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Abstract

It was recently proven in [2] that, under mild restrictions, grad-div stabilized Taylor-Hood
solutions of Navier-Stokes problems converge to the Scott-Vogelius solution of that same
problem. However, even though the analytical rate was only shown to be γ−

1
2 (where γ is

the stabilization parameter), the computational results suggest the rate may be improvable
γ−1. We prove herein the analytical rate is indeed γ−1, and extend the result to other
incompressible flow problems including Leray-α and MHD. Numerical results are given
that verify the theory.

1 Introduction

We prove that under mild restrictions, solutions to incompressible flow problems found with
grad-div stabilized ((Pk)

d, Pk−1) Taylor-Hood (TH) elements (with parameter γ) converge to
the solution of the ((Pk)

d, P disc
k−1 ) Scott-Vogelius pair, with rate γ−1 as γ → ∞. Provided the

SV pair is LBB stable, for example if

(A1) in 2d, k ≥ 4 and the mesh has no singular vertices [19],

(A2) in 3d, k ≥ 6 [24],

(A3) when k ≥ d and the mesh is a barycenter refinement of a regular mesh [23, 19], or

(A4) on Powell-Sabin meshes when k = 1 and d = 2 or when k = 2 and d = 3 [25],

this convergence is proven in [2] with rate γ−
1
2 for Navier-Stokes problems, but their numeri-

cal experiments indicate an improved rate of γ−1. We verify herein, with careful analysis and
no further assumptions, the analytical rate is improvable to γ−1, thus agreeing with the com-
putations in [2]. We also extend the results to related problems including Leray-α model and
magnetohydrodynamics.

TH elements are a popular choice for simulating incompressible flows, and many commercial
software packages have them implemented. However, despite their popularity, solutions ob-
tained with TH elements often suffer from poor mass conservation [2, 13], creating solutions
with little physical plausibility. However, it has been shown in [17, 18, 10] that using TH ele-
ments with grad-div stabilization can improve mass conservation in solutions, and sometimes
even overall accuracy. Yet, in general, the improvement in physical fidelity is limited because
grad-div stabilization with γ > O(1) can overstabilize [16, 2]. The results of [2], which we im-
prove herein, show that in settings where SV elements are LBB stable, TH elements can be
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used with a large stabilization parameter without overstabilizing, since as γ → ∞ the limit so-
lution is the optimally accurate SV solution. Thus with a mild mesh restriction, TH elements can
be used to find accurate solutions that are also physically plausible due to this improved mass
conservation.

This paper is arranged as follows. In Section 2 we give notation and preliminaries, and prove a
lemma for norm equivalence, which is fundamental for the analysis throughout. Section 3 shows
the improved convergence rate for the steady and time dependent Navier-Stokes equations
(NSE). Section 4 extends the results of Section 3 to the Leray-α model, and gives a numerical
example (flow over a step) verifying the theory. In Section 5 the results are extended to MHD.
Finally, in Section 6, we consider SV solution approximations by extrapolating ‘small γ’ TH
solutions.

2 Preliminaries

We will denote the L2(Ω) norm and inner product by ‖ · ‖ and (·, ·). All other norms and inner
products will be clearly labeled.

We consider a domain Ω to be a convex polygon in 2D or polyhedra in 3D, discretized by a
regular triangularization or tetrahedralization.

Two element pairs are studied herein, Taylor-Hood (Xh, Qh) := ((Pk)
d, Pk−1), and Scott-

Vogelius (Xh, Q̃h) := ((Pk)
d, P disc

k−1 ) [21, 22]. We will always consider the elements with the
same polynomial approximating degree k and on the same mesh, and thus the only difference
between discretizations with the different elements is the pressure space for Scott-Vogelius is
discontinuous.

Throughout the report, the constantC will be used to denote a data-dependent constant, whose
value can change at each occurrence. However, C will always be independent of the grad-div
stabilization parameter γ.

We assume conditions on the mesh and polynomial degree so that the SV element is LBB stable
(e.g. any of A1-A4), and thus admits optimal convergence properties.

Denote the discretely divergence-free spaces for TH and SV elements, respectively, by

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh},
V 0
h := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Q̃h}.

Note that V 0
h is also the divergence free subspace of Vh,

V 0
h = {vh ∈ Vh : ∇ · vh = 0}.

Define Rh to be the orthogonal complement of V 0
h in Vh,

Vh =: V 0
h ⊕Rh,

with respect to the Xh inner product which is defined to be (·, ·)Xh
:= (∇·,∇·), due to the

Poincare inequality.
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The skew-symmetric operator b∗ : Xh ×Xh ×Xh → R is defined by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following bounds on b∗ will be used.

Lemma 1. There exists a constant Cs dependent only on the size of Ω satisfying ∀u, v, w ∈
Xh,

b∗(u, v, w) ≤ Cs‖∇u‖‖∇v‖‖∇w‖
b∗(u, v, w) ≤ Cs‖∇u‖‖∇v‖‖w‖1/2‖∇w‖1/2

Proof. This well known lemma is proven, e.g., in [9].

The following lemma shows an equivalence of norms on Rh which is used throughout this
article.

Lemma 2. There exists a constant M <∞ satisfying ∀rh ∈ Rh,

‖∇rh‖ ≤M‖∇ · rh‖.

Proof. Define

M := max
vh∈Rh,‖∇vh‖=1

1

‖∇ · vh‖
Observe M < ∞ since vh ∈ Rh, ‖∇ · vh‖ > 0, and the max is taken over a compact set of
Rn. For any rh ∈ Rh, there is an eh ∈ Rh satisfying ‖∇eh‖ = 1 and

rh = ‖∇rh‖eh.

Taking divergence of both sides, then L2 norms gives

‖∇ · rh‖ = ‖∇rh‖‖∇ · eh‖,

which implies

‖∇rh‖ =
‖∇ · rh‖
‖∇ · eh‖

≤M‖∇ · rh‖.

The discrete Gronwall Lemma is used in our analysis, when analyzing semi-discrete formula-
tions.

