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Abstract. We consider systems of singularly perturbed ordinary differential equations 
and study the initial value problem on a finite interval. Our goal is to describe the 
asymptotic behavior of its solution with respect to c in case of exchange of stability of a 
solution of the degenerate system considered as a steady state solution of the associated 
system. The obtained results extend the well-known fundamental theorems due to A.N. 
Tikhonov and A.B. Vasil'eva. 
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1. Introduction 

Modelling numerous processes in techniques and natural sciences leads to singularly 
perturbed systems of ordinary differential equations 

dx 
dt 
dy 

c-dt 

f(x,y,t,c) 

g(x,y,t,c) 

where x E Rk, y E R1, and c is a small positive parameter. 

(1.1) 

Basically we may distinguish two main approaches in the study of singularly perturbed 
systems: the longtime behavior of a sample of trajectories and the transition behavior 
of one trajectory on a finite time interval where in both cases the smallness of c plays a 
crucial role. 

*e-mail: nefedov@math384.phys.msu.su 
t e-mail: schneide@WIAS-berlin.de 
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In what follows we consider the initial value problem to (1.1) 

x(to,c:) = x0
, y(to,c:) = y0

, t E (to,te) =: T, te >to (1.2) 

on a finite time interval and study the asymptotic behavior of its solution (x(t, c:), y(t, c:)) 
with respect to c; under conditions which are not included in the standard theory. [3, 4, 
10, 12, 13, 14, 15] and which can be viewed as an exchange of stability of an equilibrium 
solution of the associated system. 

The motivation for considering such problems comes from the study of jumping behavior 
of the fast reaction rate in bimolecular reactions [9]. In order to be able to compare 
our results with the standard fundamental theorems due to A.N. Tikhonov [11, 12] 
and A.B. Vasil'eva [13] we will recall these theorems in the next section. In section 3 
we introduce the basic assumptions and the key tool, the method of lower and upper 
solution. Section 4 contains our main results which say that an exchange of stability 
influences the asymptotic behavior of (1.1), (1.2) with respect to c; near the point of 
exchange of stability. In the case under consideration we have a change from an O(c:)-
behavior to 0( vfi). In the final section we illustrate our result by considering an example 
from the reaction kinetics. 

2. Fundamental results of the standard theory 

Let Dx and Dy be open bounded regions in Rk and R1 respectively, let J be the interval 
J := {c: ER: 0::::; c; < c;* ~ 1}, let D := Dx x Dy x T x J. Concerning the smoothness 
off and g we suppose 

(T1). f : D --+ Rk, g : D --+ R1 are continuous and continuously differentiable with 
respect to the first three variables. 

It is obvious that the asymptotic behavior of the solution (x(t, c:), y(t, c:)) of (1.1), (1.2) 
with respect to c; depends on the solution set of the equation 

g(x, y, t, 0) = 0. (2.1) 

The first result in this direction is due to A.N. Tikhonov [11, 12]. To formulate his result 
we introduce the assumptions: 

(T2 ). Equation (2.1) has an isolated solution y = <.p(x, t) defined for (x, t) E D~ x T 
where D~ is a closed simply connected subset of Dx , and T := [to, te]. 

(T3 ). The initial value problem 

dx ( ( ) o o -d = f x, <.p x, t), t, 0) , x ( t0 = x E D x t . 

has a unique solution x(t; t0 ) defined on T. 
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(T4). y = cp(x, t) is an asymptotically stable equilibrium point of the associated system 

dy 
dr = g(x, y, t, 0) (2.3) 

uniformly for (x, t) ED~ x T (x and t are considered as parameters in (2.3)). 

(Ts). The initial value problem 

dy 0 0 
dr = g(x , y, to, 0), y(O) = y (2.4) 

has a unique solution iJ( r, y0 ) which exists for T ;:::: 0 and tends to cp( x 0 , t 0 ) as 
T --+ 00. 

Hypothesis (Ts) says that y0 is in the basin of attraction of the equilibrium point cp(x0 , t0 ) 

of (2.4). 
A.N. Tikhonov has got essentially the result 

Theorem 2.1 Suppose the hypotheses (T1) - (Ts) hold. Then there exists a sufficiently 
small positive co such that for 0 < c ~ co the initial value problem {1.1), {1.2) has a 
unique solution (x(t, c), y(t, c)) satisfying 

limx(t,c) 
e-+-0 

- x(t, x0
) for to ~ t ~ te, 

limy(t,c) e-o cp(x(t,x0 ),t) for to<t~te. 

