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Abstract

Chimera states are particular trajectories in systems of phase oscillators with non-local

coupling that display a spatio-temporal pattern of coherent and incoherent motion. We

present here a detailed analysis of the spectral properties for such trajectories. First, we

study numerically their Lyapunov spectrum and its behavior for an increasing number of

oscillators. The spectra demonstrate the hyperchaotic nature of the chimera states and

show a correspondence of the Lyapunov dimension with the number of incoherent oscilla-

tors. Then, we pass to the thermodynamic limit equation and present an analytic approach

to the spectrum of a corresponding linearized evolution operator. We show that in this set-

ting, the chimera state is neutrally stable and that the continuous spectrum coincides with

the limit of the hyperchaotic Lyapunov spectrum obtained for the finite size systems.

Chimera states (see Figure 1) are remarkable spatio-tempor al patterns where regions of
synchrony coexist with regions of incoherent motion in a spa tially homogeneous system
of coupled oscillators. They constitute a new paradigm of dy namical behavior that can
serve as a prototype for various physical phenomena, e.g. co existence of synchronous
and asynchronous neural activity (so called ’bump’ states) [1, 2, 3, 4] or turbulent-laminar
flow patterns [5]. For their mathematical description one ha s to employ concepts from the
fields of pattern formation, deterministic chaos, and stati stical physics. Indeed, starting
with the pioneering work of Kuramoto [6], the thermodynamic limit of a large number of
oscillators has been developed to a powerful tool for the inv estigation of chimera states.
In this paper, we put our focus to the relation of chimera stat es in finite size systems
to their thermodynamic limits. After a careful numerical st udy of the Lyapunov spectra
for chimera trajectories in finite size systems, we compare o ur results with the spectral
properties of the linearized evolution operator in the ther modynamic limit. We show that
there the chimera states are neutrally stable and that their continuous spectrum coin-
cides with the limit of the hyperchaotic Lyapunov spectrum o btained for the finite size
systems.

1 Introduction

Systems of coupled phase oscillators have been widely used to study the basic properties of
collective synchronization that can be observed in a huge variety of systems from physics,
chemistry, biology, or social sciences [7, 8, 9, 10]. Recently, a new dynamical phenomenon
occurring in such systems has attracted a lot of attention: Kuramoto e.a. [6, 11, 12] reported a
new type of solutions that Strogatz e.a. [13, 14] later on called "chimera states” (see Figure 1),
where a spatially homogeneous system of coupled identical oscillators displays self-organized

1



patterns of regions with synchronous and asynchronous motion. Since then such solutions have
been observed under various conditions, including 1D and 2D arrays, inhomogeneous systems
and systems with delayed coupling [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
The main ingredients that are typically needed to observe chimera states are
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Figure 1: (a) Phase snapshot of a chimera state in system (1); (b) corresponding time averaged
phase velocities ωeff(x). Parameters: N = 200, r = 0.7, and α = 1.5.

(i) a discrete medium, typically represented by a large number of oscillators distributed in space;

(ii) a non-local coupling that provides an interaction between local sub-populations with a cou-
pling range that is different both from global and from local next neighbor coupling;

(iii) a well tuned amount of repulsion between the oscillators, that is typically achieved by a
Sakaguchi phase lag parameter or a coupling delay.

Trying to reduce the numerical complexity, we choose for our studies a simple system compris-
ing a ring of N identical non-locally coupled phase oscillators with phases Ψ1, . . . , ΨN that
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follow the evolution

Ψ̇k(t) = ω − 2

N

N
∑

j=1

G(xk − xj) sin(Ψk(t) − Ψj(t) + α). (1)

Here ω denotes the natural frequency of the oscillators that can be set to zero, and α ∈ (0, π/2)
is a phase lag parameter. The oscillators are assumed to be uniformly distributed over the inter-
val [−1, 1] with positions xk = −1 + 2k/N , k = 1, . . . , N and periodic boundary conditions.
Using these positions we can employ a coupling function G(x) to determine a non-local cou-
pling on a macroscopic scale that is independent on the actual number of oscillators. In partic-
ular, throughout this paper we choose the simplest possible form of non-local coupling given by
a step function

Gr(x) =

{

1/(2r), if |x| ≤ r,

0, if |x| > r,
(2)

with r ∈ (0, 1) denoting the radius of coupling.