Lemma 3. (Gronwall’s inequality) Let f(x) and B(x) be functions which are piecewise contin-
uous on the interval [a, b] and let K be a nonnegative scalar. Further, assume that f(x) and
B(x) satisfy ∀t ∈ [a, b]∫ t

a

g(s)ds+ f(t) ≤ K +

∫ t

a

B(s)f(s)ds. (1)

Then, ∀t ∈ [a, b] we have the following upper bound∫ s

a

g(s)ds+ f(t) ≤ Ke
∫ t
a B(s)ds. (2)
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3 Order of convergence for NSE approximations

In this section we consider the rate of convergence of finite element approximations of the NSE
using grad-div stabilized Taylor-Hood formulations to the solution of Scott-Vogelius elements, as
the grad-div stabilization parameter γ tends to zero. We show first for the steady case, then for
the time-dependent case, that the rate is O(γ−1).

3.1 The steady NSE case

Consider the discrete steady convective NSE formulation: Find (uh, ph) ∈ (Xh, Ph) such that

∀(vh, qh) ∈ (Xh, Ph), where Ph = Qh (Taylor-Hood) or Q̃h (Scott-Vogelius),

b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh) = (f, vh) (3)

(∇ · uh, qh) = 0. (4)

We note that for the case of Scott-Vogelius elements, the grad-div term trivially vanishes.

Define α := 1 − Csν
−2‖f‖−1. The formulation (3)-(4) is known to be well-posed under the

small data condition α > 0 [9], for either element choice, due to assumptions on the mesh and
polynomial degree.

Lemma 4. Solutions to (3)-(4) exist and satisfy

ν‖∇uh‖2 + 2γ‖∇ · uh‖2 ≤ ν−1‖f‖2
−1 (5)

If Ph = Qh: ‖ph − γ(∇ · uh)‖ ≤ ‖f‖−1

(
1 + Csν

−2‖f‖+ ν−1
)

(6)

If Ph = Q̃h: ‖ph‖ ≤ ‖f‖−1

(
1 + Csν

−2‖f‖+ ν−1
)

(7)

If α > 0, then solutions are unique.

Proof. Taking vh = uh in (3) and using Cauchy-Schwarz and Young’s inequalities gives (5). The
pressure bounds follow directly from the discrete LBB condition and the bound (5). The Scott-
Vogelius pressure bound does not include the term with γ since the grad-div term is trivially
zero in this case.

Remark 5. We consider limiting behavior as γ →∞, and thus the bound (6) seems insufficient
to guarantee stability of the pressure in the limit. However, the following theorem implies that
‖∇ · uh‖ ≤ C

γ
, and the Taylor-Hood pressure solution is indeed bounded by a data-dependent

constant, independent of γ.

Theorem 6. On a fixed mesh and with data satisfying α > 0, the Taylor-Hood velocity solutions
to (3)-(4) converge to the Scott-Vogelius velocity solution with convergence order γ−1 in the
energy norm, as γ →∞: if uh is the Taylor-Hood solution and u0

h is the Scott-Vogelius solution,
then

‖∇(uh − u0
h)‖ ≤

C

γ
.
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Remark 7. From the a priori bound (5), one might suspect the convergence is only of the order
γ−1/2.

Proof. Let (u0
h, p

0
h) ∈ (V 0

h , Q̃h) denote the solution of (3)-(4) using Scott-Vogelius elements,
(uh, ph) ∈ (Vh, Qh) for the Taylor-Hood solution, and the difference between them to be rh ∈
Vh, so that

uh = u0
h + rh.

For the Taylor-Hood solution uh, setting vh = w0
h ∈ V 0

h and sh ∈ Rh, respectively, in (3) gives
the equations

b∗(uh, uh, w
0
h) + ν(∇uh,∇w0

h) = (f, w0
h), (8)

b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh). (9)

Similarly, the Scott-Vogelius solution u0
h ∈ V 0

h satisfies

b∗(u0
h, u

0
h, w

0
h) + ν(∇u0

h,∇w0
h) = (f, w0

h), (10)

b∗(u0
h, u

0
h, sh)− (p0

h,∇ · sh) = (f, sh). (11)

From (9) and (11), we have

b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = b∗(u0
h, u

0
h, sh)− (p0

h,∇ · sh), (12)

and since (∇uh,∇sh) = (∇rh,∇sh) and∇ · uh = ∇ · rh,

ν(∇rh,∇sh) + γ(∇ · rh,∇ · sh) = b∗(u0
h, u

0
h, sh)− b∗(uh, uh, sh)− (p0

h,∇ · sh)
= −b∗(rh, u0

h, sh)− b∗(uh, rh, sh)− (p0
h,∇ · sh). (13)

Orthogonally decompose rh =: r0
h + r′h, where r0

h ∈ V 0
h and r′h ∈ Rh. Now setting sh = r′h

in (13) gives, after reducing with orthogonality properties and using Lemma 2,

ν‖∇r′h‖2 + γ‖∇ · r′h‖2 = −b∗(rh, uh, r′h)− b∗(u0
h, rh, r

′
h)− (p0

h,∇ · r′h)
≤ C

(
M‖∇rh‖‖∇u0

h‖+M‖∇rh‖‖∇uh‖+ ‖p0
h‖
)
‖∇ · r′h‖ (14)

Since uh, u0
h are uniformly bounded by the data by (5), independent of γ, rh is also. Using this

and (7) provides

ν‖∇r′h‖2 + γ‖∇ · r′h‖2 ≤ C‖∇ · r′h‖. (15)

Dropping the first term on the left and dividing by ‖∇ · r′h‖ gives

‖∇ · r′h‖ ≤
C

γ
, (16)

which implies from Lemma 2 that

‖∇r′h‖ ≤
C

γ
. (17)
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It remains to bound ‖∇r0
h‖. From (8), (10), and taking w0

h = r0
h, we get

b∗(uh, uh, r
0
h) + ν(∇uh,∇r0

h) = b∗(u0
h, u

0
h, r

0
h) + ν(∇u0

h,∇r0
h), (18)

which reduces to

ν(∇rh,∇r0
h) = b∗(u0

h, u
0
h, r

0
h)− b∗(uh, uh, r0

h),

= −b∗(uh, rh, r0
h)− b∗(rh, u0

h, r
0
h). (19)

