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Abstract

We investigate the regularity of the weak solution to elliptic transmission problems that

involve two layered anisotropic materials separated by a boundary intersecting interface.

Under a compatibility condition for the angle of contact of the two surfaces and the bound-

ary data, we prove the existence of square-integrable second derivatives, and the global

Lipschitz continuity of the solution. We show that the second weak derivatives remain in-

tegrable to a certain power less than two if the compatibility condition is violated.

1 Introduction

The paper is concerned with the Lipschitz continuity of weak solutions to a class of elliptic
equations with transmission conditions that occurs in manifold areas of mathematical physics.
We consider a bounded domain Ω ⊂ R

3 partitioned by a 2−dimensional interface S into two
disjoint subdomains Ωi (i = 1, 2) that represent two materials, or two different phases or the
same material. The materials are layered, in the sense that the interface S is a free surface,
whose intersection with the outer boundary Γ of the domain Ω is a closed curve. We study the
regularity of the function u : Ω → R that solves the problem

− div(κ∇u) = f in Ω, (1)

[u]S = 0 ,

[

−κ ∂u

∂nS

]

S

= 0 on S , (2)

in connection to one of the following boundary conditions on the surface Γ := ∂Ω:

−κ ∂u

∂nΓ
= Q on Γ[= Problem (PN)], (3)

u = ue on Γ[= Problem (PD)] . (4)

In the equation (1), f is a function, and the coefficient κ is assumed to be material-dependent,
that means

κ = κi(x) if x ∈ Ωi , (5)

with (at least) continuous mappings κi : Ωi → R
3×3 (i = 1, 2). The conditions (2) are the

transmission conditions. The symbol [·]S denotes the jump of a quantity across S, and nS is
the unit normal to the surface S that points into Ω2.

In our regularity analysis, we want to include the boundary condition (3) where the flux Q is
prescribed (Neumann problem (PN)), as well as the Dirichlet boundary condition (4) (= (PD)).
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Conditions of Robin type such as Q = β (u − ue), or even Q = β (u4 − u4
e) (in the context

of heat-transfer), are also contained in the analysis via standard fixed-point arguments. We
address the problem (1), (2), with either (3) or (4) as (P ). The problem (P ) is a classical elliptic
transmission problem that for instance occurs in the context of phase transitions. For Stefan type
problems, precisely for stationary heat transfer problems with a liquid-solid phase transition, it
is essential to obtain bounded temperature gradients. But the relevance of (P ) is obviously
not restricted to the context of phase transitions, and there is a corresponding amount of worth
mentioning mathematical studies.

For transmission conditions near surfaces of class C2, it has been known for a relatively long
time that the solution is globally in W 2,2 up to the interface (the paper [Sav98] gives the refer-
ence [Sta56] as the pioneering work for this result; the transmission problem with interfaces in
C2 and scalar, piecewise C1 coefficients was also studied as an auxiliary problem in [LS60]; the
full anisotropy was considered in Ch. 3, paragraph 16 of the book [LU68]). Lipschitz continuity,
for the case that the jumps of the coefficients occurs at not intersecting surfaces of class C2,
was proved in the book [LU68] Ch. 3, paragraph 16, and for surfaces of class W 2,q, q > 3 in
the paper [LRU66]. These results were recently confirmed in [LV00] for interfaces of class C1,α

(α > 0). The C1,α assumption is crucial, since for anisotropic materials, the Lipschitz continuity
seems to go lost if the interfaces are only of class C1. In the paper [ERS07], it was proved that
∇u ∈ W 1,q for all q < ∞ if the discontinuity of the coefficients occurs at not intersecting
interfaces of class C1.

For transmission conditions at piecewise smooth surfaces, the higher integrability of ∇u to a
power larger than two is known to become arbitrary little near interior edges, in dependence
on the opening angle of the interface, and on a so-called ’quasi-monotonicity condition’ for the
coefficient matrix: see [EKRS07], [ERS07]. From this point of view, the Lipschitz continuity result
in [LV00] in two space dimensions, section 8, where the interface is given by two circles that
intersect in a point (cusp point), exhibits somewhat exceptional behaviour.

The junction Γ∩S of an interface and the outer boundary does not behave as bad as an interior
edge. The research on regularity up to such junctions in three dimensions has recently attained
very important successes.

In [Sav98], section 5, an analogon to the problem (P ) is studied in general Lipschitz domains
Ω with a scalar coefficient κ. Besov space methods are applied to prove that if Γ and S are
Lipschitz surfaces, and if a local cone condition holds at every point of the curve Γ ∩ S, then
u ∈ W s,2(Ω) globally, for s ≤ 3/2 arbitrary. The paper [NS99] investigate a similar problem
in a polyhedral domain. The methods of edge and corner asymptotics are applied to obtain the
global W 3/2+δ,2(Ω) regularity of the solution. In the model problem studied in the recent paper
[HDKRS08], the outer boundary Γ is polyhedral, and the interface S is planar, but matrix-valued
coefficients κ and mixed boundary conditions are also admitted (see also [EKRS07] for the
Dirichlet problem). Via diffeomorphic transformations, very general constellations of curvilinear
polyhedral domains with C1 interfaces are covered. In these papers the integrability of ∇u to a
power q0 > 3 is proved.

Beside the singularity of the outer boundary Γ, the problem that more than two materials are
meeting each other near Γ (multimaterial edges), and even in the interior of Ω (intersecting
surfaces), is another topic present in recent research on transmission problems. It seems that
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the integrability of ∇u to a power q0 > 3 can be proved in very general settings ([EKRS07],
[HDKRS08]), or the W s,2 regularity ([Mer03]).

In the context of crystallization problems however, one has to rely on the Lipschitz continuity of u
(see [LU70], [Ura73], [SS76]). On the one hand, regularity results near globally smooth surfaces
can at most be used in the context of (P ) to prove the regularity in domains U ⊂ Ω that have
a positive distance to the curve Γ ∩ S. This is also the case for the generalized transmission
problem of [Sch60], even though the interface is smoothly embedded in the boundary of two
touching C∞−domains. On the other hand, the optimal results valid for Lipschitz domains, the
W s,2 regularity (s < 3/2 + δ) or the W 1,q0 regularity with q0 > 3, are still far away from the
goal.

It therefore seems that sufficient conditions for the existence of square-integrable second deriva-
tives, and for the boundedness of ∇u near to the intersection of two C2 surfaces is not yet
investigated, and that to our best knowledge, the results of the present paper are new. Besides,
they rely on the recent advances of [HDKRS08].

2 Notations and statement of the main result

2.1 Notations

Throughout the paper, Ω denote a bounded domain with boundary Γ of class C2. There are a
free hypersurface S ⊂ Ω of class C2 such that S ∩ Γ is a closed curve, and two disjoint open
sets Ωi ⊂ Ω (i = 1, 2) such that the partition Ω \ S = Ω1 ∪ Ω2 is valid.

The outward unit normal to Γ is denoted by nΓ, and nS denotes the unit normal to S that points
into Ω2. We set Γ2 := ∂Ω2 ∩ Γ, Γ1 := ∂Ω1 ∩ Γ. The angle of contact α ∈ [0, π] of the
surfaces Γ and S is defined on the curve Γ ∩ S via

cosα := nS · nΓ, sinα :=
√

1 − cos2 α on Γ ∩ S . (6)

Remark 2.1 (Data extension). Since S is of class C2, we loose no generality in assuming that
S is also defined outside of Ω. Otherwise, we always will find an extension surface S ′ ∈ C2

such that S is compactly included in the interior of the surface S ′. For ρ > 0, define Ωρ :=
{x ∈ Ω : dist(x, S) < ρ}. Choosing ρ ≤ ρ0(S) sufficiently small, there is for all x ∈ Ωρ a
unique projection y(x) ∈ S such that |x− y| = dist(x, S). Moreover, since S is defined in a
neighbourhood of Ω, the point y belongs to the interior of S. In Ωρ0

, set nS := ∇ dist(·, S) so
that nS ∈ [C1(Ωρ0

)]3 ([GT01], Lemma 14.16). From the neighbourhood Ωρ0
, it is then possible

to extend nS to the rest of Ω in order to obtain

nS ∈ [C1(Ω)]3 . (7)

The normal nΓ has by similar arguments a continuously differentiable extension into Ω (cp. for
instance [GT01], Lemma 14.16). Due to (6), the functions cosα and sinα also possess natural
extensions into Ω. In order to track the dependence on the surfaces Γ and S in the regularity
estimate, we introduce

g0 := ‖∇nΓ‖[L∞(Ω)]3 + ‖∇nS‖[L∞(Ω)]3 . (8)
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Particular systems of tangential vectors arise naturally to derive estimates near the curve Γ∩S.
Those are

τ (1) :=
nS × nΓ

|nS × nΓ|
, τ (2) :=

(nS × nΓ) × nΓ

|(nS × nΓ) × nΓ|
on Γ , (9)

T (1) :=
nS × nΓ

|nS × nΓ|
, T (2) :=

(nS × nΓ) × nS

|(nS × nΓ) × nS|
on S . (10)

The Lemma C.3 in the appendix states the elementary relationships of these vectors. The or-
thogonal matrix that transforms the standard euclidian basis of R

3 into the orthonormal system
{T (1), T (2), nS} is denoted by O. Further relevant matrices are, at first, the matrix A :=
OT κO, the entries of which are given by,

A =





κT (1) · T (1) κT (1) · T (2) κT (1) · nS

κT (2) · T (1) κT (2) · T (2) κT (2) · nS

κnS · T (1) κnS · T (2) κnS · nS



 , (11)

and, at second, the perturbation κ̃ of the matrix κ defined by

κ̃ := O





a1,1 2 a1,2 2 a1,3

0 a2,2 a2,3

0 a3,2 a3,3



 OT . (12)

For B ∈ R
3×3, the minors mi,j(B) (i, j = 1, 2, 3) are the numbers

mi,j(B) := det(Bi,j) Bi,j := {bk,l}k 6=i, l 6=j for k, l, i, j = 1, 2, 3 , (13)

Since almost exclusively the minors of the matrixA (cf. (11)) are needed in the paper, we define

mi,j := mi,j(A) for i, j = 1, 2, 3 . (14)

A function ν ∈ L∞(Ω) is called piecewise Lipschitz continuous if there are νi ∈ W 1,∞(Ωi)
such that ν = νi in Ωi (i = 1, 2). For piecewise Lipschitz continuous ν, the jump across S is
the quantity

[ν]S(x) = ν2(x) − ν1(x) for x ∈ S . (15)

Since the functions νi always have Lipschitz continuous extensions to Ω, the symbol [ν]S still
makes sense outside of S and

[ν]S ∈ C0,1(Ω) . (16)

For symmetric and positive definite B ∈ R
3×3, and for θ ∈]0, π[ define

fd(θ, B) :=







cot θ
b3,3

m1,1(B)
+

b2,3

m1,1(B)
for (PN) ,

cot θ b3,3 + b3,2 for (PD) ,
(17)
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that plays the fundamental role with respect to compatibility conditions near Γ ∩ S. We finally
introduce some functional spaces. For 1 ≤ q ≤ ∞, we denote by q′ the number conjugated
to q ∈]1,+∞[ in the sense that 1/q + 1/q′ = 1. The usual Lebesgue spaces Lq(Ω), the
Sobolev spaces W 1,q(Ω), and their trace spaces W 1/q′,q(∂Ω), are needed. The definition and
relevant properties of these spaces are to find in standard monographes (for instance [KJF77]).
Maybe less well-known are the subspaces of W 1/q′,q(Γ) associated with the linear operators
of extension by zero. Define

γ−(u) :=

{

u on Γ1

0 on Γ2

, γ+(u) :=

{

0 on Γ1

u on Γ2

, (18)

V q(Γ) := {u ∈W 1/q′,q(Γ) : γ−(u) ∈W 1/q′,q(Γ)} ,
‖u‖V q(Γ) := ‖u‖W 1/q′,q(Γ) + ‖γ−(u)‖W 1/q′,q(Γ) .

(19)

Relevant properties of the V q spaces are recalled in the appendix, Lemma B.2.