Below, we put our focus to the spectral properties of chimera states both in finite size sys-
tems and in the thermodynamic limit. To this end, we employ the Lyapunov spectrum analysis,
which is a standard tool for studying properties of chaotic systems [30, 31]. Recall that for N -
dimensional system, there exists the set of N Lyapunov exponents, which are measures of how
quickly small initial differences diverge or converge as two near-equivalent systems evolve. A
positive exponent serves as a criterion for chaos, and hyperchaos is indicated by several posi-
tive exponents. Moreover, Lyapunov exponents give insight into many other dynamical features
of chaotic trajectories: The full Lyapunov spectrum can be used to numerically determine the
dimensionality [32] of a chaotic attractor. The inverse Lyapunov exponent is a characteristic time
of mixing and of correlation delay. In the case of coupled systems, the synchronization threshold
can be expressed in terms of the conditional Lyapunov exponents [33].

Lyapunov exponents for extended systems, e.g. lattices of coupled oscillators, have been stud-
ied in several papers. In particular, their statistics in disordered chaotic systems has been con-
sidered in [34], where an approximate expression for the distribution of their spacings is ob-
tained. In [35] an example is shown, where the Lyapunov dimension approaches almost the
total dimension of the phase space and the exponents tend to zero with systems size N → ∞.
A similar weak form of chaos was also reported in [36] with the scaling behavior of the Lyapunov
exponents of a periodically oscillating collective state as N−2. In the context of spatio-temporal
chaos, the very existence of a well-defined Lyapunov spectrum in the thermodynamic limit is a
proof of the extensivity of chaos [31, 37, 38].

The paper is organized as follows. In Section 2 we present our numerical results for the Lya-
punov spectrum of chimera states. In particular, we study the dependence on the parameters α
and r, calculate the Lyapunov dimension, and analyze the scaling behavior for an increasing
number N of oscillators at different parts of the spectrum.

In the following section, we shortly recall the derivation of a thermodynamic limit system for N →
∞. Then we use its linearization to study the spectral properties of the evolution operator in
the corresponding infinite dimensional system. Similarly as in the results of Mirollo and Stro-
gatz [39, 10] for locked or partially locked states in the classical Kuramoto system, we find
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continuous spectrum on the imaginary axis that indicates a neutral stability of the correspond-
ing states. We show that the real parts of this continuous spectrum coincides with the limit
for N → ∞ of the Lyapunov spectrum calculated before.

2 Lyapunov spectrum

In this section, we present our numerical results for the Lyapunov spectrum of chimera states
and its dependence on various parameters. In particular, we discuss the scaling behavior for
N → ∞ of the Lyapunov exponents and of the Lyapunov dimension. Our numerical com-
putations employed a commonly used fourth-order Runge-Kutta scheme (with fixed time step
dt = 0.01) to integrate system (1) together with the standard algorithm for Lyapunov expo-
nents using continuous Gram-Schmidt orthonormalization [40]. Simulations extend typically
over 60000 time units that seems to provide a stabilization of the Lyapunov exponents at a
satisfactory level of accuracy.

To compare the Lyapunov spectra for different numbers of oscillators N we represent the se-
quence λk of non-increasing Lyapunov exponents by the function ΛN(ν), 0 ≤ ν ≤ 1 such
that ΛN(ν) = λk if ν = (k − 1)/(N − 1). Figure 2 shows the Lyapunov spectra for chimera
states in system (1) with N = 100, α = 1.44 and three different values of the coupling radius r.
Each spectrum contains a considerable number of positive Lyapunov exponents indicating the

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1

ν=(k-1)/(N-1)

Λ100(ν)

r=0.63

r=0.69

r=0.73

Figure 2: (Color) Lyapunov spectra Λ100(ν) computed for chimera trajectories of (1) with cou-
pling radius r = 0.63 (red circles), 0.69 (green diamonds), and 0.73 (blue triangles), and phase
lag α = 1.44.

hyperchaotic nature of the chimera states. One exponent is exactly equal to zero and reflects the
phase shift symmetry of the system (1). Also the index shift symmetry of the system (1), which
is a discrete symmetry for finite N and tends to a continuous symmetry in the case N → ∞,
induces an exponent close to zero.