Skew symmetry properties and decomposing rh gives

ν‖∇r0
h‖2 = −b∗(uh, r′h, r0

h)− b∗(r0
h, u

0
h, r

0
h)− b∗(r′h, u0

h, r
0
h). (20)

Standard inequalities and (5) now provides

ν‖∇r0
h‖2 ≤ C‖∇r′h‖‖∇r0

h‖+ Csν
−1‖f‖−1‖∇r0

h‖2. (21)

Using the small data condition, then dividing through by ‖∇r0
h‖ gives

‖∇r0
h‖ ≤ C‖∇r′h‖ ≤

C

γ
. (22)

The triangle inequality completes the proof, as

‖∇(uh − u0
h)‖ = ‖∇rh‖ ≤ ‖∇r0

h‖+ ‖∇r′h‖ ≤
C

γ
. (23)

Lemma 8. If ph is the Taylor-Hood pressure and p0
h is the Scott-Vogelius pressure then

‖p0
h − (ph − γ∇ · uh)‖ ≤ C

γ
.

Proof. The Taylor-Hood and Scott-Vogelius solutions to (3)-(4) satisfy respectively

b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh) = (f, vh), (24)

b∗(u0
h, u

0
h, vh)− (p0

h,∇ · vh) + ν(∇u0
h,∇vh) = (f, vh). (25)

Subtracting (25) from (24) and rearranging gives

(p0
h − (ph − γ∇ · uh),∇ · vh) = b∗(u0

h, u
0
h − uh, vh) + b∗(u0

h − uh, uh, vh)
+ ν(∇(u0

h − uh), vh). (26)

From Lemma 2.1, Theorem 3.3 and bounds on solutions it follows that

(p0
h − (ph − γ∇ · uh),∇ · vh) ≤

C

γ
‖∇vh‖. (27)

Dividing (27) by ‖∇vh‖ and the LBB condition (of the Scott-Vogelius element) finishes the
proof.
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3.2 The time-dependent case for the NSE

For the time-dependent case, we find an analogous result to the steady case. We consider the
semi-discrete formulation, and extension to the usual temporal discretizations such as backward
Euler and Crank-Nicolson is straight-forward, although technical. Thus we proceed to study the
following problems: Given uh(0) ∈ V 0

h , find (uh(t), ph(t)) ∈ (Xh, Ph) × (0, T ] such that

∀(vh, qh) ∈ (Xh, Ph), where Ph = Qh (Taylor-Hood) or Q̃h (Scott-Vogelius),

((uh)t, vh) + b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh)
+γ(∇ · uh,∇ · vh) = (f, vh) (28)

(∇ · uh, qh) = 0. (29)

It is straight-forward to show (e.g. [9]) that this formulation admits unique solutions satisfying for
0 ≤ t ≤ T ,

‖uh(t)‖2 + ν

∫ t

0

‖∇uh(s)‖2 ds+ γ

∫ t

0

‖∇ · uh(s)‖2 ds ≤ C(data), (30)

If Ph = Qh: ‖ph‖ ≤ (1 + γ) · C(data), (31)

If Ph = Q̃h: ‖ph‖ ≤ C(data). (32)

Remark 9. For fully discrete case, there is a restriction that the time-step be small enough to
get uniqueness, otherwise an analogous result holds.

Remark 10. With the following theorem, the bound (31) can be improved to be independent of
γ.

Theorem 11. On a fixed mesh, the Taylor-Hood velocity solutions to (28)-(29) converge to the
Scott-Vogelius solution with convergence order γ−1 in the energy norm, as γ →∞: if uh is the
Taylor-Hood solution and u0

h is the Scott-Vogelius solution, then

‖uh − u0
h‖L2(0,T ;H1(Ω)) ≤

C

γ
.

Remark 12. The stability estimate (30) suggests the rate may be only γ−1/2 since the Scott-
Vogelius solution is pointwise divergence-free, but the theorem proves it is indeed faster.

Proof. Our strategy for this proof is similar to that of the steady case. Let (u0
h, p

0
h) ∈ (V 0

h , Q̃h)×
[0, T ] denote the solution of (28)-(29) using Scott-Vogelius elements, (uh, ph) ∈ (Vh, Qh) ×
[0, T ] for the Taylor-Hood solution, and the difference between them to be rh ∈ Vh× [0, T ], so
that

uh(t) = u0
h(t) + rh(t).

Again we orthogonally decompose rh(t) = r′h(t) + r0
h(t), where r′h(t) ∈ Rh and r0

h(t) ∈ V 0
h ;

recall Vh = V 0
h ⊕Rh in the Xh inner product.

Consider (28) with an arbitrary test function sh ∈ Rh ⊂ Vh. The Taylor-Hood and Scott-
Vogelius solutions satisfy, respectively,

((uh)t, sh) + b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh) (33)

((u0
h)t, sh) + b∗(u0

h, u
0
h, sh)− (p0

h,∇ · sh) + ν(∇u0
h,∇sh) = (f, sh). (34)
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Subtracting and utilizing the following identities

∇ · uh = ∇ · rh = ∇ · r′h (35)

(∇rh,∇sh) = (∇r′h,∇sh). (36)

provides the equation

(rht, sh)+ν(∇r′h,∇sh)+γ(∇·r′h,∇·sh) = −b∗(rh, u0
h, sh)−b∗(uh, rh, sh)−(p0

h,∇·sh).

