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Abstract

Mean curvature equations of general quasilinear type in connection with contact-angle boundary
conditions are considered in this paper. We investigate the existence, uniqueness and continuous
dependence of the solution in classical function spaces. On the one hand, a survey of techniques
and ideas developed in the seventies and eighties, mainly by Uraltseva, is presented. On the other
hand, extensions of these results are also proposed: we formulate growth conditions for the general
dependence of the potential on the xN+1− variable, and we extend the existence and uniqueness
statements to this case. Moreover, the regularity assumptions on the right-hand side are relaxed, and
alternative proofs for the higher-order estimates and the existence result are provided.

1 Introduction

We consider the problem to determine in a domain Ω ⊂ RN+1 (N ≥ 2 the space dimension) a
N−dimensional hypersurface S ⊂ Ω, obeying the relation

divS σq(x, ν) + σx(x, ν) = Φ(x, ν) , (1)

where divS is the surface divergence operator, and ν denotes a unit normal to S. The potential σ :
Ω × RN+1 → R, (x, q) 7→ σ(x, q) is given and one-homogeneous in the q−variable. The right-hand
side Φ : Ω × RN+1 → R is a given function. In the case of isotropic data σ(x, q) = σ(x) |q| and
Φ(x, q) = Φ(x), the equation (1) reduces to the problem of surfaces with prescribed mean curvature.
We consider on the boundary S ∩ ∂Ω the generalized contact-angle condition

σq(x) · n(x) = κ(x) , (2)

where n is the outward unit normal to ∂Ω, and κ : ∂Ω→ R is given.

More specifically, we are interested in graph solutions to the problem (1), (2). A graph solution can be
defined (after a suitable change of coordinates) if Ω = G × R with a bounded domain G ⊂ RN , and if
S is represented as the graph of a function ψ : G→ R. The problem (1), (2) on the manifold S reduces
to boundary value problem posed in the domain G. Define for (x̄, xN+1) ∈ G× R and for p ∈ RN

σ̄(x̄, xN+1, p) := σ(x̄, xN+1, −p, 1) . (3)

and introduce a function Φ̄ : G× R× RN via

Φ̄(x̄, xN+1, p) := Φ(x̄, xN+1, ν(p)), νi(p) :=

{
−pi/

√
1 + |p|2 (i = 1, . . . , N)

1/
√

1 + |p|2 i = N + 1
. (4)
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In the domain G, (1), (2) is equivalent to the contact angle problem

− div σ̄p(x̄, ψ, ∇ψ) = Φ̄(x̄, ψ, ∇ψ) in G , (5)

−σ̄p(x̄, ψ, ∇ψ) · n(x̄) = κ(x̄, ψ) on ∂G . (6)

Physical applications of the model (1), (2) respectively (5), (6) are to find in thermodynamical contexts,
where (1) is to interpret as the first variation of a surface free energy. The equation (1) is known as
generalized Gibbs-Thomson relation: The surface S typically represents a phase transition, and σ is the
surface tension on S; The right-hand side Φ in (1) may involve quantities such as chemical potential,
temperature and mechanical stresses on S: see the book [Vis96], Ch. IV for models in crystallization, or
[LM89], [GK10] for related mathematical developments. Technical applications for the model (1) are for
instance processes in industrial crystal growth, where curvature effects on the crystallization interface are
assumed to be responsible for the formation of defects (cf. [DDEN08]).

Equations of mean curvature type were thouroughly studied in the seventies, in connection both with
the Dirichlet and the contact angle problem: see [Gia74], [Ger74], [Giu76] among others for the BV
approach, see [Fin65], [Ser69], [Ura73], [Ura75], [Ura82], [SS76] a. o. for the classical approach, which
is going to retain our attention in this paper.

The existence of graph solutions essentially relies on the gradient estimate for the function ψ. To our
knowledge local estimates were obtained first in [Mir67], [BDM69] for the problem of minimal surfaces
(Φ = 0, σ(q) = |q|). The local boundedness of the gradient was proved for general quasilinear equations
in [LU70] on the basis of profound results of geometric measure theory. Local estimates employing other
methods were also derived early (cf. [Tru73]) by the authors of [GT01] (see Chapter 16). It is to note
that the a priori estimate derived in these papers for C2 solutions being local, they did not lead to the
solvability of (5), (6).

The global estimate on the gradient for the contact angle problem (5), (6) was first obtained in the papers
[Ura71, Ura73, Ura75] for general σ = σ(q), mainly via extension of the methods of [LU70]. In [Ura71]
the validity of these results was restricted to (strictly) convex C2,α−domains G, a vanishing angle of
contact. The theory for convex domains and a constant nonvanishing angle of contact κ was introduced
in [Ura73]; The results were extended in [Ura75] to variable κ = κ(x̄) and nonconvex C3−domains,
but only for the case σ = |q| (mean curvature equation). In these papers, it is assumed that Φ =
Φ(x). Other approaches to the results of [Ura75] for the mean curvature equation were discussed in
the papers [SS76], Th. 3 or in [Ger79], that states the gradient estimate for (nonconvex) C4 domains.
The boundedness result for gradient of solutions to the general quasilinear mean curvature equation with
contact angle κ = κ(x̄, xN+1) was proved in [Ura82]. In the latest paper σ is allowed to depend on the
xN+1−variable, but only in a very particular way.

The arguments on existence, uniqueness and a priori estimates for the problem (5), (6) are spread in
the literature (mostly in papers by Uraltseva). The paper [Ura82], where the general quasilinear case is
treated, deals indeed only with the gradient estimate. In this paper, we aim at a complete overview on
the classical solvability of the problem (5), (6) in smooth settings. We also propose two generalizations:
A growth condition for the xN+1−dependence of the function σ is formulated, and shown to yield well-
posedness; The regularity assumptions for Φ are weakened.
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2 Notations and statement of the main results

Let N ≥ 2 denote the space dimension, and G ⊂ RN be a bounded domain of class C2,α, α > 0,
Ω := G× R. Throughout the paper, the function σ is assumed to satisfy

σ ∈ C3(G× R× (RN+1 \ {0})) . (7)

We assume that there exist positive constants λj (j = 0, 2) and µi (i = 0, . . . , 4) such that for all
(x, q) ∈ Ω× RN+1

λ0 |q| ≤ σ(x, q) ≤ µ0 |q| (8a)

|σq(x, q)| ≤ µ1 (8b)

λ2

|q|
|ξ|2 ≤

N+1∑
i,j=1

σqi,qj(x, q) ξi ξj ≤
µ2

|q|
|ξ|2

for all ξ ∈ RN+1 such that ξ · q = 0

(8c)

n+1∑
j=1

σqi,qj(x, q) qj = 0 for i = 1, . . . , N + 1 (8d)

|σq,x(x, q)| ≤ µ3 , |σq,x,x(x, q)| ≤ µ4 . (8e)

The hypotheses (8a), (8b), (8c) and (8d) are well-knwon, and in particular satisfied if σ is convex and
positively homogeneous of degree one in the q variable (cf. [LU70], [Ura71] for a proof). We need special
assumptions on the xN+1−derivatives of the function σ. We assume that

|σxN+1
(x, q)|+ |σxN+1,xN+1

(x, q)| ≤ µ5
|qN+1|2

|q|
(9a)

|σx̄,xN+1
|+ |σxN+1,q|+ |σx̄,xN+1,q|+ |σxN+1,xN+1,q|+ |σxN+1,q,q| ≤ µ6

|qN+1|
|q|

. (9b)

One purpose of the paper is also to relax the requirement of continuous differentiability of the right-hand
side. We shall require that Φ ∈ V ⊂ W 1,∞(Ω × RN+1), where V is any closed linear subspace of
W 1,∞ that allows for ∇Φ to have bounded traces on both sides of smooth submanifolds (for instance,
∇Φ ∈ Cpw or even∇Φ ∈ W 1,1

pw ). We assume that

Φ ∈ V (Ω× RN+1) , κ ∈ C1,α(∂G× R) (α > 0) , (10)

is required. Special assumptions are needed in connection with the xN+1−derivatives of these functions:

ess sup
Ω×RN+1

ΦxN+1
≤ −γ0 < 0, κxN+1

≥ 0 . (11)

Choosing λ0 as in (8a), there is a compatibility condition between the functions κ and σ:

sup
∂G×R

|κ| < λ0 , γ1 := λ0 − ‖κ‖L∞(∂G×R) > 0 . (12)
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For the existence and uniqueness of the solution, we have to assume that the parameters γ0, λ2 and
µ5, µ6 in the conditions (11), (8d) and (9) satisfy

γ0 >
(µ5 + µ6 + ‖Φq‖L∞(Ω×Rn+1))

2

4λ2

. (13)

The main result on existence, uniqueness and regularity for the problem (5), (6) is formulated in the
following theorem.