2.2 Statement of the main result

To investigate the regularity of the solution to (PN) or (PD), we at first formulate the required
mathematical assumptions on the data. The surfaces Γ and S, and their angle of contact α,
must satisfy

Γ, S ∈ C2, α ∈W 1,∞(Γ ∩ S), α ∈]0, π[ on Γ ∩ S . (20)

Let moreover the matrix κ(x) be symmetric for all x ∈ Ω, and satisfy

k0 |η|2 ≤ κ(x)η · η ≤ k1 |η|2 for all x ∈ Ω, η ∈ R
3 , (21)

with two constants 0 < k0 ≤ k1 < ∞. The matrix A (cf. (11)) is then also symmetric, and the
matrices A and κ̃ (cf. (12)) uniformly satisfy the inequality (21) with the same constants k0, k1.
For the matrix κ, we furthermore assume that

k′1 := ‖∇κ1‖L∞(Ω1) + ‖∇κ2‖L∞(Ω2) <∞ . (22)

The right-hand side f of equation (1) is supposed to have the regularity

f ∈ Lq(Ω) . (23)

In (23), and also in the integrability conditions formulated hereafter, we focus on the cases
q = 2 (for the W 2,p analysis), and q = q0 > 3 (for the W 1,∞ analysis). We come now to the
compatibility conditions that are essential for the higher regularity. The angle of contact α and
the matrix κ (resp. the matrix A) must satisfy the compatibility condition

[fd(α, A)]S := fd(α, A2) − fd(α, A1) ≥ 0 on Γ ∩ S , (24)
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where Ai := A|Ωi
. For the problem (PN), we additionally require on the surface Γ that

∃Q1 ∈W 1/q′,q(Γ), Q2 ∈ V q(Γ) : [
a3,3

m1,1
]S

Q

sinα
= [fd(α, A)]S Q1 +Q2 , (25)

∃g1 ∈W 1,∞(Γ) : [
m2,1

m1,1
]S = g1 [fd(α, A)]S . (26)

For the problem (PD), we require that

∇ue ∈W 1/q′,q(Γ) and ∃U1 ∈W 1/q′,q(Γ), U2 ∈ V q(Γ) :

[a1,3]S (τ (1) · ∇ue) − [a3,3]S
τ (2) · ∇ue

sinα
= [fd(α, A)]S U1 + U2 .

(27)

The main result of the paper is contained in the following theorem.

Theorem 2.2. Let u ∈W 1,2(Ω) denote the unique weak solution to (PD) or to (PN). Assume
that the conditions (20), (21) and (22) are satisfied, and that (23) is valid with q = 2. Assume
that the condition (24), and either (25), (26) for the problem (PN), or (27) for the problem (PD),
are valid with q = 2. Then u ∈W 2,2(Ωi) (i = 1, 2).

Assume moreover that (23), and either (25), (26) for the problem (PN), or (27) for the problem
(PD), are satisfied for q = q0 > 3. Then u ∈W 1,∞(Ω).

For the case that the principal hypothesis (24) of Theorem 2.2 is violated, we can still prove that
the weak solution to (P ) has second derivatives at least integrable to the power 6/5.

Theorem 2.3. Except for (24), same assumptions as in Theorem 2.2 with q = 2. Let u ∈
W 1,2(Ω) denote the unique weak solution to (PD) or to (PN). Then, there is q0 > 3 such
that ∇u ∈ Lq0(Ω). Define s0 := min{q0, 6}. Then, for 1 ≤ p < 2s0/(s0 + 2) arbitrary,
∇u ∈W 1,p(Ωi) (i = 1, 2).

2.3 Interpretation of the compatibility conditions

A few remarks can help better understand the conditions (24), (25) and (27).

In the case that κ is a scalar, one can verify that fd := cotα [κ]S , so that the condition (24)
reduces to

cotα [κ]S ≤ 0 for (PN), cotα [κ]S ≥ 0 for (PD) on Γ ∩ S . (28)

Elementary consequences of (28) for the isotropic problem are the following:

(1) For given data (κ, α), the result of Theorem 2.2 cannot be used to prove the regularity for
the Neumann problem and for the Dirichlet problem, unless α ≡ π/2 on Γ∩S. Otherwise,
the choice which quantity to prescribe on the outer boundary Γ has to follow the condition
(28).

(2) If κ is moreover piecewise constant (that is, if κ1, κ2 ∈ R), then the angle of contact α is
not allowed to change the sign along Γ ∩ S.
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We now briefly comment on the conditions (25) and (27). In the scalar case, the condition (25)
reduces to

[κ]S Q = cosα [κ−1]S Q1 + sinαQ2 on Γ , (29)

and (27) reduces to

−[κ]S τ
(2) · ∇ue = cosα [κ]S U1 + sinαU2 on Γ . (30)

Thus, if | cosα| ≥ δ0 > 0 on Γ ∩ S, the condition (25) is trivially satisfied for every Q ∈
W 1/q′,q(Γ): set Q1 = −κ2 κ1 Q/ cosα and Q2 = 0. Similarly, set U1 := −τ (2) ·∇ue/ cosα,
U2 = 0 to obtain (27). The compatibility conditions (25) and (27) are therefore only needed for
the limiting case that the function [fd(α,A)]S tends to zero on some part of Γ ∩ S.

The compatibility conditions shall be not easy to verify in practice. In particular, since the function
[fd(α,A)]S is only given on Γ ∩ S, the representations (25) and (27) depend on the choice of
its extension to Γ. However, assuming additional regularity of the data Q, ue, we show in the
following Lemma that (25) and (27) more intrinsicly amount to require a certain decay along the
curve Γ ∩ S. To this aim denote

K := Γ ∩ S , K0 := {x ∈ K : |[fd(α,A)]S| > 0} ,
dK0

(x) := dist(x, K \K0) for x ∈ K .

For s ∈ R, the properties of the spaces W s,2(U), U ∈ R
n have been studied in [LM68]. It

is impossible to expose in a few lines the localization arguments that justify to extend these
properties to the case that U is a C2−submanifold. We recall that our aim is here only to throw
some light on the compatibility conditions, and that the next lemma does not affect in any respect
the proof of the main result.

Define W s,2
K (Γ) as the space W s,2

0 (Γ1) ⊕W s,2
0 (Γ2). If s > 1/2, every function g ∈W s,2(Γ)

has a trace tr(g) ∈W s−1/2,2(K) (see [LM68], Th. 9.4).

Lemma 2.4. Assume that there are β ∈]0, 1] and constants 0 < c1 ≤ c2 such that c1 d
β
K0

≤
[fd(α,A)]S ≤ c2 d

β
K0

on K0. Assume that g ∈W s,2(Γ), s > 1/2 is such that

tr(g) ∈
{

W
s−1/2+β,2
00 (K0) if s− 1/2 + β = j + 1/2 for a j ∈ N ,

W
s−1/2+β,2
0 (K0) otherwise.

(31)

Then, for each extension of the function [fd(α,A)]S to Γ, there are g1 ∈ W s,2(Γ) and g2 ∈
W s,2

K (Γ) such that g = [fd(α,A)]S g1 + g2.

Proof. Define g̃1 := g/[fd(α,A)]S on K0 and g̃1 := 0 on K \K0. Then

g̃1 ∈W s−1/2(K) . (32)

To prove (32), we at first verify that the application g 7→ d−β
K0
g is continuous fromW β,2

0 (K0) into

L2(K) and from W 1+β,2
0 (K0) into W 1,2(K) if β 6= 1/2. Otherwise, we verify that g 7→ d−β

K0
g
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is continuous from W β,2
00 (K0) into L2(K) and from W 1+β,2

00 (K0) into W 1,2(K) ([LM68], Th.
11.7).

For t ∈ [0, 1], it follows from interpolation in Hilbert-spaces (cp. [LM68], Prop. 2.3) that

‖d−β
K0
g‖W t,2(K) ≤

{

c ‖g‖W t+β,2
00

(K0)
if t+ β = j + 1/2 for a j ∈ N ,

c ‖g‖W t+β,2
0

(K0)
otherwise.

Choose t = s− 1/2, then in view of the assumptions (31), the property (32) follows.

Due to (31) and to the trace theorem forW s,2, there exists g1 ∈W s,2(Γ) such that tr(g1) = g̃1

on K. Choosing an arbitrary extension of [fd(α,A)]S to Γ, we easily obtain that g2 := g −
[fd(α,A)]S g1 belongs to W s,2

K (Γ).

3 Method of the proof

To prove Theorem 2.2, we investigate a regularization of the problems (PN) and (PD). For
ρ > 0, t ∈ R, define

Iρ(t) :=











0 if t ≤ 0
t
ρ

for t ∈]0, ρ]

1 for t > ρ

(33)

For ν1, ν2 ∈ L∞(Ω), define ν := νi in Ωi. We introduce

Lρ(ν)(x) := ν1(x) + Iρ(dist(x, S)) (ν2(x) − ν1(x)) ∈ L∞(Ω) . (34)

Note that

Lρ(ν) −→ ν everywhere in Ω \ S , (35)

and, also taking (7) into account, we obtain for piecewise Lipschitz continuous ν that

∇Lρ(ν) = I ′ρ(dist(x, S))∇ dist(·, S) + Lρ(∇ν)(x)

=
[ν]S(x)

ρ
bρ(x)nS(x) + Lρ(∇ν)(x) .

(36)

In (36), we have abbreviated bρ := χ{0≤dist(x,S)≤ρ}(x), and Lρ applies componentwise to
vector fields. We now introduce a regularization of κ via the matrix A. For the problem (PD),
we apply the regularization (33), (34) to introduce the coefficients

ai,j
ρ = Lρ(a

i,j) ∈ C0,1(Ω) for i, j = 1, 2, 3 , (37)

where ai,j are taken from the matrix (11). For the problem (PN), we introduce

a1,1
ρ := Lρ(a

1,1), a3,1
ρ := Lρ(a

3,1), m1,1
ρ := Lρ(m

1,1) , (38)
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where the relevant ai,j are taken from the matrix (11), and m1,1 is given by (14). The remaining
entries are defined in the following way:

a3,3
ρ := m1,1

ρ Lρ(
a3,3

m1,1
) , a2,3

ρ := m1,1
ρ Lρ(

a2,3

m1,1
) , a2,1

ρ := (a3,3
ρ )−1 (m1,1

ρ + [a2,3
ρ ]2)

a2,1
ρ := (a3,3

ρ )−1

(

m1,1
ρ Lρ(

m2,1

m1,1
) + a2,3

ρ a3,1
ρ

)

. (39)

The construction (38), (39), has the properties

a3,3
ρ

m1,1
ρ

= Lρ(
a3,3

m1,1
),

a2,3
ρ

m1,1
ρ

= Lρ(
a2,3

m1,1
),

m2,1
ρ

m1,1
ρ

= Lρ(
m2,1

m1,1
) . (40)

In view of (36), the regularized coefficients have, for both (PN) and (PD), the important property

T (k) · ∇ai,j
ρ = Lρ(T

(k) · ∇ai,j) for i, j = 1, 2, 3 and k = 1, 2 , (41)

and therefore, due to (22),

|T (k) · ∇ai,j
ρ | ≤ k′1 for i, j = 1, 2, 3 and k = 1, 2 . (42)

In view of (37), or of (38), (39), the matrix Aρ := {ai,j
ρ }i,j=1,2,3 satisfies (cp. (35))

Aρ −→ A everywhere in Ω \ S . (43)

Define κρ := OAρO
T , and, similarly, κ̃ρ using (12). Then, κρ, κ̃ρ belong to C0,1(Ω; R

3×3).
Moreover κρ → κ and κ̃ρ → κ̃ everywhere in Ω \ S. We define uρ ∈ W 1,2(Ω) to be the
unique weak solution to the following problem (Pρ):

− div(κρ ∇uρ) = f in Ω,

[

−κρ
∂uρ

∂nS

]

S

= 0 on S, (44)

together with one of the conditions

− κρ
∂uρ

∂nΓ
= Q on Γ [ =:(PN,ρ)], uρ = ue on Γ [ =:(PD,ρ)] . (45)

Lemma 3.1. Assume that κ satisfies (21) and (22). Let f ∈ L2(Ω), Q ∈ W 1,2(Ω) and
ue ∈ W 2,2(Ω). Denote by u ∈ W 1,2(Ω) (resp. uρ ∈ W 1,2(Ω)) the weak solution to (P )
(resp. (Pρ)). Then uρ ∈W 2,2(Ω), and

uρ −→ u in W 1,2(Ω) . (46)

Moreover, there is a constant c, depending only on Ω and on k1/k0, such that the function uρ

satisfies the energy estimates

‖∇uρ‖L2(Ω) ≤ c k−1
0 (‖f‖L2(Ω) + ‖Q‖L2(Γ)) in case of (3),

‖∇uρ‖L2(Ω) ≤ c (k−1
0 ‖f‖L2(Ω) + ‖∇ue‖L2(Ω)) in case of (4).
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Proof. The matrix κρ is symmetric and uniformely positive definite. Since κρ ∈ C0,1(Ω; R
3×3),

the standard regularity theory for second order elliptic equations in divergence form ([LU68],
Ch. 3, Paragraph 10 or [Tro87], Ch, 2, section 2.5, a. o. ) proves the W 2,2 regularity claim for
the solution to (Pρ). The strong convergence (46) for the entire sequence is obvious due to the
uniqueness of the respective weak solutions to (P ) and (Pρ).

