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Abstract. In this paper, we design numerical methods for a PDE system arising in corrosion mod-
elling. This system describes the evolution of a dense oxide layer. It is based on a drift-diffusion system
and includes moving boundary equations. The choice of the numerical methods is justified by a stability
analysis and by the study of their numerical performance. Finally, numerical experiments with real-life
data shows the efficiency of the developed methods.

1. Introduction

1.1. General framework of the study

The concept for long term storage of high-level radioactive waste in France under study is based on an underground
repository. The waste shall be confined in a glass matrix and then placed into cylindrical steel canisters. These
containers shall be placed into micro-tunnels in the highly impermeable Callovo-Oxfordian claystone layer at a depth
of several hundred meters. At the request of the French nuclear waste management agency ANDRA, investigations
are conducted to optimize and finalize this repository concept with the aim to ensure its long-term safety and its
reversibility. In particular, the repository concept requires a minimum containment time of 1000 years.

The long-term safety assessment of the geological repository has to take into account the degradation of the carbon
steel used for the waste overpacks and the cell disposal liners, which are in contact with the claystone formation. This
degradation is mainly caused by generalized corrosion processes which form a passive layer on the metal surface
consisting of a dense oxide inner layer and a porous hydroxide outer layer in contact with the groundwater in the pore
space of the claystones. The processes take place under anaerobic conditions, since the groundwater is anoxic.

The neighboring geochemical environment (pH, concentrations) and groundwater flow trends induce changes of
the corrosion conditions, which, in turn, influence the geochemical and thermo-hydro-mechanics of the claystones.
The temperature also affects the corrosion conditions. Indeed, the waste canisters are a source of heat. At the beginning
of the repository development, the temperature is estimated to be about 90◦C. Later, it is supposed to reach its steady-
state value near 40◦C.

As a tool to investigate the corrosion processes at the surface of the carbon steel canisters, the Diffusion Poisson
Coupled Model (DPCM) for corrosion has been developed by Bataillon et al. [1].

The model focuses on the development of the dense oxide layer in the region of contact between the claystones
and the metal. The porous hydroxide layer is not taken into account. The system claystones – oxide layer – metal is
described by a coupled system of electromigration – diffusion equations for the transport of the charge carriers in the
oxide layer, and a Poisson equation for the electric potential. The interaction between the oxide layer and the adjacent
structures are described in terms of Robin boundary conditions for the electrochemical reactions and the potential
drops. The system includes moving boundary equations based on the Pilling-Bedworth ratio. The system evolution
can be investigated in both potentiostatic and galvanostatic situations. As the oxide layer is very thin compared to the
waste overpack size, it is sufficient to consider the model in one space dimension.

The model allows to assess the evolution of the carbon steel corrosion rate, the chemical species release and the
characteristic time of these processes. These data shall be used to estimate the lifetime of the carbon steel overpack
and the pressure rise resulting from hydrogen release.

Carbon steel is expected to exhibit a corrosion rate between 1 µm ·year−1 and 10 µm ·year−1. Due to the formation
of the oxide layer, we expect a reduction of the corrosion rate.

1.2. Presentation of the corrosion model

We recall here the DPCM model introduced in by Bataillon et al[1]. The domain under study is the oxide layer
whose interfaces are moving. The moving domain is denoted by (X0(t), X1(t)). In the oxide layer, three charge carriers
are taken into account: electrons, cations (Fe3+) and oxygen vacancies (VÖ). The densities of these charge carriers are
respectively denoted by N, P and C. The corresponding current densities are denoted by JN , JP and JC . These current
densities contain a drift part and a diffusion part, so that the equations for N, P and C are linear convection-diffusion
equations. They are coupled with a Poisson equation for the electrical potential Ψ.

Charge carriers are created and consumed at both interfaces: x = X0(t) is the outer interface (oxide/solution) and
x = X1(t) is the inner interface (oxide/metal). The kinetics of the electrochemical reactions at interfaces leads to Robin
boundary conditions on N, P and C.
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The boundary conditions for the Poisson equation take into account that the metal and the solution can be charged
because they are respectively electronic and ionic conductors. Such an accumulation of charges induces a field given
by the Gauss law. These accumulations of charges depend on the voltage drop at the interface by the usual Helmholtz
law which links the charge to the voltage drop through a capacitance. The parameters ∆Ψ

pzc
1 and ∆Ψ

pzc
0 are the voltage

drop corresponding to no accumulation of charges respectively in the metal and in the solution.
The DPCM model takes into account the growth of the oxide host lattice at x = X1(t) and its dissolution at x = X0(t)

leading to moving boundary equations. In order to properly reflect the mass balance an the moving interfaces, in the
boundary conditions, we need to take into account the interface velocities. This is a consequence e.g. of the pillbox
lemma [2, 3]. The dimensionless model writes for t ≥ 0:
• Equation and boundary conditions for the density of cations P:

∂tP + ∂xJP = 0, JP = −∂xP − 3P∂xΨ, x ∈ (X0(t), X1(t)), (1.1a)

JP + PX′0(t) = m0
P(Pm − P)e−3b0

PΨ − k0
PPe3a0

PΨ, x = X0(t), (1.1b)

JP + PX′1(t) = m1
PPe−3b1

P(V−Ψ) − k1
P(Pm − P)e3a1

P(V−Ψ), x = X1(t). (1.1c)

• Equation and boundary conditions for the density of electrons N:

D1

D2
∂tN + ∂xJN = 0, JN = −∂xN + N∂xΨ, x ∈ (X0(t), X1(t)), (1.2a)

JN + NX′0(t) = m0
Neb0

N Ψ − k0
N Ne−a0

N Ψ + n0
Nea0

r Ψ − p0
N Ne−b0

r Ψ, x = X0(t), (1.2b)

JN + NX′1(t) = m1
N N − k1

N Nmetal log(1 + e−(V−Ψ)), x = X1(t). (1.2c)

• Equation and boundary conditions for the density of oxygen vacancies C:

D1

D3
∂tC + ∂xJC = 0, JC = −∂xC − 2C∂xΨ, x ∈ (X0(t), X1(t)), (1.3a)

JC + CX′0(t) = m0
C

(
1 − C

4

)
e−2b0

CΨ − k0
C

C
4

e2a0
CΨ, x = X0(t), (1.3b)

JC + CX′1(t) = m1
C

C
4

e−3b1
C (V−Ψ) − k1

C

(
1 − C

4

)
e3a1

C (V−Ψ) x = X1(t). (1.3c)

• Equation on the electrical potential Ψ:

−λ2∂2
xxΨ = 3P − N + 2C + ρhl, x ∈ (X0(t), X1(t)), (1.4a)

Ψ − α0∂xΨ = ∆Ψ
pzc
0 , x = X0(t), (1.4b)

Ψ + α1∂xΨ = V − ∆Ψ
pzc
1 , x = X1(t). (1.4c)

•Moving boundary equations
dX0

dt
= v0

d(t) +
dX1

dt
(1 − Ωox

mΩFe
), (1.5a)

dX1

dt
= − D3

4D1

ΩFe

Ωox

(
JC(X1) + CX′1(t)

)
, (1.5b)

with v0
d(t) = k0

de−5a0
dΨ(X0(t)). (1.5c)

The system is supplemented with initial conditions:

N(x, 0) = N0(x), P(x, 0) = P0(x), C(x, 0) = C0(x), x ∈ (0, 1), (1.6a)

X0(0) = 0, X1(0) = 1. (1.6b)

We shortly explain the parameters of the model:
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• D1, D2 and D3 are respectively the mobility or diffusion coefficients of cations, electrons and oxygen vacancies.
D1 and D3 have the same order of magnitude, but D1 � D2 due to the difference of size between cations and
electrons and the resulting difference of mobilities.