Theorem 2.1. Let all the assumptions of this section be satisfied for the domain G and the functions σ,
Φ and κ. Then, the problem (5), (6) possesses a unique solution ψ ∈ C2,α(G). Denoting S the graph
of the function ψ, there is a constant c depending on all the data in their respective norm, such that
‖D2ψ‖Cα(G) ≤ c (‖Φ‖Cα(S) + ‖κ‖C1,α(∂S)).

A second result of the paper concerns the gradient estimate for solutions to (5), (6), which is the most
essential step of the proof. In comparison to the result of [Ura82], we allow for a xN+1 dependence of σ,
and we formulate the assumptions for the function Φ as integrability conditions.

Proposition 2.2. Assumptions of Theorem 2.1 (the inequality (13) being not needed). Assume that ψ ∈
C2(G) is a solution to (5), (6). Let p and s be real numbers such that p > N/2 and s > max{p, 2Np

2P−N }.
Then, there is a continuous (polynomial) function c such that

sup
G

√
1 + |∇ψ|2 ≤ c(X, |Φ‖Ls(S), ‖Φx‖Ls(S), ‖Φq‖L2s(S)) ,

where X depends on all the data in their respective norm, but not on Φ.

Preliminary propositions We terminate this section by stating explicitely a few elementary conse-
quences of the hypotheses formulated in the preceding section (see [LU70] or [Ura73] for similar consid-
erations). Due to (8a) and the Taylor formula, there is for all (x, q) ∈ Ω× RN+1 \ {0} a λ ∈]0, 1[ such
that1

0 = σ(x, 0) = σ(x, q)− σq(x, q) q +
1

2
σqi,qj(x, λ q) qi qj .

The properties (8d) and (8a) therefore implies for all q ∈ RN+1 \ {0} that

σ(x, q) = σq(x, q) · q, σq(x, q) · q ≥ λ0 |q| . (14)

For p ∈ RN , q := (−p, 1), it follows from (14) and the definition (3) that

σ̄p(x, p) · p = σq(x, q) · q − σqN+1
(x, q)

= σ(x, q)− σqN+1
(x, q) .

Using (8a) and (8b), one therefore obtains from the previous assumptions on the growth of σ that

σ̄p(x, p) · p ≥ λ0

√
1 + |p|2 − µ1 for all (x, p) ∈ Ω× RN . (15)

1Whenever confusion is impossible, we use the convention that repeated indices imply summation.
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Since σq(x, q) · q = σ(x, q), the assumption (8e) also implies that

|σx(x, q)| ≤ µ3 |q| for all q ∈ RN+1 . (16)

For ξ, p ∈ RN , the relation (8c) elementarily implies that

λ2 |ξT |2√
1 + |p|2

≤ σ̄pi,pj(x, p) ξi ξj ≤
µ2 |ξT |2√
1 + |p|2

. (17)

Here, ξT = ξT (p) := ξ̂ − q
|q| (ξ̂ ·

q
|q|) ∈ RN+1, with ξ̂ := (ξ1, . . . , ξN , 0) and q := (−p, 1).

We also need extensions into G of the data n and κ given on ∂G× R.

Remark 2.3 (Data extension). Since G has a C2,α boundary, the unit normal has an extension n :=
∇ dist(·, ∂G) into G such that n ∈ [C1,α(G)]N . Setting nN+1 = 0 and extending n(x̄) by a constant
in theN + 1−direction, we obtain that n ∈ [C1,α(G×R)]N+1. Under the assumption (10), it is possible
to assume that κ ∈ C1,α(G× R). We can ensure that the inequality (12) is preserved.

Finally, we recall some notations associated with the surface S. For ψ ∈ C2(G), the graph S ⊂ RN+1

of ψ is the set S := {(x̄, xN+1) ∈ G×R : xN+1 = ψ(x̄)}. A unit normal on the surface S is given by
ν(x̄, ψ(x̄)) := ν(∇ψ(x̄)) with ν(p) like in (4). The natural surface measure on the surface S is given
by dHN :=

√
1 + |∇ψ|2 dλN . For f ∈ C1(RN+1), the differential operator

δ f := ∇f − (∇f · ν) ν , (18)

is identical on S with the surface gradient. Throughout the paper, we denote ∂S := {(x̄, xN+1) ∈
∂G × R : xN+1 = ψ(x̄)}. The tangential gradient of ψ on ∂G given by ψt := ∇ψ − (∇ψ · n)n on
∂G. If α denotes the angle of contact between S and ∂G×R (that is, cosα := −∇ψ ·n/

√
1 + |∇ψ|2

on ∂G), then

sinα =

(
1 + |ψt|2

1 + |∇ψ|2

)1/2

on ∂G . (19)

Denote dHN−1 the standard surface measure on ∂G. Then, a natural surface measure on ∂S is defined
by

ds =
√

1 + |ψt|2 dHN−1 = sinα
√

1 + |∇ψ|2 dHN−1 . (20)

3 Global L∞− estimate on∇ψ

In this section, we are concerned with a priori estimates satisfied by ∇ψ in L∞(G) for a function ψ ∈
C2(G) satisfying (5), (6). The assumptions considered for the data are those of section 2. For local
gradient estimates, we refer to the publications mentioned in the introduction. A gradient estimate up
to the boundary of S was first proved in [Ura71], [Ura73] for convex domains G ⊂ RN of class C2,α,
σ = σ(q), Φ = Φ(x), and κ = const. The proof was extended in [Ura75] for σ(q) = |q| to nonconvex
C3 domains, κ = κ(x̄). For the later case, results are also to find in [SS76], [Ger79]. A worth-noticing
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difference is the following: thanks to the Sobolev embedding theorem up to the boundary of S, Uraltseva
allows for the limiting case γ0 = 0 (cf. the condition (11)), while the proof in the last two papers can be
carried out from more elementary considerations. Finally, Uraltseva extended her methods in the paper
[Ura82] to general quasilinear mean curvature equations, κ = κ(x̄, xN+1), and G of class C2.

In this section, we present a proof of the gradient estimate using Uraltseva’s methods. We slightly extend
the result of [Ura82] allowing for a general xN+1 dependence of σ via the conditions (9), and tracking the
dependence on the right-hand side in the gradient bound in terms of integrability conditions.

Throughout the section, S ⊂ RN+1 denotes a N− dimensional submanifold that satisfies (1), (2). We
abbreviate σ = σ(x, ν) and Φ = Φ(x, ν) on S. We start with a method to estimate integrals over
∂S which was the new ingredient for the advances in [Ura82] with respect to the former contributions
[Ura71, Ura73].2 In the following two lemmas, we recall the proof of this fundamental statement.