In Figure 3 we show the maximal Lyapunov exponent λmax = Λ100(0) for all values of param-
eters (r, α) where a chimera state was detected. The Figure shows clearly that the maximal
Lyapunov exponent remains positive and separated from zero for all parameters (r, α) in this
region.
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Figure 3: (Color) Dependence of the maximal Lyapunov exponent λmax = Λ100(0) on the
coupling radius r and the phase lag α. The gray region at the bottom indicates the parameter
region, where we found chimera trajectories for N = 100, the green line indicates the boundary
of the existence region for chimera states in the thermodynamic limit N = ∞.

Varying the coupling radius r or, alternatively, the phase lag α, we obtain typically chimera states
with different sizes of the coherent and incoherent regions. This size can be represented by the
relative number of incoherent oscillators Sincoh = Nincoh/N that is a macroscopic quantity and
can be obtained from Kuramoto’s self-consistency equation in the thermodynamic limit N → ∞
(see [6]).

In Figure 2 we present the Lyapunov spectra for three different values of the coupling radius r
that correspond to different sizes of the coherent region. One can observe that there is almost
no difference for the positive Lyapunov exponents whereas the stable part of the spectrum is
shifted, leading to an increasing number of strongly stable exponents for larger r and corre-
spondingly larger size of the coherent region. Indeed, it is natural to assume that perturbations
that are localized in the coherent region contribute to the stable part of the spectrum whereas
perturbations localized in the incoherent region can contribute to the chaotic part of the spec-
trum.

This observation can be made more precise by comparing the corresponding Lyapunov di-
mensions (see Figure 4(a)). Recall that for a given Lyapunov spectrum {λk} the Lyapunov
dimension is given by

DL = K +

K
∑

j=1

λj

|λK+1|
,

where K is the maximum integer such that the sum of the K largest Lyapunov exponents
is still non-negative. Our numerical results show that the relative Lyapunov dimension dL =
DL/N is slightly smaller, but follows the change of the size of the incoherent region Sincoh,
see Figure 4(a). The observed gap Sincoh − dL that has still a size of 5% can be presumably
a finite N effect that will vanish for larger numbers of N . However, our numerical results (see
Figure 4(b)), due to the enormous computational complexity covering only the range up to N =
120, do not show this trend very clearly. Besides the Lyapunov dimension DL, we also consider
the point-wise scaling properties of the Lyapunov spectrum as the number of oscillators N
increases (see Figure 5). As default parameters we use r = 0.7 and α = 1.5. The maximum

5



 0.6

 0.65

 0.7

 0.65  0.7  0.75
d L

r

Sincoh(r)

dL(r)

(a)

 0

 0.5

 1

 60  80  100  120

d L

N

Sincoh
dL(N)

(b)

Figure 4: Relative Lyapunov dimension (dots) and relative size of the incoherent region Sincoh

(solid line): (a) for varying coupling radius r, and α = 1.44, (b) for varying system size N , and
r = 0.7, α = 1.5.

number for which we were able to calculate a full Lyapunov spectrum is N = 120. The leading
part of the spectrum has been calculated for N up to 300. We compare these spectra with the
real part of the spectrum, calculated analytically by means of a thermodynamic limit analysis
(see following section). It turns out that for 0 ≤ ν ≤ Sincoh the Lyapunov exponents converge
to zero for N → ∞, whereas for Sincoh < ν ≤ 1 they have a non-zero negative limit. Our
numerical calculations (compare Figure 6), show that there are three different types of scaling
behavior for different parts of the spectrum:

(i) The maximal Lyapunov exponent λmax = ΛN(0) scales as N−1/2.