• (mi
P, k

i
P)i=0,1, (mi

N , k
i
N)i=0,1, (mi

C , k
i
C)i=0,1, (n0

N , p0
N), k0

d are interface kinetic functions. We assume that these
functions are constant and strictly positive.

• (a0
u, b

0
u) for u = P,N,C, r, d and (a1

u, b
1
u) for u = P,C are positive transfer coefficients.

• Pm is the maximum occupancy for octahedral cations in the host lattice.

• Nmetal is the electron density of state in the metal (Friedel model).

• ρhl is the net charge density of the ionic species in the host lattice. We assume that ρhl is homogeneous.

• Ωox is the molar volume of the oxide.

• ΩFe is the molar volume of the metal.

• m is the number of moles of iron per mole of oxide (m = 3 for magnetite).

• ∆Ψ
pzc
0 , ∆Ψ

pzc
1 are respectively the outer and the inner voltages of zero charge.

• λ2, α0, α1 are positive dimensionless parameters.

In the system (1.1)–(1.5), V can either be considered as an applied potential (“potentiostatic case”) or be given by
another equation ensuring the electron charge balance at the inner interface (“galvanostatic case”):

−3
(
JP + PX′1(t) +

D3

4D1
(JC + CX′1(t))

)
+

D2

D1
(JN + NX′1(t)) = J̃, x = X1(t) (1.7)

If J̃ = 0, we speak of free corrosion, in this case, V is called “free corrosion potential”.

Remark 1.1. The equations for the carrier densities with their boundary conditions (1.1), (1.2), (1.3) have the same
form. They can all be written :

εu∂tu + ∂xJu = 0, Ju = −∂xu − zuu∂xΨ in (X0(t), X1(t)),∀t ≥ 0, (1.8a)

−Ju − uX′0(t) = r0
u(u(X0(t)),Ψ(X0(t))) on x = X0(t),∀t ≥ 0, (1.8b)

Ju + uX′1(t) = r1
u(u(X1(t)),Ψ(X1(t)),V) on x = X1(t),∀t ≥ 0. (1.8c)

For u = P,N,C, the charge numbers of the carriers are respectively zu = 3,−1, 2 and we respectively have εu =

1,
D1

D2
,

D1

D3
. We also note that both functions r0

u and r1
u are linear and monotonically increasing with respect to their

first argument. More precisely, the functions r0
u and r1

u have the following form:

r0
u(s, x) = β0

u(x)s − γ0
u(x), (1.9a)

r1
u(s, x,V) = β1

u(V − x)s − γ1
u(V − x), (1.9b)

where β0
u, β

1
u, γ

0
u, γ

1
u are smooth positive functions.
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1.3. Main results

The aim of this paper is to propose an efficient numerical method in order to solve the full DPCM model (1.1)–
(1.7).

In Section 2 we focus on the discretization of the system of convection-diffusion equations coupled with the
Poisson equation (1.1)–(1.4). Therefore, we study a simplified two-species model on a fixed domain discretized by
the finite volume method and study two different choices for the time discretization. The stability analysis of both
schemes will show that a fully implicit time discretization must be chosen.

Then, in Section 3, we consider the full system in the potentiostatic case with the moving boundary equations. We
introduce a change of variables in order to rewrite the system on a fixed domain and adapt the scheme designed in
Section 2. We will study two different possibilities for the time discretization of the interface equations. We will also
consider the galvanostatic case by taking into account equation (1.7).

In Section 4, we will give some details on the practical implementation of the numerical methods proposed in
Section 3. Some improvements, like adaptive time stepping, will also be proposed. The performance of the designed
numerical methods will be studied in Section 5. Finally, Section 6 is devoted to the presentation of some numerical
experiments in a real-life context.

2. Study of a simplified model, choice for the time discretization

In this Section, we focus on a two-species model in order to fix the choice of the time discretization for our scheme.
We just consider the case with electrons and cations Fe3+. Without oxygen vacancies, there will be no evolution of
the oxide layer: the domain will be considered as fixed. Furthermore, we consider here the potentiostatic case : V is
an applied potential.

2.1. Presentation of the simplified model and discretization

The simplified system is obtained from (1.1), (1.2), (1.4) by setting C = 0 and X0(t) = 0, X1(t) = 1 for all t. It
consists of two drift-diffusion equations for the charge densities, coupled with a Poisson equation for the electrostatic
potential. The boundary conditions are Robin boundary conditions.

For the sake of simplicity, we also assume that the boundary conditions on P and N have exactly the same form.
It means that the functions β0

u, γ0
u, β1

u and γ1
u defined in (1.9) have the following form for both u = P or u = N:

β0
u(x) = m0

ue−zub0
u x + k0

uezua0
u x, γ0

u(x) = m0
uume−zub0

u x, (2.1a)

β1
u(x) = m1

ue−zub1
u x + k1

uezua1
u x, γ1

u(x) = k1
uumezua1

u x, (2.1b)

with the following hypotheses on the transfer coefficients:

a0
u, b

0
u, a

1
u, b

1
u ∈ [0, 1] for u = N, P, (2.2)

and on the interface kinetic constants:
m0

u, k
0
u,m

1
u, k

1
u > 0. (2.3)

Moreover, we assume that
3Pm − Nm + ρhl = 0. (2.4)

Remark 2.1. In the applications, we have ρhl = −5, Pm = 2 and Nm = 1, so that hypothesis (2.4) is satisfied. Then it
is expected that the solution to the corrosion model verifies 0 ≤ P ≤ Pm and 0 ≤ N ≤ Nm. Therefore, it is crucial to
design schemes that satisfy these stability properties.

In order to write a finite volume scheme for this system, we first introduce notations concerning the mesh and the
time step. We consider a mesh for the domain [0, 1], which is not necessarily uniform, i.e a family of given points
(xi)0≤i≤I+1 satisfying

x0 = 0 < x1 < x2 < . . . < xI < xI+1 = 1.
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Then, for 1 ≤ i ≤ I − 1, we define xi+ 1
2

=
xi + xi+1

2
and we set x 1

2
= x0 = 0, xI+ 1

2
= xI+1 = 1. The cells of the mesh are

the intervals (xi− 1
2
, xi+ 1

2
) for 1 ≤ i ≤ I. Let us set

hi = xi+ 1
2
− xi− 1

2
, for 1 ≤ i ≤ I,

hi+ 1
2

= xi+1 − xi, for 0 ≤ i ≤ I

and h = max{hi, 1 ≤ i ≤ I} is the size of the mesh. The time step is denoted by ∆t.
The numerical scheme will be Euler implicit in time and finite volume in space. The choice of Euler implicit

discretization in time is sensible for convection-diffusion equations in order to avoid a restrictive condition linking
time step and mesh size. However, for the discretization of equations (1.1a), (1.2a), different choices can be made for
the time approximation of the electrical field ∂xΨ. In the sequel, we propose two possibilities leading to two different
schemes.