Lemma 3.1. Let S ⊂ RN+1 denote aN− dimensional manifold that satisfies (1), (2). Taking into account
the assumptions (8b) and (8e) and the Remark 2.3, introduce the function a0 := |Φ|+ 2µ1 |∇n|+ µ3.
Then, for every nonnegative f ∈ C1(RN+1)∫

∂S

f
ds

sinα
≤ γ−1

1

(∫
S

| δ f | dHN +

∫
S

a0 f dHN

)
,

where δ is defined by (18). The function sinα and the measure ds are defined in (19) and (20).

Proof. On the surface S, define a vector field T := −(n · ν)σq + (σq · ν)n. Note that T is tangent
on S. Denote moreover ν ′ := sinα−1 (n − (ν · n) ν) the conormal on ∂S. We use the identity

∫
S
T ·

δ f dHN +
∫
S

divS T f dHN =
∫
∂S

(T · ν ′) f ds. One easily verifies that

T · ν ′ = sinα−1 (σq − κn) · ν
≥ (λ0 − ‖κ‖L∞(∂S)) sinα−1 on ∂S .

(21)

We compute

divS T = δi((σq · ν)ni − (ν · n)σqi)

= ni δi σq · ν + σq · ν divS n− ν · δi nσqi − (ν · n) divS σq

+ ni δi ν · σq − n · δi ν σqi .
(22)

Using the equation (1), it follows that divS σq = Φ − σx · ν. Using the symmetry of the matrix {δi νj},
we show that ni δi ν · σq − n · δi ν σqi = 0. For i ∈ {1, . . . , n}, the property (8d) and the identity (14)
yield δi σq · ν = σqj , δi νj + σqj , ql δj νl νj = σqj , δi νj = σδi , where σδi = σxi − (ν · σx) νi. Thus

divS T = ni σδi + σq · ν divS n− ν · δi nσqi − (ν · n) (Φ− σx · ν) , (23)

and the estimate | divS T | ≤ a0 is an easy consequence of the contitions (8). The claim follows combin-
ing (21) and (23).

Note the following elementary precision concerning Lemma 3.1.

2Some references on the original idea are also to find in [Ura82].
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Lemma 3.2. Assumptions of Lemma 3.1. Then sinα > γ1/µ1 on ∂S.

Proof. Denote n′ = sinα−1 (ν − cosαn). It is easy to verify that |n′| = 1 on ∂S. From the conditions
(8), it follows that µ1 ≥ σq · n′ = sinα−1 (σ − (ν · n)κ) ≥ sinα−1(λ0 − ‖κ‖L∞(∂S)).

We now turn to the core of the proof of the gradient estimate. It was noticed for the first time in [Ura73]
that under the condition (12), it is both convenient and sufficient to estimate the quantity

v(x) := ν−1
N+1 (σ(x, ν)− κ(x) (ν · n(x))) , x ∈ S (24)

since the conditions (8a) and (12) imply the inequalities

γ1

√
1 + |∇ψ|2 ≤ v ≤ γ2

√
1 + |∇ψ|2 on S , γ2 := (µ0 + ‖κ‖L∞(∂G×R)) . (25)

The following Lemma provides the corner stone for the gradient estimate. We perform the computations
for continuously differentiable Φ. In the case that Φ ∈ V (cf. (10)), the same is valid usign either the right
or the left trace of∇Φ on S.

Lemma 3.3. Let S be a N− dimensional hypersurface that satisfies (1), (2), such that νN+1 > 0
on S. Let v be defined by (24) on S. Then, there are functions a1, a2, b1, . . . , bN+1 such that for all
η ∈ C1(S), the relation∫

S

ν2
n+1 σqi,qj δj v δi η −

∫
S

ΦxN+1
νN+1 v η +

∫
∂S

κxN+1
νN+1 v η

ds

sinα

=

∫
S

νN+1 {a1 η + b · δ η}+

∫
∂S

νN+1 a2 η
ds

sinα
,

(26)

is valid. There are constants ci, i = 1, . . . , 4 depending only on the constants in the conditions (8), (9),
on ‖κx‖L∞(S) and on the domain G, such that

a1 ≤
−λ2

2

2
| δ ν|2 + c1 (1 + |Φx|+ |Φq|) + c2 |Φq| νN+1 | δ v| , a2 ≤ c3 |b| ≤ c4 . (27)

Proof. Throughout the proof, σq = σq(x, ν) on S. Due to the assumption νN+1 > 0, S is the graph
of a function ψ ∈ C2(G). For k = 1, . . . , N , we denote dk the tangential differential operator dk :=
∂xk + ψxk ∂xN+1

on S. For η ∈ C1(Rn+1), we denote ηdk := ηx · uk with the tangent vector field
uki := δki for i = 1, . . . , N , ukN+1 := ψxk .

For k = 1, . . . , N + 1, we introduce ξk := σqk − κnk, and ζk := ν−1
N+1 νk, that is, ζk = −ψxk for

k = 1, . . . , N , and ζN+1 = 1. The identity (14) yields

v =
N+1∑
k=1

(σqk − κ νk) ζk = ξ · ζ on S . (28)

For k ∈ {1, . . . , n}, we can differentiate the equation (5), multiply the result with η ◦ ψ = η(x, ψ)
(η ∈ C1(S) arbitrary), and use integration by parts to obtain that∫

G

dσ̄pi
dxk

d

dxi
η ◦ ψ =

∫
G

dΦ̄

dxk
η ◦ ψ +

∫
∂G

ni
dσ̄pi
dxk

η ◦ ψ dHN−1 ,
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which is nothing else but the identity

−
∫
S

νN+1 dkσqi diη =

∫
S

νN+1 dkΦ η −
∫
∂S

νN+1 dkσqi ni η
ds

sinα
, (29)

with summation over i = 1, . . . , N . Choosing ξk η as testfunction in (29), it follows that

−
∫
S

νN+1 ξk dkσqi diη =

∫
S

νN+1 (dkσqi diξk + ξk dkΦ) η −
∫
∂S

νN+1 ξk dkσqi ni η
ds

sinα
, (30)

with summation over i, k = 1, . . . , N . Using the symmetry of the matrix {δj νl} and the fact that
ψxk νN+1 = −νk, one verifies that

dk νj = δk νj + ψxk δN+1 νj = −νN+1 δj ψxk , j = 1, . . . , N + 1 . (31)

For i ∈ {1, . . . , N}, the latest yields

ξk dkσqi = ξk σqi,dk + ξk σqi,qj (δk νj + ψxk δN+1 νj)

= ξk σqi,dk − νN+1 σqi,qj δj ψxk ξk
(32)

For j ∈ 1, . . . , N + 1, using that ζN+1 = 1 on S, we see that

N∑
k=1

δj ψxk ξk = −
N+1∑
k=1

δj ζk ξk = − δj(ζ · ξ) +
N+1∑
k=1

ζk δj ξk . (33)

Using (8d), we compute that

νN+1 ζk δj ξk = σqk,ql νk δj νl + νk (σqk,δj − δj(nk κ))

= νk (σqk,δj − δj(nk κ)) ,
(34)

with summation over k = 1, . . . , N + 1. Using (32), (33) and (34), we obtain for i ∈ {1, . . . , N} the
identity

N∑
k=1

dkσqi ξk =
N∑
k=1

ξk σqi,dk − νN+1 σqi,qj (− δj v +
N+1∑
k=1

ζk (σqk,δj − δj(nk κ)))

= σqi,qj (νN+1 δj v + b̃j) +
N∑
k=1

ξk σqi,dk , b̃j := −
N+1∑
k=1

νk (σqk,δj − δj(nk κ)) .