In order to.formulate the next theorem which is due to A.B. Vasil'eva [13], we introduce 
the concept of an asymptotic expansion of the solution (x(t,c),y(t,c)) of (1.1), (1.2). 

Definition 2.2 An asymptotic expansion of the solution (x(t, c), y(t, c)) of (1.1), {1.2) 
is a representation of x( t, c) and y( t, c) in the form 

za(t,c:) = Rz(t,c:) + ITz(r,c:) (2.5) 

• where
0

z is a placeholder for x and y respectively, Rz(t,c) is the regular part of the 
asymptotics, that is, 

00 

Rz(t,c:) := l:c:i~z(t), (2.6) 
i=O. 

and IIz( r, c) is the boundary layer correction near t = t0 , 

00 

IIz(r,c) := l:c:iITiz(r) (2.7) 
i=O 

where r is the stretched variable T = (t-t0 )/c:. We denote by Zk(t,c:) the truncated part 
of (2.5) 

k 

Zk(t, c:) = l:c:i(Riz(t) + ITiz(r)). 
i=O 
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Let F be some function defined on Rk x Rx J. By means of the representation (2.5) 
we may rewrite F(za(t,e),t,€) in the form 

F(za(t, € ), t, €) = F(Rz(t, € ), t, €) + F(za( T€, € ), T€, €) 
-F(Rz(re, e), T€, €)=:RF+ IIF 

where 

(2.8) 

RF:= F(Rz(t,e),t,e), IIF := F(za(re,€),re,€)-F(Rz(re,€),re,€). (2.9) 

In order to compute the coefficients Riz(t) and Iliz(r) we substitute (2.5) - (2.7) into 
(1.1), (1.2) and use the representation (2.8), (2.9). By equating expressions with the 
same power of € (separately for t and r) we obtain equations which let us determine 
the unknown coefficients of the asymptotic expansion. In particular, by assumption 
(T2 ), Rox(t) and Roy(t) are uniquely determined by the degenerate system (2.1) and the 
initial value x0 : Rox(t) = x(t,x0 ),Roy(t) = c.p(Rox(t),t). Note that Ilxo(r) and Ilyo(r) 
are determined by the initial value problems (see [13]) 

dIIoy 
dr 

dIIox 

Ilog(Rox(to) + IIox(r),Roy(to) + Iloy(r),to,O), Iloy(to) = y0 
- Roy(to), 

dr 0, IIox(to) = 0. 

Thus, we have 

II0x(r) - 0 
dIIoy 

dr Ilog(x0
, c.p(x0

, to)+ Iloy(r), to, 0). 
(2.10) 

Finally, we strengthen the assumptions (T1) and (T4 ) as follows. 

(Ti). The functions f and g are ( k + 2)-times continuously differentiable with respect to 
all variables in the domain of interest. 

(T4). All eigenvalues Ai(t) of the Jacobian gy(x(t, x0 ), c.p(x(t, x0 ), t), t, 0) satisfy 

Re Ai ( t) < 0 for t E T, 1 :::; i :::; m. 

Theorem 2.2 We assume the hypotheses (T1), (T2), (T3 ), (T4), (T5) to hold. Let (Xk(t, e), 
Yk(t, e)) be the truncated parts of the asympto.tic expansion of the solution of problem 
(1.1), (1.2) obtained by the method of boundary layer functions (see [13], [14] for de-
tails). Then there exists a sufficiently small €o and a constant c = c( €o) such that for 
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0 < c::::; co the initial value problem (1.1), (1.2) has a unique solution (x(t, c), y(t, c)) for 
t E T satisfying 

lx(t, c) - Xk(t, c)I 
ly(t, e:) - Yk(t, e:)I 

In particular) we have for k = 0 : 

x(t,c:) = Rox(t) + O(e:), y(t,c;) = Roy(t) + IT0 y(r) + O(e) 

where IT0 y is defined by (2.10). 