A decoupled scheme
The scheme writes:

−λ2(dΨn
i+ 1

2
− dΨn

i− 1
2
) = hi(3Pn

i − Nn
i + ρhl), 1 ≤ i ≤ I, (2.5a)

εuhi
un+1

i − un
i

∆t
+ F n+1

u,i+ 1
2
− F n+1

u,i− 1
2

= 0, 1 ≤ i ≤ I, for u = P,N, (2.5b)

with the numerical fluxes

dΨn
i+ 1

2
=

Ψn
i+1 − Ψn

i

hi+ 1
2

, 0 ≤ i ≤ I, (2.6a)

F n+1
u,i+ 1

2
=

B(zuhi+ 1
2
dΨn

i+ 1
2
)un+1

i − B(−zuhi+ 1
2
dΨn

i+ 1
2
)un+1

i+1

hi+ 1
2

, 0 ≤ i ≤ I, for u = P,N, (2.6b)

where the function B is the Bernoulli function, leading to Scharfetter-Gummel fluxes:

B(x) =
x

ex − 1
for x , 0, B(0) = 1. (2.7)

The scheme must be supplemented with the discretization of the boundary conditions and of the initial conditions.
For the discretization of the boundary conditions (1.4b), (1.4c), (1.8b), (1.8c), we write:

Ψn
0 − α0dΨn

1
2

= ∆Ψ
pzc
0 , (2.8a)

Ψn
I+1 + α1dΨn

I+ 1
2

= V − ∆Ψ
pzc
1 , (2.8b)

−F n+1
u, 1

2
= r0

u(un+1
0 ,Ψn

0) = β0
u(Ψn

0)un+1
0 − γ0

u(Ψn
0), for u = P,N, (2.8c)

F n+1
u,I+ 1

2
= r1

u(un+1
I+1 ,Ψ

n
I+1,V) = β1

u(V − Ψn
I+1)un+1

I+1 − γ1
u(V − Ψn

I+1), for u = P,N (2.8d)

and for the initial condition

u0
i =

1
hi

∫ xi+ 1
2

xi− 1
2

u0(x)dx, for u = P,N. (2.9)

The scheme (2.5)–(2.9) will be denoted by (Sdec) in all the sequel. It is decoupled in the following sense:

• Starting from (Pn,Nn) = (Pn
i ,N

n
i )0≤i≤I+1, Ψn = (Ψn

i )0≤i≤I+1 is defined as the solution of the linear system (2.5a),
(2.6a), (2.8a), (2.8b).

• Then, knowingΨn, (Pn+1,Nn+1) is defined as the solution of the linear system (2.5b), (2.6b), (2.7), (2.8c), (2.8d).

In Section 2.2, we will prove the invertibility of the involved linear systems and study the stability of (Sdec).
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Remark 2.2. If we want to replace the Scharfetter-Gummel fluxes by classical upwind fluxes, we just need to change
the B function and choose:

B(x) = 1 + x−, where x− = max(−x, 0).

In fact, the Bernoulli function could be replaced by any function satisfying the three following properties: B(0) = 1,
B(x) ≥ 0 for all x ∈ R and B(x) − B(−x) = −x for all x ∈ R (see for instance Ref. [4]). But, with the Bernoulli
function, the scheme may be second order in space [5, 6].

A fully implicit scheme
The only difference in the fully implicit scheme is in the definition of the numerical fluxes and of the boundary

conditions for P and N. Indeed, we replace (2.6b) by

F n+1
u,i+ 1

2
=

B(zuhi+ 1
2
dΨn+1

i+ 1
2
)un+1

i − B(−zuhi+ 1
2
dΨn+1

i+ 1
2
)un+1

i+1

hi+ 1
2

, 0 ≤ i ≤ I, for u = P,N (2.10)

and (2.8c)-(2.8d) by
−F n+1

u, 1
2

= r0
u(un+1

0 ,Ψn+1
0 ), for u = P,N, (2.11a)

F n+1
u,I+ 1

2
= r1

u(un+1
I+1 ,Ψ

n+1
I+1 ,V), for u = P,N. (2.11b)

The new scheme will be denoted in all the sequel by (S f i).
At each time step, the vector of unknowns (Pn+1,Nn+1,Ψn+1) = (Pn+1

i ,Nn+1
i ,Ψn+1

i )0≤i≤I+1 is defined as the solution
of a nonlinear system of equations. In Section 2.3, we will prove the existence of a solution to this nonlinear system
and investigate the stability of (S f i).

2.2. Stability analysis of a decoupled scheme

Proposition 2.3. Under the hypotheses (2.1)–(2.3), the scheme (Sdec) admits a unique solution (Pn,Nn,Ψn)n≥0. More-
over, if P0,N0 ∈ L∞(0, 1) satisfy P0,N0 ≥ 0 almost everywhere on (0, 1), then Pn

i ,N
n
i ≥ 0 for all 0 ≤ i ≤ I + 1 and

n ≥ 0.

Proof. Let us first note that (P0,N0) is well defined by (2.9) and satisfies the nonnegativity condition. Assume now
that for any n ≥ 0, (Pn,Nn) is given and satisfies the nonnegativity assumption. Then Ψn is defined as the solution of
the linear system (2.5a), (2.6a), (2.8a), (2.8b). The matrix of this linear system is a tridiagonal matrix. As α0 and α1
are strictly positive, this matrix is semistrictly diagonally dominant and thus invertible.

Knowing Ψn, Pn+1 and Nn+1 are also defined as solutions of some linear systems. For u = P,N the linear system
defined by (2.5b), (2.6b), (2.8c), (2.8d) rewrites:

Mn
uun+1 = Sn

u. (2.12)

The matrix Mn
u ∈ MI+2(R) is a tridiagonal matrix, whose nonzero terms are defined by:

(Mn
u)ii = εu

hi

∆t
+

B(zuhi+ 1
2
dΨn

i+ 1
2
)

hi+ 1
2

+

B(−zuhi− 1
2
dΨn

i− 1
2
)

hi− 1
2

, ∀1 ≤ i ≤ I,

(Mn
u)ii+1 = −

B(−zuhi+ 1
2
dΨn

i+ 1
2
)

hi+ 1
2

, ∀1 ≤ i ≤ I,

(Mn
u)ii−1 = −

B(zuhi− 1
2
dΨn

i− 1
2
)

hi− 1
2

, ∀1 ≤ i ≤ I,
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(Mn
u)00 =

B(zuh 1
2
dΨn

1
2
)

h 1
2

+ β0
u(Ψn

0),

(Mn
u)01 = −

B(−zuh 1
2
dΨn

1
2
)

h 1
2

,

(Mn
u)I+1I+1 =

B(−zuhI+ 1
2
dΨn

I+ 1
2
)

hI+ 1
2

+ β1
u(V − Ψn

I+1),

(Mn
u)I+1I = −

B(zuhI+ 1
2
dΨn

I+ 1
2
)

hI+ 1
2

.

As εu > 0 and the functions β0
u, β1

u and B are nonnegative, the matrix Mn
u has positive diagonal terms and nonpos-

itive offdiagonal terms. Moreover, it is strictly diagonally dominant with respect to its columns. Therefore, Mn
u is an

M-matrix: it is invertible and (Mn
u)−1 ≥ 0. It yields the existence of a unique solution to (2.12).

The right hand side of the linear system (2.12), Sn
u, is defined by:

(Sn
u)i = εu

hi

∆t
un

i ,∀1 ≤ i ≤ I,

(Sn
u)0 = γ0

u(Ψn
0), (Sn

u)I+1 = γ1
u(V − Ψn

I+1).

As un
i ≥ 0 for 1 ≤ i ≤ I and γ0

u, γ1
u are nonnegative functions, Sn

u is a positive-valued vector and as (Mn
u)−1 ≥ 0, we get

that un+1
i ≥ 0 for all 0 ≤ i ≤ I + 1. It concludes the proof of Proposition 2.3 by induction.