(35)

Due to (8d), we easily see that
∑N

i−1 σqi,qj diη =
∑N+1

i−1 σqi,qj δi η. Thus, we obtain that∫
S

νN+1 ξk dkσqi diη =

∫
S

νN+1σqi,qj (νN+1 δj v + b̃j) δi η +

∫
S

νN+1

N∑
k=1

ξk σqi,dk diη . (36)

We easily verify that∫
S

νN+1 ξk σqi,dk diη = −
∫
S

νN+1 di(ξk σqi,dk) η +

∫
∂S

νN+1 ξk σqi,dk ni
ds

sinα
.
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with summation over k, i = 1, . . . , N , and we can rewrite (30) as∫
S

νN+1 σqi,qj (νN+1 δj v + b̃j) δi η =

∫
S

νN+1 (di(ξk σqi,dk)− dkσqi diξk − ξk dkΦ) η

+

∫
∂S

νN+1 (ξk dkσqi − ξk σqi,xk)ni η
ds

sinα
.

(37)

Observe that di(ξk σqi,dk) = diξk σqi,dk + A1 with A1 := ξk diσqi,dk . On the other hand, using the
relation (31) dkσqi diξk = σqi,dk diξk − A2

A2 := νN+1 σqi,qj δj ψxk (σqk,di − di(κnk)− νN+1 σqk,qj δj ψxi) . (38)

Due again to (31), we also have

ξk dkΦ = ξk (Φdk + Φqj dkνj) = ξk (Φxk + ξk ψxk ΦxN+1
) + νN+1 Φqj ξk δj ζk ,

with summation over k = 1, . . . , N and j = 1, . . . , N + 1. Observe that ξk ψxk = −v + σqN+1
. It

follows that ξk dkΦ = −vΦxN+1
+ A3,

A3 :=
N∑
k=1

ξk Φxk + σqN+1
ΦxN+1

+ νN+1 Φqj δj v − Φqj

N+1∑
k=1

νk (σqk,δj − δj(κnk)) . (39)

Finally, observe that ξk dkσqi ni = ξk dk(σq · n) − ξk dkn · σq. Using the fact that ξk dk is a tangential
differential operator on ∂S, it follows from the boundary condition (2) that

ξk dkσqi ni = ξk dkκ− ξk dkn · σq
= ξk κxk + (σqN+1

− v)κxN+1
− ξk dkn · σq ,

(40)

with summation over k = 1, . . . , N . Thus (ξk dkσqi − ξk σqi,xk)ni = −v κxN+1
+ a2 with

a2 := ξk κxk + σqN+1
κxN+1

− ξk dkn · σq − ξk (σqi,xk + ψxk σqi,xN+1
)ni . (41)

For i = 1, . . . , n, we define bi := σqi,qj b̃j , and we set a1 := A1+A2+A3. Then the representation (26)

follows from (37). It remains to prove the estimates (27). Using the definition (35) of b̃ and the assumptions
(8), (10), we easily prove that |b| ≤ µ2 (|σq,x|+ | δ(κn)|). We compute

A1 = ξk {σqi,xk,xi + ψxi σqi,xk,xN+1
+ σxk,qi,qj diνj + σqi,xN+1

(− δi ζk + ζi δN+1 ζk)

− ζk (σxi,xN+1,qi − ζi σqi,xN+1,xN+1
+ σxN+1,qi,qj diνj)} ,

with summation over i, k = 1, . . . , N . We use the formula (cp. (14))

n∑
i=1

σqi, xj ψxi = −
N+1∑
i=1

σqi, xj ζi + σqN+1, xj = −ν−1
N+1 σxj + σqN+1, xj ,

and analogously, that
∑N

i=1 σqi,xj ,xl ψxi = −ν−1
N+1 σxj , xl + σqN+1, xj , xl , to prove with the help of (31)

that

|A1| ≤|ξ| (|σq,x̄,x̄|+ |σx̄,xN+1
| ν−1

N+1 + |σqN+1,x̄|) + νN+1 |σx̄,q,q| | δ ζ|
+ |σq,xN+1

| | δ ζ|+ (|σqN+1,xN+1
|+ |σxN+1

| ν−1
N+1) | δn+1 ζ|

+ |ζ| (σx̄,q,xN+1
− ν−1

N+1 σxN+1,xN+1
+ σqN+1,xN+1,xN+1

+ νN+1 |σxN+1,q,q| | δ ζ|) .

9



Due to the assumptions (8) and (9), we therefore have |A1| ≤ c1 + c2 νN+1 | δ ζ|.
Using that σqi,qj di = σqi,qj δxi , we readily see that

A2 = νN+1 σqi,qj δj ψxk (σqk,xi − δi(κnk)− νN+1 σqk,qj δj ψxi)

≤ −ν2
N+1 σqi,qj σqk,qj δj ζi δj ζk + νN+1 (|σq,x̄|+ | δ(κn)|) | δ ζ| .

(42)

The condition (8c) implies that σqi,qj δj ζk σqk,ql δl ζi ≥ γ2
2 | δ ζ|2, yielding A2 ≤ −λ2

2 ν
2
N+1 | δ ζ|2 +

c νN+1 | δ ζ|. Using the conditions (8), we easily see that

|A3| ≤ µ1 |Φx|+ |Φq| (|σx̄,q|+ | δ(κn)|) + νN+1 |Φq| | δ v| .

Thus, for the function a1 we have the following estimate:

a1 ≤ −λ2
2 | δ ζ|2 ν2

N+1 + C νN+1 | δ ζ|+ |Φq| νN+1 | δ v|+ C (1 + |Φx|+ |Φq|) ,

where the constants depend on G, ‖κx‖L∞(S) and the constants of the conditions (8), (9). It follows from
Youngs inequality that

a1 ≤ −
λ2

2

2
| δ ζ|2 ν2

N+1 + C (1 + |Φx|+ |Φq|) + C |Φq| νN+1 | δ v| .

Finally, we use the assumptions (9) to show that |a2| ≤ µ1 (|κx|+ |nx|+ |σq,x̄|) + v σqi,xN+1
ni ≤ C .

This concludes the proof.

From Lemma 3.3, there are several ways to finish the proof. Uraltseva’s technique in [LU70, Ura71, Ura82]
is based on estimating w := log v. Assume that ΦxN+1

≤ 0 and κxN+1
≥ 0. Choosing η v with η

nonnegative as a testfunction in (26), and using (25), one easily deduces that∫
S

σqi,qj δj w δi η +

∫
S

ν2
N+1 σqi,qj δj v δi v η ≤ C1

∫
S

{(1 + | δ w|) η + | δ η|}+ C2

∫
∂S

η
ds

sinα
.

Thus, Lemma 3.1 now yields
∫
S
σqi,qj δj w δi η ≤ C

∫
S
{(1 + | δ w|) η+ | δ η|}. It is possible to derive

the boundedness of w like in the standard Stampacchia proof for second order elliptic equation with
L∞ coefficients, provided that a Sobolev embedding theorem is globally available on the manifold S (cf.
[LU70], [MS73] for local embedding results, [Ura71], [Ura82] for the extension to global embedding). Here
we rather show an elementary manner to finish the proof in the case that γ0 > 0 in the condition (11).
Under this strong monotonicity condition, the estimate on∇ψ is only polynomial in the norm of the data.