3. Exchange of Stability. Assumptions. Notation 

In what follows we consider the case that if we replace in (2.3) x by x(t; t0 ) then the 
equilibrium point cp(x(t; t0 ), t) of (2.3) changes its stability when the parameter t passes 
some critical value tc, t0 < tc < te. This situation can arise if (2.1) has two solutions 
intersecting for t = tc. 
We study the singularly perturbed differential system (1.1) under the following assump-
tions 

(S1 ). f : D -+ Rk, g : D -+ R1 are twice continuously different.iable with respect to all 
variables. 

(S2 ). Equation (2.1) has two different solutions y = cp1(x,t) and y = cp2 (x,t) defined in 
D~ x T and with the same smoothness properties as f and g. 

(S3 ). The initial value problem 

~; = J(x, \01(x, t), t, 0) , x(t0) = x0 

has a unique solution x1(t, x0 ) defined on T. There is a point tc in T such that 

(i) For t0 ::::; t < tc, the real parts of all eigenvalues of the Jacobian G1(t) := 
gy(x1(t, x0 ), 'l/;1(t), t, 0) are negative where 'l/;1(t) is defined by 'l/;1(t) := cp1(x1 (t, 
x0 ), t). That is 'l/;1 ( t) is an asymptotically stable equilibrium of the associated 

system 

dy (-1 ( 0) ) dr =g x t,x ,y,t,0 (3.1) 

for t E (to, tc)· 
(ii) For t = tc exactly one simple real eigenvalue e1(t) of G1 (t) vanishes and 

crosses the imaginary axis transversally that is, el ( tc) = 0, e~ (tc) > 0. 
(iii) Fort E (tc, te] exactly one eigenvalue of G1(t) has positive real part. 
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( S4 ). The initial value problem 

dy 0 0 dr = g(x , y, to, 0), y(O) = y 

has a unique solution y(r,y0 ) which exists for T ~ 0 and tends to cp1 (x0 ,t0 ) as 
T--+ 00. 

Assumption (S4 ) means that y0 lies in the basin of attraction of the equilibrium point 
<p1(x0, to) of (3.1). 

From assumption (S1)-(S3) it follows that 'l/;1(t) is a differentiable one-parameter family 
of equilibria of the associated system (3.1) which intersects for t = tc another differen-
tiable one-parameter familiy of equilibria of system (3.1 ). The following assumption says 
that this family is related to the second root cp2(x, t) of (2.1). 

(S5 ). The initial value problem 

dx 1 -1( o) dt = f(x, <p2(x, t), t, 0) , x(tc) = x := x tc, x 

has a unique solution x2 (t, x1) defined on T such that 

(i) For tc < t:::; te all eigenvalues of the Jacobian G2(t) := gy(x2(t, x1), 'l/;2(t), t, 0) 
are in the left half plane where 'l/;2( t) is defined by 'l/;2( t) :== 'P2 ( x2( t, x1)' t). 

(ii) For t = tc exactly one simple real eigenvalue e2(t) of G2(t) vanishes and 
crosses the imaginary axis transversally, that is e2(tc) = 0, e~(tc) < 0. 

(iii) For t E [t0 , tc) exactly one eigenvalue of G2(t) has positive real part. 

Definition· 3.1 Under the assumption (S3 ) and (S5 ) the vector function (x(t),y(t)) 
defined by 

"(t) ·-{ x1(t,x0
) to:::; t:::; tc "(t) ·-{ 'l/;1(t) to:::; t:::; tc 

x .- x2(t x 1) t < t < t ' y .- ,,/, (t) t < t < t , c _ _ e 'f'2 c _ _ e 

is referred to as the composed stable solution of (1.1) with respect to 'l/;1(t),'l/;2(t). 
-From this definition we obtain 

dx 
dt - f(x(t), y(t), t, o) 

0 - g(x(t), y(t), t, o). 