Proposition 2.4. Assume (2.1)–(2.4) and that P0,N0 ∈ L∞(0, 1) satisfy 0 ≤ P0 ≤ Pm and 0 ≤ N0 ≤ Nm almost
everywhere on (0, 1). Then, if ∆Ψ

pzc
0 and ∆Ψ

pzc
1 fulfill:

− 1
3a0

P

(1 + log(α0a0
Pk0

P)) ≤ ∆Ψ
pzc
0 ≤ 1

a0
N

(1 + log(α0a0
Nk0

N)), (2.13a)

− 1
b1

N

(1 + log(α1b1
Nm1

N)) ≤ ∆Ψ
pzc
1 ≤ 1

3b1
P

(1 + log(α1b1
Pm1

P)), (2.13b)

and if the following inequality on the time step holds:

∆t ≤ min(
λ2

9Pm ,
D1

D2

λ2

Nm ), (2.14)

then the solution to the scheme (Sdec) satisfies

0 ≤ Pn
i ≤ Pm and 0 ≤ Nn

i ≤ Nm ∀0 ≤ i ≤ I + 1,∀n ≥ 0. (2.15)

Proof. First, we note that the hypotheses on the initial conditions ensure that (2.15) is satisfied for n = 0. We now
assume that (2.15) is verified for n ≥ 0 and prove that it also holds for n + 1. The nonnegativity has already been
proven.

Let us first compute the product Mn
uum, where um is the constant vector of RI+2, whose components are all equal

to the same value um. As the Bernoulli function defined by (2.7) satisfies B(x) − B(−x) = −x for all x ∈ R, we have

(Mn
uum)i = um

(
εu

hi

∆t
− zu(dΨn

i+ 1
2
− dΨn

i− 1
2
)
)
, ∀1 ≤ i ≤ I,

(Mn
uum)0 = um

(
−zudΨn

1
2

+ β0
u(Ψn

0)
)
,

(Mn
uum)I+1 = um

(
zudΨn

I+ 1
2

+ β1
u(V − Ψn

I+1)
)
.
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Using (2.5a), (2.8a), (2.8b), it rewrites

(Mn
uum)i = um

(
εu

hi

∆t
+

zuhi

λ2 (3Pn
i − Nn

i + ρhl)
)
, ∀1 ≤ i ≤ I,

(Mn
uum)0 = um

(
− zu

α0
(Ψn

0 − ∆Ψ
pzc
0 ) + β0

u(Ψn
0)
)
,

(Mn
uum)I+1 = um

( zu

α1
(V − ∆Ψ

pzc
1 − Ψn

I+1) + β1
u(V − Ψn

I+1)
)
.

Using (2.4), it yields

(Mn
u(un+1 − um))i = εu

hi

∆t
(un

i − um) − zuhi

λ2 um(3(Pn
i − Pm) − (Nn

i − Nm))

∀1 ≤ i ≤ I,

(Mn
u(un+1 − um))0 = γ0

u(Ψn
0) − um

(
− zu

α0
(Ψn

0 − ∆Ψ
pzc
0 ) + β0

u(Ψn
0)
)
,

(Mn
u(un+1 − um))I+1 = γ1

u(V − Ψn
I+1)−

um
( zu

α1
(V − ∆Ψ

pzc
1 − Ψn

I+1) + β1
u(V − Ψn

I+1)
)
.

We now apply these results to u = P and N, with respectively um = Pm, um = Pm, and um = Nm, um = Nm. For the
inner terms, we get ∀1 ≤ i ≤ I:

(Mn
P(Pn+1 − Pm))i =

hi

∆t
(
Pn

i − Pm) (
1 − 9∆t

λ2 Pm
)

+
3Pmhi

λ2 (Nn
i − Nm),

(Mn
N(Nn+1 − Nm))i =

hi

∆t
(Nn

i − Nm)
(

D1

D2
− ∆t
λ2 Nm

)
+

3Nmhi

λ2 (Pn
i − Pm).

Therefore, if ∆t verifies (2.14), we have (Mn
P(Pn+1 − Pm))i ≤ 0 and (Mn

N(Nn+1 −Nm))i ≤ 0 for all 1 ≤ i ≤ I. It remains
to prove that (Mn

u(un+1 − um))0 ≤ 0, (Mn
u(un+1 − um))I+1 ≤ 0 for u = P,N. But, (Mn

u(un+1 − um))0 = ξ0
u(Ψn

0) and
(Mn

u(un+1 − um))I+1 = ξ1
u(V − Ψn

I+1), with

ξ0
u(x) = γ0

u(x) − umβ0
u(x) + um zu

α0
x − um zu

α0
∆Ψ

pzc
0 ,

ξ1
u(x) = γ1

u(x) − umβ1
u(x) − um zu

α1
x + um zu

α1
∆Ψ

pzc
1 .

Using the definitions (2.1), we get

ξ0
u(x) = −umk0

uezua0
u x + um zu

α0
x − um zu

α0
∆Ψ

pzc
0 ,

ξ1
u(x) = −umm1

ue−zub1
u x − um zu

α1
x + um zu

α1
∆Ψ

pzc
1 .

The study of the variations of ξ0
u and ξ1

u for u = N, P shows that these functions are always increasing on an interval
(−∞, x̄] and then decreasing on [x̄,+∞). Therefore they reach a maximum value and the hypotheses (2.13) ensure that
the maximum value is always nonpositive. Then ξ0

P, ξ1
P, ξ0

N , ξ1
N are nonpositive functions on R.

Finally, we get that (Mn
P(Pn+1 − Pm))i ≤ 0 and (Mn

N(Nn+1 − Nm))i ≤ 0 for all 0 ≤ i ≤ I + 1. As Mn
P and Mn

N are
M-matrices, it concludes the proof of Proposition 2.4.

In the applications, we have λ2 ≈ 10−6 and D1
D2
≈ 10−14, so that the hypothesis on ∆t, (2.14), imposes ∆t ≈ 10−20.

It makes the decoupled scheme unusable in practice and motivates the study of the fully implicit scheme.
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2.3. Stability analysis of a fully implicit scheme
The scheme (S f i) is defined as a set of nonlinear equations at each time step. We need to prove the existence of a

solution to the nonlinear system of equations and to study the stability of the scheme.

Proposition 2.5. Assume (2.1)–(2.4) and that P0,N0 ∈ L∞(0, 1) satisfy 0 ≤ P0 ≤ Pm and 0 ≤ N0 ≤ Nm almost every-
where on (0, 1). Then, there exists a solution to the fully implicit scheme (S f i): ((Pn,Nn)n≥0, (Ψn)n≥1). Furthermore, if
∆Ψ

pzc
0 and ∆Ψ

pzc
1 verify (2.13), the solution to the scheme (S f i) satisfies the stability property (2.15).

Proof. In order to prove Proposition 2.5, we adapt some ideas developed by A. Prohl and M. Schmuck in [7].
First, we note that (P0,N0) is well defined by (2.9) and satisfies (2.15). Assume now that for any n ≥ 0, (Pn,Nn,Ψn)

is given and satisfies (2.15). Then, we will prove that there exists a solution (Pn+1,Nn+1,Ψn+1) to (S f i) and that

0 ≤ Pn+1
i ≤ Pm and 0 ≤ Nn+1

i ≤ Nm ∀0 ≤ i ≤ I + 1.

Therefore, let us consider the mapping

T µ
n : RI+2× RI+2 → RI+2× RI+2

(P, N) 7→ (P̃, Ñ)

defined, for µ > 0, by

−λ2(dΨi+ 1
2
− dΨi− 1

2
) = hi(3Pi − Ni + ρhl), 1 ≤ i ≤ I,

Ψ0 − α0dΨ 1
2

= ∆Ψ
pzc
0 ,

ΨI+1 + α1dΨI+ 1
2

= V − ∆Ψ
pzc
1 ,

εu
hi

∆t

(
(1 +

µ

εuλ2 )̃ui − µ

εuλ2 ui − un
i

)
+ Fu,i+ 1

2
− Fu,i− 1

2
= 0,

1 ≤ i ≤ I, for u = P,N,

Fu,i+ 1
2

=
B(zuhi+ 1

2
dΨi+ 1

2
)̃ui − B(−zuhi+ 1

2
dΨi+ 1

2
)̃ui+1

hi+ 1
2

,

0 ≤ i ≤ I, for u = P,N,

−Fu, 1
2

= r0
u (̃u0,Ψ0) = β0

u(Ψ0 )̃un+1
0 − γ0

u(Ψ0), for u = P,N,

Fu,I+ 1
2

= r1
u (̃uI+1,ΨI+1,V) = β1

u(V − ΨI+1 )̃uI+1 − γ1
u(V − ΨI+1), for u = P,N.