(ii) For all ν ∈ (0, Sincoh) the Lyapunov exponents ΛN(ν) scale roughly as N−1

(iii) For ν ∈ (Sincoh, 1] the Lyapunov exponents ΛN(ν) tend to some negative limit Λ∞(ν).

The different types of scaling behavior apparently reflect the different nature of the correspond-
ing Lyapunov exponents. In particular, the scaling law∼ N−1 has been similarly observed in the
globally coupled Kuramoto system [35]. In contrary, the scaling law of the maximal Lyapunov ex-
ponent indicates existence of a stronger macroscopic mode that is peculiar to the chimera state
and has not been observed in a globally coupled system.
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Figure 5: (Color) Lyapunov spectra Λ100(ν) computed for chimera trajectories of (1) with system
size N = 60 (red circles), 90 (green diamonds), and 120 (blue triangles). Other parameters:
r = 0.7, α = 1.5.

3 Thermodynamic limit analysis

In this section we present an analytic approach to the stability properties and the spectrum of a
chimera state using the thermodynamic limit N → ∞. First, we will recall briefly the derivation
of a dynamical equation for this limit, following the approach of Pikovsky and Rosenblum [41].
The chimera states appear in this system as a stationary state in a properly chosen co-rotating
frame. Finally we will use the linearization at such a state in order to study its spectral properties.

3.1 The dynamical equation for N = ∞

System (1) can be rewritten in the equivalent form

Ψ̇k(t) = ω + Im
(

Zk(t)e
−iΨk(t)

)

, (3)

where

Zk(t) =
2

N

N
∑

j=1

G(xk − xj)e
iΨj(t)e−iα (4)

is the effective force acting on the k-th oscillator. We consider now the oscillators in a small
vicinity of any point x and describe them as a sub-population of globally coupled oscillators.
This is asymptotically correct in a thermodynamic limit where together with N → ∞ also the
number of sub-populations tends to infinity. The collective behavior of the sub-populations is
then characterized by a local complex mean field z(x, t) defined according to

z(x, t) := lim
N→∞

1

|BN
δ (x)|

∑

j∈BN
δ

(x)

eiΨj(t), (5)

where BN
δ (x) = {j : 1 ≤ j ≤ N, |x − xj | < δ} denotes a neighborhood of the point x. For

the limit, we assume δ = δ(N) → 0 for N → ∞ in a way that the number of points |BN
δ (x)|
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Figure 6: Scaling behavior of the maximal Lyapunov exponent λmax = ΛN(0) and of the
intermediate Lyapunov exponent ΛN(0.1). (a) Natural and (b) logarithmic scale. Fitted lines
λmax ∼ N−0.52 and ΛN(0.1) ∼ N−1.2. Parameters: r = 0.7, α = 1.5.

in the neighborhood at the same time tends to infinity. Note that (5) implies 0 ≤ |z(x, t)| ≤ 1
for all x and t. For |z(x, t)| = 1 the oscillators around point x are synchronized in phase, while
|z(x, t)| = 0 corresponds to the local absence of phase synchronization. For a chimera state,
|z(x, t)| = 1 identifies the coherent domain, while |z(x, t)| < 1 holds true in the incoherent
domain.

Interpreting now the space variable x as a sub-population index and following the approach of
Pikovsky and Rosenblum [41], we obtain an integro-differential equation for the effective dynam-
ics of the local mean field z(x, t)

∂z

∂t
= iωz(x, t) +

1

2
Z(x, t) − z2(x, t)

2
Z∗(x, t), (6)

where

Z(x, t) = e−iα

1
∫

−1

G(x − y)z(y, t)dy, (7)

and the symbol ∗ denotes the complex conjugate.
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The derivation of this system (for details see [41]) is based mainly on the application of the
Watanabe-Strogatz theory [42, 43]. Alternatively, Eq. (6)-(7) can also be derived in a differ-
ent way, using the Ott-Antonsen method [44, 45] and a probabilistic interpretation of the func-
tion z(x, t). This approach, together with a variety of examples, including our system (1), has
been referred recently in [20].