(3.2) 

(3.3) 

In what follows let v be any fixed small positive number. It is obvious that under the 
hypotheses (S1) - (S5 ) Theorem 2.3 describes the asymptotic behavior of the solution 
(x(t, c;), y(t, c)) of the initial value problem (1.1), (1.2) on the interval (to, tc - v). A 
similar approach is valid for .t E (tc + v, te) provided y(tc + v, c;) = yv lies in the basin of 
attraction of the equilibrium point cp2(x2(tc + v, x1), tc + v) of the associated system 

dy (-2( 1) ) dr = g x t, x , y, t, 0 . 
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The critical interval is the interval Iv := [tc - v, tc + v]. To prove the existence of a 
solution of (1.1) defined on Iv and to get an asymptotic approximation of it for small 
e we will apply the method of upper and lower solutions. Following [1] ~ [2], [7] we call 
(x( t, e ), y( t, e)) and (I£( t, e ), JL( t, e)) the upper and lower solution of (1.1 ), (1.2) respec-
tively, provided they satisfy the following inequalities 

I£(t, c:) ~+ x(t, c:), JL(i, c:) ~+ y(t, c:) 

dx dX 
dt - f(I£, y, t, c:) ~+ o ~+ dt - f(x, y, t, c:) (3.4) 

d?J.. dy -
e dt -g(x,1j_,i,c:) ~+ 0 ~+ c: dt - g(x,y,t,c:) 

for t ET, x E [I£(t,c:),x(t,c:)], y E [JL(t,c:),y(t,c:)], and 

I£(to,c) ~+XO~+ x(to,c), JL(to,c) ~+YO~+ y(io,e) 

where ~+ means the partial ordering induced by the cone of vectors with nonnegative 
components. In order to be able to conclude that the existence of a lower and an upper 
solution of (1.1), (1.2) implies the existence of a unique solution (x(t, c:), y(t, c:)) of (1.1), 
(1.2) satisfying 

I£(t,e) < x(t,e) ~x(t,e), 
JL(t,c:) < y(t,c:) ~ y(t,e) 

we introduce the following monotonicity assumption: 

(S6 .) For 1 ~ i ~ k, the functions fi(xi, ... ,xi-i,Xi(t),xi+1, ... ,xk,.Y,t,c:) are nonde-
creasing in (xi, ... , Xi-1' Xi+i, ... , Xk, y) and for 1 ~ j ~ l the functions 9i(x, y1 , ... , 

Yi-I, Yi(t), Yi+t, ... , y1, t, c:) are nondecreasing in (x, yi, ... , Yi-1' Yi+l' ... , yz, t, c:) 
for c E J and t E Iv. 

Remark 3.2 If we set T/ := (x, y), h := (f,g) then assumption {S6 ) means that the 
function h is a socalled quasi monotone function of T/. This property has been introduced 

. by E. Kamke {6} and M. Miiller [7} and plays now an important role in the theory 
of monotone systems [5, 8}. A consequence of a quasimonotone function is that its 
Jacobian is such that all off-diagonal elements are nonnegative that is, it maps the cone 
of nonnegative vectors into itself. Assumption (S6 ) in particular implies fy ~ 0 and 
9x ~ 0. 
Let us introduce the matrix 

G(t) ·- { G1(t) .- G2(t) 
for to ~ t ~ tc, 
for. tc ~ t ~ te. 

From the assumptions (S3 ) and (S5 ) it follows 

G(t) = gy((x(t), y(t), t, 0) 
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and that there is a sufficiently small v > 0 such that fort E Iv Gi(t) has a unique simple 
eigenvalue ei(t) with a corresponding eigenvector vi(t) where ei and Vi for i = 1, 2 are 
continuously differentiable and satisfy ei(tc) = 0 and e'(tc) # 0. Thus, for t E Iv G(t) 
has a simple eigenvalue e(t) with an eigenvector v(t) such that e and v are continuous 
in Iv with e(tc) = 0 .and continuously diffentiable in Iv\ {tc}· 

Finally we need the assumptions 

( S1.) v( tc) is strictly positive. 

(Ss.) -gyy(x(tc), y(tc), tc, O)v(tc)v(tc) >+ r >+ 0. 

(Sg). For to~ t ~ ic + v,c E J it holds 

dx(t) 
dt ~+ f(x(t), y(t), t, c), 

dy(t) 
c di ~+ g(x(t),y(t),t,c). 

Assumption (S9 ) means that the composed stable solution is a lower solution of our 
initial value problem. 

