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Abstract. A generalized collision mechanism for Boltzmann type stochastic 
particle schemes is developed. This mechanism is based on the idea of random 
weight transfer originating from random discrete velocity models. The problem 
of applying the new degrees of freedom for the purpose of variance reduction 
is studied. Some results of numerical experiments are given. 
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1. Introduction 

We study stochastic particle schemes of the form 

z(n)(t) = { ( wJn)(t)' g!n)(t)) ' i = 1, ... 'm(n)(t)} ' t ~ 0. (1.1) 

Each particle has a state win) ( t) from a locally compact separable metric space 
W (e.g., W = X x V, where X is the position space and V is the velocity 
space) and a weight 9ln)(t) E [O, 1]. The variable m(n)(t) denotes the number 
of particles in the system. Finally, the index n indicates the parameter with 
respect to which convergence is considered. 

The system of particles (1.1) is defined as a Markov process with the in-
finitesimal generator 

A(~) ( z) = ( 1. 2) 

L 11 [~(J(z,i,j,wi,w2))- ~(z)] Q(z,i,j,dw1,dw2), 
l~i;fij~m W W 

where ~ is an appropriate function on the state space 

Z = { Z = ((w1,g1), ... , (wm,9m)) E Uk'=l (W X [O, l])k : ~g; :S: 1}. (1.3) 

The transformation J(z,i,j,wi,w2) : Z--+ Z is defined as 

(wk,9k) , if k:::; m, k-:/= i,j, 
(w1, G(z,i,j,w1,w2)) , if k = i, 

[J(z,i,j,wi,w2)]k = (w2,G(z,i,j,w1,w2)) , if k =j, (1.4) 
(wi,9i - G(z,i,j,w1,w2)), if k == m + 1, 
(wi,9i - G(z, i,j, w1 , w2)), if k == m + 2. 

The behaviour of the system (1.1) is characterized by a jump mechanism. 
During each jump, two particles at the states Wiand Wj create two new particles 
at the states w1 and w2 giving them a certain amount of weight. 

The jump kernel Q determines the intensity of jumps (interpreted as 
collisions between particles) and the distribution of the jump targets ( w1 , w2 ). 

It is assumed to satisfy 

Q(z,i,j, W, W):::; Cq,max max(gi,gj). (1.5) 

The intensity of jumps is estimated according to (1.5) ( cf. also (1.3)), 

7r(z) = L Q(z,i,j, W, W):::; 

:::; Cq,max L (gi + 9j) :::; 2 CQ,max (m - 1), \/z E Z. (1.6) 
l~i:;i:j~m 
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Though the right-hand side of (1.6) is unbounded, existence of the process can 
be established ( cf. [5, Ch. 4, Problem 5]). 

The weight transfer function G describes the amount of weight given 
to the particles in the post-collision states. Concerning the function G we· 
assume 

(1. 7) 

so that the weight components of the process remain positive (particles with 
weight zero are removed from the system). 

The deterministic equation, which is to be solved numerically by means of 
an exact or approximate simulation of the particle system ( 1.1), has the form 

! fw \O(w) >.(t, dw) = fw fw fw fw (l.B) 
[cp(w1) + cp(w2) - cp(w1) - cp(w2)] {3(w1, w2, dw1, dw2) ..\(t, dwi) ..\(t, dw2), 

fw \0( w )).(0, dw) = fw \0( w )).0 ( dw) , (1.9) 

where cp is an arbitrary bounded measurable test function, /3 is an appropriate 
kernel, and ,\0 is a given initial value. Eq. (1.8) describes the time evolution 
of a measure-valued function,\. 

The parameters Q and G of the particle system (1.1 ), (1.2) are related to 
the kernel f3 appearing in Eq. (1.8) via the basic relationship 

(1.10) 

Remark 1.1 The (spatially homogeneous) Boltzmann equation is obtained in 
the special case W = V = R 3 

, 

where B is the collision kernel and S 2 denotes the unit sphere in the Euclidean 
space R 3 • The post-collision velocities v; and v; are determined as 

(1.11) 

where (., . ) denotes the scalar product. 
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Consider the empirical measures corresponding to the system ( 1.1) 

m(n) (t) 

µ(n)(t, dw) = L 9ln)(t) dw{n)(t)(dw), 
i=l i 

(1.12) 

where 8 denotes the Dirac measure. Functionals of the solution of Eq. (1.8) are 
estimated by the corresponding functionals of the empirical measures (1.12), 
i.e. 