Our method will consist in deriving uniform estimates for the main components of ∇uρ with
respect to the system {T (1), T (2), nS}, that means, the functions

ξ(1)
ρ := T (1) · ∇uρ, ξ(2)

ρ := T (2) · ∇uρ, ξ(3)
ρ := κρ nS · ∇uρ . (47)

In the section 4, we reformulate the problem of regularity in a more suitable coordinate system.
The section 5 contains the core of the proof of the W 2,2 regularity, whereas the section 6 is
dedicated to the boundedness of ∇u.

4 Auxiliary results

This section mainly contains the technical rearrangements needed to, so to say, restate the
problem in a more convenient coordinates. Throughout the remaining sections, the matrices
Aρ, κ̃ρ are as defined in the section 3. In the following Lemma the basic relationships satisfied

by the functions ξ
(i)
ρ (i = 1, 2, 3) are derived. We recall the notation (8).

Lemma 4.1. Let uρ ∈ W 2,2(Ω) denote the weak solution to (Pρ). Then, there are G
(i)
ρ ∈

[L2(Ω)]3 (i = 1, 2, 3) and M
(3)
ρ ∈ [L2(Ω)]9 such that

|G(i)
ρ | + k2

0 |G(3)
ρ | ≤ c (|f | + g0 κ1 |∇uρ|), |M (3)

ρ | ≤ c k−1
0 |∇uρ| , (48)

with c = c(Ω, k1/k0, k
′
1/k0), and such that the following identities are valid almost everywhere

in Ω:

κρ∇ξ(1)
ρ = G(1)

ρ + (T (2) −
a2,3

ρ

a3,3
ρ

nS) ×∇ξ(3)
ρ −

2
∑

i=1

(a2,i
ρ −

ai,3
ρ a3,2

ρ

a3,3
ρ

) (nS ×∇ξ(i)
ρ )

κ̃ρ∇ξ(2)
ρ = G(2)

ρ − T (1) ×∇ξ(3)
ρ + (a1,1

ρ nS − a1,3
ρ T (1)) ×∇ξ(1)

ρ ,

κ̃ρ∇ξ(3)
ρ = m1,1

ρ (G(3)
ρ +M (3)

ρ ∇ξ(1)
ρ + T (1) ×∇ξ(2)) .

(49)

Proof. First step. In the proof, gρ, ḡρ denote generic functions, and Gρ, Ḡρ generic vector
fields, that may change from line to line, but that satisfy the estimates

|gρ| + |Gρ| ≤ c g0 |∇uρ|, ḡρ + |Ḡρ| ≤ c (|f |+ g0 κ1 |∇uρ|) , (50)

with a constant c only dependent on k1/k0 and k′1/k0. An important device in the proof is the
orthonormality of the system {T (1), T (2), nS} everywhere in Ω. Every vector field V defined
in Ω has a decomposition

V =
2

∑

j=1

(T (j) · V )T (j) + (nS · V )nS . (51)
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We furtheron introduce the differential operators ∂(i) := T (i) ·∇ for i = 1, 2 and ∂(3) := nS ·∇.
If V1, V2 are two vector fields among {T (1), T (2), nS}, the permutation formula

V1 · ∇(V2 · ∇uρ) = V2 · ∇(V1 · ∇uρ) + [(V1 · ∇)V2 − (V2 · ∇)V1] · ∇uρ ,

is valid, so that, in view of the convention (50),

∂(i) ∂(j) uρ = ∂(j) ∂(i) uρ + gρ for i, j = 1, 2, 3 . (52)

Second step. Due to (52) and the definition (47),

∂(i) ξ(j)
ρ − ∂(j) ξ(i)

ρ = gρ for i, j = 1, 2 . (53)

The definition of the function ξ
(3)
ρ , and the property (51) imply that

ξ(3)
ρ =

2
∑

i=1

(κρnS · T (i)) ξ(i)
ρ + (κρnS · nS) ∂(3)uρ

=
2

∑

i=1

a3,i
ρ ξ(i)

ρ + a3,3
ρ ∂(3)uρ .

Thus

∂(3) uρ =
1

a3,3
ρ

(ξ(3)
ρ −

2
∑

i=1

a3,i
ρ ξ(i)

ρ ) , (54)

and it follows for i = 1, 2 from (54) and (52) that

∂(3) ξ(i)
ρ = ∂(i) ∂(3) uρ + gρ =

1

a3,3
ρ

∂(i) ξ(3)
ρ −

2
∑

j=1

a3,j
ρ

a3,3
ρ

∂(i) ξ(j)
ρ + gρ , (55)

gρ := ∂(i) 1

a3,3
ρ

ξ(3)
ρ +

2
∑

j=1

∂(i)
a3,j

ρ

a3,3
ρ

ξ(j)
ρ .

The properties (41), (42) yield for i = 1, 2

|∂(i) 1

a3,3
ρ

| +
2

∑

j=1

|∂(i)
a3,j

ρ

a3,3
ρ

| ≤ 3
k1 k

′
1

k2
0

, (56)

which can be used to prove in (55) that gρ still satisfies (50). Thanks to the property (41) and

the definition of ξ
(3)
ρ , similar arguments show, for i = 1, 2, the permutation formula

∂(i) ξ(3)
ρ = ∂(i) (a3,3

ρ ∂(3) uρ +

2
∑

j=1

a3,j
ρ ∂(j) uρ)

= a3,3
ρ ∂(i) ∂(3) uρ +

2
∑

j=1

a3,j
ρ ∂(i) ∂(j) uρ + ḡρ,i

= a3,3
ρ ∂(3) ξ(i)

ρ +
2

∑

j=1

a3,j
ρ ∂(j) ξ(i)

ρ + ḡρ,i ,

(57)
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Third step. In (53), (55) and (57), we have obtained useful information about the derivatives
∂(i)ξ

(j)
ρ for i 6= j. The idea of the proof is now to make use of the information contained in the

equation (44) about the symmetric derivatives ∂(i) ξ
(i)
ρ .

Decomposition of ∇uρ according to (51), joined to the relation (54), yields

κρ∇uρ =
2

∑

i=1

ξ(i)
ρ (κρT

(i) −
a3,i

ρ

a3,3
ρ

κρnS) +
ξ

(3)
ρ

a3,3
ρ

κρnS .

Again decomposing the vectors κρT
(i) (i = 1, 2), and κρnS it follows that

κρ∇uρ =
2

∑

i,j=1

(ai,j
ρ −

ai,3
ρ aj,3

ρ

a3,3
ρ

) ξ(i)
ρ T (j) +

2
∑

j=1

a3,j
ρ

a3,3
ρ

T (j) ξ(3)
ρ + nS ξ

(3)
ρ . (58)

According to Lemma 3.1, uρ ∈ W 2,2(Ω), and − div(κρ ∇uρ) = f almost everywhere in Ω.
Therefore, (58) implies that

2
∑

i,j=1

(ai,j
ρ −

ai,3
ρ aj,3

ρ

a3,3
ρ

) ∂(j) ξ(i)
ρ +

2
∑

j=1

a3,j
ρ

a3,3
ρ

∂(j) ξ(3)
ρ + ∂(3) ξ(3)

ρ = ḡρ (59)

:= −f −
2

∑

i,j=1

div
(

(ai,j
ρ −

ai,3
ρ aj,3

ρ

a3,3
ρ

)T (j)
)

ξ(i)
ρ − div(

2
∑

j=1

a3,j
ρ

a3,3
ρ

T (j) + nS) ξ(3)
ρ .

Due to (41), ḡρ satisfies the estimate (50) again (cp. the computation (56)). Fix an indices i ∈
{1, 2}, and define i′ by requesting that {i} ∪ {i′} = {1, 2}. From (59), it follows for i = 1, 2
that

(ai,i
ρ −

[ai,3
ρ ]2

a3,3
ρ

) ∂(i) ξ(i)
ρ = ḡρ −∇ξ(3)

ρ · (nS +

2
∑

j=1

a3,j
ρ

a3,3
ρ

T (j))

− (ai,i′

ρ −
ai,3

ρ ai′,3
ρ

a3,3
ρ

) ∂(i′) ξ(i)
ρ −

2
∑

j=1

(ai′,j
ρ −

ai′,3
ρ aj,3

ρ

a3,3
ρ

) ∂(j) ξ(i′)
ρ .

(60)

In (60), permutation of ∂(i′) and ∂(i) with the formula (52) yields

(ai,i
ρ −

[ai,3
ρ ]2

a3,3
ρ

) ∂(i) ξ(i)
ρ = ḡρ −∇ξ(3)

ρ · (nS +
2

∑

j=1

a3,j
ρ

a3,3
ρ

T (j))

− (ai′,i′

ρ −
[ai′,3

ρ ]2

a3,3
ρ

) ∂(i′) ξ(i′)
ρ − 2 (ai,i′

ρ −
ai,3

ρ ai′,3
ρ

a3,3
ρ

) ∂(i) ξ(i′)
ρ .

(61)

Using the formula (57) we can also reexpress the term ∂(i′) ξ
(3)
ρ in the formula (61) to obtain,

for i = 1, 2, the decomposition

(ai,i
ρ −

[ai,3
ρ ]2

a3,3
ρ

) ∂(i) ξ(i)
ρ = ḡρ −∇ξ(3)

ρ · (nS +
a3,i

ρ

a3,3
ρ

T (i))

−∇ξ(i′)
ρ · (ai′,i′

ρ T (i′) + [2 ai′,i
ρ −

a3,i
ρ a3,i′

ρ

a3,3
ρ

]T (i) + a3,i′

ρ nS) .

(62)
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In the case i = 3, we conclude from (59) and (57) that

∂(3) ξ(3)
ρ = −

2
∑

i,j=1

(ai,j
ρ −

ai,3
ρ aj,3

ρ

a3,3
ρ

) ∂(j) ξ(i)
ρ −

2
∑

i=1

a3,i
ρ

a3,3
ρ

∂(i) ξ(3)
ρ + ḡρ

= −
2

∑

i,j=1

ai,j
ρ ∂(j) ξ(i)

ρ −
2

∑

i=1

a3,i
ρ ∂(3) ξ(i)

ρ + ḡρ = −
2

∑

i=1

κρT
(i) · ∇ξ(i)

ρ + ḡρ .

(63)

Fourth step. For i = 1, 2, the relation

(ai,i
ρ −

[a3,i
ρ ]2

a3,3
ρ

) ∂(i) ξ(i)
ρ = −∇ξ(3)

ρ · Vρ −∇ξ(i′)
ρ ·Wρ + ḡρ , (64)

follows from (61) for the choice

Vρ := nS +

2
∑

j=1

a3,j
ρ

a3,3
ρ

T (j) ,

Wρ := (ai′,i′

ρ −
[a3,i′

ρ ]2

a3,3
ρ

)T (i′) + 2 (ai,i′

ρ −
a3,i′

ρ a3,i
ρ

a3,3
ρ

)T (i) ,

(65)

whereas (64) is a consequence of (62) for the choice

Vρ := nS +
a3,i

ρ

a3,3
ρ

T (i) ,

Wρ := ai′,i′

ρ T (i′) + [2 ai′,i
ρ −

a3,i
ρ a3,i′

ρ

a3,3
ρ

]T (i) + a3,i′

ρ nS .

(66)

We decompose the vector ∇ξ(i)
ρ in the way of (51) and we use the representation (55) to show

for i = 1, 2 that

∇ξ(i)
ρ =∂(i) ξ(i)

ρ (T (i) −
a3,i

ρ

a3,3
ρ

nS) + ∂(i) ξ(i′)
ρ (T (i′) −

a3,i′

ρ

a3,3
ρ

nS)

+ ∂(i) ξ(3)
ρ

nS

a3,3
ρ

+ gρ nS .

(67)

The representation (64) and the formula (67), imply for i = 1, 2 that

∇ξ(i)
ρ =(ai,i

ρ −
[a3,i

ρ ]2

a3,3
ρ

)−1 (−∇ξ(3)
ρ · Vρ −∇ξ(i′)

ρ ·Wρ + ḡρ) (T (i) −
a3,i

ρ

a3,3
ρ

nS)

+ ∂(i) ξ(i′)
ρ (T (i′) −

a3,i′

ρ

a3,3
ρ

nS) + ∂(i) ξ(3)
ρ

nS

a3,3
ρ

+ gρ nS . (68)

Let B
(i)
ρ be the matrix that satisfies

B(i)
ρ (T (i) −

a3,i
ρ

a3,3
ρ

nS) = (ai,i
ρ −

[a3,i
ρ ]2

a3,3
ρ

)T (i)

B(i)
ρ (T (i′) −

a3,i′

ρ

a3,3
ρ

nS) = Wρ , B(i)
ρ nS = a3,3

ρ Vρ .