It is assumed that all macroscopic properties of the chimera states as well as the typical bifurca-
tion scenarios involving them can be explained in terms of the solutions of Eq. (6)-(7). However,
there is a lack of rigorous mathematical theory, telling in which sense the solutions to (6)-(7) can
be interpreted as an approximation of solutions to the original equation (1) for large N .

Anyhow, Eq. (6)-(7) constitutes a significant simplification with respect to the original equation,
since we expect that for any statistically stationary solution of system (1) which might be very
different for neighboring indices k, the corresponding mean field solution z(x, t) of Eq. (6)-(7)
is a continuous function of both x and t.

3.2 Standing wave solutions

It is known [20] that a chimera state in the original Eq. (1) corresponds to a standing wave
solutions of Eq. (6)-(7). Recalling the phase shift symmetry we transform system (6)-(7) into
rotating coordinates

ẑ(x, t) = e−iΩtz(x, t) (8)

and obtain
∂ẑ

∂t
= i∆ẑ(x, t) +

1

2
Ẑ(x, t) − ẑ2(x, t)

2
Ẑ∗(x, t), (9)

where we used the abbreviation ∆ := ω − Ω and the co-rotating non-local coupling force

Ẑ(x, t) = e−iα

1
∫

−1

G(x − y)ẑ(y, t)dy = Z(x, t)e−iΩt. (10)

We seek now for stationary solutions

ẑ(x, t) ≡ ẑ(x) (11)

of the resulting system together with their rotation frequency Ω. The time-independent pro-
files ẑ(x) and Ẑ(x) satisfy the quadratic equation

Ẑ∗(x)ẑ2(x) − 2i∆ẑ(x) − Ẑ(x) = 0, (12)

that can be solved by

ẑ1,2(x) =
i∆ ±

√

|Ẑ(x)|2 − ∆2

Ẑ∗(x)
. (13)

Taking into account (10), this is still an implicit equation for ẑ(x). Note that in general there
are two solution branches in formula (13) corresponding to the plus and minus signs at the
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square root. As we will explain below, we can restrict here to the branches +
√

a for positive a
and −i

√
−a for negative a.

Inserting (13) into (10) we obtain finally the self-consistency equation (cf. Eq. (5) in [13])

Ẑ(x) = e−iα

1
∫

−1

G(x − y)
i∆ +

√

|Ẑ(y)|2 − ∆2

Ẑ∗(y)
dy. (14)

This nonlinear integral equation can be easily solved numerically via an appropriate discretiza-
tion, see e.g. [6, 13]. In order to obtain a uniquely solvable problem, one has to fix the spatial
position of the inhomogeneous profile Ẑ(x). For this purpose, we require that the minimum
of |Ẑ(x)| is attained at point x = 0. This implies that the incoherent region of a corresponding
chimera state is centered around zero. Under this additional assumption (14) has a solution
pair (Ẑ(x), ∆) that is locally unique up to a complex phase shift of the function Ẑ(x).

0.8

0.6

0.4

1Sincoh0-Sincoh-1

x

|^Z(x)|

arg ^Z(x)

(b)

∆

 0

 0.5

 1

| ∧z(x)|

arg ∧z(x)

(a)

Figure 7: Solutions of self-consistency equation (13), (14). (a) Local mean field ẑ(x), (b) corre-
sponding non-local coupling force Ẑ(x). Parameters: r = 0.7, α = 1.5.

The boundaries x = ±Sincoh of the incoherent region, that we assumed to be centered around
x = 0, are determined by the condition

Sincoh = min{x ∈ [0, 1] : |ẑ(x)| = 1}.
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In terms of Ẑ(x) the condition for the interface Sincoh is given by |Ẑ(x)| = |∆|. Indeed, for

|Ẑ(x)| ≥ |∆|

the expression under the square root in Eq. (13) is positive and one can easily derive that
|ẑ1,2(x)| = 1 there. Hence this condition characterizes the coherent region.

For |Ẑ(x)| < |∆|, we obtain from (13) that

|ẑ1,2(x)| =

2∆

(

∆ ±
√

∆2 − |Ẑ(x)|2
)

|Ẑ(x)|
.

