All 00 

and A= .l:u ma.Jev{IAu,vl}. 
We have 

T p A 

r~jkT1 = - L et L Xt-l L cPi•u(t/T) L ((ED 1 Dt1) (rijk)v 
t=p+l l=l u=l v p(u-l)+l,v 

- L[Letet-l-sWt(l,s)], (6.15) 
l,s t 

where 
!:::,,. 

Wt( l, s) = !t-l( s) L 4>i•u( t/T) L ( (JED 1 Dt1) ( (riik)v· u=l v p u-l)+l,v 

If we write the expression in brackets on the right-hand side of (6.15) as L:ii Wijeiej, 
we obtain, by supv{l(riik)vl} = 0(2-Ci*-i)/2 ) 

JIWJloo = 0 ( T- 1 s~p{bt-l( S )l}2i/2
) • (6.16) 

We can also rewrite Wt( l, s) as 

Wt(l,s) = -1t-z(s) ~]rijk)v E ((ED1Dt1) ( ) cPj•u(t/T), 
t1 u v,p u-1 +l 

which implies, by .l:v l(rijk)vl = 0(2Ci*-i)l2 ) and by .l:t c/>;•u( t/T) = 0(2-i* l 2T) , 
that 

2:s~p{IWi;I} = l:lwt(l,s)I = 0(2-il2
). (6.17) 

i 3 t 

Because of (A3), the summation overs does not affect the rates in (6.16) and (6.17), 
and so does not the (finite) sum over l. Hence, with the notation of Lemma 5.1, we 
obtain 

.A = 0(2-112 ). 

Let (j, k) E JT. Using Lemma 5.1 we obtain 

jcumn(r~jkT1)I ~ cnT-1(n!)2+2"Y(T-12i12r-2
, 

which implies by Lemma 5.2 

P (±(r~;kT1)/uiik ~ x) = (1 - ~(x))(l + o(l)) 

(6.18) 

(6.19) 

(6.20) 

( 6.21) 

uniformly in 0 ~ x ~ K.T, "'T x Tv for some v > 0. This relation can obviously be 
extended to x E (-oo, K.T]· . 
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Recall that 

holds for some K, > 0. Therefore we have for arbitrary .A < oo that 

p ( ±(r~jkT1)/ O'ijk - GT-K. ~ x) - GT->. 

(6.22) 

~ P (±C8)2 - f3)2)/aiik ~ x) ~ P (±(r~;kT1)/aiik + GT-K. ~ x) + GT->., 
which implies 

P (±(~J~ - f3J~)/aiik ~ x) = [1 - q>(x)] (1 + o(l)) + 0 (lq>(x) - q>(x + GT-K.)1) 
+ 0 (lq>(x) - q>(x - GT-K.)1) + O(T->-). (6.23) 

Fix any c > 1. For x ~ c we have obviously 

lq;(x) - q>(x + GT-K.)I ~ GT-K.</J(O) = o(l - q>(x)). (6.24) 

For c < x ~ (2.A log T)1/ 2 we obtain by a formula for Mill's ratio (see Johnson and 
Kotz (1970, vol. 2, p. 278)) that 

lq;(x) - q>(x + cT-K.)I ~ cT-K.<fJ(x) 

( 
1 )-1 < GT-K.x 1 - x2 (1 - q>(x )) 

( 
. 1 )-1 < CT-K.x 1- c

2 
(1- q>(x)) = o(l - q>(x)). 

The third term on the right-hand side of (6.23) can be treated analogously. 
For x > G(2.A log T) 112 we have obviously 

(6.25) 

P (±(~J2 - f3J2)/aiik ~ x) = O(T->.) = (1 - q>(x))(l + o(l)) + O(T->.), 
(6.26) 

which completes the proof. D 
Proof of Proposition 3.3. Because of ET1 = 0 we have 

Gov(T1) = ET1TI = (ED' Dt1 Gov(D'e)(ED' Dt\ 
which implies by (ii) and (iii) of Lemma 7.3 that 

II Cov(T1) - p-1aF-1lloo = o(T-1 ), 

where 
F = ( {T j </>;•u( s )</>;•t1( S )c( s, k - l) ds }p(u-l)+k,p(t1-l)+Z) 

and 
G = ( {T j </>;•u( s )</>;•t1( s )a2( s )c( s, k - l) ds }p(u-1)+k,p(t1-l)+z). 

This yields 

II Gov(I'T1) - r p-1r'rGr'r p-1r'lloo 
= II Cov(I'T1) - A-1 BA-11100 = o(T-1). 