(69)
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Multiply the relation (68) with B(i) to see that

B(i)
ρ ∇ξ(i)

ρ = (−∇ξ(3)
ρ · Vρ −∇ξ(i′)

ρ ·Wρ)T
(i) + ∂(i) ξ(i′)

ρ Wρ + ∂(i) ξ(3)
ρ Vρ + Ḡρ

= (T (i) × Vρ) ×∇ξ(3)
ρ + (T (i) ×Wρ) ×∇ξ(i′)

ρ + Ḡρ . (70)

Fifth step. In the case i = 1, the formula (65) yields

T (1) × Vρ = T (2) −
a2,3

ρ

a3,3
ρ

nS , T (1) ×Wρ = −(a2,2
ρ −

[a3,2
ρ ]2

a3,3
ρ

)nS . (71)

Moreover, the conditions (69) imply the identity

OT B(1)
ρ O = Aρ +





0 −b(1)ρ 0

b
(1)
ρ 0 0
0 0 0



 , b(1)ρ := a2,1
ρ −

a3,1
ρ a3,2

ρ

a3,3
ρ

=
m1,1

ρ

a3,3
ρ

.

Elementary calculations with the skew-symmetric matrix part show that

B(1)
ρ ∇ξ(1)

ρ = κρ∇ξ(1)
ρ + b(1)ρ (T (2) × T (1)) ×∇ξ(1)

ρ . (72)

Observe that T (2) ×T (1) = −nS . Putting (72) and (71) into (70), the claim (49) follows for ξ
(1)
ρ .

In the case i = 2, the formula (66) implies that

T (2) × Vρ = T (2) × nS = −T (1) , T (2) ×Wρ = a1,1
ρ nS − a3,1

ρ T (1) . (73)

Moreover, it can easily be shown that the matrixB
(2)
ρ , that is uniquely defined by the conditions

(69), is nothing else but the matrix κ̃ρ introduced in section 3. The claim (49) for ξ
(2)
ρ follows

from (70).

In the case i = 3, orthonormal decomposition and the formula (57) imply that

∇ξ(3)
ρ =

2
∑

i=1

(a3,3
ρ ∂(3) ξ(i)

ρ +

2
∑

j=1

a3,j
ρ ∂(j) ξ(i)

ρ )T (i) + ∂(3) ξ(3)
ρ nS + Ḡρ

=

2
∑

i=1

κρnS · ∇ξ(i) T (i) + ∂(3) ξ(3)
ρ nS + Ḡρ .

(74)

Insert (63) into (74) to obtain the equivalent representation

∇ξ(3)
ρ =

2
∑

i=1

(κρnS · ∇ξ(i)
ρ T (i) − κρTi · ∇ξ(i)

ρ nS) + Ḡρ . (75)

The permutation formula (52) implies that

κρnS · ∇ξ(2)
ρ T (2) − κρT2 · ∇ξ(2)

ρ nS =

(κρnS − a3,1
ρ T (1)) · ∇ξ(2)

ρ T (2) − (κρT
(2) − a2,1

ρ T (1)) · ∇ξ(2)
ρ nS

+ a3,1
ρ T (2) · ∇ξ(1)

ρ T (2) − a2,1
ρ T (2) · ∇ξ(1)

ρ nS + Ḡρ . (76)
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From (75) and (76), it follows that

∇ξ(3)
ρ =(κρnS − a3,1

ρ T (1)) · ∇ξ(2)
ρ T (2) − (κρT

(2) − a2,1
ρ T (1)) · ∇ξ(2)

ρ nS

+ Ḡρ + M̃ (3)
ρ ∇ξ(1)

ρ , (77)

(M̃ (3)
ρ )i,j :=T

(1)
i (κρnS)j − nS,i (κρT

(1) + a2,1
ρ T (2))j + a3,1

ρ T
(2)
i T

(2)
j .

Let B
(3)
ρ be a matrix that satisfies

B(3)
ρ T (2) =

κρT
(2) − a2,1

ρ T (1)

m1,1
ρ

, B(3)
ρ nS =

κρnS − a3,1
ρ T (1)

m1,1
ρ

. (78)

Apply B
(3)
ρ to (77), and define M

(3)
ρ := B

(3)
ρ M̃

(3)
ρ , then

B(3)
ρ ∇ξ(3)

ρ = B(3)
ρ Ḡρ +M (3)

ρ ∇ξ(1)
ρ + (m1,1

ρ )−1 (B(3)
ρ nS ×B(3)

ρ T (2)) ×∇ξ(2)
ρ .

Observe that

B(3)
ρ nS × B(3)

ρ T (2) = [a2,3
ρ ]2 (T (2) × nS) + a2,2

ρ a3,3
ρ (nS × T (2))

= (a2,2
ρ a3,3

ρ − [a2,3
ρ ]2)T (1) = m1,1

ρ T (1) .

We at last notice using (12) that the choice B
(3)
ρ = (m1,1

ρ )−1 κ̃ρ satisfies (78). The claim (49)

for ξ
(3)
ρ follows easily.

In the following Lemmas, we use the result of Lemma 4.1 to derive integral relations satisfied by
the functions ξ

(i)
ρ (i = 1, 2, 3).

Lemma 4.2. Same assumptions as in Lemma 4.1. Then, there is

Ḡ(1)
ρ ∈ [L2(Ω)]3 , |Ḡ(1)

ρ | ≤ c (|f |+ g0 k1 |∇uρ|) a. e. in Ω , (79)

such that for all v ∈W 2,2(Ω)

∫

Ω

κρ ∇ξ(1)
ρ · ∇v =

∫

Ω

Ḡ(1)
ρ · ∇v −

∫

Γ

(κρ nΓ · ∇uρ) (τ (1) · ∇v) . (80)

Proof. Choose v ∈ W 2,2(Ω) arbitrary, and multiply the relation (49) for ξ
(1)
ρ with ∇v. Due to

integration by parts, and to the vector identity div(a× b) = curl a · b+ curl b · a,

∫

Ω

(T (2) −
a2,3

ρ

a3,3
ρ

nS) ×∇ξ(3)
ρ · ∇v = −

∫

Ω

(T (2) −
a2,3

ρ

a3,3
ρ

nS) ×∇v · ∇ξ(3)
ρ

=

∫

Ω

curl(T (2) −
a2,3

ρ

a3,3
ρ

nS) · ∇v ξ(3)
ρ −

∫

Γ

(T (2) −
a2,3

ρ

a3,3
ρ

nS) ×∇v · nΓ ξ
(3)
ρ .
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With similar arguments, and abbreviating pi,ρ := a2,i
ρ − a3,i

ρ a3,2
ρ /a3,3

ρ , it follows for i = 1, 2 that

−
∫

Ω

pi,ρ (nS ×∇ξ(i)
ρ ) · ∇v =

∫

Γ

pi,ρ (nS ×∇v) · nΓ ξ
(i)
ρ

−
∫

Ω

curl(pi,ρnS) · ∇v ξ(i)
ρ .

Choosing G
(1)
ρ as in Lemma 4.1, we define

Ḡ(1)
ρ := G(1)

ρ −
2

∑

i=1

curl((a2,i
ρ −

a3,i
ρ a3,2

ρ

a3,3
ρ

)nS) ξ(i)
ρ + curl(T (2) −

a2,3
ρ

a3,3
ρ

nS) ξ(3)
ρ .

For g ∈ C0,1(Ω), observe that curl(g nS) = g nS +∇g×nS . Thus, only tangential derivatives

of the regularized coefficients occur in the definition of Ḡ
(1)
ρ , and (42) can be used to prove the

estimate (79). In order to reformulate the integrals over Γ, observe that

(nS ×∇v) · nΓ = −(nS × nΓ) · ∇v = −|nS × nΓ| τ (1) · ∇v
(T (2) ×∇v) · nΓ = −(T (2) × nΓ) · ∇v = (T (2) · τ (2)) τ (1) · ∇v .

Lemma C.3 in the appendix implies that

2
∑

i=1

(a2,i
ρ −

a3,i
ρ a3,2

ρ

a3,3
ρ

) (nS ×∇v) · nΓ ξ
(i)
ρ − (T (2) −

a2,3
ρ

a3,3
ρ

nS) ×∇v · nΓ ξ
(3)
ρ

= (− sinα

[

2
∑

i=1

(a2,i
ρ −

a3,i
ρ a3,2

ρ

a3,3
ρ

) ξ(i)
ρ +

a2,3
ρ

a3,3
ρ

ξ(3)
ρ

]

− cosα ξ(3)
ρ ) (τ (1) · ∇v) .

Using orthonormal decomposition for the vector −κρ nΓ · ∇uρ, the relation (80) is obvious.

Lemma 4.3. Same assumptions as in Lemma 4.1. Then, there are Ḡ
(2)
ρ , Ḡ

(3)
ρ ∈ [L2(Ω)]3 such

that

|Ḡ(2)
ρ | + k0 |Ḡ(3)

ρ | ≤ c (|f |+ g0 k1 |∇uρ|) a. e. in Ω , (81)

and such that for all v ∈W 2,2(Ω)
∫

Ω

κ̃ρ ∇ξ(2)
ρ · ∇v =

∫

Ω

{Ḡ(2)
ρ + (a1,1

ρ nS − a1,3
ρ T (1)) ×∇ξ(1)

ρ } · ∇v

−
∫

Γ

ξ(3)
ρ (τ (2) · ∇v)

(82)

∫

Ω

[m1,1
ρ ]−1 κ̃ρ∇ξ(3)

ρ · ∇v =

∫

Ω

{Ḡ(3)
ρ +M (3)

ρ ∇ξ(1)
ρ } · ∇v +

∫

Γ

ξ(2)
ρ (τ (2) · ∇v) . (83)

Proof. We multiply the relation (49) for ξ
(2)
ρ with ∇v, v ∈ W 2,2(Ω) arbitrary. Integration by

parts, and the fact that T (1) × nΓ = τ (2), yield
∫

Ω

(T (1) ×∇ξ(3)
ρ ) · ∇v =

∫

Ω

curlT (1) · ∇v ξ(3)
ρ +

∫

Γ

ξ(3)
ρ τ (2) · ∇v , (84)

16



Choosing G
(2)
ρ as in Lemma 4.1, we define Ḡ

(2)
ρ := G

(2)
ρ − curlT (1) ξ

(3)
ρ . The estimate (81)

is readily checked. The relation (82) is obvious.

In order to prove (83), multiply the relation (49) for ξ
(3)
ρ with ∇v, v ∈ W 2,2(Ω) arbitrary. As in

(84),
∫

Ω

(T (1) ×∇ξ(2)
ρ ) · ∇v =

∫

Ω

curlT (1) · ∇v ξ(2)
ρ +

∫

Γ

ξ(2)
ρ τ (2) · ∇v .

Define Ḡ
(3)
ρ := G

(3)
ρ + curlT (1) ξ

(2)
ρ . The estimate (81) is readily checked, finishing the proof.

We now prove two Lemmas concerning the boundary data ue and Q. The compatibility condi-
tions (25), (26), (27) come here into the play.

Lemma 4.4. In addition to the hypotheses of Lemma 4.1, assume that the conditions (25), (26)
are satisfied for the problem (PN), or that (27) is valid for the problem (PD). Then, there are
Q̃1,ρ, Q̃2,ρ ∈W 1/2,2(Γ) and Ũ2,ρ ∈W 1/2,2(Γ) such that

m2,1
ρ

m1,1
ρ

ξ(1)
ρ +

a3,3
ρ

m1,1
ρ sinα

Q = fd(α, Aρ) Q̃1,ρ + Q̃2,ρ (85)

a3,1
ρ (τ (1) · ∇ue) −

a3,3
ρ

sinα
(τ (2) · ∇ue) = fd(α, Aρ)U1 + Ũ2,ρ . (86)

Moreover, there is c = c(Ω, k1/k0) such that

‖Ũ2,ρ‖W 1/2,2(Γ) ≤‖U2‖V 2(Γ) + c k1 g0 ‖∇ue‖W 1/2,2(Γ) + C1,ρ , (87)

‖Q̃1,ρ‖W 1/2,2(Γ) ≤‖Q1‖W 1/2,2(Γ) + c g1 ‖ξ(1)
ρ ‖W 1/2,2(Γ) , (88)

‖Q̃2,ρ‖W 1/2,2(Γ) ≤c k−1
0 (1 + g0)(‖Q‖W 1/2,2(Γ) + ‖Q1‖W 1/2,2(Γ)

+ (1 + g1) ‖ξ(1)
ρ ‖W 1/2,2(Γ)) + ‖Q2‖W 1/2,2(Γ) + C2,ρ , (89)

where C1,ρ, C2,ρ → 0.