(1.13) 

It is assumed that the initial state z(n)(O) of the system (1.1) is such that 
µ(n) (0) converges to the initial value ).0 of Eq. (1.8), (1.9). This is the origin 
of the dependence of the particle system on the index n. Thus, it is natural to 
assume 

(1.14) 

The problem of convergence of the empirical measures (1.12) to the solution 
of Eq. (1.8) is considered in Section 2. The pathwise behaviour of the Markov 
process (1.1) is described in Section 3. The generator (1.2) depends on the two 
parameters Q and G. They are related to the kernel f3 of the limiting equation 
(1.8) via equation (1.10) and are subject to the conditions (1.5), (1. 7). The 
considerable freedom one still has in choosing them is discussed in Section 4. 
In Section 5 we show how this choice may be adapted to the special problem to 
be solved, in order to achieve a reduction of the statistical fluctuations of the 
estimator at the right-hand side of (1.13). Results of numerical experiments 
are given in Section 6. 

We refer to [1], [3], [4, Ch. 10], [6], [12], [13], [14], [15] concerning parti-
cle simulation schemes for the Boltzmann equation and to [7], [8] concerning 
random discrete velocity models. 

2. Convergence of the empirical measures 

The convergence result will be stated in terms of the bounded Lipschitz 
metric, which is equivale.nt to weak convergence of probability measures ( cf. 
[5, p. 150])' 

e(v1, v2) = sup I f cp(w) v1(dw) - f cp(w) v2(dw)I, 
ll'PllL9 lw lw 
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where 

and r is the metric in W . 

Let the parameters Q and G of the particle system (1.1) and the kernel {3 
of Eq. (1.8) satisfy (1.5), (1. 7), (1.10), 

(2.1) 

and 

I fw fw[cp(W1) + cp(W2)] fJ(w1, w2, dWi, dW2)-

fw f)cp(W1) + cp(W2)] fJ(W1, W2, dW1, dW2)1 ~ (2.2) 
~ C{3,L llcpllL [r(w1, w1) + r(w2, w2)]. 

In the case W C Rd , we assume that 

sup E sup f llwll 2 µ(n)(t, dw) < oo, VT> 0, 
n tE[O,T]jW 

where E denotes mathematical expectation, and 

sup f llwll 2 A(t, dw) < oo, VT> 0. 
tE[O,T]jW 

(2.3) 

(2.4) 

Conditions (2.3), (2.4) are not needed when W is compact. In the special case 
mentioned in Remark 1.1, they reduce to the conditions 

sup E f llwll 2 µ(n) (0, dw) < oo and f llwll 2 Ao( dw) < oo, 
n lw lw 

because of the conservation properties of the collision transformation ( 1.11). 

Under the above mentioned assumptions, the following theorem holds. 

Theorem 2.1 If 

lim Ee(µ(n)(O), Ao)= 0 and lim E .max g}n)(O) = 0, 
n-too n-too i=l, ... ,n 

then 

lim E sup g(µ(n)(t), A(t)) = 0, VT> 0. 
n-too tE[O,T] 

(2.5) 
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Theorem 2.1 generalizes Theorem 3.1 in [16], where the special case of the 
spatially homogeneous Boltzmann·equation was considered. Also, the restric-
tion on the length T of the time interval in (2.5) has been removed. Since the 
proof of the theorem is similar to that in [16], we only sketch the main ideas 
and provide the basic estimates. 