This mapping T µ
n is defined by two successive steps:

• the first step defines an intermediate vector Ψ as the solution of a linear system of equations,

• the second step defines P̃ and Ñ as solutions of linear systems of equations, very close to the systems involved
in the decoupled scheme (there is an additional term on the diagonal of the matrices and the right-hand-sides
are slightly modified).

Therefore, it is a continuous mapping from RI+2 × RI+2 to itself. Applying the proof of stability of Proposition 2.4,
we obtain that T µ

n preserves the set:

K = {(P,N) ∈ RI+2 × RI+2; 0 ≤ Pi ≤ Pm, 0 ≤ Ni ≤ Nm,∀0 ≤ i ≤ I + 1}
as long as (2.13) is satisfied and ∆t verifies :

∆t ≤ µmin
(

1
9Pm ,

1
Nm

)
.

Then, thanks to Brouwer’s theorem, we conclude that T µ
n has a fixed point in K . Moreover, this fixed point, with

the corresponding Ψ, is a solution to the scheme (S f i). It shows the existence of a solution to the scheme and the
stability properties (2.15). As this result holds for any µ, the scheme is unconditionnally stable.
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3. Numerical schemes for the complete corrosion model

3.1. Change of variables

The corrosion model involves moving boundaries through (1.5). The system of equations is defined on the space-
time domain

⋃
0≤t≤T [X0(t), X1(t)]×{t}. The size of the domain at time t is L(t) = X1(t)−X0(t). An Eulerian description

is chosen in order to handle the motion of the boundaries; the physical spatial domain is substituted by a computational
one. Therefore, we introduce the following change of variables:

(x, t) 7→ (ξ(x, t) =
x − X0(t)

X1(t) − X0(t)
, t)

⋃

0≤t≤T

[X0(t), X1(t)] × {t} → [0, 1] × [0,T ]

and to every function u (respectively Ψ) defined on
⋃

0≤t≤T [X0(t), X1(t)] × {t} we associate a function ū (respectively
Ψ̄) defined on [0, 1] × [0,T ] such that u(x, t) = ū(ξ(x, t), t) (respectively Ψ(x, t) = Ψ̄(ξ(x, t), t)). Then, we have:

∂tu = ∂tū − 1
L(t)

(X′0(t) + ξL′(t))∂ξū

Ju =
1

L(t)
(−∂ξū − zuū∂ξΨ̄) =

1
L(t)

Jū.

But, using the fact that ξ∂ξū = ∂ξ(ξū) − ū, we get

∂tu =
1

L(t)

(
∂t

(
L(t)ū

)−∂ξ((X′0(t) + ξL′(t))ū
))
.

Finally, forgetting the bars, the convection-diffusion equation with boundary conditions (1.8) rewrites in the new
variables:

εuL(t)∂t(L(t)u) + ∂ξJu − εu∂ξ
(
L(t)(X′0(t) + ξL′(t))u

)
= 0,

Ju = −∂ξu − zuu∂ξΨ, ξ ∈ (0, 1) (3.1a)

−Ju − εuuL(t)X′0(t) = L(t)r0
u(u,Ψ), ξ = 0 (3.1b)

Ju + εuuL(t)X′1(t) = L(t)r1
u(u,Ψ,V), ξ = 1. (3.1c)

We note that in the new variables, the convection-diffusion equation (3.1a) contains an additional convection term
coming from the displacement of the interfaces. Therefore, (3.1) is equivalent to the following formulation:

εuL(t)∂t(L(t)u) + ∂ξ Ĵu = 0,

Ĵu = −∂ξu − (
zu∂ξΨ + εuL(t)(X′0(t) + ξL′(t))

)
u, ξ ∈ (0, 1), (3.2a)

−Ĵu = L(t)r0
u(u,Ψ), ξ = 0, (3.2b)

Ĵu = L(t)r1
u(u,Ψ,V), ξ = 1. (3.2c)

The equation on the electrostatic potential (1.4) rewrites in the new variables:

− λ2

L(t)2 ∂
2
ξξΨ = 3P − N + 2C + ρhl, ξ ∈ (0, 1), (3.3a)

Ψ − α0

L(t)
∂ξΨ = ∆Ψ

pzc
0 , ξ = 0, (3.3b)

Ψ +
α1

L(t)
∂ξΨ = V − ∆Ψ

pzc
1 , x = 1. (3.3c)
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Finally, the full DPCM model (1.1)–(1.5) rewritten on the fixed domain is given by (3.2) applied for u = N, P,C,
(3.3) and the moving boundary equations:

dX0

dt
= v0

d(t) +
dX1

dt
(1 − Ωox

mΩFe
), (3.4a)

dX1

dt
= − D3

4D1

ΩFe

Ωox

ĴC(1)
L(t)

= − D3

4D1

ΩFe

Ωox
r1

C(C(1, t),Ψ(1, t),V), (3.4b)

with v0
d(t) = k0

de−5a0
dΨ(0,t),∀t ≥ 0. (3.4c)

3.2. Numerical scheme

Let us now adapt the scheme (S f i) to the new system of equations (3.2) (for u = N, P,C), (3.3), with the moving
boundary equations (3.4). The notations for the mesh are the same as in Section 2 but with the points denoted by
(ξi)0≤i≤I+1 instead of (xi)0≤i≤I+1. Let ∆t be the time step.

The unknowns of the scheme are:

• the densities (Nn
i , P

n
i ,C

n
i )0≤i≤I+1,n≥0 and the electrostatic potential (Ψn

i )0≤i≤I+1,n≥1,

• the position of the interfaces (Xn
0 , X

n
1)n≥0.

The size of the domain (Ln)n≥0 is defined by Ln = Xn
1 − Xn

0 for all n ≥ 0.
The discretization of equations (3.2a), (3.3a) leads to:

εuLn+1hi
Ln+1un+1

i − Lnun
i

∆t
+ Gn+1

u,i+ 1
2
− Gn+1

u,i− 1
2

= 0, 1 ≤ i ≤ I, for u = P,N,C, (3.5a)

− λ2

(Ln+1)2 (dΨn+1
i+ 1

2
− dΨn+1

i− 1
2
) = hi(3Pn+1

i − Nn+1
i + 2Cn+1

i − ρhl), 1 ≤ i ≤ I, (3.5b)

where the numerical fluxes for Ψ are still given by (2.6a) and for u = P,N,C by

Gn+1
u,i+ 1

2
=

1
hi+ 1

2

(
B
(
hi+ 1

2

(
zudΨn+1

i+ 1
2

+ εuvn+1
i+ 1

2

))
un+1

i − B
(
−hi+ 1

2

(
zudΨn+1

i+ 1
2

+ εuvn+1
i+ 1

2

))
un+1

i+1

)
, 0 ≤ i ≤ I, (3.6)

with the following approximation of the artificial drift velocity:

vn+1
i+ 1

2
= Ln+1


Xn+1

0 − Xn
0

∆t
+ ξi+ 1

2

Ln+1 − Ln

∆t

 . (3.7)

For the boundary conditions (3.3b), (3.3c), (3.2b), (3.2c), we respectively write:

Ψn+1
0 − α0

Ln+1 dΨn+1
1
2

= ∆Ψ
pzc
0 , (3.8a)

Ψn+1
I+1 +

α1

Ln+1 dΨn+1
I+ 1

2
= V − ∆Ψ

pzc
1 , (3.8b)

−Gn+1
u, 1

2
= Ln+1r0

u(un+1
0 ,Ψn+1

0 ), (3.8c)

Gn+1
u,I+ 1

2
= Ln+1r1

u(un+1
I+1 ,Ψ

n+1
I+1 ). (3.8d)

For the discretization of the moving interface equations (3.4), two different choices will be studied: either we use
an Euler explicit in time scheme for (3.4) or we use an Euler implicit in time scheme.