Lemma 3.4. Same assumptions as in Lemma 3.3. Then, there is a constant K depending on the con-
stants in (8), (9), and on ‖κx‖L∞(S) and G such that for all 1 ≤ q <∞∫

G

vq−4 |∇v|2 − 1

q

∫
G

ΦxN+1
vq+1 ≤ K

∫
G

ã vq , ã ≤ 1 + |Φ|+ |Φx|+ |Φq|2 . (43)

Proof. Choose in Lemma 3.3 η = vq. We obtain that

q

∫
S

ν2
N+1 v

q−1 σqi,qj δj v δi v −
∫
S

ΦxN+1
νN+1 v

q+1 +

∫
∂S

κxN+1
νN+1 v

q+1 ds

sinα

=

∫
S

νN+1 {a1 v
q + q b · δ v vq−1}+

∫
∂S

νN+1 a2 v
q ds

sinα
.
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Due to (8b), σqi,qj δj v δi v ≥ λ2 | δ v|2. Applying Young’s inequality, and using the bounds derived in
Lemma 3.3 for the functions ai, |b| we can estimate

νN+1 a1 v
q ≤ c1 (1 + |Φx|+ |Φq|) νN+1 v

q +
λ2 q

6
ν2
N+1 | δ v|2 vq−1 +

3 c2
2 |Φq|2

2λ2 q
vq−1

q νN+1 b · δ v vq−1 ≤ λ2 q

6
ν2
N+1 | δ v|2 vq−1 +

3 c2
4 q

2λ2

vq−1 .

Using the fact that κxN+1
≥ 0, and (25), we prove that

2 q λ2

3

∫
S

ν2
N+1 v

q−1 | δ v|2 −
∫
S

ΦxN+1
νN+1 v

q+1

≤
∫
S

(
3 c2

2 |Φq|2

2λ2 q
+

3 c2
4 q

2λ2

+ c1 γ2 (1 + |∇Φ|)) vq−1 +

∫
∂S

νN+1 |a2| vq
ds

sinα
.

We apply the estimates (25) and (27) and the Lemma 3.1 to estimate∫
∂S

νN+1 |a2| vq
ds

sinα
≤ c3 γ2

∫
∂S

vq−1 ds

sinα

≤ c3 γ2 γ
−1
1 ((q − 1)

∫
S

vq−2 | δ v|+
∫
S

|a0| vq−1)

≤ λ2 q

6

∫
S

ν2
N+1 | δ v|2 vq−1 +

∫
S

{3c2
3γ

2
2 (q − 1)2

2λ2 γ2
1 q

ν−2
N+1 v

q−3 + c3 γ2 γ
−1
1 |a0| vq−1} .

Using (25) again and the bound derived in Lemma 3.1 for the function a0, we derive the estimate

q

∫
S

νN+1 v
q−2 | δ v|2 −

∫
S

ΦxN+1
vq ≤ C q

∫
S

ã vq−1

ã :=
1

q
(q + |Φx|+ 1/q |Φq|2 + |Φ|) ,

(44)

where C depends on all the data but not on Φ. Note that
∫
S
νN+1 v

q−2 | δ v|2 =
∫
G
vq−2 | δ v|2 ≥∫

G
ν2
N+1 v

q−2 |∇v|2. The claim follows using again (25).

Proposition 3.5. Same assumptions as in Lemma 3.4. Let p > N/2 and α0 >
2Np

2p−N arbitrary. Then,
there exist a constant C depending on K , G, α0 and p, and functions ζ0, ζ1 of α0 and p such that
maxS v ≤ C (1 + ‖Φ‖Lp(S) + ‖Φx‖Lp(S) + ‖Φq‖2

L2p(S))
ζ1 ‖v‖ζ0Lα0 (G).

Proof. Due to the condition (11), Lemma 3.4 implies that∫
G

|∇v(q−2)/2|2 ≤ K (q − 2)2

4

∫
G

ã vq . (45)

We add ‖v(q−2)/2‖2
L2(G) on both sides of (45). Thanks to Hölder’s inequality, it follows that∫

G

{|∇v(q−2)/2|2 + |v|q−2} ≤ K (q − 2)2

4

∫
G

ã vq + meas(G)2/q ‖v‖q−2
Lq(G) . (46)
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Define q0 := α0/p
′, p′ = p/(p − 1). The choice of α0 garanties that q0 > N . Define χ := q0−2

N−2
N
q0

if N > 2, and χ ∈]p′, +∞[ arbitrary if N = 2. The choice of α0 implies that χ > p′. We can also
verify that 2χ q

q−2
≤ 2N

N−2
for N ≥ 3, 2χ q

q−2
< ∞ for N = 2, for all q0 ≤ q < ∞. It follows that the

embedding W 1,2(G) ↪→ Lr(G) for r := 2χq/(q− 2) is continuous, and that the embedding constants
are uniformly bounded. The relation (46) implies that

‖v‖q−2
Lχ q(G) = ‖v(q−2)/2‖2

Lr(G) ≤ c ((q − 2)2K ‖ã‖Lp(G) ‖v‖qLp′q(G)
+ meas(G)

2
q

+ q−2
qp ‖v‖q−2

Lp
′q(G)

)

≤ c max{(q − 2)2K ‖ã‖Lp(G), meas(G)
2
q

+ q−2
qp } max{‖v‖q

Lp′q(G)
, ‖v‖q−2

Lp′q(G)
} . (47)

For m ∈ N, set αm := χ
p′
αm−1, Am := ‖v‖Lαm (G). As a consequence of (47) with qm = αm/p

′, one

finds the recursive inequalities Am+1 ≤ c
1/(qm−2)
m Aξmm that imply

Am+1 ≤ c1/(qm−2)
m {

m−1∏
i=0

[ci]
ξi+1/(qi−2)}A

Qm
i=0 ξi

0 ,

ξm :=

{
λm := qm

qm−2
if Am ≥ 1

1 otherwise
, cm := c [(qm − 2)2K ‖ã‖Lp(G) + meas(G)

2
qm

+ qm−2
qmp ] .

(48)

We now provide rough bounds for the products appearing in (48). We abbreviate χ̃ := χ/p′ > 1. Note
first that

log(
m∏
i=0

ξi) ≤
m∑
i=0

log(qi/(qi − 2)) ≤ 2
m∑
i=0

1

qi − 2
≤ 2

q0 − 2

∞∑
i=0

χ̃−i ,

Thus ζ0 :=
∏∞

i=0 ξi satisfies the estimate ζ0 ≤ exp(2χ̃/(q0 − 2)(χ̃− 1)). Observe also that

log(
m−1∏
i=0

[ci]
ξi+1/(qi−2)) =

m−1∑
i=0

ξi+1

qi − 2
log(ci),

log(ci) ≤ log c+ log(K ‖ã‖Lp(G)) + 2 log(qi − 2) + (
2

qi
+
qi − 2

qi p
) log meas(G) .

(49)

Using the estimate ξi+1 ≤ q0/(q0 − 2) for i ∈ N we can bound

m−1∑
i=0

ξi+1

qi − 2
log(qi − 2) ≤ q0

q0 − 2

m−1∑
i=0

i log χ̃+ log q0

χ̃i q0 − 2
≤ q0 log q0

(q0 − 2)2
(
m−1∑
i=0

i+ 1

χ̃i
) ,

and ζ1 :=
∑∞

i=0
ξi+1

qi−2
, ζ2 :=

∑∞
i=0

ξi+1

(qi−2)
( 2
qi

+ qi−2
qi

) are obviously finite. Therefore, (49) implies that∏m−1
i=0 [ci]

ξi+1/(qi−2) ≤ c1(q0) ((K‖ã‖Lp(G))
ζ1 + meas(G)ζ2) , and the claim follows from (48).