Consider a function 
m 

~(z) = L 9i cp(wi), z = ((w1,g1), ... , (wm, 9m)) , 
i=l 

where cp is a measurable bounded function on W. Notice that 

(2.6) 

where z(n) is the Markov process (1.1), and µCn) is the empirical measure 
defined in (1.12). Using (1.4), we find 

~(J(z, i,j, wi, w2)) = 
~(z) + G(z, i,j, wi, w2) [cp(w1) + cp(w2) - cp(wi) - cp(wi)] , 

and, according to (1.2) and (1.10), 

A(~)(z) = · (2.7) 

L: 9i 9i 11 [cp(wi) + cp(w2) - cp(wi) - cp(w;)J f3(wi, w;, dw1, dw2). 
l~i#j~m W W 

Analogously, one finds 

A(~2 )(z) = 2~(z)A(~)(z) + L 9i9i 11 (2.8) 
l<#j<m W W 

[cp(wi) + cp(w2) - cp(wi) - cp(w;)]2 G(z, i,j, w1, w2) {3(wi, w;, dw1, dw2). 

Note that 
m 

l~(z)I ~ ll'Pll L9i ~ ll'Pll, (2.9) 
i=l 

where 11·11 denotes the sup-norm. Using (2.1), one obtains from (2.7) that 

IA(~)(z)I ~ 4 ll'Pll C~,max 
and, from (2.8), (2.9) and (2.10), that 

IA(~2 )(z)j ~ 24 ll'Pll 2 C~,max · 

6 
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Consequently, the functions <.P and <.P 2 belong to the domain of the generator 
(1.2) ( cf. [5, Ch. 4, Problem 15]). Therefore, the following representation 
holds, 

where M(n)(t) is a martingale, and 

Using (2.11), (2.6) and (2.7), one obtains 

fw cp(w)µ("l(t, dw) = fw cp(w)µ("l(o, dw) + fo' fw fw 

where 

Uw fw [ cp(W1) + cp(W2) - cp(w1) - cp(w2)] .8(w1, w2 , dW1 , dW2 )} 

µ(n)(s, dwi) µ(n)(s, dw2) ds - R(n)(t) + M(n)(t), 

(2.12) 

(2.13) 

t mCn) (s) 

R(">(tJ = l t; [gf">(sJJ2 x (2.14) 

Uw fw [cp( 'lii1) + cp( W2) - 2 cp( wl"l ( s )) ] .8( wf "l( s ), wf "l ( s ), dW1 ; dW2)} ds. 

Representation (2.13) shows the origin of Eq. (1.8). Note that 

max g~n)(s) ~ .max g!n)(O), 
i=l, ... ,m(n)(s) i=l, ... ,n 

(2.15) 

because of (1.4) and (1.14). Thus, the term R(n)(t) defined in (2.14) is easily 
estimated, 

(2.16) 

Using (2.8), (2.15), and the obvious estimate ( cf. (1. 7)) 

G(z(n)(s),i,j,w1,w2) ~ max g!n)(s), 
i=l, ... ,m(n) (s) 

one obtains from (2.12) that 

£ [M(n)(t)]2 ~ 16 ll'Pll 2 Cf',maxt .max gJn)(O). 
. i=l, ... ,n 

(2.17) 

Using the representation (2.13) as well as the estimates (2.16), (2.17), and 
assumption (2.2), the proof can be completed in analogy with [16]. 

7 



3. Pathwise behaviour of the stochastic pro-
cess 

Once the parameters G and Q are fixed, the generator (1.2) and therefore 
the stochastic evolution of the process (1.1) are determined. But there are 
different ways of generating trajectories of the process. 

The process is a jump process with a generator of the form 

(3.1) 

where 

The generator (3.1) does not change if one replaces q .by 

q(z, dz) = 

(3.2) 
+[CJmax(z, i,j) - Q(z, i,j, W, W)] fiz(dz)}, 

where CJmax is a function such that 

Q ( Z, i, j, W, W) ::; Q max ( Z, i, j) · (3.3) 

Thus, the behaviour of the Markov process (1.1) can be described as follows. 

Coming to a state z = ((w1 ,g1), .•. , (wm,9m)), the process stays there for 
a random waiting time f(z), which has an exponential distribution with 
the parameter 

-n-(z) = q(z,.Z) = L CJmax(z,i,j), (3.4) 
15#i5m 

i.e. 