4. Asymptotic Behavior in Case of Exchange of Sta-
bility 

The following theorem characterizes the influence of an exchange of stability of the family 
7/J1(t) of equilibria of (3.1) on the asymptotic behavior of the solution of the initial value 
problem (1.1),(1.2): near the critical point the usual O(c)-behavior is replaced by an 
0( -/£)-behavior. The proof of our main result is based on the application of the method 
of lower and upper solutions. 

Theorem 4.1 . Assume hypotheses (S1 ) - (S9 ) to be valid. Then to any given small 
v > 0 there exists a sufficiently small co = co(v) such that for 0 < c ~ co(v) the 
initial value problem (1.1},(1.2} with x0 2::+ x(t0 ),y0 2::+ y(t0 ) has a unique solution 
(x(t, c), y(t, c)) satisfying 

Moreover we have 

x(t,c;) 

y(t, c) 

limx(t,c:) - x(t) fort ET, e-o 
limy(t,c) - y(t) forto<t~te. e-o 

·x(t)+O(c;) 

{ 

~(t)+Ilo~(r)+O(c) 
y(t) + O(c2) 
y(t)+O(c) 

for t ET 
for to ~ t ~ tc - v 
for t E Iv 
for to + v ~ t ~ te 

where Iloy( T) is the zeroth order boundary layer function. 
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Proof. The proof proceeds in three steps. In the first step we consider the initial value 
problem (1.1), (1.2) on the interval [to, tc - ii] where ii is any small positive number. It 
is obvious that under the hypotheses above Theorem 2.3 applies. Thus, to given ii there 
is an c = c(il) such that there exists a unique solution (x(t, c), y(t, c)) of (1.1), (1.2) on 
the interval [t0 , tc - ii] with the asymptotic behavior as described above. Let 

( 4.1) 

Now we consider the initial value problem (1.1), (4.1) on the interval /v. We prove the 
existence of a unique solution to this problem by applying the method of lowE'.r and 
upper solutions. First we note that according to hypothesis {S9 ) (x(t), y(t)) is a lower 
solution to (1.1), (4.1) on the interval /v. To construct an upper solution we use the 
functions 

x(t, c) = x(t) + c exp(.Xt)vJ, y(t, c) = y( t) + 1V€v( t) (4.2) 
where v1 is any strictly positive constant vector, the constants .,\ and I will be choosen 
later in an appropriate way. It is clear that to given ci, 0 :::; c1 :::; c(il), there are positive 
numbers .,\1 and /l such that for 0 :::; c :::; c1 and.,\ 2:: .X1 , / 2:: /1 the following inequalities 
hold 

x(tc - ii):::;+ x; :::;+ x(tc - il,c), y(tc - ii):::;+ Y°i :::;+ y(tc - il,c). 
Now we prove that x(t,c), y(t,c) satisfy the differential inequalities (3.4) characterizing 
an upper solution of problem (1.1), (4.1) on the interval /v. From (4.2), (S6 ), (3.2), (S1 ), 

and (3.3) we get 

ax 
dt - f(x(t), y(t), t, c) 

2::+ 

dx 
dt + c.X exp(.Xt)v1 
f(x(t) + c exp(.Xt)v1, y(t) + 1v'€v(t), t, c) 
dx 
dt + c.X exp(.Xt)v1 
f(x(t) + c exp(.Xt)vJ, y(t), t, c) 
dx · 
dt + c.X exp(.Xt)v1 
f ( x(t), y( t), t, 0) - c exp(.,\t)fx( x( t), y( t), t, O)v 1 
cfe(x(t), y(t), t, 0) + o(c) 

cexp(.Xt)[.Xv1 -fx(x(t),y(t),t,O)v1 

exp (- .,\ t) f e ( x ( t), y ( t), t, c)] + o( c). 

Since fx(x(t), y(t), t, 0) and fe(x(t), y(t), t, 0) are continuous int and since VJ is strictly 
positive, to given c1 and ii there is a sufficiently large .X2 2:: .X1 such that fort E h, .,\ 2:: .X2, 
and 0 < c :::; c1 

.Xvi - fx(x(t), y(t), t, 0) - e->.t fe(x(t), y(t), t, c) 2::+ "' >+ 0 

where "' is some strictly positive vector. Consequently, there is a sufficiently small 
positive number c2, 0 < c2 :::; ci, such that for t E h and 0 < c < c2 

dX 
dt - f (x, y, t, c) 2::+ o. 