Proof. The condition (27) is by assumption valid on Γ. Recalling the definition (33), we multiply
(27) with the function Iρ(dist(·, S)), and we then add on both sides of the new relation the term

a3,1
1 ξ

(1)
e − a3,3

1 (τ (2) · ∇ue)/ sinα. We obtain that

(a3,1
1 + Iρ [a3,1]S) ξ(1)

e − a3,3
1 + Iρ [a3,3]S (τ (2) · ∇ue)/ sinα

= (cotα (a3,3
1 + Iρ [a3,3]S) + (a2,3

1 + Iρ [a2,3]S))U1 + Iρ U2

+ a3,1
1 ξ(1)

e − a3,3
1 (τ (2) · ∇ue)/ sinα− (cotαa3,3

1 + a2,3
1 )U1

(90)

Due to (37), a3,1
1 + Iρ [a3,1]S = a3,1

ρ = Lρ(a
3,1) (etc. ), so that

a3,1
ρ ξ(1)

e − a3,3
ρ (τ (2) · ∇ue)/ sinα = (cotα a3,3

ρ + a2,3
ρ )U1 + Ũ2,ρ

Ũ2,ρ := Iρ U2 + a3,1
1 ξ(1)

e − a3,3
1 (τ (2) · ∇ue)/ sinα− (cotαa3,3

1 + a2,3
1 )U1 ,
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which proves (86) on Γ. Thanks to Lemma B.5 in the appendix, we verify that

‖Iρ U2‖W 1/2,2(Γ) ≤ ‖U2‖V 2(Γ) + C1,ρ , C1,ρ → 0 .

Using also Lemma B.1, the norm estimate (87) follows. In order to prove (85), use the assump-
tion (26) to define

Q̃1,ρ := Q1 + [
m2,1

m1,1
]S [fd(α, A)]−1

S ξ(1)
ρ = Q1 + g1 ξ

(1)
ρ .

Due to (B.1), we readily verify the estimate (88). It then follows from (25) that

[fd(α, A)]S Q̃1,ρ = [fd(α, A)]S Q1 + [
m2,1

m1,1
]S ξ

(1)
ρ

= [
a3,3

m1,1
]S

Q

sinα
−Q2 + [

m2,1

m1,1
]S ξ

(1)
ρ . (91)

Multiply (91) with Iρ(dist(·, S), then with the help of (40), argue as previously (cf. (90)) to obtain
that

fd(α, Aρ) Q̃1,ρ =
a3,3

ρ

m1,1
ρ

Q

sinα
+
m2,1

ρ

m1,1
ρ

ξ(1)
ρ − Q̃2,ρ ,

Q2,ρ := IρQ2 +
a3,3

1 Q

m1,1
1 sinα

− (cotα
a3,3

1

m1,1
1

+
a2,3

1

m1,1
1

) Q̃1,ρ +
m2,1

1

m1,1
1

ξ(1)
ρ . (92)

The construction of the regularization (38), (39) plays here the essential role. The inequality (89)
is derived in the same fashion as (87), using Lemma B.5, , Lemma B.1 and (88).

Lemma 4.5. Same assumption as in Lemma 4.4. Let uρ ∈ W 2,2(Ω) be the weak solution to
(Pρ). If uρ satisfies the condition (3), then

−ξ(2)
ρ = (cotα

a3,3
ρ

m1,1
ρ

+
a3,2

ρ

m1,1
ρ

) (ξ(3)
ρ + Q̃1,ρ) + Q̃2,ρ a. e. on Γ . (93)

If uρ satisfies the condition (4), then

ξ(3)
ρ = (cotα a3,3

ρ + a3,2
ρ ) (ξ(2)

ρ + U1) + Ũ2,ρ a. e. on Γ . (94)

Proof. We recall the notations (9) and (10). If (3) is satisfied in the sense of traces, then

Q = −κρnΓ · ∇uρ = −(nΓ · nS) κρnS · ∇uρ − (nΓ · T (2)) κρT
(2) · ∇uρ , (95)

thanks to orthonormal decomposition on Γ. For the same reason, the equivalence (54) yields

κρT
(2) · ∇uρ =

2
∑

i=1

(a2,i
ρ −

a3,i
ρ a3,2

ρ

a3,3
ρ

) ξ(i)
ρ +

a3,2
ρ

a3,3
ρ

ξ(3)
ρ .

Using Lemma C.3 and the definition (47) of ξ
(3)
ρ , we easily deduce from (95) that

−ξ(2)
ρ = (cotα

a3,3
ρ

m1,1
ρ

+
a3,2

ρ

m1,1
ρ

) ξ(3)
ρ +

m2,1
ρ

m1,1
ρ

ξ(1)
ρ +

a3,3
ρ

m1,1
ρ sinα

Q ,
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and (93) follows from Lemma 4.4, (85). With the help of orthonormal decomposition, (54), and
Lemma C.3

τ (2) · ∇uρ = (τ (2) · T (2)) ξ(2)
ρ + (τ (2) · nS) (nS · ∇uρ)

= cosα ξ(2) − sinα

a3,3
ρ

(ξ(3)
ρ −

2
∑

i=1

a3,i
ρ ξ(i)

ρ ) .

If (4) is satisfied in the sense of traces, then

ξ(3)
ρ = (cotαa3,3

ρ + a3,2
ρ ) ξ(2)

ρ + a3,1
ρ ξ(1)

e −
a3,3

ρ

sinα
τ (2) · ∇ue ,

and (94) follows from Lemma 4.4, (86).

5 W 2,2 regularity

In this section, we prove the convergence of the approximation method (Pρ) in the space W 2,2.
In order to abbreviate in our estimates, we introduce for the problem (PN) the quantities

Nq := k−1
0 (‖f‖Lq(Ω) + ‖Q‖W 1/q′,q(Γ))

Ñq := k−1
0 (‖f‖Lq(Ω) + ‖Q1‖W 1/q′,q(Γ) + ‖Q2‖V q(Γ)) ,

and for the problem (PD) the quantities

Nq := k−1
0 ‖f‖Lq(Ω) + ‖∇ue‖W 1,q(Ω)

Ñq := Nq + ‖U1‖W 1/q′,q(Γ) + ‖U2‖V q(Γ) .

Here, the functionsQi and Ui are taken from (25), (26) and (27). The main result of the section
is the following:

Theorem 5.1. Assume that S ∈ C2 and that f ∈ L2(Ω). Let u be the weak solution to (P ).
Assume that the condition (24) is valid, and that one of the following assumptions is satisfied:

(1) u satisfies (3) on Γ, and the conditions (25), (26) hold with q = 2.

(2) u satisfies (4) on Γ, and the condition (27) holds with q = 2.

Then, u belongs to W 2,2(Ωi) for i = 1, 2 and moreover satisfies the continuous estimate

‖D2u‖L2(Ω) ≤ c (1 + g0) Ñ2 . (96)

with a constant c that depends on Ω, k1/k0, k′1/k0, and additionally on g1 for the problem (PN).

The proof of the theorem is carried out in the following four propositions.
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Proposition 5.2. Assume that S ∈ C2 and that f ∈ L2(Ω). Let uρ be the weak solution to
(Pρ). Assume that uρ either satisfies (3) with Q ∈ W 1/2,2(Γ) or (4) with ue ∈ W 3/2,2(Γ).
Then, there is a constant c, depending only on Ω and on κ1/κ0, such that

‖∇ξ(1)
ρ ‖L2(Ω) ≤ c (1 + g0)N2 . (97)

Proof. Let uρ denote the solution to the problem (Pρ). We at first consider the boundary condi-
tion (3). For v ∈W 2,2(Ω), introduce the linear functional

F
(1)
Q (v) :=

∫

Γ

Q (τ (1) · ∇v) . (98)

The continuity estimate

|F (1)
Q (v)| ≤ c g0 ‖Q‖W 1/2,2(Γ) ‖∇v‖L2(Ω) , (99)

follows from Lemma C.1, and implies (via standard density results for Sobolev spaces) that the
functional F

(1)
Q extends by density on W 1,2(Ω). Due to (80),

∫

Ω

κρ∇ξ(1)
ρ · ∇v =

∫

Ω

Ḡ(1)
ρ · ∇v + F

(1)
Q (v) ∀v ∈W 1,2(Ω) . (100)

In (100), we are allowed to choose v := ξ
(1)
ρ . To derive (97) from the estimates (99) and (79)

and Lemma 3.1 is a straightforward exercise on Young’s inequality.

For the boundary condition (4), we introduce the extension ue ∈ W 2,2(Ω) of the boundary

data, and ξ
(1)
e := τ (1) · ∇ue ∈W 1,2(Ω). Due to (80),

∫

Ω

κρ ∇(ξ(1)
ρ − ξ(1)

e ) · ∇v =

∫

Ω

(Ḡ(1)
ρ − κρ ∇ξ(1)

e ) · ∇v ∀v ∈W 1,2
0 (Ω) , (101)

and (97) follows.

Ahead of the statement of the following Lemma, we recall the definition (17) of the function fd.

Lemma 5.3. Let the hypotheses of Proposition 5.2 be valid. Assume in addition that the condi-
tion (24) is valid. For u ∈W 1,2(Ω), v ∈W 2,2(Ω), define

(Bρ(u), v) := −
∫

Γ

fd(α, Aρ) u (τ (2) · ∇v) . (102)

Then, the mapping Bρ extends to an element of L(W 1,2(Ω), [W 1,2(Ω)]∗). Moreover, there is
ρ0 = ρ0(S, κ2, κ1, α) such that for all ρ ≤ ρ0 the inequalities

(Bρ(u), (u−m)+) ≤ c̃ (1 + g0)

∫

Γ

u (u−m)+ , (103)

(Bρ(u), (u+m)−) ≤ c̃ (1 + g0)

∫

Γ

u (u+m)− , (104)

are valid for all u ∈W 1,2(Ω) and allm ∈ N, with c̃ := c k−1
0 for (PN), and c̃ := c k1 for (PD).
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Proof. Due to Lemma C.1 and Lemma B.1,

|(Bρ(u), v)| ≤ c g0 ‖fd(α, Aρ) u‖W 1/2,2(Γ) ‖∇v‖L2(Ω)

≤ cρ ‖u‖W 1/2,2(Γ) ‖∇v‖L2(Ω) , (105)

for all u ∈ W 1,2(Ω), v ∈ W 2,2(Ω). Therefore, the mapping Bρ extends by density to an
element of L(W 1,2(Ω), [W 1,2(Ω)]∗).

For u ∈W 2,2(Ω), m ∈ N,

(Bρ(u), (u−m)+) =
−1

2

∫

Γ

fd(α, Aρ) τ
(2) · ∇((u+m) (u−m)+) . (106)

For the (PN)−case of (17), integration by parts yields

(Bρ(u), (u−m)+) =

∫

Γ

(cotα τ (2) · ∇
a3,3

ρ

m1,1
ρ

+ τ (2) · ∇
a2,3

ρ

m1,1
ρ

)
(u+m)

2
(u−m)+

+

∫

Γ

(divΓ(cotα τ (2))
a3,3

ρ

m1,1
ρ

+ divΓ(τ (2))
a2,3

ρ

m1,1
ρ

)
(u+m)

2
(u−m)+ . (107)

Using (36), the fact that τ (2) · nS = − sinα on Γ, and (40), we compute

cotα τ (2) · ∇
a3,3

ρ

m1,1
ρ

+ τ (2) · ∇
a2,3

ρ

m1,1
ρ

= − sinα bρ ρ
−1 [fd(α, A)]S

+ cotαLρ(τ
(2) · ∇ a3,3

m1,1
) + Lρ(τ

(2) · ∇ a2,3

m1,1
) . (108)

Due to the uniform continuity of the data A1, A2, α, there is a neighbourhood D of the curve
Γ ∩ S such that (24) is valid in the domain D ∩ Ω. Therefore, if ρ ≤ ρ0(A1, A2, α),

− sinα bρ ρ
−1 [fd(α, A)]S (u+m) (u−m)+ ≤ 0 . (109)

The estimate

cotαLρ(τ
(2) · ∇ a3,3

m1,1
) + Lρ(τ

(2) · ∇ a2,3

m1,1
) ≤ k2

1 k
′
1

k4
0

,

together with (108) and (109), yields

(cotα τ (2) · ∇
a3,3

ρ

m1,1
ρ

+ τ (2) · ∇
a2,3

ρ

m1,1
ρ

) (u+m) (u−m)+ ≤ 2 k2
1 k

′
1

k4
0

u (u−m)+ . (110)

The estimate (103) follows from (107) and (110). For the problem (PD), we can reformulate

(Bρ(u), (u−m)+) =
1

2

∫

Γ

(cotα τ (2) · ∇a3,3
ρ + τ (2) · ∇a2,3

ρ ) (u+m) (u−m)+

+
1

2

∫

Γ

(divΓ(cotα τ (2)) a3,3
ρ + divΓ(τ (2)) a2,3

ρ ) (u+m) (u−m)+ . (111)
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Under the assumption (24), we verify for ρ ≤ ρ0 (cf. (109)) that

(cotα τ (2) · ∇a3,3
ρ + τ (2) · ∇a3,2

ρ ) ≤ c k′1 . (112)

Here again, the estimate (103) follows from (111) thanks to standard inequalities. Due to the
formula

(Bρ(u), (u+m)−) =
−1

2

∫

Γ

fd(α, Aρ) τ
(2) · ∇((u−m) (u+m)−) ,

we similarly verify (104). Finally, in view of the continuity property (105), the inequalities (103)
and (104) hold true for all u ∈W 1,2(Ω).