Everything is therefore reduced to estimating the Lq0−norm of v for a α0 >
2Np

2p−N . We directly obtain
this bound, if we require the strong monotonicity condition (11). It trivially follows from (44) that for all
2 < t <∞

‖v‖Lt(G) ≤
C t

γ0

(1 + ‖Φ‖Lt(S) + ‖Φx‖Lt(S) + ‖Φq‖L2t(S)) . (50)

This achieves the proof of Theorem 2.2.
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4 Higher-order estimates

The gradient bound is crucial in the problem (5), (6). Higher-order estimates can be derived whenever a
L∞−bound on the derivatives of ψ has been proved, since the equation (5) is then a uniformely elliptic
equation of quasilinear type, due to (cp. (17))

N∑
i,j=1

σ̄pi,pj ξi ξj ≥
λ2 |ξT |2√
1 + |∇ψ|2

≥ λ2 |ξ|2

(1 + |∇ψ|2)3/2
for all ξ ∈ RN .

Define c6 := supG
√

1 + |∇ψ|2. The following Lemma states the Hoelder continuity estimate.

Lemma 4.1. Assume that G is a domain of class C2. Let ψ ∈ C2(G) be a solution to (5), (6). Then, for
all β ∈ [0, 1[, there is c = c(G, c6, β) such that

‖∇ψ‖C0,β(G) ≤ c (1 + ‖∇(nκ)‖L∞(S) + ‖Φ‖L∞(S)) ,

Proof. Due to Remark 2.3 and Gauss’s divergence theorem, ψ satisfies∫
G

(σ̄p + κn) · ∇ξ =

∫
G

(Φ̄− div(κn)) ξ ∀ ξ ∈ W 1,1(G) . (51)

Here and throughout the proof, the functions σ̄ and Φ̄ are evaluated at (x̄, ψ, ∇ψ). In order to simplify
the discussion, we prove the regularity in a smooth open domainG0 ⊂ G, assuming that Γ0 := ∂G∩G0

is flat and such that the N − 1 first basis vectors are tangent on Γ0 and n = eN on Γ0. In the general
case, it is possible to use the definition of a domain of class C2 to locally map a neighbourhood of x̄ ∈ ∂G
onto the model configuration.

For l = 1, . . . , N − 1, we insert the testfunction ∂xlξ for ξ ∈ C1
c (G0 ∪ Γ0) in (51). Using integration by

parts, it follows that

−
∫
G

{σ̄pi,pj ∂2
xj ,xl

ψ + σ̄pi,xl + σ̄pi,xN+1
∂xlψ + ∂xl(κni)} ∂xiξ

+

∫
∂G

(σ̄pi + κni) ∂xiξ nl =

∫
G

(Φ̄− div(κn)) ∂xlξ .

(52)

Since nl = 0 on Γ0, the choice of ξ yields vanishing of the surface integral. Equivalently∫
G

σ̄pi,pj ∂xjψxl ∂xiξ =

∫
G

V · ∇ξ , (53)

Vi := −σ̄pi,xl − σ̄pi,xN+1
∂xlψ − ∂xl(ni κ)− (Φ̄− div(κn)) δil for i = 1, . . . , N . (54)

Using in particular the growth assumptions (8), and (9b), it follows that |V | ≤ µ2+µ1+µ6+‖∇(κn)‖L∞(S)+
‖Φ‖L∞(S). According to classical linear regularity theory (cf. for instance the Theorem 3.16 in [Tro87]),
there is for 0 ≤ β < 1 arbitrary a constant c depending only on β, G0, the ellipticity constant of the
matrix {σ̄pi,pj} and its norm in L∞ such that

‖ψxl‖C0,β
loc (G0∪Γ0) ≤ c ‖V ‖[L∞(G0)]n . (55)
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It follows that ψt := ∇ψ − (n · ∇ψ)n ∈ C0,β
loc (G0 ∪ Γ0). Using an open covering of ∂G, and applying

the reasoning locally to each section, we obtain that ψt ∈ C0,β(∂G) with corresponding norm estimate.
We show show that also ψn := n · ∇ψ satisfies a Hölder condition on ∂G. For x̄ ∈ G, y ∈ R, define

H(x̄, y) := σ̄p(x̄, ψ(x̄), ψt(x̄) + n(x̄) y) · n(x̄) + κ(x̄, ψ(x̄)) .

Using the growth condition (8b), |H(x̄, y)| ≤ µ1 + ‖κ‖L∞(S)for all (x̄, y) ∈ G × R. Moreover, for
x̄1, x̄2 ∈ G, y ∈ R

|H(x̄1, y)−H(x̄2, y)| ≤‖σ̄p,x̄‖L∞ |x̄1 − x̄2|+ ‖σ̄p,xN+1
‖L∞ |ψ(x̄1)− ψ(x̄2)|

+ ‖σ̄p,p‖ (|ψt(x̄1)− ψt(x̄2)|+ |y| |n(x̄1)− n(x̄2)|)
+ ‖κx̄‖L∞ |x̄1 − x̄2|+ ‖κxN+1

‖L∞ |ψ(x̄1)− ψ(x̄2)| ,

so that the following estimate holds:

|H(x̄1, y)−H(x̄2, y)|
|x̄1 − x̄2|β

≤ c (1 + ‖ψt‖C0,β(∂G) + |y| ‖n‖C0,β(G)) . (56)

By virtue of the condition (8c), note that

∂yH(x̄, y) = σ̄pi,pj nj(x̄)ni(x̄) ≥ λ2 (1 + |∇ψ|2)−1/2 (1− (ν · n)2) ≥ λ2 c
−3
6 . (57)

On the other hand, the boundary condition (6) implies that H(x, ψn(x)) = 0 on ∂G. For x̄, x̄′ ∈ ∂G
arbitrary, it follows that

λ2 c
−3
6 (ψn(x̄)− ψn(x̄′)) ≤

∫ ψn(x̄′)

ψn(x̄)

∂yH(x̄, s) ds

= H(x̄, ψn(x̄′))−H(x̄, ψn(x̄)) = H(x̄, ψn(x̄′))−H(x̄′, ψn(x̄′)) .

The latest yields

|ψn(x̄)− ψn(x̄′)|
|x̄− x̄′|β

≤ c
|H(x̄, ψn(x̄′))−H(x̄′, ψn(x̄′))|

|x̄− x̄′|β
. (58)

Therefore, taking (56) into account

‖ψn‖C0,β(∂G) ≤ c (1 + ‖ψt‖C0,β(G) + c6 ‖n‖C0,β(G)) (59)

which finally implies that ∇ψ ∈ C0,β(∂G). Return to (53) for ξ ∈ C1
c (G0). With the help of regularity

results for linear equations (cf. for instance the Theorem 3.16 in [Tro87]), it now follow that ∂xlψ ∈
C0,β

loc (G0 ∪ Γ0) for l = 1, . . . N − 1 with corresponding norm estimate. Since the same relation is valid
for l = N if the testfunction ξ vanishes on ∂G (note: the operator (σ̄p + κn) · ∇ is tangent on ∂G), we
can argue the same for ψn in view of (59)

The estimate in C2,α is obtained with similar ideas.

Lemma 4.2. Same assumptions as in Lemma 4.1. Then, ‖D2ψ‖Cα(G) ≤ C (‖Φ‖Cα(S) +‖κ‖C1,α(∂S)),
where C depends on the constants in the conditions (8), (9), (12) and on c6.
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Proof. Consider the relation (53). Lemma 4.1 implies that σ̄pi,pj ∈ C0,β(G) for all β ∈ [0, 1[. Analo-

gously, Φ̄ ∈ C0,β(G) for all β ∈ [0, 1[ (cf. (4) and (7)).

The definition (54) together with Lemma 4.1 now implies that V ∈ [C0,α(G)]N (cp. (54)). Thus, the linear
regularity theory (cf. Theorem 3.17 in [Tro87]) now yields for l = 1, . . . , N − 1

‖ψxl‖[C1,α(G)]N ≤ c ‖V ‖[C0,α(G)]n .