11



Explicit scheme for the moving interface equations
In this case, the scheme for (3.4) writes:

Xn+1
0 − Xn

0

∆t
= k0

de−5a0
dΨn

0 +
Xn+1

1 − Xn
1

∆t
(1 − Ωox

mΩFe
), (3.9a)

Xn+1
1 − Xn

1

∆t
= − D3

4D1

ΩFe

Ωox
r1

C(Cn
I+1,Ψ

n
I+1,V), (3.9b)

and we define Ln+1 = Xn+1
1 − Xn+1

0 .
With this choice of discretization, the computation of (Xn+1

0 , Xn+1
1 , Ln+1) is decoupled from the computation of

(Pn+1
i ,Nn+1

i ,Cn+1
i ,Ψn+1

i )0≤i≤I+1 at each time step. In the sequel, the scheme (3.5)–(3.9) will be denoted by (Se
tot).

Implicit scheme for the moving interface equations
In this case, the scheme for (3.4) writes:

Xn+1
0 − Xn

0

∆t
= k0

de−5a0
dΨn+1

0 +
Xn+1

1 − Xn
1

∆t
(1 − Ωox

mΩFe
), (3.10a)

Xn+1
1 − Xn

1

∆t
= − D3

4D1

ΩFe

Ωox
r1

C(Cn+1
I+1 ,Ψ

n+1
I+1 ,V) (3.10b)

and we define Ln+1 = Xn+1
1 − Xn+1

0 .
With this choice of discretization for (3.4), the computation of (Xn+1

0 , Xn+1
1 , Ln+1) at each time step is completely

coupled with the computation of (Pn+1
i ,Nn+1

i ,Cn+1
i ,Ψn+1

i )0≤i≤I+1. Indeed, the scheme (3.5)–(3.8) and (3.10), which
will be denoted in the sequel (Si

tot), defines a nonlinear system of equations at each time step, whose unknowns are

((Pn+1
i ,Nn+1

i ,Cn+1
i ,Ψn+1

i )0≤i≤I+1, Xn+1
0 , Xn+1

1 , Ln+1).

3.3. Study of the galvanostatic case

Up to now, we have considered V as a given applied potential (the potentiostatic case). For the galvanostatic case,
V is defined by the supplementary equation (1.7). From the numerical point of view, this supplementary equation will
be approximated by:

−3
(
Gn+1

P,I+ 1
2

+
D3

4D1
Gn+1

C,I+ 1
2

)
+

D2

D1
Gn+1

N,I+ 1
2

= 0 ∀n ≥ 0. (3.11)

It adds one unknown and one nonlinear equation to the previous system of nonlinear equations (Si
tot). In the sequel,

we will denote this new scheme (Si,gc
tot ).

4. Implementation of the designed numerical methods

4.1. Explicit handling of the boundary positions

We start with the description of the implementation of the scheme (Se
tot) which involves the explicit handling of

the boundary positions. The nonlinear system corresponding to (Se
tot) is written as:

G(X) = 0,

where X ∈ R4(I+2) is the vector of unknowns, ordered as follows:

X =
(
Ψn+1

0 , Pn+1
0 ,Nn+1

0 ,Cn+1
0 ,Ψn+1

1 , Pn+1
1 ,Nn+1

1 ,Cn+1
1 , · · · , · · ·

)t
, (4.1)
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and G is the function from R4(I+2) to R4(I+2) defined by

G(X) =



Ψn+1
0 − α0

Ln+1 dΨn+1
1
2
− ∆Ψ

pzc
0

∆tGn+1
P, 1

2
+ ∆tLn+1r0

P(Pn+1
0 ,Ψn+1

0 )

∆tGn+1
N, 1

2
+ ∆tLn+1r0

N(Nn+1
0 ,Ψn+1

0 )

∆tGn+1
C, 1

2
+ ∆tLn+1r0

C(Cn+1
0 ,Ψn+1

0 )

− λ2

(Ln+1)2 (dΨn+1
3
2
− dΨn+1

1
2

) − h1(3Pn+1
1 − Nn+1

1 + 2Cn+1
1 − ρhl)

εPLn+1h1

(
Ln+1Pn+1

1 − LnPn
1

)
+ ∆t

(
Gn+1

P, 3
2
− Gn+1

P, 1
2

)

εN Ln+1h1

(
Ln+1Nn+1

1 − LnNn
1

)
+ ∆t

(
Gn+1

N, 3
2
− Gn+1

N, 1
2

)

εC Ln+1h1

(
Ln+1Cn+1

1 − LnCn
1

)
+ ∆t

(
Gn+1

C, 3
2
− Gn+1

C, 1
2

)

...

Ψn+1
I+1 +

α1

Ln+1 dΨn+1
I+ 1

2
−

(
V − ∆Ψ

pzc
1

)

∆tGn+1
P,I+ 1

2
−

(
∆tLn+1r1

P(Pn+1
I+1 ,Ψ

n+1
I+1 )

)

∆tGn+1
N,I+ 1

2
−

(
∆tLn+1r1

N(Nn+1
I+1 ,Ψ

n+1
I+1 )

)

∆tGn+1
C,I+ 1

2
−

(
∆tLn+1r1

C(Cn+1
I+1 ,Ψ

n+1
I+1 )

)



. (4.2)

Newton’s method is used in order to solve the nonlinear system. This strategy in particular can take advantage of
the fact that the solution for tn can be taken as initial value. The Jacobian matrix, denoted by A, has a band structure,
which in a standard manner allows LU factorization. Therefore each linear system in Newton’s iteration can be solved
in O(I) floating point operations.

4.2. Implicit handling of the boundary positions
We describe the algorithm used to solve the nonlinear system (Si

tot) in section 3.2. A similar algorithm has been
implemented for the scheme (Si,gc

tot ) of section 3.3. The nonlinear system (Si
tot) is written as:

F(Y) = 0,

where Y ∈ R4(I+2)+2 is the vector of unknowns, ordered as follows:


X(
Xn+1

0 , Xn+1
1

)t

 , (4.3)

and F is the function from R4(I+2)+2 to R4(I+2)+2 defined by:

F(Y) =


G(X)

(Xn+1
0 − Xn

0) −
(
∆tk0

de−5a0
dΨn+1

0 + (Xn+1
1 − Xn

1)(1 − Ωox

mΩFe
)
)

(Xn+1
1 − Xn

1) + ∆t
D3

4D1

ΩFe

Ωox
r1

C(Cn+1
I+1 ,Ψ

n+1
I+1 ,V)

 .

(4.4)
Again, Newton’s method is applied to solve this nonlinear system of equations. The Schur complement technique is
applied with the following block decomposition of the Jacobian matrix:

JF(Y) =


A E

F D


∈ M4(I+2)+2 (4.5)

with A = JG(X) ∈ M4(I+2), E ∈ M4(I+2),2, F ∈ M2,4(I+2) and D ∈ M2.
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Splitting the unknown vector and the right-hand-side as follows:

JF(Y)


w1

w2


=


v1

v2


(4.6)

with w1 and v1 in ∈ R4(I+2) and w2 and v2 in ∈ R2, we have:

(D − FA−1E)w2 = v2 − FA−1v1, (4.7)

w1 = A−1v1 − A−1Ew2. (4.8)

Solving (4.7)-(4.8) requires three solutions of linear systems associated to the banded matrix A, whose half-
bandwidth is bounded by 7 thanks to the ordering of the unknowns described by (4.1). Thus, the LU factorization
of the matrix A can be computed in O(I) floating operations, and since all the other computations required for one
Newton iteration are (at most) of the same order, the CPU-time for each of these iterations is in O(I).