Taking sh = r′h, then reducing with Lemmas 1 and 2, and (30) and (32) yields

(rht, r
′
h) + ν‖∇r′h‖2 + γ‖∇ · r′h‖2

= −b∗(rh, u0
h, r
′
h)− b∗(uh, r0

h, r
′
h)− (p0

h,∇ · r′h)
≤ Cs‖∇rh‖‖∇u0

h‖‖∇r′h‖+ Cs‖∇uh‖‖∇r0
h‖‖∇r′h‖+ ‖p0

h‖‖∇ · r′h‖
≤ Cs‖∇rh‖‖∇u0

h‖M‖∇ · r′h‖+ Cs‖∇uh‖‖∇r0
h‖M‖∇ · r′h‖+ ‖p0

h‖‖∇ · r′h‖
≤

(
CsM‖∇rh‖‖∇u0

h‖+ CsM‖∇uh‖‖∇r0
h‖+ ‖p0

h‖
)
‖∇ · r′h‖

≤ C‖∇ · r′h‖. (37)

We now step back, and proceed to bound r0
h. Consider (28) with an arbitrary test function

w0
h ∈ V 0

h . The Taylor-Hood and Scott-Vogelius solutions satisfy, respectively,

((uh)t, w
0
h) + b∗(uh, uh, w

0
h) + ν(∇uh,∇w0

h) = (f, w0
h), (38)

((u0
h)t, w

0
h) + b∗(u0

h, u
0
h, w

0
h) + ν(∇u0

h,∇w0
h) = (f, w0

h). (39)

Subtracting gives

((rh)t, w
0
h) + ν(∇rh,∇w0

h) = −b∗(uh, uh, w0
h) + b∗(u0

h, u
0
h, w

0
h), (40)

which reduces to

((rh)t, w
0
h) + ν(∇r0

h,∇w0
h) = −b∗(rh, uh, w0

h)− b∗(u0
h, rh, w

0
h). (41)

Taking w0
h = r0

h gives

((rh)t, r
0
h) + ν‖∇r0

h‖2 = −b∗(rh, uh, r0
h)− b∗(u0

h, rh, r
0
h) (42)

= −b∗(r0
h, uh, r

0
h)− b∗(r′h, uh, r0

h)− b∗(u0
h, r
′
h, r

0
h) (43)

Using lemmas 1 and 2, and the uniform bound on solutions yields

((rh)t, r
0
h) + ν‖∇r0

h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + Cs‖∇r′h‖‖∇uh‖‖∇r0
h‖+ Cs‖∇r′h‖‖∇u0

h‖‖∇r0
h‖

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + C‖∇ · r′h‖. (44)

Adding (37) to (44) gives

((rh)t, r
0
h) + ((rh)t, r

′
h) + ν‖∇r0

h‖2 + ν‖∇r′h‖2 + γ‖∇ · r′h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + (C + ‖p0
h‖)‖∇ · r′h‖, (45)
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which reduces with orthogonality properties, the uniform bounds on solutions, then standard
inequalities to

1

2

d

dt
‖rh‖2 + ν‖∇rh‖2 + γ‖∇ · r′h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + C‖∇ · r′h‖

≤ C‖rh‖2 + ν‖∇rh‖2 +
C

2γ
+
γ

2
‖∇ · r′h‖2. (46)

This leaves
d

dt
‖rh‖2 + γ‖∇ · r′h‖2 ≤ C‖rh‖2 +

C

γ
. (47)

The Gronwall inequality, uh(0) = u0
h(0), and reducing gives us∫ t

0

‖∇ · r′h‖2 dt ≤ C

γ2
, (48)

which proves the theorem.

4 Extension to turbulence models

Recent work on finite element methods for the ‘α models’ of fluid flow has proven their ef-
fectiveness at finding accurate solutions to flow problems on coarser spatial and temporal
discretizations than are necessary for successful simulations of the Navier-Stokes equations
[11, 12, 15, 1, 20, 14, 4, 3, 8]. We prove the convergence result for grad-div stabilized TH so-
lutions to SV solutions of the Leray-α model; analogous results / proofs for the other α models
follow similarly. Since a goal of the α-models is to find solutions on coarser meshes than would
be used for the NSE, mass conservation of solutions can be very poor and thus heavy grad-div
stabilization that preserves overall accuracy but improves the mass conservation will help to
provide more physically relevant solutions.

The continuous Leray-α model formulation is: find (uh, ph, wh, λh) ∈ (Xh, Ph, Xh, Ph) such

that ∀(vh, qh, χh, ψh) ∈ (Xh, Ph, Xh, Ph), where Ph = Qh (Taylor-Hood) or Q̃h (Scott-
Vogelius),

((uh)t, vh) + b∗(wh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh)
+γ(∇ · uh,∇ · vh) = (f, vh), (49)

(∇ · uh, qh) = 0, (50)

(wh, χh) + α2(∇wh,∇ χh) + (λh,∇ · χh) + γ(∇ · wh,∇ · χh) = (uh, χh), (51)

(∇ · wh, ψh) = 0. (52)

The equations (51)-(52) are the discretization of the α-filter, with discrete incompressiblity en-
forced. Advantages of using this discretization for the filter instead of the usual one are dis-
cussed in [1].

The following lemma will be useful for the analysis in this section.
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Lemma 13. If (uh, ph, wh, λh) solves (49)-(52) then ‖wh‖ ≤ ‖uh‖.

Proof. The Lemma can be verified quickly by choosing χh = wh in (51) and using the Cauchy-
Schwarz inequality.

Theorem 14. On a fixed mesh the grad-div stabilized Taylor-Hood velocity solutions to (49)-(52)
converge to the Scott-Vogelius velocity solution with convergence order γ−1 in the energy norm,
as γ → ∞. That is, if we denote the SV velocity solutions as u0

h and grad-div stabilized TH
solution as uh then

‖∇(uh − u0
h)‖ ≤

C

γ
.

Proof. Let (u0
h, w

0
h, p

0
h, λ

0
h) ∈ (Xh, Xh, Q̃h, Q̃h)×[0, T ] denote the solution of (49)-(52) using

Scott-Vogelius elements, (uh, wh, ph, λh) ∈ (Xh, Xh, Qh, Qh) × [0, T ] for the Taylor-Hood
solution. Let the difference between uh and u0

h be denoted by ru and the difference between
wh and w0

h be denoted by rw so that

uh(t) = u0
h(t) + ru(t), and

wh(t) = w0
h(t) + rw(t).

Orthogonally decompose ru(t) = r′u(t) + r0
u(t), where r′u(t) ∈ Rh and r0

u(t) ∈ V 0
h . Similarly,

orthogonally decompose rw(t) = r′w(t) + r0
w(t) so that r′w(t) ∈ Rh and r0

w(t) ∈ V 0
h .