Further, due to (6.13) we have 

1E(r~;k(T2+T3))2 = o(T-1 ), 

which proves the first assertion (3.4). 
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The matrix ( ~ ~ ) is non-negative definite which leads with Theorem 12.2.21(5) 

of Graybill (1983) to A-1 BA-1 2:: E-1 . Furthermore, we have with x E C~P 

2 

x*Ex = l [ IA(s,>.)l 2(u2(s)t1 ~>p(u-l)+k-ifau(s)exp(i>.k) d>.ds 
0 -w ~k 

2 

< Cl [' I; Xp(u-l)+k-ifau( s) exp( i>.k) d>. ds 
0 -w u,k 

- 27rCllxll2, 
which implies that the eigenvalues of E are uniformly bounded. D 

7. APPENDIX 

In order to preserve a clear presentation of our results, we put some of the technical 
calculations into this separate section. We assume throughout this section that the 
assumptions (Al) through ( A6) are satisfied. 
Let Et,T = Gov((Xt-1,T, ... , Xt-p,T )'). 

Lemma 7.1. By (A4), with some constants 0 1 , 0 2 > 0, . 
(i) Amax(Et,T) S C2 and Amin(Et,T) 2:: C1 + o(l), where the o(l) is uniform in t, 

(ii) there exists some function g, with g(s) ~ 0 as s ~ 0, such that 
t1 - t2 

llEt1 ,T - Et2 ,Tll S g( T ) for all t1, t2, T, 

(iii) c( s, k - l) is uniformly continuous ins and 

lim cov(Xt-l T, Xt-k T) = c(s, k - l). 
T-+oo 1 1 

t/T-+a 

Proof. Completely analogously to the proof of Theorem 2.3 in Dahlhaus (1995) we 
can show that Xt,T has the representation 

x,,T = L exp(i>.t)A~,T(>.) ~(>.) 
with 

sup IA~,T(.A) - A(t/T, .A)j = o(l), 
t,.A 

where e(.A) is a process with mean zero and orthonormal increments, 
1 00 

A~,T( A) = . rrc. 2: l't,T( l) exp(-i.Al) 
V 27r l=O 
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and 

A(s, .X) = a~ (i + t aj(s)exp(-i.Xj))-
1 

y 27r j=l 
Then 

cav( X1-l,T, X1-k,T) = L: exp( i>.( k - l) )A~-1,T( >. )A~-k,T( ->.) d>.. 

Since A( s, .X) is uniformly continuous in s, this is equal to L: exp(i>.(k - l))IA(s, >.)1 2 d>. + o(l) = c(s, k - l) + o(l), for t/T--> s, 

which implies (iii). Analogously, we get (ii). Furthermore, we have for x 
( X1' ••• ' Xp) E O' 

L t :i:; exp(-i>.j)A~-;,T(>.) 2 

d>. 

- L: IA(t/T, >.)1 2 t :z:; exp(-i>.j) 
2 

d>. + llxll 2 o(l). 

Under (A4) there exist constants with C1 ::=; IA(s, .X)I ::=; C2 uniformly in s and .X, 
which implies (i). D 

Lemma 7.2. Assume additionally {A 1} and let 0 < 81 < 8. Then 

{i} Elaf~> - af~> 12+o1 = 0(1 ), 
{ii} EIJ3]~ - ,8]~1 2+61 = 0(1) 
hold uniformly in i, k and j < j*. 

Proof. 
(i) In this part we derive estimates for the moments of llD' ell and llD' Sii, which will 
be used later in this proof. 
Using the MA(oo)-representation of {Xt} we can write (D'e)p(u-l)+k as a quadratic 
form §..1 A§.. for some A = A(p, k) , where §.. = ( eT, ... , e1, ea, c;_1, ... )' is an infinite-
dimensional vector according to (A3). Since, however, the proof of Lemma 5.1 does 

. not depend on the dimension of the matrix A, we can apply this lemma also to this 
infinite-dimensional case. 
We obtain, using the notation of Lemma 5.1, that 

A = o ( 2-r l2T) , 
max{laatl} ~ llAlloo = 0 (2j*/2

), 

which implies 

lcumn( (D' e )p(u-1)+k)I :::; cn(n!)2+2'YT(2j* 12r-2 for n ~ 2. 
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Since lE(D' e )p(u-1)+k = 0 , we get, for evens, that 

Now we obtain, with /1 = 0(2i*) , 

EllD'ells - E (2=(D'e)!cu-1)+k)s/
2 

u,k 
< (!1p)8f2-1 l::JE(D'e);(u-l)+k 

u,k 

0 ((11p)812 max{lE(D' e);(u-l)+k}) u,k 
_ Q ( 2i*sf2Tsf2) . (7.1) 

Now we treat the quantity llD' Sii in an analogous way. (D' S)p(u-l)+k is a quadratic 
form in X = (X1 , ... , XT )' with a matrix A, which satisfies, according to (7.11), 