Proposition 5.4. Assume that S ∈ C2(G), and that f ∈ L2(Ω). Let uρ be the weak solution
to (Pρ). Assume that uρ satisfies (3), and that the condition (24), (25), (26) are valid with q = 2.
Then there is a constant c = c(Ω, k1/k0, k

′
1/k0), and a sequence of numbers {Cρ} that tends

to zero, such that

‖∇ξ(3)
ρ ‖L2(Ω) ≤ c (1 + g0) Ñ2 + Cρ . (113)

Proof. Thanks to the relation (93), the operator Bρ of Lemma 5.3, and to the functional

F
(2)

Q̃2,ρ
:= −

∫

Γ

Q̃2,ρ (τ (2) · ∇v) , (114)

(cf. (98), and (99) for a norm estimate on F (2)), (83) is equivalent to

∫

Ω

(m1,1
ρ )−1 κ̃ρ∇ξ(3)

ρ · ∇v =

∫

Ω

{Ḡ(3)
ρ +M (3)

ρ ∇ξ(1)
ρ } · ∇v + (Bρ(ξ

(3)
ρ + Q̃1,ρ), v)

+ F
(2)

Q̃2,ρ
(v) , ∀ v ∈W 1,2(Ω) , (115)

or, for the variable wρ := ξ
(3)
ρ + Q̃1,ρ, to

∫

Ω

(m1,1
ρ )−1 κ̃ρ∇wρ · ∇v =

∫

Ω

{Ḡ(3)
ρ +M (3)

ρ ∇ξ(1)
ρ + [m1,1

ρ ]−1 κ̃ρ∇Q̃1,ρ} · ∇v

+ (Bρ(wρ), v) + F
(2)

Q̃2,ρ
(v) , ∀ v ∈ W 1,2(Ω) . (116)

In the relation (116), it is possible to choose v := wρ. In view of (103) and (104) with m = 0,
and of the interpolation inequality (C.2),

(Bρ(wρ), wρ) ≤ c κ−1
0 (1 + g0) ‖wρ‖2

L2(Γ)

≤ c c20 k
−1
0 (1 + g0) ‖wρ‖L2(Ω) ‖∇wρ‖L2(Ω) .

(117)

Employing from now on Young’s inequality as in the proof of Proposition 5.2, Lemma 4.4 and
Proposition 5.2 to bound the quantities Q̃1,ρ, Q̃2,ρ and ξ

(1)
ρ , the estimate (113) immediately

follows.
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Proposition 5.5. Assume that S ∈ C2, and that f ∈ L2(Ω). Let uρ be the weak solution to
(Pρ). Assume that uρ satisfies (24), and the condition (27) with q = 2. Then there is a constant
c = c(Ω, k1/k0, k

′
1/k0), and a sequence Cρ that converges to zero, such that

‖∇ξ(2)
ρ ‖L2(Ω) ≤ c (1 + g0) Ñ2 + Cρ . (118)

Proof. The proof is very similar to the proof of Proposition 5.4.

Using the relation (94), the operator Bρ of Lemma 5.3 and a functional F
(2)

Ũ2,ρ
(cf. (114)), the

relation (83) is equivalent to

∫

Ω

κ̃ρ∇ξ(2)
ρ · ∇v =

∫

Ω

{Ḡ(2)
ρ + (a1,1

ρ nS − a3,1
ρ T (1)) ×∇ξ(1)

ρ } · ∇v

+ (Bρ(ξ
(2)
ρ + U1), v) + F

(2)

Ũ2,ρ
(v) , ∀ v ∈W 1,2(Ω) . (119)

For the variable wρ := ξ
(2)
ρ + U1, it follows that

∫

Ω

κ̃ρ ∇wρ · ∇v =

∫

Ω

{Ḡ(2)
ρ + (a1,1

ρ nS − a3,1
ρ T (1)) ×∇ξ(1)

ρ + κ̃ρ∇U1} · ∇v

+ (Bρ(wρ), v) + F
(2)

Ũ2,ρ
(v) , ∀ v ∈W 1,2(Ω) , (120)

where it is possible to choose v := wρ. The estimate (118) follows with arguments similar to
the proof of Proposition 5.4.

Proposition 5.6. Let the assumptions of Theorem 5.1 be satisfied. If u denotes the weak solu-
tion to (P ), then u ∈W 2,2(Ωi) for i = 1, 2. Moreover

ξ(i)
ρ ⇀ T (i) · ∇u in W 1,2(Ω)(for i = 1, 2) , ξ(3)

ρ ⇀ κnS · ∇u in W 1,2(Ω) .

Proof. Proposition 5.2, and either Proposition 5.4 in the case of (PN,ρ), or Proposition 5.5 in the

case of (PD,ρ), provide uniform bounds for the sequences {ξ(1)
ρ }, and either {ξ(2)

ρ } or {ξ(3)
ρ },

in the spaceW 1,2(Ω). Due to the gradient representations of Lemma 4.1, it then follows for both

problems that there is C > 0 independent of ρ such that ‖∇ξ(i)
ρ ‖L2(Ω) ≤ C for i = 1, 2, 3.

Thanks to the reflexivity of W 1,2(Ω), we find ξ(i) ∈W 1,2(Ω) such that

ξ(i)
ρ ⇀ ξ(i) in W 1,2(Ω) for i = 1, 2, 3 .

On the other hand ξ
(i)
ρ → T (i) · ∇u for i = 1, 2 and ξ

(3)
ρ → κnS · ∇u almost everywhere in

Ω (cp. Lemma 3.1). Thus

T (i) · ∇u = ξ(i) ∈W 1,2(Ω) (i = 1, 2), κnS · ∇u ∈W 1,2(Ω) .
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6 W 1,∞ regularity

Theorem 6.1. Same assumptions as in the Theorem 5.1. Assume that there is q0 > 3 such
that f ∈ Lq0(Ω). For the problem (3), let Q satisfy (25) with q = q0; for the problem (4), let ue

satisfy (27) with q = q0. Then ∇u ∈ L∞(Ω), and the estimate

‖∇u‖L∞(Ω) ≤ c Ñq0
,

is valid, with a constant c that depends continuously on Ω, on g0, on κ1/κ0, on κ′1/κ0, and also
on g1 for the problem (PN).

For the proof, we will show that the functions ξ(i), i = 1, 2, 3, belong to L∞(Ω). However,
we cannot prove that the approximation method (Pρ) converges in the space W 1,∞(Ω). For-
tunately, once the result of Theorem 5.1 is ensured, we can derive in the limit new regularity
properties that turn out to be sufficient for the result.

Proposition 6.2. Assume that S ∈ C2. Let u denote the weak solution to (P ). Assume that
there is q0 > 3 such that f ∈ Lq0(Ω), and such that u either satisfies (3) withQ ∈W 1/q′0,q0(Γ)
or (4) with ue ∈W 2,q0(Ω). Then ξ(1) belongs to W 1,q0(Ω) and satisfies the estimate

‖ξ(1)‖W 1,q0 (Ω) ≤ c Ñq0
. (121)

Here, the constant c depends continuously on Ω, on g0, on k1/k0, and on k′1/k0.

Proof. We let ρ → 0 in (80) to see in the case of the boundary condition (3) that ξ(1) ∈
W 1,2(Ω) satisfies

∫

Ω

κ∇ξ(1) · ∇v =

∫

Ω

{Ḡ(1) + curl(Q (τ (1) × nΓ))} · ∇v ∀ v ∈ W 2,2(Ω) , (122)

where Lemma C.1 was used to rewrite the functional F
(1)
Q . The estimate (79) ensures that

‖Ḡ(1)‖Lq0 (Ω) ≤ ‖f‖Lq0(Ω) + c g0 κ1 ‖∇u‖Lq0(Ω) .

Since we can obtain a bound on ‖∇u‖Lq0(Ω) with the arguments of Lemma A.1, the right-hand
of (122) belongs to [W 1,q′

0(Ω)]∗, with a corresponding norm estimate. The result now follows in
principle from the Theorem 1. 2 in [HDKRS08]. We give the idea of the proof in the appendix,
Lemma A.1. In the case of the boundary condition (4), introduce ξ

(1)
e := τ (1) · ∇ue to see that

the function ξ(1) − ξ
(1)
e satisfies

∫

Ω

κ∇(ξ(1) − ξ(1)
e ) · ∇v =

∫

Ω

{Ḡ(1) − κ∇ξ(1)
e } · ∇v , ∀ v ∈W 1,2

0 (Ω) . (123)

Here again, the right-hand of (123) extends by continuity to an element of the space [W
1,q′

0

0 (Ω)]∗,
and the regularity follows from the same fundamental result in [HDKRS08].
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For the regularity of ξ(2) and ξ(3), we need to state a further properties valid on the surface Γ.
We introduce a weighted space (cp. (19))

V q
α (Γ) := {u ∈W 1/q′,q(Γ) : fd(α, A) u ∈W 1/q′,q(Γ)} ,

‖u‖V q
α (Γ) := ‖u‖W 1/q′,q(Γ) + ‖fd(α, A) u‖W 1/q′,q(Γ) .

(124)

Lemma 6.3. Let u ∈ W 1,2(Ω) be the weak solution to (P ). Assume that the hypotheses of
Theorem 6.1 are valid. If u is associated to (PN), then there are Q̃1, Q̃2 ∈ W 1/q′0,q0(Γ) such
that

ξ(2) = −fd(α,A) (ξ(3) + Q̃1) − Q̃2 a. e. on Γ (125)

fd(α, A) (ξ(3) + Q̃1) ∈ W 1/2,2(Γ) . (126)

If u is associated with (PD), then there is Ũ2 ∈W 1/q′0,q0(Γ) such that

ξ(3) = fd(α,A) (ξ(2) + U1) + Ũ2 a. e. on Γ , (127)

fd(α, A) (ξ(2) + U1) ∈W 1/2,2(Γ) . (128)

Proof. The relations (125) and (127) are easy consequences of Lemma 4.5 and of the conver-
gence in Proposition 5.6. We recall the notations (18). Defining Q̃1, Q̃2, Ũ2 as accumulation
points of the sequences Q̃1,ρ, Q̃2,ρ, Ũ2,ρ, the representations derived in Lemma 4.4 yield

Q̃1 = Q1 + g1 ξ
(1)

Q̃2 = γ+(Q2) +
a3,3

1

m1,1
1

Q/ sinα− fd(α, A1) Q̃1 +
m2,1

1

m1,1
1

ξ(1)

Ũ2 = γ+(U2) + a3,1
1 ξ(1)

e − a3,3
1 (τ (2) · ∇ue)/ sinα− fd(α, A1)U1 .

Thus, the assumptions on Q1, Q2, U1, U2, the result of Proposition 6.2, and the property (B.1),
are sufficient to verify the W 1/q′

0
,q0 regularity of Q̃1, Q̃2, Ũ2.

Since ξ(2) + Q̃2 ∈ W 1/2,2(Γ), (125) directly proves (126). The proof of (128) is completely
similar.

Lemma 6.4. For u ∈ V 2
α (Γ) and v ∈W 2,2(Ω), define the bilinear form

(B(u), v) = −
∫

Γ

fd(α, A) u (τ (2) · ∇v) . (129)

Then, B extends by density to an element of L(V 2
α (Γ), [W 1,2(Ω)]∗), and for 2 ≤ q0 ≤ 6, the

inequalities

(B(u), (u−m)+) ≤ c̃ (1 + g0) ‖u‖L2 q0/3(Γ) ‖∇(u−m)+‖
Lq′

0 (Ω)
(130)

(B(u), (u+m)−) ≤ c̃ (1 + g0) ‖u‖L2 q0/3(Γ) ‖∇(u+m)−‖
Lq′

0 (Ω)
(131)

are valid for all u ∈ W 1,2(Ω) such that u ∈ V 2
α (Γ), and for all m ∈ N. Here c̃ := c k−1

0 for
(PN), and c̃ := c k1 for (PD).
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Proof. For u ∈ V 2
α (Γ) and v ∈W 2,2(Ω), Lemma C.1 implies the inequality

|(B(u), v)| ≤ c g0 ‖fd(α, A) u‖W 1/2,2(Γ) ‖∇v‖L2(Ω) , (132)

so that B extends by density to an element of L(V 2
α (Γ), [W 1,2(Ω)]∗).