Consider (49) and (51) with an arbitrary test function sh ∈ Rh ⊂ Vh. The Taylor-Hood and
Scott-Vogelius solutions satisfy, respectively,

((uh)t, sh) + b∗(wh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh) (53)

((u0
h)t, sh) + b∗(w0

h, u
0
h, sh)− (p0,∇ · sh) + ν(∇u0

h,∇sh) = (f, sh). (54)

Subtracting using previous identities gives

((ru)t, sh) + ν(∇r′u,∇sh) + γ(∇ · r′u,∇ · sh) = b∗(w0
h, u

0
h, sh)− b∗(wh, uh, sh)− (p0

h, sh).

Taking sh = r′u, and reducing with Lemmas 1, 2 and 13, and uniqueness of solutions yields

((ru)t, r
′
u) + ν‖∇r′u‖2 + γ‖∇ · r′u‖2

= b∗(w0
h, u

0
h, r
′
u)− b∗(wh, uh, r′u)− (p0

h, r
′
u)

≤ Cs(‖∇w0
h‖‖∇u0

h‖‖∇r′u‖+ ‖∇wh‖‖∇uh‖‖∇r′u‖) + ‖p0
h‖‖∇ · r′u‖

≤ C‖∇ · r′u‖. (55)

We now derive a similar bound for r′w. Consider that the Taylor-Hood and Scott-Vogelius solu-
tions satisfy the follow equations from (51)

(wh, χh) + α2(∇wh,∇χh) + (λh,∇ · χh) + γ(∇ · wh,∇ · χh) = (uh, χh), (56)

(w0
h, χh) + α2(∇w0

h,∇χh) + (λ0
h,∇ · χh) = (u0

h, χh). (57)

10



Subtracting and choosing χh = rw and rearranging gives

‖rw‖2 + α2‖∇rw‖2 + γ‖∇ · r′w‖2 = (ru, rw)− (λ0
h,∇ · r′w). (58)

The Cauchy-Schwarz inequality and Lemma 2.2 yields

‖∇ · r′w‖ ≤
C

γ
. (59)

Next we derive a bound for r0
w. To do this we subtract (57) from (56) and choose χh = r0

w which
gives

(rw, r
0
w) + α2‖∇r0

w‖2 = (ru, r
0
w). (60)

From here we rearrange by using Cauchy-Schwarz and equivalence of norms over finite dimen-
sional Hilbert spaces which gives

‖∇r0
w‖ ≤ C (‖∇ru‖+ ‖∇r′w‖) . (61)

We proceed similar to the time-dependent NSE case and bound r0
u. Consider (49) with arbitrary

test function v0
h ∈ V 0

h . The Taylor-Hood and Scott-Vogelius solutions saitsfy

((uh)t, v
0
h) + b∗(wh, uh, v

0
h) + ν(∇uh,∇v0

h) = (f, v0
h), (62)

((u0
h)t, v

0
h) + b∗(w0

h, u
0
h, v

0
h) + ν(∇u0

h,∇v0
h) = (f, v0

h). (63)

Subtracting (63) from (62) rearranging and choosing vh = r0
u gives

((ru)t, r
0
u) + ν‖∇r0

u‖2 ≤ |b∗(w0
h, ru, r

0
u)|+ |b∗(rw, uh, r0

u)|. (64)

To majorize the first trilinear term in (64) use Lemmas 2.1 and 4.1, bounds on solutions and
note that for orthogonal decompositions the triangle inequality is an equality. Lastly, using equiv-
alence of norms gives

|b∗(w0
h, ru, r

0
u)| ≤ C‖∇ru‖‖∇r0

u‖ ≤ C‖∇ru‖‖∇r0
u‖+ C‖∇ru‖‖∇r′u‖

≤ C‖∇ru‖2

≤ C‖ru‖2. (65)

We bound the second trilinear using Lemma 2.1 and uniform bound on solutions. Then we split
the rw term using the triangle inequality and use (61), which yields

|b∗(rw, uh, r0
u)| ≤ C‖∇rw‖‖∇r0

u‖
≤ C‖∇r′w‖‖∇r0

u‖+ C‖∇r0
w‖‖∇r0

u‖. (66)

Adding C‖∇r′w‖‖∇r′u‖ and C‖∇r0
w‖‖∇r′u‖ to the right hand side of (66) and using orthogo-

nality gives

|b∗(rw, uh, r0
u)| ≤ C‖∇r′w‖‖∇ru‖+ C‖∇r0

w‖‖∇ru‖ (67)
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We majorize the first right hand side term using Lemma 2.2, bounds on solutions and (59).
Additionally, we majorize the second right hand side term using (61). After we combine like
terms we are left with

|b∗(rw, uh, r0
u)| ≤

C

γ
+ C‖∇ru‖2. (68)

From equivalence of norms we have that ‖∇ru‖ ≤ C‖ru‖. Therefore,

((ru)t, r
0
u) + ν‖∇r0

u‖2 ≤ C

γ
+ C‖ru‖2. (69)

Adding (69) and (55) gives

d

dt
‖ru‖2 + 2γ‖∇ · r′u‖2 ≤ C‖ru‖2 +

C

γ
. (70)

Analogous to the time-dependent NSE proof, the Gronwall inequality, uh(0) = u0
h(0) and re-

ducing finishes the proof.

4.1 Numerical Verification for the Leray-α model

To numerically verify the velocity convergence rate shown above we consider the benchmark 2D
problem of channel flow over a forward-backward step. The domain Ω is a 40×10 rectangle with
a 1×1 step 5 units into the channel at the bottom. The top and bottom of the channel as well as
the step are prescribed with no-slip boundary conditions, and the sides are given the parabolic
profile (y(10 − y)/25, 0)T . We use the initial condition u0 = (y(10 − y)/25, 0)T inside Ω,
choose the viscosity ν = 1/600 and run the test to T=10. The correct physical behavior is for
an eddy to form behind the step (at larger T , the eddy will move down the channel and a new
eddy will form).