4.3. Handling of the galvanostatic case

Initially, equation (3.11) of the galvanostatic scheme (Si,gc
tot ) has been handled by a fixed point iteration to detect

V . After augmenting system (4.4) by equation (3.11) and the unknown V , the resulting linear system still can be well
handled by the Schur complement approach described in 4.2.

4.4. A priori spatial refinement of boundary layers

As the occurrence of boundary layers is a well known feature to be expected for solutions of coupled Nernst-
Planck-Poisson equations, an a priori refinement of the spatial mesh in the vicinity of the domain boundaries is
performed. The position of the discretization nodes in the domain [0, 1] is calculated from the zeros of the Tchebyshev
polynomials of second kind:

ξi =
1
2

(
1 − cos

[
π · i

I + 1
])

0 ≤ i ≤ I + 1.

4.5. Adaptive time step control and detection of pseudo steady states

In general, at the beginning of a simulation run, changes in the solution are much larger than at later stages.
Therefore, an adaptive time step control technique based on the approach of Johnson et al. [8] has been implemented.
As a result, the time step size will be kept smaller as long as one observes high gradients, generally at the beginning
of the simulation. Time step sizes are much larger when the solution is close to equilibrium. As a result, the control of
the time step size can guarantee fast simulations preserving good accuracy and avoiding high computational cost. The
stability of the fully implicit approach allows to control the size of the time steps without taking into account possible
stability constraints.

The time integration procedure is described as follows. First, sampling times T 0, T 1, . . . , T N subdividing the
time interval [T 0,T N] are defined. The computation of the solution is enforced at these times, which makes possible
comparisons between the adaptive time step size method with different control parameters and the approach using a
constant time step without the need to interpolate solutions. In practice, coarser sampling intervals are considered at
the end of the simulation when the solution is expected to become smoother. At the beginning, these intervals are
arranged in a finer way. Then, the time discretization T J + tJ,k within each sampling interval [T J , T J+1] is carried out
by the following adaptive method:

i. Given an initial solution X0, a solution XJ,k is computed on each sampling interval [T J , T J+1] at each time step
T J + tJ,k, for T J ≤ T N .

ii. At each time step, Newton’s method is used to solve the system F(X) = 0.
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iii. The time integration involves a control of the time step size based on the difference between two successive time
iterates ‖XJ,k+1 − XJ,k‖. For that purpose, a tolerance δJ,k

opt is introduced, which ensures the appropriate variation
of the time step size:

EJ,k = ‖XJ,k+1 − XJ,k‖ ≤ WX δJ,k
opt. (4.9)

Here, WX is a vector of weights related to the unknowns X. The weights are adjusted considering the errors
between two successive time iterates at the beginning of simulation.

iv. If the error EJ,k is not small enough, the time step size is divided by 2 and the next iterate XJ,k+1 at time
T J + tJ,k + ∆tJ,k+1 is computed again. If not, the next iterate is accepted and the next time step size is updated:

∆tJ,k+2 = min
X

∆tJ,k+1 WX δJ,k
opt

‖XJ,k+1 − XJ,k‖ .

v. We choose an appropriate minimum time step size ∆tmin, which ensures bounded relative error EJ,k, J ≤ J0, k ≤
k0 during the first J0, k0 time steps. Then we enable the time step size control by equation (4.9) from the J0, k0+1
time steps.

The outline of the algorithm for adaptive time step control is given as follows:

(1) Compute the initial data X0

(2) ∆t0,1 = ∆tmin

(3) For J = 0 to N

(3.1) For each time step T J + tJ,k ≤ T J+1

(3.1.a) Perform Newton’s method to compute the new iterate XJ,k+1, i.e.

∀ν, {
X
}J,k+1,ν+1

=
{
X
}J,k+1,ν −

( I
∆tJ,k+1 +

{
JF(X)

}J,k+1,ν
)−1
·
({

F(X)
}ν)

(3.1.b) If ‖XJ,k+1 − XJ,k‖ ≤ WX δJ,k
opt

(3.1.b) Then accept XJ,k+1, and choose

∆tJ,k+2 = min
X

∆tJ,k+1 WX δJ,k
opt

‖XJ,k+1 − XJ,k‖

(3.1.b) else ∆tJ,k+1 = ∆tJ,k+1/2

Of particular interest are pseudo steady states of the system which are characterized by the equilibrium between
the rates of oxide layer creation at the metallic interface and oxide layer dissolution at the solute interface. As a
consequence, one would observe a moving oxide layer of constant thickness. In terms of the transformed system
(3.2)-(3.4) such states are characterized by the stationarity of the unknowns Ψ,N, P,C and the oxide layer thickness
L, while the boundary positions X0(t), X1(t) are still evolving.

Therefore, we assume that the system has reached a pseudo steady state and terminate the simulation if the change
in the thickness of the oxide layer is small compared to the velocity of the metallic interface:

∣∣∣∣(XJ,k+1
1 − XJ,k

1 ) − (XJ,k+1
0 − XJ,k

0 )
∣∣∣∣

∣∣∣XJ,k+1
1 − XJ,k

1

∣∣∣
< ε.
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Potentiostatic case Galvanostatic case
(Tmax = 601 h) (Tmax = 219 h)

CPU time/s Newton its. CPU time/s Newton its.
(Se

tot), 8.71 · 103 221 793 4.97 · 104 1 316 084
∆t = 5 · 10−3 h

(Si
tot) 1.49 · 104 240 526 3.72 · 103 111 472

fixed ∆t = 5 · 10−3 h
(Si

tot) 2.48 · 102 4 027 3.79 · 102 6 233
adaptive time step
(∆tmin = 5 · 10−3 h)

Table 5.1: Comparison of the performance of the different solution strategies.

Potentiostatic case, Galvanostatic case,
error of X0, X1 and L error of X0, X1 and L

Figure 5.1: Estimated error: difference between the boundary positions for different grid sizes and a those of a reference solution computed on a
grid with 30000 points after 2 h, for δ = 0.1 and ∆tmin = 5 · 10−3 h.

5. Performance of the numerical methods

5.1. Comparison of the different numerical strategies

In this Section, we compare the following strategies presented in Section 4:

• Explicit handling of the boundary positions: (Se
tot). For the galvanostatic case, we use a fixed point method to

calculate the corrosion potential.

• Implicit handling of the boundary positions: (Si
tot) and (Si,gc

tot ). In the galvanostatic case, the equation for V is
added in the nonlinear system of equations. We will compare the results obtained with a fixed time step and
with the adaptive time step strategy.

The results in this section have been obtained using a model without the boundary velocity terms in (1.1b), (1.1c),
(1.2b), (1.2c), (1.3b), (1.3c). No significant difference to the numerical performance of the full model has been
observed.

Table 5.1 presents for all cases the total number of Newton iterations required during a given simulation and the
corresponding CPU time. For the adaptive time step approach, the parameter δJ,k

opt has been fixed to δJ,k
opt = 0.1 and the

weightsWX are:
(
WΨ = 0.05, WP = 0.05, WN = 0.05, WC = 0.1,WV = 0.05, WX0 = 0.5, WX1 = 0.01

)
.
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Potentiostatic case, Galvanostatic case,
L2 error norm of density profiles. L2 error norm of density profiles.

Figure 5.2: Estimated error: difference between the discrete solutions for different grid sizes and a reference solution computed on a grid with
30000 points after 2 h, for δ = 0.1 and ∆tmin = 5 · 10−3 h.