9 



Before we derive a similar inequality for c ay / dt - g(x, y, t, c) we note that according to 
hypothesis (S8) and to the continuity of gyy(x(t), y(t), t, 0) with respect. to t there is a 
small positive number v2 , v2 ::; ii, and a strictly positive vector vh such that for t E Iv-i 

- g yy ( x ( t) ' y ( t) ' t' 0) v ( t) v ( t) 2:: + v h > + 0. (4.3) 

Using this inequality we get from (4.2), (S6 ), (S1), and (3.3) 

e : - g(X(t), Y( t), t, e) 

e ~~ + 1e312 ~~ - g( X( t), Y( t) + Ve1v( t), t, e) 

-y'efgy(X(t), Y(t), t, O))v(t) + e ~~ 
g(x(t), y(t), t, 0)) - cg~(x(t), y(t), t, 0)) 

2 

c ~ gyy(x(t), y(t), t, O))v(t)v(t) + o(c) 

e(~
2 

vh - g,(X(t), Y(t), t, 0) + ~~) + o(e). 

Thus, there are positive numbers c3 , c3 ::; c2 , and a sufficiently large /~, such that for 
0 < c ::; c3, / > /o and t E Iv2 

E:: - g(X( t), y( t), t, E:) ~+ 0. 

Consequently, we have proved the existence of a lower and an upper s~lution of (1.1), 
(4.1) on Iv2 which imply under the hypothesis (S6 ) the existence of a unique solution of 
( 1.1), ( 4 .1) on I v2 satisfying the estimate of Theorem 4.1. 
Let 

xt. := x( tc + v2f 2, c ), y-:. := y( tc + v2/2, c ). (4.4) 

In the last step we apply Theorem 2.3 to the initial value problem (1.1), (4.4) on the 
interval [to+ v2f2, te] for 0 < c < c0 (v2 ) where we assume that c0 (v2 ) is so small such 
that xt. is in the domain of attraction of the stable root r.p2 and that the corresponding 

· boundary layer is contained in the interval (tc + v2/2, tc + v2 ) for 0 < c ::; co(v2 ). This 
completes the proof of the theorem. D 

Now we consider the initial value problem (1.1) (1.2) with x 0 < x(t0 ), y0 < y(t0 ). To 
this end we replace hypotheses ( s6) and ( 89) as follows: 

(S6)· For i = 1, ... k, c E J and t E Iv the functions fi(Xi, ... 'Xi-1' x7(t, x1), Xi+i, 
... , Xk, y, t, c) are non-decreasing in (xi, ... , Xi-l, Xi+i, ... , Xk, y) and for i = 1, ... , l, 
c E J, t E Iv the functions 9i(x,y1, ... ,Yi-i, 'l/J2i(t), Yi+l, ... ,yz,t,c) are non-

decreasing in (x, y1, ... , Yi-i, Yi+1' ... , y1) in the region defined by Xj E [x](t, x1), 
xi(t, c)],j = 1, ... , k, Yi E ['l/;2j(t), Yi(t, c)] , j = 1, ... , l. 
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(S9 ). Fort E Iv where v is any given small positive number we have 

dx 2 

dt < f(x 2(t,x 1 ),7/J2(t),t,c:) 

c: d'J/ < g(X2(t,x1),,P2(t),t,c:). 

Then the following theorem is valid. 

Theorem 4.2 Assume the hypotheses (S1)-(S5 ), (S6 ), (S7 ), (S8), (S9 ) to be valid. Then 
to any small v > 0 there exists a sufficiently small co= c:0 (v) such that for 0 < c ~ c;0 (v) 
the initial value problem (1.1), (1.2) with x0 < x(O),y0 < y(O) has a unique solution 
( x( t, c ), y( t, c)) satisfying 

x(t, c:) = x(t) + O(c:) fort E T\I; 

y( t, c) { 
~ ( t) + Ilo ~ ( T) + 0 ( c) 
y(t) + O(c:2) 
y(t)+O(c) 

For t E I; := { t E R : tc - v ~ t ~ tc} we have 

for to < t ~ tc - v 
for tc ~ t < tc + v 
for tc + v ~ t ~ T. 

x2(t,x1
) < x(t,c:) ~ x(t) + c:exp(.Ai)vJ, 

c.p2(x2(t, x1
), t) < y(t, c) 5: y(t) + 1vfcv(t). 