A barycenter-refinement of a Delauney triangulation of Ω is used, which yields a total of 14,467
degrees of freedom for the (P2, P

disc
1 ) SV computations and 9,427 for (P2, P1) TH. A Crank-

Nicolson time discretization is chosen as the temporal discretization, with a timestep of ∆t =
0.01. For the TH computations, we use grad-div stabilization parameters γ = {0, 1, 10,
100, 1, 000, 10, 000}.
Plots of the SV and TH solutions are shown in Figure 1, and the correct physical behavior is
observed in both; in fact, these solutions are nearly indistinguishable. Plots of the TH solutions
with γ > 0 are also nearly identical and so are omitted. Differences between the TH solutions
with varying γ, and the SV solution are computed in the H1 norm, and are shown (with rates)
in Table 1; first order convergence is observed, in accordance with our theory. The divergence
errors of the TH solutions are given in Table 1, which also display first order convergence. Also
of particular interest is that the TH solution with γ = 0 has very poor mass conservation, even
though its plot appears correct.
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Figure 1: SV and TH solutions of the Leray-α model at t = 10.
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γ ‖uγTH − uSV ‖H1 rate ‖∇ · uγTH‖
0 2.0360 - 1.2466
1 0.1473 1.14 0.0085
10 0.0311 0.68 9.836E-4
102 0.0035 0.94 8.774E-5
103 3.616E-4 0.99 8.667E-6
104 3.622E-5 1.00 8.948E-7

Table 1: Convergence of the grad-div stabilized Taylor-Hood Leray-α solutions toward the Scott-
Vogelius Leray-α solution, first order as γ →∞.

5 Extension to magnetohydrodynamic flows

To understand a fluid flow which is influenced by a magnetic field one must understand the
mutual interaction of a magnetic field and a velocity field. The system of differential equations
which describe the flow of an electrically conductive and nonmagnetic incompressible fluid (e.g.
liquid sodium) are called magnetohydrodynamics (MHD). These equations are commonly used
in metallurgical industries to heat, pump, stir and levitate liquid metals [5].

We consider the steady MHD in the form studied in, e.g., [6, 7], which is the Navier-Stokes
equations coupled to the pre-Maxwell equations. For simplicity of the analysis, we restrict to
homogeneous Dirichlet boundary conditions (or periodic) for both velocity and the magnetic
field and consider a convex domain. The Galerkin finite element method that explicitly enforces
incompressibility of both the velocity and magnetic fields and with grad-div stabilization of both
velocity and magnetic fields is, ∀(vh, χh, qh, ψh) ∈ (Xh, Xh, Qh, Qh),

b∗(uh, uh, vh) + ν(∇uh,∇vh)− sb∗(Bh, Bh, vh)

−(Ph,∇ · vh) + γ(∇ · uh,∇ · vh) = (f, vh) (71)

(∇ · uh, qh) = 0 (72)

νm(∇Bh,∇ χh)− b∗(Bh, uh, χh) + b∗(uh, Bh, χh)

+(λh,∇ · χh) + γ(∇ ·Bh,∇ · χh) = (∇×G, χh) (73)

(∇ ·Bh, ψh) = 0. (74)

The Lagrange multiplier is added in (73) so that the divergence of the magnetic field can be
explicitly enforced via (74) without overdetermining the discrete system.

For the choice of (Xh, Qh) to be Taylor Hood elements, both∇ · uh = 0 and∇ · Bh = 0 are
enforced weakly in (71)-(74), but if instead Scott-Vogelius elements are chosen then pointwise
enforcement is recovered (choose qh = ∇ · uh and ψh = ∇ · Bh). Similar to the NSE case,
there is a ‘middle ground’ of improved mass conservation while using Taylor-Hood elements,
if γ is chosen “large”. Note we consider the stabilization parameters to be equal only for sim-
plicity since we consider their limiting behavior; in practice it may be necessary to choose them
different for optimal accuracy.
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Lemma 15. Solutions to (71) - (74) exist and satisfy

‖∇uh‖ ≤ ν−1‖f‖−1 + s
−1
2 ν

−1
2 ν

−1
2
m ‖G‖(=: M1), (75)

‖∇Bh‖ ≤ ν
−1
2 ν

−1
2
m s

−1
2 ‖f‖+ ν−1

m ‖G‖(=: M2). (76)

If

ν − CsM1 − 2sCsM2 > 0, and (77)

νm − CsM1 − 2CsM2 > 0 (78)

then solutions are unique.

Proof. Existence of solutions is a straight forward application of the Leray-Schauder Theorem.
To derive (75) and (76) we multiply (73) by s and add it to (71). Next we choose vh = uh and
χh = Bh. Noting that b∗(Bh, Bh, uh) = −b∗(Bh, uh, Bh) leaves

ν‖∇uh‖2 + sνm‖∇Bh‖2 ≤ (f, uh) + s(∇×G,Bh). (79)

The bounds can be derived from (79) by using Young’s inequality.

To derive sufficient conditions for uniqueness assume to get a contradiction that there are two
solutions to (71)-(74), (u1

h, B
1
h, p

1
h, λ

1
h) and (u2

h, B
2
h, p

2
h, λ

2
h). Now let Du := u1

h − u2
h and

DB := B1
h − B2

h. Substituting u1
h, u

2
h into (71), and choosing vh = Du, subtracting and

rearranging gives

ν‖∇Du‖2 + γ‖∇ ·Du‖2 = b∗(u2
h, u

2
h, Du)− b∗(u1

h, u
1
h, Du)

+ sb∗(B1
h, B

1
h, Du)− sb∗(B2

h, B
2
h, Du). (80)

Using standard inequalities and noting that b∗(v, u, u) = 0 we can rewrite (80) as

ν‖∇Du‖2 + γ‖∇ ·Du‖2 = sb∗(B1
h, DB, Du) + sb∗(DB, B

2
h, Du)

− b∗(Du, u
1
h, Du). (81)

Scaling (73) by s and similar treatment gives

sνm‖DB‖2 + sγ‖∇ ·DB‖2 = sb∗(B1
h, Du, DB) + sb∗(DB, u

2
h, DB)

− sb∗(Du, B
1
h, DB). (82)

Adding (81) and (82) and noting that b∗(B1
h, Du, DB) = −b∗(B1

h, DB, Du), yields

ν‖Du‖2 + sνm‖DB‖2 ≤ sb∗(DB, u
2
h, DB)− sb∗(Du, B

1
h, DB)

+ sb∗(DB, B
2
h, Du)− b∗(Du, u

1
h, Du). (83)

Utilizing Lemma 2.1 and Young’s inequality we can now rewrite this as

‖∇Du‖2(ν − CsM1 − 2sCsM2) + ‖∇DB‖2s(νm − CsM1 − 2CsM2) ≤ 0. (84)
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5.1 Convergence of velocity and magnetic field Taylor-Hood solutions to
the Scott-Vogelius solution for steady MHD

We now extend the results above to the case of steady MHD, formulated by (71)-(74). Here
there are two grad-div stabilization terms that arise in the analysis, but the main ideas of the
proofs for the NSE carry through to this problem as well, although more technical details arise.
An extension to time dependent MHD can be performed analogously to how the NSE was
extended in Section 3.