Potentiostatic case Galvanostatic case

Figure 5.3: Estimated error: difference after 2h between discrete solutions with 2000 grid points for different values of a fixed time step ∆t and a
reference solution computed with ∆t = 2 · 10−6 h.

We note that the use of a constant time step enforces the algorithm to proceed over the full simulation interval
with the small time step required by the first time iteration. The use of the adaptive time step approach together with
implicit handling of the boundary positions provides satisfactory times of computation.

5.2. Order of convergence in space and time

Since no exact solution is available for this problem, we estimate the error by calculating the difference to a
reference solution computed on a fine space-and-time grid.

Figures 5.1 and 5.2 respectively report the error for the interface positions and the density profiles for the schemes
(Si

tot) and (Si,gc
tot ) (see sections 4.2 and 4.3). Grid sizes range from h = 10−3 to h = 2 × 10−2, and the time step was

chosen adaptively. For all the plotted quantities, the second order convergence in space is confirmed. Such order can
be expected due to the choice of the Bernoulli function in the definition of the numerical fluxes, as it has been proven
for model problems in [5, 6].

In order to check the convergence in time of our method, we have run simulations with some fixed time steps
and compare the obtained solutions to a reference solution computed with a small time step. Figure 5.3 demonstrates
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Potentiostatic case (Tmax = 601 h) Galvanostatic case (Tmax = 219 h)
Time steps Newton steps average Time steps Newton steps average

1 453 4 027 2.77 1 740 6 233 3.58

Table 5.2: Average number of Newton steps per time step

T (K) pH Eredox (V/NHE) aFe+2 (mol · m3)
298 7 −0.2 1 · 10−8

aFe+3 (mol · m3) R (J · K · mol) k (J · K−1) F (C · mol−1)
2.7496 · 10−25 8.32 1.38 · 10−23 9.6487 · 104

χ0 (F · m−2) me kg ΩFe (m3 · mol) nDOS (mol/(m3 J))
8.854 · 10−12 9.11 · 10−31 7.105 · 10−6 1.35 · 1024

L0 (m) Ωox (m3 · mol) χ D1 (m2 · s−1)
3 · 10−9 4.474 · 10−5 10 1 · 10−20

D2 (m2 · s−1) D3 (m2 · s−1) Γ0 (F · m−2) Γ1 (F · m−2)
1 · 10−6 1 · 10−20 0.5 1

∆Ψ
pzc
0 ∆Ψ

pzc
1 V (V/ENH) k0

Fe (m · s−1)
0.392 − 0.059 pH 0 Vimposed 50

m0
Fe (m · s−1) k1

Fe (m · s−1) m1
Fe (m · s−1) k0

e (m · s−1)
6.65203 1 0.1 1 · 10−8

m0
e (mol/(m2 s)) k0

r (m · s−1) m0
r (mol/(m2 s)) k0

ox (mol/(m2 s))
3.80943 · 10−5 3.67525 1 · 10−9 1 · 1041

m0
ox (mol/(m2 s)) k1

ox (mol/(m2 s)) m1
red (mol/(m2 s)) k0

d(pH) (mol/(m2 s))
10 1 · 10−6 1 · 10−5 0.2 · 10−pH

(
a0

u, b
0
u
)

(u = P,N,C, r)
(
a1

u, b
1
u
)

(u = P,C) a0
d(

0.5, 0.5
) (

0.5, 0.5
)

0

Table 6.1: Physical parameters of the test problem

the first order convergence in time for the density profiles and the free corrosion potential (in the galvanostatic case).
Similar results are obtained for the interface positions.

5.3. Newton convergence

Concerning the convergence rate of Newton’s method, Table 5.2 shows that the average number of Newton steps
per time step is small. The main deviation from this average number happens during the first time step. In general, we
observe quadratic convergence of Newton’s method.

6. Numerical experiments

The physico-chemical parameters for claystones chosen are based on the values found in the literature [9], where
potentiostatic measurements have been reported for the potential range from −0.15 V/NHE to 1.05 V/NHE.

The other parameters of the DPCM, which describe the metal and oxide layer characteristics, the kinetics and the
electrostatic potential are discussed in Ref. [1].
Some of them can be found in the literature [10, 11, 12, 13, 14, 15, 16, 17, 18]. Table 6.1 gives the values.

6.1. Potentiostatic case

Figure 6.1(a) shows the current density after reaching constant thickness i.e. constant and equal interface veloc-
ities. For the three pH values, the current density becomes potential independent at less negative potentials. This
corresponds to the well-known passive current density [19]. It must be outlined that the passive current decreases with
pH. Such behavior is well documented in the literature [20]. For the same data, Figure 6.1(b) plots the dependency
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(a) Current density (b) Oxide layer thickness

Figure 6.1: Current density and oxide layer thickness after reaching pseudo steady state vs. applied potential, for different pH values in claystones.
Parameter values are given in Table 6.1.

Figure 6.2: Thickness of the oxide layer (left) and corrosion rate (right) depending on pH value.

of the oxide layer thickness on the applied potential. The constant thickness reaches zero at certain value of the po-
tential called passivation potential Ep [19]. For values of the applied potential less than Ep, the surface of the metal
is not covered by any oxide layer. From the figure, we can read the passivation potentials Ep =-0.45V/NHE at pH 7,
Ep =-0.6V/NHE at pH 8, and Ep =-0.64V/NHE at pH 9.

6.2. Galvanostatic case

The left plot in Figure 6.2 shows the dependency of the thickness of the oxide layer on the pH value. The so-
called steady state thickness follows a logarithmic law with a slope equal to 1. This behavior is directly linked to
the chosen pH dependency k0

d = 0.2 · 10−pH . The thickness reaches zero at the passivation pH value which is 7.2 for
the data used. This feature of the passivity is similar to the passivation potential Ep but for spontaneous passivation.
The value predicted is in accordance with the literature [21]. Please note that the time to reach a constant interface
velocity (pseudo steady state) strongly depends on the pH value, and may reach thousands of years in concrete. From
an experimental point of view, the pseudo steady state is considered as reached when the thickness does not evolve
significantly over several hours. This explains why the experimental curves published in the literature correspond to
the curve obtained for 1 month. The break of the slope has been attributed to a change in the dissolution mechanism.
The results presented here indicate that the break of the slope results mainly from the fact that the experimental time
was too short to reach an actual pseudo steady state.
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Figure 6.3: Free corrosion potential vs. pH value.

The right plot in Figure 6.2 shows the evolution of the corrosion rate with respect to the pH value. The pseudo
steady state corrosion rate decreases with the pH value with an order equal to -1 (linear in log plot). This was an
expected result because in anaerobic condition the oxidant is water or more precisly the proton [19]. As the proton
activity in the solution has been defined as 10−pH , the decrease shown in the right plot in Figure 6.2 simply depicts
that in pseudo steady state, the corrosion rate is directly proportional to the activity of protons in solution.

In order to perform the calculations corresponding to figures 6.2 and 6.3, the number of nodes in the discretization
grid has been significantly increased in order to accommodate the comparably thick oxide layers in the case of high
pH values. As a consequence, the computation time to obtain these results was 32.9h (for the full range of pH values).
Fine tuning of the numerical parameters may allow to reduce this number if necessary.

6.3. Further remarks

The numerical experiments in both cases (potentiostatic and galvanostatic) suggest the existence of a pseudo
steady state which is characterized by a constant thickness of the oxide layer and a constant velocity of the interface.
The time to reach this steady state strongly depends on the pH value of the surrounding media. Future work will focus
on the mathematical analysis of this steady state.

While the presented data show that the model delivers meaningful results, we need to note that several parameters
of the model, in particular the Butler Volmer coefficient a0

d, are subject to discussion in the literature.
While verification of the model by comparison to analytical results has been performed [1], future work among

other topics will focus on comparison to experimental results.
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