We are now allowed to differentiate the relation H(x̄, ψn(x̄)) = 0 in any tangential direction τ over ∂G,
which yields ∂yH(x̄, ψn(x̄)) (τ · ∇ψn) = τ · ∇x̄H(x̄, ψn(x̄)) for x̄ ∈ ∂G. Due to commutation rules,
the mixed-derivatives ψt,n belongs to C0,α(G), with corresponding continuity estimates. In order to show
that also ψn,n ∈ C0,α(G), we use the previous results in connection with equation (5) yielding on Γ0

σ̄pN ,pN ψn,n = Φ̄−
N−1∑
i,j=1

σ̄pi,pj ψxi,xj − 2
N−1∑
i=1

σ̄pi,pN ψxi,xN − σ̄pi,xi − σ̄pi,xN+1
ψxi ∈ C0,α(G) .

Since ni σ̄pi,pj nj ≥ λ2 c
−3
6 , the function (ni σ̄pi,pj nj)

−1 belongs also to C0,α(∂G). We finally can
conclude that ψn,n ∈ C0,α(Γ0), and that ψn,n ∈ C0,α(∂G) due to localization arguments. Thus D2ψ ∈
C0,α(∂G), and the claim follows (Theorem 3.17 in [Tro87]).

5 A priori estimates on ψ in L∞

The natural W 1,1 estimate, and the global boundedness of weak solutions to (5), (6) have been dis-
cussed in different papers. In the case that σ and κ do not depend on the xN+1 variable, and that
Φ = Φ(x̄, xN+1) the inequality ‖κ‖L∞(∂G) < ν0 and the condition (11) is known to be sufficient to
obtain these bounds. The arguments easily carry over to the general case.

Lemma 5.1. Assume that ψ ∈ W 1,1(G) is a weak solution to (5), (6). Assume that (11) is valid. Assume
that p > 2N . Then, there is a constant depending on 2N − p, on G, on the constants µ1, γ1 and γ0,
and on ‖κx̄(·, 0)‖L∞(G) such that

‖ψ‖L∞(G) ≤ c (1 + ‖Φ̄(x̄, 0, ∇ψ)‖2
Lp(G)) .

Proof. Multiply the equation with ξ ∈ W 1,1(G) and integrate by parts. We add the zero
∫
G

div(κ(x̄, 0)n ξ)−∫
∂G
κ(x̄, 0) ξ, to obtain the identity∫

G

(σ̄q(x̄, ψ, ∇ψ) + κ(x̄, 0)n) · ∇ξ +

∫
∂G

(κ(x̄, ψ)− κ(x̄, 0)) ξ

=

∫
G

(Φ̄(x̄, ψ, ∇ψ)− Φ̄(x̄, 0, ∇ψ)) ξ +

∫
G

(Φ̄(x̄, 0, ∇ψ)− div(κ(x̄, 0)n)) ξ .

Choose ξ = (ψ−k)+, k ∈ R+. Due to (11), (κ(x̄, ψ)−κ(x̄, 0)) (ψ−k)+ ≥ 0, and (Φ̄(x̄, ψ, ∇ψ)−
Φ̄(x̄, 0, ∇ψ)) (ψ − k)+ ≤ −γ0 ψ (ψ − k)+. Using (15), and the constant γ1 from (12), we can prove
that

γ1

∫
G

|∇(ψ − k)+| − µ1 meas(Ak) + γ0

∫
G

ψ (ψ − k)+

≤
∫
G

(|Φ̄(x̄, 0, ∇ψ)|+ | div κ(x̄, 0)n)|) (ψ − k)+ ,
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where Ak := supp(ψ − k)+. Using Young’s and Hölder’s inequalties, we can prove that

γ1 ‖(ψ − k)+‖W 1,1(G) ≤ (µ1 +
γ2

1

2γ0

) meas(Ak) +
1

2γ0

∫
Ak

(|Φ̄(x̄, 0, ∇ψ)|+ | div κ(x̄, 0)n)|)2

≤ (µ1 +
γ2

1

2γ0

) meas(Ak) +
1

2γ0

(‖Φ̄(x̄, 0, ∇ψ)‖2
Lp(G) + ‖ div(κ(x̄, 0)n)‖2

Lp(G)) meas(Ak)
N−1
N

+ε ,

with ε := 1/N − 2/p. It follows that ψ ≤ c (1 + ‖Φ̄(x̄, 0, ∇ψ)‖2
Lp(G)) (Stampacchia’s Lemma, cf.

[Tro87], Lemma 2.9). We prove analogously a lower bound, and the claim follows.

6 Existence

It was shown for the first time in [Ura71] that a priori estimates on the gradient of C2 solutions to (5), (6)
joined to the Hoelder estimate of Lemma 4.1 leads to an existence theorem via continuation methods in
Banach-spaces exposed in [LU68], Ch. 10. Here, existence is obtained via the implicit function theorem.3

Note that we need somewhat weaker hypotheses on Φ than usually in the literature. Moreover, the con-
dition (13) seems not to be yet known in the present context. At first, we formulate a simple continuation
Lemma.

Proposition 6.1. Let X, Y, Z be Banach spaces such that Y ↪→ X with compact embedding. For
a, b ∈ R, a < b, let G : X×]a, b[→ Z be a Fréchet differentiable mapping, such that the derivative
∂xG(x∗, λ∗) ∈ L(X, Z) is an isomorphism for all (x∗, λ∗) ∈ X×]a, b[. Assume that there is K > 0
such that for all λ ∈]a, b[, all solutions x ∈ X to the equation G(x, λ) = 0 belong to BK(0; Y ). If
there is (x0, λ0) ∈ X×]a, b[ such that G(x0, λ0) = 0, then the equation G(x, λ) = 0 has a unique
solution in BK(0; Y ) for all λ ∈ [a, b].

Proof. Define M := {λ ∈ [a, b] : ∃x ∈ X, G(x, λ) = 0}. The set M is nonvoid since G(x0, λ0) =
0. Moreover λ∗ := supM belongs to M . To see this, choose {λk}k∈N ⊆ M , λk → λ∗. By definition,
there is xk ∈ X such that G(xk, λk) = 0. By assumption xk ∈ BK(0; Y ) for all k ∈ N, and therefore,
there is a subsequence xkj that strongly converges inX to some x∗. Obviously, G(x∗, λ∗) = 0, implying
λ∗ ∈M .

Seeking a contradiction, assume that λ∗ < b. Then, due to the implicit function theorem (see [GT01], Th.
17.6), there is an open neighborhood ]λ∗−ε, λ∗+ε[ in ]a, b[ such that the equation G(x, λ) = 0 defines
a unique implicit vector-valued function λ 7→ x(λ) ∈ X . Therefore λ∗ 6= supM , the contradiction.
Analogously, one shows that inf M = a. This proves the existence.

If x1, x2 ∈ X both solve G(x, λ) = 0, then ∂xG(x∗, λ) (x1− x2) = 0 for some x∗ ∈ [x1, x2]. Due to
the assumption that ∂xG is an isomorphism, the uniqueness follows.

Theorem 6.2. Assumptions of the Theorem 2.1. Then, there is a unique ψ ∈ C2,α(G) that solves (5),
(6).