Theorem 16. On a fixed mesh the grad-div stabilized Taylor-Hood velocity and magnetic field
solutions to (71)-(74) converge to the Scott-Vogelius velocity and magnetic field solutions with
convergence order γ−1 in the energy norm, as γ →∞: if (uh, Bh) is the Taylor-Hood solution
and (u0

h, B
0
h) is the Scott-Vogelius solution, then

‖∇(uh − u0
h) + ‖∇(Bh −B0

h)‖ ≤
C

γ
.

Proof. Let (u0
h, p

0
h, B

0
h, λ

0
h) ∈ (V 0

h , Q̃h, V
0
h , Q̃h) denote the solution of (71)-(74) using Scott-

Vogelius elements, (uh, ph, Bh, λh) ∈ (Vh, Qh, Vh, Qh) for the Taylor-Hood solution. Addi-
tionally, denote the difference between the velocity solutions and the magnetic field solutions by
ru ∈ Vh and rB ∈ Vh, so that

uh = u0
h + ru,

Bh = B0
h + rB.

Plugging in the Taylor-Hood and Scott-Vogelius solutions into (71) gives the following equations:
∀vh ∈ Vh,

b∗(uh, uh, vh) + ν(∇uh,∇vh)− sb∗(Bh, Bh, vh) + γ(∇ · uh,∇ · vh) = (f, vh),(85)

b∗(u0
h, u

0
h, vh) + ν(∇u0

h,∇vh)− sb∗(B0
h, B

0
h, vh)− (p0

h,∇ · vh) = (f, vh).(86)

Subtracting (86) from (85) gives

ν(∇ru,∇vh) + γ(∇ · uh, vh) = −b∗(u0
h, ru, vh)− b∗(ru, uh, vh)

+sb∗(Bh, rB, vh) + sb∗(rb, B
0
h, vh)− (p0

h,∇ · vh). (87)

Similarly, plugging in the Taylor-Hood and Scott-Vogelius solutions into (73) gives the following
two equations: ∀χh ∈ Vh,

νm(∇Bh,∇ χh)− b∗(Bh, uh, χh) + b∗(uh, Bh, χh)

+γ(∇ ·Bh,∇ · χh) = (∇×G, χh), (88)

νm(∇B0
h,∇ χh)− b∗(B0

h, u
0
h, χh) + b∗(u0

h, B
0
h, χh)

+(λ0
h,∇ · χh) = (∇×G, χh). (89)

Subtracting (89) from (88) results in the following equality,

νm(∇rB,∇ χh) + γ(∇ ·Bh,∇ · χh) = b∗(Bh, ru, χh) + b∗(rB, u
0
h, χh)

−b∗(u0
h, rB, χh)− b∗(ru, Bh, χh) + (λ0

h,∇ · χh). (90)
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Orthogonally decompose ru =: r0
u + r′u and rB =: r0

B + r′B where r0
u, r

0
B ∈ V 0

h and r′u, r
′
B ∈

Rh and choosing vh = r′u in (87), χh = r′B in (90) and adding the two resulting equations
yields

ν‖∇r′u‖2 + γ‖∇ · r′u‖2 + νm‖∇r′B‖2 + γ‖∇ · r′2B‖2 = −b∗(u0
h, r

0
u, r
′
u)

−b∗(ru, uh, r′u) + sb∗(Bh, rB, r
′
u) + sb∗(rb, B

0
h, r
′
u)− (p0

h,∇ · r′u)
+b∗(Bh, ru, r

′
B) + b∗(rB, u

0
h, r
′
B)− b∗(u0

h, r
0
B, r

′
B)

−b∗(ru, Bh, r
′
B) + (λ0

h,∇ · r′B) (91)

From (75), (76) and Lemmas 2.1 and 2, we can transform (91) to

γ
‖∇ · r′u‖2 + ‖∇ · r′B‖2

‖∇ · ru‖+ ‖∇ · rB‖
≤ CsM1M‖∇r0

u‖+ CsM1M‖∇ru‖

+sCsM2M‖∇rB‖+ sCsM2M‖∇rB‖+ ‖p0‖+ CsM2M‖∇ru‖
+CsM1M‖∇rB‖+ CsM1M‖∇r0

B‖+ CsM2M‖∇rB‖+M‖λ0
h‖ (92)

Since, uh, u0
h, Bh and B0

h are all bounded by data that implies that ru, r0
u, rB and r0

B are as
well. Therefore,

‖∇ · r′u‖+ ‖∇ · r′B‖ ≤
C

γ
(93)

It remains to bound ‖r0
u‖ and ‖r0

B‖. We will majorize the terms individually and then combine
the results. First, setting vh = r0

u in (85) and (86), and rearranging gives the following

ν(∇uh,∇r0
u) = −b∗(uh, uh, r0

u) + sb∗(Bh, Bh, r
0
u) + (f, r0

u), (94)

ν(∇u0
h,∇r0

u) = −b∗(u0
h, u

0
h, r

0
u) + sb∗(B0

h, B
0
h, r

0
u) + (f, r0

u). (95)

Subtracting (95) from (94), rewriting the nonlinear terms with standard identities and reducing
with orthogonality properties gives

ν‖∇r0
u‖2 ≤ |b∗(u0

h, r
′
u, r

0
u)|+ |b∗(ru, uh, r0

u)|
+ |sb∗(Bh, rB, r

0
u)|+ |sb∗(rB, B0

h, r
0
u)|. (96)