Proof. The proof of this theorem proceeds essentially in the same line as the proof 
of Theorem 4.1. The upper solution on Iv is exactly the same, the lower solution differs 
from that one in Theorem 4.1 on the interval I; and implies a different estimate on this 
interval. D 

5. Example: Fast bimolecular rection with mono-
molecular slow reaction 

In this section we apply our results to the following differential system which describes a 
fast bimolecular reaction including slow monomolecular reactions (see [9] and references 
therein) 

c: :~ c: (J.(t) - 91(Y)) - r(y, z), 
dz 

c dt - c (h(t) - g2(z)) - r(y, z). 
(5.1) 
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To (5.1) we consider the initial value problem 

y(O,c:) = y0
, z(O,c:) = z0

, 0 < i < ie. (5.2) 

Concerning the inputs Ia and h we assume that they are nonnegative and twice con-
tinuously differentiable fort > 0 (this assumption can be relaxed!), for 91 , 92 , and r we 
consider the special case 

91(Y) = y, 92(z) = z, r(y,z) = yz. (5.3) 

By means of the coordinate transformation y = y, z = y - x we get from (5.1) and (5.3) 
the singularly perturbed system 

c (Ia(t)- y)-y (y- x) = g(x,y,t,c:), 

Ia(t) - lb(t)- x = f(x,y,.t,s) 

and the initial condition 

(0 ) 0 (0 ) - 0 - 0 0 y ,c: = y ' x ,£ - x - y - z . 

The last equation in (5.4) can be integrated. Taking into account (5.5) we obtain 

such that (5.4) and (5.5) are equivalent to 

c: ~~ = c:(I.( t) - y) -:- y(y - X(t, x 0
)), y(O, c:) = y0

• 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

The corresponding degenerate equation has the solutions y = y(1)(t) = 0, y = y(2)(t) = 
x(t, x0 ). Consequently, if x(t, x0 ) does not change its sign in [O, te] then Theorem 2.1 
can be applied. It can be easily checked that y 1 ( t) = 0 is an asymptotically stable 
equilibrium of the associated system 

dy = -y(y - x(t, x0 )) 
dr 

if x(t, x0 ) is negative fort E [O, te]· If x(t, x0 ) changes its sign at t = tc E (0, te) then we 
have the case of exchange of stability which was considered in Theorem 4.1. To obtain 
an explicit expression for the corresponding composed stable solution we consider the 
special case 

Then (5.6) reads 
I a ( t) =: 1 , h ( t) = 1 + cos t. 

x(t, x0 ) ( 
0 1 ) -t cos t + sin t 

x +2 e ---2--. 
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For 0 < x 0 < ~ ( v'2 e'lf'/4 - 1) and te = ~ the equation 

( 
0 1 ) -t cos t + sin t 0 x +- e - = 2 2 (5.9) 

has a unique solution t = tc in ( 0, ~). It can be easily shown that y2 (t) = x(t, x 0 ) is 
stable for (0, tc) and y1(t) = 0 is stable for (tc, ~]. Consequently, the composed stable 
solution reads 

" { (1 + xo) e-t - sint+cost 
y(t) = 2 2 

0 
for 0 ::; t ::; tc, 
for tc::; t::; ~· 

Now we check the hypotheses of Theorem 4.1. In our case it is easy to see that the 
hypotheses (31 ) - (Ss) are satisfied. From (5.4) we get that g is nondecreasing in x if we 
replace y by any nonnegative function y(t), additionally we have -gyy = 2. Thus, the 
assumptions (S6 ) and (Ss) are valid. v(t) can be set identically one. Since the derivative 
of y is strictly negative for 0 ~ t ~ tc and Ia is nonnegative it can be easily verified that 
y fulfills assumption (39 ). Consequently, Theorem 4.1 can be applied to the initial value 
problem (5.1), (5.2) or equivalently to (5.7). 
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