A = o ( ~ l<P;•u(t/T)I ~ IR;(t/T)I) 

0 ( ~ ~ <P;•u(t/T)2 ~~ R;(t/T)2) 

_ o ( T(2-;· min{;i} + T-1122-;· min{mi-1/2-1/(2PiH)) = O(T1f2) 

and, by (7.10), 

Therefore, we get by Lemma 5.1 that 

for n 2:: 2, 

which implies, in conjunction with lE(D' S)p(u-l)+k = O(A) = O(T1l2
) , that 

(7.2) 
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(ii) According to (6.5) we have a - a= (D' D)-1(D'e +D'S), which yields that 

JEIJ9)~ - !3)~1 2 +c51 Elr~jk(a - a)l 2
+c5i 

< JE ( 11 ( D' D t 1 I I 2 ( 11D'eII2 + II D'S II 2)) 
2

+c5
1 

2+61 ( (2+61)(2+6))1- 22+_/j 
< (Ell(D' Dt1ll 2+s) 2

+6 JE(llD'ell + llD'Sll) 0
- 61 

- 0 ( T-(2+oi>) 0 ( (2i* /2T1f2)2+o1) 

_ o ( (2i* /2T-1f2)2+o1) = O(l ). 

D 

Lemma 7.3. Let j* = j*(T) ~ oo and j* = o(T). Then 

(i) ll(JED' Dt1 lloo = O(T-1 ), 

(ii} II (JED' Dt1 
- ( {T J </>j•u( S )</>j•v( S )c( s, k - l) ds }p(u-l)+k,p(v-l)+l t 1 I loo = o(T-l ), 

{iii) II Gov(D'e) - ({T j </>;•u(s)</>;•v(s)a2(s)c(s,"k- l)ds}p(u-1)+k,p(v-1)+l)lloo = o(T) 

hold uniformly in u, v, k, l. 

Proof. 
(i) Let M = T Diag[Mi, ... , M6], where Mu = ~t for any t with t/T E supp( </J;•u)· 
Because of M-1 = T-1 Diag[M1-

1 , ••. , M~1 ] we get by (i) and (ii) of Lemma 7.1 that 

Further, we have, by j* = j*(T) ~ oo and j* = o(T), that 

(JED' D - M)p(u-l)+k,p(v-l)+Z 
T t. t - L: </J;•u( T )</J;•v( T) [(~t)kl - (Mu)kz] 

t=p+l 

+ [ t </J;•u(;)</J;•v(;) - TSuv] (Mu)kl 
t=p+l 

- o(T) 

(7.3) 

(7.4) 

hold uniformly in u,v, k, l. Since </J;•u and <Pi*v have disjoint support for lu-vl ~ G, 
we get (JED' D)kl = 0 for lk - ll ~ Gp. Therefore we obtain by (7.4) 

llJED' D - Mlloo = o(T). (7.5) 

Because of (7.3) and (7.5) there exists a T0 such that 

llM-1l2 (JED' D - M)M-112 11 ~ G < 1 for all T ~ T0 • 
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Therefore, by the spectral decomposition of (I+ M-112(YlD' D - M)M-112 ) the 
following inversion formula holds: 

(lED' Dt1 = [M1f2 (I + M-1f2(1ED' D - M)M-1/2) Ml/2]-1 

= M-1!2 [1 + ~(-l)'(M-1l2(JED1 D - M)M-112 )'] M-1! 2 , (7.6) 

which implies (i). 
(ii) It can be shown in the same way as (7.4) that 

ll(lED' D) - ( {T J </J;•u(s)</J;•v(s)c(s, k - l) ds}p(u-1)+k,p(v-1)+z)lloo = o(T), 
(7.7) 

which implies analogously to (7.6) 

ll(IW' nr1 - ({TI efJ;•u( s )efJ;•v( s )c( s, k - l) ds }p(u-l)+k,p(v-l)+zt1 lloo 
00 

= ll(ED' Dt1 2:(-1)" ((ED' D - ( { ... } ))(~D' Dt1
]" lloo = o(T-1

). 
s=l 

(iii) Obviously we have 
YlD'e = 0, 

which implies 

cov ( ( D' e )p(u-l)+k, ( D' e )p(v-l)+l) 
T s t - I: </J;•u( T )ef;;•v( T )JF.e., C:tXs-kXt-l 

s,t=p+l 

T s s 
- 2: </J;•u(T)</J;•v(T)J&~EXs-kXs-l 

s=p+l 

- T j </J;•u(s)</Jj•v(s)o-2(s)c(s, k - l) ds + o(T). 

The corresponding result in the 11-11 00-norm follows from the same reasoning leading 
to (7.5). D 

Lemma 7 .4. It holds that 

{i) II (D' D t 1 - (JED' D t 111.., = {j ( 2;• /2y-a/2 J!og( T)) 

{ii} llD'ell~ = 0 (2;•Tlog(T)). 