Choosing χh = r0
B in (88) and (89), and rearranging gives the following equalities

νm(∇Bh,∇r0
B) = b∗(Bh, uh, r

0
B)− b∗(uh, Bh, r

0
B) + (∇×G, r0

B), (97)

νm(∇B0
h,∇r0

B) = b∗(B0
h, u

0
h, r

0
B)− b∗(u0

h, B
0
h, r

0
B) + (∇×G, r0

B). (98)

Subtracting (98) from (97), rewriting the nonlinear terms and reducing with orthogonality prop-
erties gives

νm‖∇r0
B‖2 ≤ |b∗(Bh, ru, r

0
B)|+ |b∗(rB, u0

h, r
0
B)|

+ |b∗(u0
h, r
′
B, r

0
B)|+ |b∗(ru, Bh, r

0
B)|. (99)
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Adding (96) and (99) gives the following upper bound

ν‖∇r0
u‖2 + νm‖∇r0

B‖2 ≤ |b∗(u0
h, r
′
u, r

0
u)|+ |b∗(ru, uh, r0

u)|+ |sb∗(Bh, rB, r
0
u)|

+ |sb∗(rB, B0
h, r

0
u)|+ |b∗(Bh, ru, r

0
B)|+ |b∗(rB, u0

h, r
0
B)|

+ |b∗(u0
h, r
′
B, r

0
B)|+ |b∗(ru, Bh, r

0
B)| (100)

Now using Lemma 2.1, (75), (76) and the triangle inequality yields

ν‖∇r0
u‖2 + νm‖∇r0

B‖2 ≤ Cs(M1‖∇r0
u‖2 +M1‖∇r0

B‖2

+ 2sM2‖∇r′B‖‖∇r0
u‖+ 2M1‖∇r′u‖‖∇r0

u‖
+ 2M2‖∇r′u‖‖∇r0

B‖+ +2M1‖∇r′B‖‖∇r0
B‖

+ 2sM2‖∇r0
B‖‖∇r0

u‖+ 2M2‖∇r0
u‖‖∇r0

B‖) (101)

The first 2 terms may be subtracted from both sides of (101) immediately. The subsequent terms
may be handled using Young’s inequality to yield

(
ν

2
− CsM1 − 2sCsM2 − 2Cs M 2)‖∇r0

u‖2 + (
νm
2
− CsM1 − 2sCsM2 − 2CsM2)‖∇r0

B‖2

≤ 16ν−1s2C2
sM

2
2‖∇r′B‖2 + 16ν−1C2

2M
2
1‖∇r′u‖2

+ 16ν−1
m C2

sM
2
2‖∇r′u‖2 + 16ν−1

m C2
sM

2
1‖∇r′B‖2 (102)

Provided that

ν
2
−CsM1 − 2sCsM2 − 2CsM2 > 0, and

νm
2
−CsM1 − 2sCsM2 − 2CsM2 > 0 (103)

it follows from the triangle inequality that

‖∇(uh − u0
h)‖+ ‖∇(Bh −B0

h)‖ ≤
C

γ
. (104)

5.2 Numerical verification for steady MHD

To numerically verify the MHD convergence theory, we select the test problem with solution

u =< cos(y), sin(x) >T , P = sin(x+ y), B =< x,−y >T ,

on the unit square with ν = νm = 1, s = 1 and f and g calculated from this information.

The mesh used was a barycenter-refined uniform triangulation of Ω, which provided a total of
4, 324 degrees of freedom for the (P2, P1) TH computations and 6, 600 for (P2, P

disc
1 ) SV. The

results are shown in Table 2, and first order convergence in the H1 norm is observed for both
velocity and the magnetic field.
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γ ‖uγTH − uSV ‖H1 rate ‖∇ · uγTH‖ ‖B
γ
TH −BSV ‖H1 rate ‖∇ ·Bγ

TH‖
0 7.052E-4 - 5.45E-4 4.293E-6 - 1.74E-6
1 4.740E-4 - 3.19E-4 2.923E-6 - 8.93E-7
10 1.729E-4 0.41 8.44E-5 1.138E-6 0.41 2.96E-7
102 2.688E-5 0.81 1.16E-5 1.813E-7 0.80 4.66E-8
103 2.860E-6 0.97 1.22E-6 1.936E-8 0.97 4.97E-9
104 2.879E-7 1.00 1.23E-7 1.947E-9 1.00 5.00E-10

Table 2: Convergence of the grad-div stabilized Taylor-Hood steady MHD solutions toward the
Scott-Vogelius steady MHD solution, first order as γ →∞.

6 Extrapolating to approximate the γ =∞ solution

The previous sections verified that provided the SV element is stable the grad-div stabilized TH
solutions to Stokes type problems converge to the SV solution as γ →∞. However, in practice
there are limitations on how large γ may be chosen, because as γ increases the resulting
linear system becomes ill-conditioned. In this section we consider linearly and quadratically
extrapolating from grad-div stabilized TH velocity solutions found with smaller γ to approximate
the SV solution in an effort to improve mass conservation.

Let the true solutions to (3)− (4) be given by

u =

[
(x4 − 2x3 + x2)(4y3 − 6y2 + 2y)
−(y4 − 2y3 + y2)(4x3 − 6x2 + 2x)

]
, (105)

P = x+ y +
1

2
(cos(y)2 + sin(x)2), (106)

on the unit square with ν = 1
100

.

Let γk (k = 1, 2 or 3) denote a distinct stabilization parameter and let (uγkh , p
γk
h ) denote Taylor-

Hood solutions of (3)-(4) with stabilization parameters γk. Additionally, let (uEx, pEx) denote
the extrapolated solution and (u0

h, p
0
h) denote the Scott-Vogelius solution to (3)-(4).

Computations were done on a barycenter-refined uniform triangulation of Ω, which provided
2162 degrees of freedom for the (P2, P1) TH elements and 3300 degrees of freedom for the
(P2, P

disc
1 ) SV element.

The results in Table 3 are for linear extrapolated solutions, and and Table 4 summarizes the
results for quadratic extrapolated solutions. Little improvement is seen in linear extrapolation,
but a dramatic improvement is observed for quadratic.
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