For u ∈W 2,2(Γ) such that u ∈ V 2
α (Γ), and for m ∈ N (cp. (102))

(B(u), (u−m)+) = lim
ρ→0

(Bρ(u), (u−m)+), . (133)

The inequalities (130) and (131) therefore immediately follows from (103) and (104) and Hölder’s
inequality. Due to the density Lemma B.4 these inequalities remain valid for all u ∈ W 1,2(Ω)
such that u ∈ V 2

α (Γ).

Proposition 6.5. Same assumptions as in Theorem 6.1 for the problem (PN). Then ξ(3) be-
longs to L∞(Ω) with estimate

sup
Ω

|ξ(3)| ≤ c Ñq0
. (134)

Proof. Denotew := ξ(3)+Q̃1. Passing to the limit ρ→ 0 in the relation (116) for test functions
v ∈W 2,2(Ω), it follows that

∫

Ω

[m1,1]−1 κ̃∇w · ∇v =

∫

Ω

{Ḡ(3) +M (3)∇ξ(1) + [m1,1]−1 κ̃∇Q̃1} · ∇v

−
∫

Γ

(cotα
a3,3

m1,1
+
a3,2

m1,1
)w (τ (2) · ∇v) −

∫

Γ

Q̃2 (τ (2) · ∇v) . (135)

In view of Lemma 6.4, (135) is equivalent to
∫

Ω

(m1,1)−1 κ̃∇w · ∇v =

∫

Ω

{Ḡ(3) +M (3)∇ξ(1) + [m1,1]−1 κ̃∇Q̃1} · ∇v

+ (B(w), v) + F
(2)

Q̃2
(v) ,

where the choices v := (w−m)+ and v := (w+m)− are possible for all m ∈ N. The claim
follows using Lemma C.4, in connection with the estimates (130), (131), (99), as well as (81)
and the Proposition 6.2.

Proposition 6.6. Let the hypotheses of Theorem 6.1 for the problem (PD) be valid. Then ξ(2)

belongs to L∞(Ω) and satisfies the estimate

sup
Ω

|ξ(2)| ≤ c Ñq0
. (136)

Proof. Define w := ξ(2) + U1. Passage to the limit in the relation (120) for test functions
v ∈W 2,2

Γ2
(Ω), and Lemma 6.4 yield

∫

Ω

κ̃∇w · ∇v =

∫

Ω

{Ḡ(2) + (a1,3 T (1) − a1,1 nS) ×∇ξ(1) + κ̃∇U1} · ∇v

+ (B(w), v) + F
(2)

Ũ2
(v) . (137)

We finish the proof as in Proposition 6.5.
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We are now able to finish the proof of Theorem 6.1.

Proof of Theorem 6.1. We first consider the case of the boundary condition (3). Due to the
Propositions 6.2 and 6.5, ξ(1), ξ(3) are globally bounded in the domain Ω. The relation (125)
and the triangle inequality yield

sup
Γ

|ξ(2)| ≤ k1

k2
0

sup
Ω

(|ξ(3)| + |Q̃1|) + ‖Q̃2‖L∞(Γ) . (138)

On the other hand, we can pass to the limit in the relation (82) to see that ξ(2) ∈ W 1,2(Ω)
satisfies, for all v ∈W 1,2

0 (Ω)

∫

Ω

κ̃∇ξ(2) · ∇v =

∫

Ω

{Ḡ(2) + (a3,1 T (1) − a1,1 nS) ×∇ξ(1)} · ∇v .

Lemma C.4 implies that

‖ξ(2)‖L∞(Ω) ≤ sup
Γ

|ξ(2)| + c (‖Ḡ(2)‖Lq0 (Ω) + ‖∇ξ(1)‖Lq0 (Ω)) ,

and the claim follows from the estimate (138) and Proposition 6.2.

In the case of the boundary condition (4), the Propositions 6.2 and 6.6 yield the global bound-
edness of the components ξ(1), ξ(2). Using the relation (127) and the triangle inequality,

sup
Γ

|ξ(3)| ≤ k1 sup
Ω

(|ξ(2)| + |U1|) + ‖Ũ2‖L∞(Γ)) , (139)

and the claim follows from (83) and Proposition 6.2.

7 W 2,p− regularity

This section is essentially devoted to the proof of the Theorem 2.3. In the case that the com-
patibility condition (24) is violated, it is still possible to prove the existence of second weak
derivatives for the weak solution to (P ). This is based on the following observation.

Lemma 7.1. Let g ∈ C1(R) be nonnegative and nondecreasing, and assume moreover that
Mg :=

∫ +∞

−∞
|t| g′(t) dt < ∞. Then the mapping Bρ of Lemma 5.3 satisfies for all u ∈

W 1,2(Ω) the inequality

(Bρ(u), g(u)) ≤ cMg . (140)

Proof. For t ∈ R, define G(t) :=
∫ t

0
s g′(s) ds. The function G is by assumption bounded by

the number Mg, and for u ∈W 2,2(Ω) arbitrary, the identity

(Bρ(u), g(u)) =

∫

Γ

fd(α, Aρ) τ
(2) · ∇G(u) , (141)
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is valid. For the (PN)−case of (17), integration by parts yields (cp. (107))

(Bρ(u), g(u)) =

∫

Γ

(cotα τ (2) · ∇
a3,3

ρ

m1,1
ρ

+ τ (2) · ∇
a2,3

ρ

m1,1
ρ

)G(u)

+

∫

Γ

(divΓ(cotα τ (2))
a3,3

ρ

m1,1
ρ

+ divΓ(τ (2))
a2,3

ρ

m1,1
ρ

)G(u) . (142)

Observe that under the assumptions of the present Lemma

ρ−1

∫

{x∈Γ : dist(x,Γ∩S)≤ρ}

G(u) ≤Mg ρ
−1 meas({x ∈ Γ : dist(x,Γ ∩ S) ≤ ρ})

→Mg meas(Γ ∩ S) . (143)

Arguing as in (108), (110), the inequality (140) follows. The arguments for (PD) are completely
similar. In Lemma 5.3, we have already proved that the mapping Bρ extends by density to an
element of L(W 1,2(Ω), [W 1,2(Ω)]∗). In view of the continuity property (105), the inequality
(140) is valid for all u ∈W 1,2(Ω).

Proof of Theorem 2.3. For δ ∈]0, 1[, consider the function

gδ(t) := sign(t) (1 − 1

(1 + |t|)1+δ
) . (144)

Then, g′δ(t) = (1+δ) (1+|t|)−2−δ, and it follows thatMgδ
<∞. We consider the relation (116)

in the case of (PN). In the case of (PD), we start from (120) and the arguments are completely
similar. In (116), choose v := gδ(wρ) as the test function. Using in particular Lemma 7.1, we
can prove that there is C independent of ρ such that

∫

Ω

(m1,1
ρ )−1 g′δ(wρ) κ̃ρ∇wρ · ∇wρ ≤ C . (145)

It is to note here that the uniform bounds on Ḡ
(3)
ρ (Lemma 4.3), on Q̃2,ρ (Lemma 4.4) and

on ∇ξ(1)
ρ (Prop. 5.2) are still valid since obtained independently of the condition (24). Denote

hδ(t) :=
∫ t

0

√

g′δ(s) ds. The function hδ is globally bounded, and the inequality (145) shows

that there is C̃ independent of ρ such that ‖∇hδ(wρ)‖L2(Ω) ≤ C̃ . Therefore, hδ(wρ) → χ ∈
W 1,2(Ω). Moreover, using Lemma 3.1 and Lemma 4.4, we can show that χ = hδ(w), where
w = ξ(3) + Q̃1. Using the lower semicontinuity of the norm, the latest and (145) yield

∫

Ω

g′δ(w) |∇w|2 ≤ C̃ . (146)

Let p < 2. Then, Hölder’s inequality and (146) imply that

∫

Ω

|∇w|p ≤
(

∫

Ω

g′δ(w) |∇w|2
)p/2 (

∫

Ω

|g′δ(w)|−p/(2−p)

)(2−p)/2

≤ C̃2/p

(
∫

Ω

|1 + |w||p (2+δ)/(2−p)

)(2−p)/2

. (147)
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The main Theorem of [HDKRS08] implies, via arguments similar to Lemma A.1, that there is
q0 > 3 such that the weak solution to (P ) satisfies u ∈ W 1,q0(Ω). This yields ξ(3) ∈ Lq0(Ω).
Thanks to Lemma 4.4, Q̃1 ∈ L6(Ω). Therefore, w ∈ Ls(Ω), s = min{q0, 6}. If p < 2 s/(s+
2), then there is δ > 0 such that the right-hand of (147) is finite, which implies that ∇w ∈
Lp(Ω). We obtain that ξ(3) ∈ Ls(Ω) ∩W 1,p(Ω). Due to Lemma 4.1, also ξ(2) ∈ Ls(Ω) ∩
W 1,p(Ω). Therefore, ∇u ∈W 1,p(Ωi) for i = 1, 2.

A An auxiliary regularity result

Lemma A.1. Let F ∈ [Lq0(Ω)]3 with 3 < q0 ≤ 3 + δ (δ = a positive constant defined in the
paper [HDKRS08]). Assume that u ∈W 1,2(Ω) satisfies

∫

Ω

κ∇u · ∇v =

∫

Ω

F · ∇v , ∀ v ∈W 1,2(Ω) . (148)

Then u belongs to W 1,q0(Ω), and it satisfies the estimate

‖u‖W 1,q0(Ω) ≤ c (‖F‖Lq0(Ω) + cS {‖F‖L2(Ω) + ‖∇u‖L2(Ω)}) . (149)

The constant c depends on Ω, κ0 and κ1. The constant cS depends on the surface S only upon
its C1−norm, and on the matrices κi (i = 1, 2) upon their C−norm.

Proof. For simplicity, we only prove the regularity in a neighbourhood D (D ⊂ R
3 open) of

the curve Γ ∩ S, which is clearly the challenging point. For x0 ∈ Γ ∩ S, there are, due to
the definition of C2 surfaces, a neighbourhood U of x0 and a C2−Diffeomorphism φ maps U
onto the unit cube Q1, and such that φ(x0) = 0, φ(Γ ∩ U) =] − 1, 1[×{0}×] − 1, 1[ and
φ(S ∩ U) =] − 1, 1[×] − 1, 1[×{0}. Define ψ := φ−1.

To attain the model configuration of the paper [HDKRS08], consider for 0 < r < 1 a prism
Pr := △r×] − r, r[⊂ Q1, where △r is an equilateral triangle with sidelength = r, and with
its base located in the line ]−1, 1[×{0}×{0}. Denote, Γr := ∂Pr∩]−1, 1[×{0}×]−1, 1[,
and Σr := ∂Pr \ Γr. Due to the choice of Pr, there is r0 = r0(S, Γ) such that ψ(Pr) ⊂ U
for all r ≤ r0.

Transforming the formula (148), we obtain that

∫

Pr

µ∇ũ · ∇ṽ =

∫

Pr

F̃ · ∇ṽ , ∀ṽ ∈W 1,2
Σr

(Pr) . (150)

where ũ = u ◦ ψ, and µ is the piecewise Lipschitz continuous, symmetric, and uniformely
positive definite matrix | detψ′| (ψ′)−1 κ (ψ′)−T , and F̃ is the vector field | detψ′| (ψ′)−T F .

Introduce the (in Pr) piecewise constant matrix µ0 such that µ0
i := µi(0) for i = 1, 2. If

w ∈W 1,2
Σr

(Pr), satisfies

∫

Pr

µ0∇w · ∇ṽ =

∫

Pr

F̃ · ∇ṽ, ∀ṽ ∈W 1,2
Σr

(Pr) , (151)
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the Theorem 1.2 in [HDKRS08] implies that there is a constant c0 = c0(µ
0) such that

‖w‖W 1,q0(Pr) ≤ c0 ‖F̃‖Lq0 (Pr) . (152)

(The independence of c0 on r is easy to check: use the transformation Ψr(x) := r x from the
unit prism P1 onto Pr, and apply on P1 the Theorem 1.2 of [HDKRS08]).