Concluding from (12) that |ẑ1||ẑ2| = 1, we see that as soon as |ẑ1| 6= |ẑ2| only the branch ẑ2(x)
that uses the negative sign satisfies |ẑ2(x)| < 1 and allows for an interpretation as a local mean
field of coupled oscillators. This justifies one part of our choice for the branches of the square
root given above.

3.3 Lyapunov spectrum in the thermodynamic limit

We are now going to analyze the stability properties of a stationary profile ẑ(x). To this end,
we will linearize Eqs. (9)-(10) and study the spectrum of the resulting linear operator. A similar
spectral problem for a continuum limit of a coupled oscillator system has already been consid-
ered in [10] and [39]. The results in [10] show that the stability of partially locked states in the
classical Kuramoto system can be analyzed by means of the spectrum of the linearization in a
suitable continuum limit. The main result in that paper was that the partially locked states have
a neutrally stable continuous spectrum that can be attributed to the incoherent motion of the un-
locked oscillators that are present in such solutions. Additionally, stable continuous spectrum on
the real axis as well as stable point spectrum has been found for this state. A major achievement
of Mirollo and Strogatz in [10] is also to clarify the mathematical background of their continuum
limit in terms of probability measure spaces and functional analytic properties of linearization
operators acting on such spaces.

In the sequel, we will follow a similar approach for the stability properties in the chimera problem.
In particular, we will analytically calculate the neutral and stable continuous spectrum, in a simi-
lar way as in [10]. However, we will avoid mathematical details as much as possible and refer the
reader to [10] for more mathematical background. Instead, we finally compare the analytically
obtained spectrum with the numerically obtained Lyapunov spectra shown above.

For the variations v̂(x, t) around a given stationary profile ẑ(x) we obtain after linearizing sys-
tem (9)-(10) the linear equation

∂v̂

∂t
= µ(x)v̂(x, t) +

1

2
V̂ (x, t) − ẑ2(x)

2
V̂ ∗(x, t), (15)

where V̂ (x, t) is the local mean field for v̂(x, t) as in (10) and

µ(x) = i∆ − ẑ(x)Ẑ∗(x) = −
√

|Ẑ(x)|2 − ∆2. (16)
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Remark that the latter identity is a trivial consequence of (13). Note that (15) together with (16)
and the definition of the local mean field V̂ (x, t) according to (10) can be written as an operator
equation

dv̂

dt
= (M + K)v̂(t). (17)

where the multiplication operator M is defined as multiplication with µ(x) and K contains the
remaining terms of (15) that depend linearly on v̂ via the local mean field integral. In order
to avoid complications caused by the complex conjugation, we reformulate this equation for
complex v̂ now as a system for two real components

v̂(t) =

(

Re v̂(x, t)

Im v̂(x, t)

)

,

where the vector-function v̂(t) assumes values in the functional space

L2
per := {u ∈ L2((−1, 1); R2) : u is 2-periodic}.

Then, the multiplication operator M is given by

M =

(

Re µ(x) −Im µ(x)

Im µ(x) Re µ(x)

)

and K is the integral operator

(Kv̂)(x) =











1
∫

−1

[K11(x, y)v̂1(y) + K12(x, y)v̂2(y)] dy

1
∫

−1

[K21(x, y)v̂1(y) + K22(x, y)v̂2(y)] dy











with the (2 × 2)-matrix kernel

K(x, y) =

[

Q − QT

(

Re ẑ2(x) Im ẑ2(x)

Im ẑ2(x) −Re ẑ2(x)

)]

G(x − y),

where

Q =

(

cos α sin α

− sin α cos α

)

and QT denotes the transpose of matrix Q.

For any piecewise continuous coupling function G(x), as e.g. our default choice G(x) =
Gr(x), a corresponding stationary profile Ẑ(x) of the self-consistency equation (14) turns out
to be continuous in x. Hence, both operators M and K are linear bounded operators from L2

per

to L2
per. The stability properties of the stationary solution to Eq. (6) can now be investigated by

analyzing the spectrum of the corresponding linearization given by the operator M + K.