3We thank the referree for the indication that a similar simplification of the existence proof was already achieved in the
Second Edition (1972) of the book [LU68], which unfortunately was not translated into English.
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Proof. In the first step, we prove the existence claim assuming that Φ ∈ C1,α(G × R × RN+1). Let
0 < β < α. Define two mappings G1 : C2,β(G)×] − 1, 1[→ Cβ(G) and G2(w, λ) : C2,β(G)×] −
1, 1[→ C1,β(∂G) via

G1(w, λ) := − d

dxi
σ̄pi(x̄, w, ∇w)− Φ̄(x̄, w, ∇w) + (1− λ) (∂xi σ̄pi(x̄, 0, 0) + Φ̄(x̄, 0, 0))

G2(w, λ) := −σ̄pi(x̄, w, ∇w)ni(x̄)− κ(x̄, w) + (1− λ) (σ̄pi(x̄, 0, 0)ni(x̄) + κ(x̄, 0)) .

We define a mapping G(w, λ) := (G1(w, λ), G2(w, λ)). Obviously, G(0, 0) = 0. Moreover, due to
the regularity assumptions on σ, Φ and κ, the mapping G is clearly Fréchet-differentiable. The derivative
∂wG(w∗, λ∗) at an arbitrary point (w∗, λ∗) ∈ C2,β(G)×]− 1, 1[ in the direction w ∈ C2,β(G) has the
expression

∂wG(w∗, λ∗)w =

{
− d
dxi

(σ̄∗pi,pj ∂xjw + σ̄∗pi,xN+1
w)− Φ̄∗xN+1

w − Φ̄∗pi wxi ∈ C
β(G)

−(σ̄∗pi,pj ∂xjw + σ̄∗pi,xN+1
w)ni(x̄)− κ∗xN+1

w ∈ C1,β(∂G) .

where the indice ∗ means that the value is taken at (x̄, w∗(x̄), ∇w∗(x̄)). In the Lemma 6.3 below, we
show that for every f ∈ Cβ(G) × C1,β(∂G), the equation ∂wG(w∗, λ∗)w = f has a unique solution
in w ∈ C2,β(G), that is nothing else but the invertibility of the Fréchet derivative ∂wG(w∗, λ∗).

Moreover, any function w ∈ C2,β(G) := X satisfying G(w, λ) = 0 solves the problem (1), (2) with
right-hand Φ̃(x, q) := Φ(x, q) + (1 − λ) (σ(x̄, 0, 0) − Φ(x̄, 0, 0)), and with contact angle κ̃(x) :=
κ(x) + (1− λ) (σq(x̄, 0, 0) · n(x̄)− κ(x̄, 0)). Due to the results of the preceding sections 3, 4 and 5,
all solutions to the equation G(w, λ) = 0 lay therefore in a bounded set of C2,α(G) =: Y .

The assumptions of the Lemma 6.1 are satisfied, and we obtain in particular the existence of a unique
ψ ∈ C2,α(G) such that G(w, 1) = 0, that is the claim.

In order to obtain the Fréchet differentiability of G, we had to assume in the first step of the proof that Φ ∈
C1,α. In the second step, we have to show that this assumption can be removed. Let Φ ∈ V (cf. (10)). At
first, we apply the Sobolev extension operator outside of G in the x̄− variable, to obtain for arbitrary fixed
q ∈ RN+1 that Φ(·, q) is in W 1,∞(RN+1). Obviously, supRN+1×RN+1 ΦxN+1

= supΩ×RN+1 ΦxN+1
≤

−γ0. We choose Φε(x, q) :=
∫

RN+1 wε(x− y) Φ(y, q) dy, where wε is a smooth nonnegative mollifier.
Then, the sequence {Φε(q)} ⊂ C∞(RN+1) is uniformly bounded in W 1,∞(RN+1), and Φε,xN+1

≤
−γ0. Moreover Φε(q)→ Φ(q) in W 1,p(Ω) for all 1 ≤ p <∞.

For ε > 0, let ψε ∈ C2,α(G) denote the unique solution to (5), (6) with right-hand Φε. This solution
exists according to the first step. Moreover, the sequence {ψε} is uniformly bounded in C2,α(G), since
the bounds obtained in the sections 3, 4 and 5 only depend on the W 1,∞ norm of Φε and on γ0. The
claim follows letting ε→ 0.

Lemma 6.3. Assumptions of Theorem 6.2. For every w∗ ∈ C2,β(G) and f ∈ Cβ(G)× C1,β(∂G), the
equation ∂wG(w∗, λ∗)w = f has a unique solution in w ∈ C2,β(G).

Proof. Existence is clear and follows from standard linear theory (cf. for instance the Theorem 3.28 in
[Tro87]). For the uniqueness, we assume that wi ∈ C2,β(G) is a solution for i = 1, 2. Then, the
difference w̃ satisfies ∂wG(w∗, λ∗) w̃ = 0. We abbreviate ξ := ∇w̃. We moreover define q∗ :=
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(∇w∗, −1) ∈ RN+1, ξ̂ = (ξ, 0) ∈ RN+1, and the orthogonal part to q∗ via ξT := ξ̂ − (ξ̂ · q∗|q∗|)
q∗

|q∗| .
Using also (14), we obtain that

σ̄∗p,xN+1
· ξ = −σq,xN+1

(x̄, w∗, q∗) · ξ̂

= −σ∗q,xN+1
· ξT − σ∗q,xN+1

· q
∗

|q∗|
q∗

|q∗|
· ξ̂ = −σ∗q,xN+1

· ξT + [q∗N+1]−1σ∗xN+1
ξTN+1 .

(60)

where σ∗ = value at (x̄, w∗, q∗). Using the assumptions (9), it follows that |σ̄∗p,xN+1
· ξ| ≤ (µ5 +

µ6) |ξT |/|q∗|. On the other hand, it follows from (8d) that σ̄∗pi,pj ξi ξj ≥ λ2 |ξT |2/|q∗|. Thus, employing
Young’s inequality, we obtain the inequality

σ̄∗pi,pj ξi ξj + σ̄∗pi,xN+1
ξi w̃ ≥ (1− δ1)λ2

|ξT |2√
1 + |∇w∗|2

− (µ5 + µ6)2

4δ1λ2

w̃2 , (61)

with δ1 ∈]0, 1[ arbitrary. On the other hand, using the definition (4) of νj(p) for j = 1, . . . , N + 1, we
compute for i = 1, . . . , N the derivative

∂piνj(p) =


−1√
1+|p|2

(δji −
pipj

1+|p|2 ) for j ∈ {1, . . . , N}
−pi

(
√

1+|p|2)3/2
if j = N + 1 .

We have for k = 1, . . . , N that ∂pjνk(∇w∗) ξj = ξTk /|q∗|. Since Φ̄pj = Φqk ∂pjνk(p), we easily see
that |Φ̄∗pj ξj| ≤ |Φq| |ξT |/|q∗|. It follows for δ2 ∈]0, 1[ arbitrary that

|Φ̄∗qj ξj w̃| ≤ δ2λ2
|ξT |2√

1 + |∇w∗|2
+
|Φq|2

4δ2λ2

w̃2 . (62)

Summarizing, (61) and (62) imply for δ1 + δ2 ≤ 1 the inequality

σ̄∗pi,pj ξi ξj + σ̄∗pi,xN+1
ξi w̃ − Φ∗xN+1

w̃2 − Φ̄∗pj ξj w̃ ≥ (γ0 −
(µ5 + µ6)2

4δ1λ2

+
|Φq|2

4δ2λ2

) w̃2 . (63)

Due to the equation ∂wG(w∗, λ∗) w̃ = 0, we have the identity∫
G

{σ̄∗pi,pj ∂iw̃ ∂jw̃ + σ̄∗pi,xN+1
∂iw̃ w̃ − Φ∗xN+1

w̃2 − Φ̄∗pj ∂jw̃ w̃}+

∫
∂G

κ∗xN+1
w̃2 = 0 .

Since κxN+1
≥ 0, we can use (63) and the assumption to show that w̃ = 0.
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