Proof. 
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(i) First; observe that by (A2) and (A3) 

T 
L lcum(Xt1 , ••• ,Xt,JI 

.T 

L bt1 (t1 - s)I · · · l;t11 (tk - s)ll cumk(cs)I 

< s~p{I cumk(e,)I} ~ 11,,(s)I et h,(t - s)I) k-l 

< c2k(k!)i+-r. 

We see that 
T 

(D' D)p(u-1)+k,p(v-1)+l = I: </>j•u(t/T)</>j•v(t/T)Xt-kXt-l 
t=p+l 

is a quadratic form with a matrix A satisfying, in the notation of Lemma 5.1, 

llAlloo = 0(2i* ), A = O(T). 

This implies by Lemma 5.1 that 

lcumn ((D'D)p(u-1)+k,p(v-1)+l) I 
< cn(n!)2+2-r(2i*t-1T 

< n. _T_ ( I) 1+(1+2-r) H 
- 2 -zs:"-2 ' 

where HT x 2i* T, b,.T x 2-i*. 
Hence, we get by Lemma 5.3 that 

T 

P (l(D' D)p(u-l)+k,p(v-1)+1 - (JED' D)p(u-l)+k,p(v-l)+d <:: x) ~ exp (-c 2i~l:T) 
for 0 ::; x ::; ( H~+-r b,.T )1/(1+2-r) . 
Since (H~+-r b,.T )1/Ci+2-r) x 2i*-y/(i+2-r)T(l+-r)/(i+2-r) ~ 2i* 12T 112 , we get 

I I - ( j* /2 1/2 V: ) (D D)p(u-l)+k,p{v-l)+l - (ED D)p(u-l)+k,p(v-l)+l = 0 2 Tlog(T) . 

Since <Pi•u and </>;•v have disjoint support for lu - v I ~ C, we immediately obtain 

(7.8) 
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which yields, in conjunction with (i) of Lemma 7.3, 

00 

ll(D'Dt1 
- (JED'Dt1 lloo < ll(JED'Dt1 llooL(llD'D - JED'Dllooll(JED'Dt1 lloor 

s==l 

= O(r-1 )0 ( 2i' l 2T 1l2Jtog(T) T- 1) 

= 0 ( 2i' l 2T-3l 2 Jtog(T)) . 

(ii) From similar arguments we obtain 

( D' e )p( u-1 )+k = 0 ( T112Jtog( T)) , 

which implies (ii). 0 

Lemma 7.5. It holds 

Proof. Because of our assumption mi+ 1/2 - 1/P;, > 1 we get 

ll~lloo = 0 (~. 2j/2 m_F{l/3}~1}) 
3_3 

(7.9) 

- 0 ( ~. 2il2ri••) = 0 ( 2-i*(mi-1/Pi)) (7.10) 
3_3 

and 

TV(~) - 0 ( ~. 2il2 ~1/3}~1) 
3_3 

- 0 ( L 2i/2 (2= l/3]~1Pi) l/Pi 2i(l-l/Pi)) 
i'?:.i* k 

_ o ( ~. 2;12r;., 2;c1-1/p;)) = 0 ( 2-i*(mi-1)) , 

3_3 
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which implies 
T 

T-1 L (Ri(t/T)) 2 
- llRillL[o,1] 

t=l 

T 1t/T < L IRi(t/T) + Ri(u)l IRi(t/T) - Ri(u)I du 
t=l (t-1)/T 

- L 0 (T-1llRilloo TV(Ri)l[tTl'~)) 
t 

_ Q ( T-12-j*(2mi-1-1/Pi)) . 

Since we know from Theorem 8 in Donoho et al. ( 1995) that 

we have that 

Now, 

T 

llRillL[o,1] = L L l/J)~l 2 = 0 (2-2j*si)' 
"> .• k J_J 

T-1 L (Ri(t/T))2 = Q (2-2j*si + T-12-j*(2mi-1-1/pi)) . 
t=l 

T P 
(D' S)p(u-l)+k - L rPi•u(i/T)Xt-k L Xt-iRi(t/T) 

t=p+l 

- i5 (2N2J!og(T)) :E t IR;(t/T)I, 
t/Teaum<P;•u) i=l 

which implies 

l!D'Sll~ i5 (2i' Jog(T)) ~t CTeEol;-.) IR;(t/T)ir 

D 

- Q ( 2i' log( T)) ~ ~ Ce.Eol;•u) R;( t /T)2) T2-i' 

_ jj ( T2(2-2;• min{~} + T-12-i* min{2mi-1-1/pi}) log(T)) . 
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