Following the general spectral theory for a linear operator A, we distinguish between different
types of spectrum. The point spectrum σp(A) contains all complex values λ where λI − A

12



has a kernel and hence is not invertible. The continuous spectrum σc(A) contains values λ for
which λI − A has no kernel, but the inverse (λI − A)−1 is an unbounded operator that is
defined only on a dense subspace.

Taking into account the uniform boundedness of the kernel matrix K(x, y) we conclude that the
integral operator K is a compact operator from L2

per to L2
per. Therefore, according to Weyl’s re-

sult (see e.g. [46]), the continuous spectrum σc(M+K) is given just by σc(M). The continuous
spectrum σc(M) consists of all complex values λ with

det

(

Re µ(x) − λ −Im µ(x)

Im µ(x) Re µ(x) − λ

)

= 0 (18)

for some x ∈ [−1, 1]. Indeed, one can easily check that in this case the image of the operator
λI −M is only a dense subspace of L2

per. Hence, we obtain from (16) that

σc(M) =
{

µ(x)
∣

∣

∣
0 ≤ x ≤ 1

}

∪ {c.c.}

=

{

−
√

|Ẑ(x)|2 − ∆2

∣

∣

∣

∣

0 ≤ x ≤ 1

}

∪ {c.c.} (19)

For a chimera solution of (14) this spectrum consists of two parts (see Figure 8). The first part is
the interval [−|µ(1)|, 0] on the real axis, and the second part is the interval [−i|µ(0)|, i|µ(0)|]
on the imaginary axis. At this point we can also provide the missing argument for our choice
of the solution branches in (13): choosing the opposite sign there, the real branch of σc(M) is
located in the positive half plane and the corresponding chimera would be unstable.

We compare now the real parts of the continuous spectrum parametrized by x ∈ [0, 1] accord-
ing to formula (19), with the Lyapunov spectrum functions ΛN(x) of the corresponding chimera
state (see Figure 5). Recalling our numerical results about the limit behavior for N → ∞, we
observe for 0 ≤ x ≤ Sincoh a convergence of the Lyapunov spectrum to the corresponding
neutral part of the continuous spectrum. At the same time, we observe for Sincoh < x ≤ 1 a
good coincidence of the stable Lyapunov spectrum with the stable continuous spectrum. Hence
we conclude that the spectrum in the thermodynamic limit

Λ∞(x) :=

{

0, if 0 ≤ x ≤ Sincoh,

−
√

|Ẑ(x)|2 − ∆2, if Sincoh < x ≤ 1,
(20)

can be considered as the limit of the spectra ΛN(x) for N → ∞. Additional evidences for this
claim can be obtained if we compare the Lyapunov spectra on Figure 2 with the corresponding
Lyapunov spectrum functions Λ∞(ν) as it is shown on Figure 9.

It is clear that the composed operator M + K should also have a point spectrum. However,
for the chimera states we studied, there seems to be no point spectrum affecting strongly their
stability properties. But we presume that at the boundary of existence of stable chimera states,
critical point spectrum might be responsible for inducing an instability with respect to a collective
mode.
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Figure 8: (a) Continuous spectrum σc(M) of a chimera state in system (1) with r = 0.7 and
α = 1.5. (b) Corresponding Lyapunov spectrum function Λ∞(x) according to (20).

4 Conclusions

Starting with the pioneering works of Kuramoto, the chimera states are known as a peculiar dy-
namical regime with an apparently chaotic behavior, which nevertheless allows for a determin-
istic description in the thermodynamic limit. In the present work, we tried to clarify the relation of
the deterministic chaos in the finite size system and the spectral properties of the correspond-
ing thermodynamic evolution equation. By a careful study of the Lyapunov spectra, we have
demonstrated that chimera states are weakly hyperchaotic trajectories in the sense that their
Lyapunov spectra contain a considerable number of positive Lyapunov exponents. When the
system size grows, the hyperchaotic part of the spectrum tends to zero. We also have found
that for N → ∞ the whole Lyapunov spectrum has a well-defined limiting behavior, which can
be associated with the spectral properties of the thermodynamic limit equation.
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