It has been shown for instance in [ERS07] that the Banach perturbation arguments implies the
existence of a positive r0 = r0(µ), such that for all r ≤ r0, and for ũ satisfying (150)

‖∇ũ‖W 1,q0(Pr) ≤
c0

1 − c0 f(r)
(‖F̄‖Lq0 (Pr) +

1

r
{‖F̃‖L2(Pr) + ‖∇ũ‖L2(Pr)}) ,

where f(r) := ‖µ− µ0‖L∞(Pr).

The maximal allowed size of r depends only on the surfaces S, Γ, and on the uniform continuity
of the matrices κi, so that finite covering of a neighbourhood of the curve Γ∩S is possible.

B Auxiliary propositions concerning trace spaces

We at first note a useful elementary property of the spaces W 1/q′,q(Γ).

Lemma B.1. Let 1 ≤ q ≤ ∞ arbitrary. If u ∈ W 1/q′,q(Γ) and g ∈ C0,1(Γ), then g u belongs
to W 1/q′,q(Γ), and there is a constant c = c(q,Γ) such that

‖g u‖W 1/q′,q(Γ) ≤ cq ‖g‖C0,1(Γ) ‖u‖W 1/q′,q(Γ)

Proof. For q = ∞ the claim is obvious. Otherwise, the triangle inequality implies that

‖g u‖q

W 1/q′,q(Γ)
=

∫

Γ

∫

Γ

|u(x) g(x)− u(y) g(y)|q
|x− y|2+q/q′

dy dx

≤
∫

Γ

|u(x)|q (

∫

Γ

|g(x) − g(y)|q
|x− y|2+q/q′

dy)dx+

∫

Γ

|g(x)|q (

∫

Γ

|u(x) − u(y)|q
|x− y|2+q/q′

dy)dx .

Define c̃q := supx∈Γ(
∫

Γ
|x− y|−1 dy)1/q. Due to Lipschitz continuity of g, it follows that

‖g u‖W 1/q′,q(Γ) ≤ c̃q ‖∇g‖L∞(Γ) ‖u‖Lq(Γ) + ‖g‖L∞(Γ) ‖u‖W 1/q′,q(Γ) ,

and (B.1) follows easily.

The following Lemma states basic properties of the spaces V q(Γ), and of the operators γ+ and
γ− (cp. (18)).

Lemma B.2. Let µ ∈ L∞(Ω) be piecewise Lipschitz continuous, that is, µ := µi ∈ C0,1(Ωi)
for i = 1, 2. Then,

(1) The mapping u 7→ µ u is continuous from V q(Γ) into W 1/q′,q(Γ) for all 1 ≤ q ≤ ∞.
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(2) Define d(x) := dist(x, Γ ∩ S) for x ∈ Γ. For 1 ≤ q < ∞, a function u ∈ W 1/q′,q(Γ)
belongs to V q(Γ) if, and only if, ‖ u

d1/q′ ‖Lq(Γ1) <∞.

Proof. (1): On Γ, one has µ u = µ1 γ
−(u) + µ2 γ

+(u). Due to Lemma (B.1) and the triangle
inequality, it follows that

‖µ u‖W 1/q′,q(Γ) ≤ ‖µ1 γ
−(u)‖W 1/q′,q(Γ) + ‖µ2 (u− γ−(u))‖W 1/q′,q(Γ)

≤ c (‖µ1‖W 1,∞(Γ) + ‖µ2‖W 1,∞(Γ)) ‖u‖V q(Γ) . (153)

(2): The definition of γ− implies that

‖γ−(u)‖q

W 1/q′,q(Γ)
=

∫

Γ1

∫

Γ1

|u(x) − u(y)|q
|x− y|2+q/q′

dxdy + 2

∫

Γ1

|u(x)|q d̄Γ1
(x)q/q′dx ,

d̄Γ1
(x) := (

∫

Γ2

|x− y|−(2+q/q′) dy)q′/q, x ∈ Γ1 .

There are constants c1, c2 such that c1 d(x) ≤ d̄Γ1
(x) ≤ c2 d(x) on Γ1, proving the claim.

Remark B.3. The operators of extension by zero in spaces W s,q (s ∈ R, q ∈ [1,∞]) have
been extensively studied in. The elements of the space V q(Γ) satisfy a critical decay property
u/d1/q′ ∈ Lq(Γ1) (cp. [LM61], Cor. 5.1). In the case q = 2, it is possible to relate the space

V 2(Γ) to the space W
1/2,2
00 .

In the following Lemma, we note a density property of the space V q
α (Γ) (cp. (124)).

Lemma B.4. Assume that u ∈ V 2
α (Γ). Then, there is a sequence {vk}k∈N ⊂ C∞(Ω)∩V 2

α (Γ)
such that vk → u in V 2

α (Γ).

Proof. We first show some preliminaries. With the abbreviation µ := fd(α, A), the definition
of V 2

α implies that

‖u‖V 2
α (Γ) = ‖u‖W 1/2,2(Γ) + ‖µ u‖W 1/2,2(Γ) ,

and since µ u = µ1 γ
−(u) + µ2 γ

+(u), it follows that

‖u‖V 2
α (Γ) ≤ ‖u‖W 1/2,2(Γ) + ‖µ1 γ

−(u)‖W 1/2,2(Γ) + ‖µ2 γ
+(u)‖W 1/2,2(Γ) . (154)

Lemma B.2, (2) and LemmaB.1 yield

‖µ1 γ
−(u)‖W 1/2,2(Γ) ≤ ‖µ1 u‖W 1/2,2(Γ1) + ‖µ1 u/d

1/2‖L2(Γ1)

≤ c ‖µ1‖C0,1(Γ) ‖u‖W 1/2,2(Γ) + ‖µ1 u/d
1/2‖L2(Γ1) .

With similar arguments, it follows from (154) that

‖u‖V 2
α (Γ) ≤ c1 (‖u‖W 1/2,2(Γ) + ‖µ1 u/d

1/2‖L2(Γ1) + ‖µ2 u/d
1/2‖L2(Γ2)) . (155)
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To start the proof of the approximation property, consider at first the truncature Tk(u) :=
sign(u) min{|u|, k}, at level k ∈ N. Due to dominated convergence, note that

‖µ1 (Tk(u) − u)/d1/2‖2
L2(Γ1) =

∫

{x∈Γ:|u(x)|>k}

µ2
1 u

2

d
→ 0 .

Since it is well-known that Tk(u) → u in W 1,2(Ω), respectively in W 1/2,2(Γ), the inequality
(155) shows that Tk(u) → u in V 2

α (Γ) as k → ∞. Therefore, there is no loss of generality in
assuming u ∈ V 2

α (Γ) ∩ L∞(Γ).

Since µ ∈ L∞(Γ), (155) implies immediately that

‖u‖V 2
α (Γ) ≤ c2 ‖u‖V 2(Γ), V 2(Γ) ⊆ V 2

α (Γ) . (156)

In the second step, we prove that V 2(Γ) is dense in V 2
α (Γ).

For k ∈ N, we choose a Lipschitz continuous function ψk ∈ C0,1(Ω) such that

ψk(x)











= 1 if dist(x, Γ ∩ S) > 1/k ,

∈ [0, 1] if 1/2k ≤ dist(x, Γ ∩ S) ≤ 1/k ,

= 0 if dist(x, Γ ∩ S) < 1/2k ,

|∇ψk| ≤ k, supp(∇ψk) ⊆ {x ∈ Ω : dist(x, Γ ∩ S) ≤ 1/k} . (157)

Then the sequence {ψk u} is uniformly bounded in W 1,2(Ω) and in W 1/2,2(Γ), since

‖u∇ψk‖L2(Ω) ≤ ‖u‖L∞(Ω) k meas(supp(∇ψk))
1/2 ≤ C ,

Since also ψk |u| ≤ |u| on Γ, the inequality (155) shows that the sequence {ψk u} is uniformly
bounded in V 2

α (Γ) as well. Due to the Hilbert space structure of V 2
α (Γ), ψk u ⇀ u in V 2

α (Γ)
for a subsequence.

Weak and strong closure are identical for convex sets (an argument sometimes called Mazur’s
Lemma), and we can extract a sequence of convex combinations ofψk u that strongly converges
to u in V 2

α .

In the third step, we show that C∞(Ω) ∩ V 2(Γ) is dense in V 2(Γ). If ũ ∈ V 2(Γ), then the
extension by zero on S (same denotation) satisfies ũ ∈ W 1/2,2(∂Ωi) for i = 1, 2. Therefore,
via extension into Ω with the trace theorem, there is a sequence {ζk} ⊂ C∞

c (Ω \ S) such that
ζk → ũ in W 1,2(Ωi). Thus, with the argument of Lemma B.2, (2)

‖γ−(ζk − ũ)‖W 1/2,2(Γ) = ‖ζk − ũ‖W 1/2,2(∂Ω1) → 0 ,

establishing the density in V 2.

For ǫ > 0, there is thanks to the first and second steps of this proof a ũǫ ∈ V 2(Γ), such
that ‖u − ũǫ‖V 2

α (Γ) ≤ ǫ. Due to the third step, there is ζǫ ∈ C∞(Ω) ∩ V 2(Γ) such that
‖ζǫ − ũǫ‖V 2(Γ) ≤ ǫ. It follows from (156) that

‖u− ζǫ‖V 2
α (Γ) ≤ ‖u− ũǫ‖V 2

α (Γ) + ‖ζǫ − ũǫ‖V 2
α (Γ) ≤ (1 + c2) ǫ ,

proving the approximation property.
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Lemma B.5. Let µρ := Lρ(µ) denote the approximation (34) of the coefficient µ. Assume that
u ∈ V 2(Γ). Then, limρ→0 ‖µρ u‖W 1/2,2(Γ) = ‖µ u‖W 1/2,2(Γ).

Proof. In the step three of the proof of Lemma B.4, we have proved thatC∞
c (Ω\S) is dense in

V 2(Γ). Let uk ∈ C∞
c (Ω \ S), uk → u in V 2(Γ). For k fixed and ρ sufficiently small, we have

µρ uk = µ u on Γ, ‖µρ uk‖V 2(Γ) = ‖µ u‖V 2(Γ) .

Since uk → u in V 2(Γ), then µ uk → µ u in W 1/2,2(Γ) due to Lemma B.2, (1), and the claim
follows.

C Some useful properties

Lemma C.1. Let 1 ≤ q ≤ ∞ arbitrary, let g ∈ W 1,q(Ω), and let τ ∈ {τ (1), τ (2)} where τ (i)

is defined by (9). For v ∈ W 2,q′(Ω),

∫

Γ

g (τ · ∇v) =

∫

Ω

curl(g (τ × nΓ)) · ∇v , (158)

∣

∣

∣

∣

∫

Γ

g (τ · ∇v)
∣

∣

∣

∣

≤ (g0 ‖g‖Lq(Ω) + ‖∇g‖Lq(Ω)) ‖∇v‖Lq′(Ω) . (159)

Proof. The representation (158) follows from integration by parts. The estimate (159) is obvious
due to Hölder’s inequality.

Lemma C.2. For all u ∈W 1,2(Ω), we have the estimate

‖u‖2
L2(Γ) ≤ c0 ‖∇u‖L2(Ω) ‖u‖L2(Ω) . (160)

Proof. The inequality (160) is proved in [LU68], Ch. 2, Paragraph 2.

The proof of the following Lemma follows from elementary vector identities.

Lemma C.3. Let T (1), T (2) be given by (10), and let τ (1), τ (2) be given by (9). Then, we have
on Γ

T (1) · τ (1) = 1, T (1) · τ (2) = 0, T (1) · nΓ = 0 , (161)

T (2) · τ (1) = 0, T (2) · τ (2) = cosα, T (2) · nΓ = sinα (162)

nS · τ (1) = 0, nS · τ (2) = − sinα, nS · nΓ = cosα . (163)

Lemma C.4. Let q0 > 3 be an arbitrary real number, and let m0 ∈ N. For all mN such that
m ≥ m0, let u ∈W 1,2(Ω) satisfy

∫

Ω

|∇(u−m)+|2 ≤ K ‖∇(u−m)+‖
Lq′

0 (Ω)
, (164)
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Then, there is a consant c depending on Ω such that supΩ u ≤ m0 + cK. Under the same
conditions, let u satisfy

∫

Ω

|∇(u+m)−|2 ≤ K ‖∇(u+m)−‖
Lq′

0 (Ω)
, (165)

Then, infΩ u ≥ −m0 − cK with a constant c depending on Ω.

Proof. Lemma C.4 follows from a (nowadays classical) Lemma by G. Stampacchia [Sta65].
Complements to the original proof are to find, for instance, in [Tro87], Ch. 2, Section 2.3. Similar
results were obtained in [LU68], Ch. 3, Paragraph 13.
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