Prob {f(z) 2:: t} = exp(-fr(z) t). 

Then, the process jumps into a state z, which is distributed according to the 
jump distribution 

fr(zt 1 q(z, dz). 
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According to (3.2), the distribution of the parameters i and j is deter-
mined by the probabilities 

Qmax(z, i, j) 
(3.5) 

L1~i;l:j~m Qmax(z, i,j) 
Given i and j, there is a certain probability that a jump is fictitious. 
Namely, the new state is z = z with probability 

1 _ Q(:,i,j, W, W). 
Qmax(z, i,j) 

Otherwise, the distribution of the parameters w1 and w2 is 

Q(z, i,j, dw1, dw2) 
Q(z,i,j, W, W) ' 

and the new state is z = J( z, i, j, wi, w2 ) • 

A trivial choice of the function Qmax is ( cf. (3.3)) 

Qmax(z,i,j) = Q(z,i,j, W, W). 

(3.6) 

(3.7) 

(3.8) 

In this case, there will be no fictitious jumps ( cf. (3.6)). However, in general 
one has quadratic (with respect to the number of particles m) effort in the 
calculation of the waiting time parameter (3.4) or the probabilities (3.5). An 
appropriate choice of the function Qmax may lead to a substantial simplification 
of the modelling of the process. Note that the distribution of the process 
remains the same. 

We give an example, where the parameter -ff( z) of the waiting time distri-
bution is known analytically. Because of (1.5), one may choose 

Qmax(z, i,j) = GQ,max (gi + 9i) · (3.9) 

Note that z = ((wi,g1), ... , (wm,9m)). According to (3.4), one obtains 
m 

-ff(z) = 2 GQ,max (m - 1) L9i · (3.10) 
i=l 

The probabilities (3.5) take the form 

9i + 9i 
m 

where g(z) = L9i · 
i=l 

(3.11) 
2(m-l)g(z)' 

Consequently, first the index i is to be chosen according to the probabilities 

( m - 2) 9i + g ( z) 
2(m-l)g(z) ' 
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and then, given i, the index j is to be chosen according to the probabilities 

9i + 9i (3.13) 
( m - 2) 9i + 9 ( z) · 

Both distributions (3.12) and (3.13) are of the form 

d+ 9i i=l, ... ,l. 
c 

They may be modelled by the acceptance-rejection technique in the following 
way: choose i uniformly and check the condition 

d + 9i 
TJ < ' - d+9ma:z: 

where TJ is uniformly on (0, 1] and 9max 2:: maXi=l, ... ,l 9i . 
The idea of the introduction of fictitious jumps is to obtain an equivalent 

stochastic mechanism of modelling trajectories, which is numerically more ef-
ficient. One generates more jumps by a much simplified stochastic mechanism 
and plays an additional game of chance (leading to fictitious jumps) to reduce 
the number of jumps to the right one. This idea is present in many of the 
algorithms known in the literature ((2], (9], [10], (11]). 

4. Free parameters of the collision mechanism 

The parameters G and Q satisfying (1.7) and (1.10) can be represented in 
the form 

(4.1) 
Q(z,i,j,dw1,dw2) = (1 +1(z,i,j,w1,w2)] max(gi,9i)/3(wi,Wj,dw1,dw2). 

The function 1' is supposed to be such that 

(4.2) 

Condition (1.5) is fulfilled with 

CQ,max = (1+C-y,max)0(3,max ( 4.3) 

provided that /3 satisfies (2.1). 
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Exam pie 4.1 The trivial choice of the function r. is 

for which one obtains 

G(z, i,j, W1)W2) - min(gi, 9i) 
Q(z, i,j, dw1, dw2) max(gi, 9i) f3(wi, wi, dw1, dw2). 

If, in addition, there are identical initial weights, then the function G reduces 
to a constant. Thus, there is a complete weight transfer during each collision 
{cf. {1..4.), and one obtains the standard DSMC method. 

Example 4.2 Consider a subset W1 of the space W x W, and define 

if (wi, wi) E W1, 
otherwise. (4.4) 

In this case, particles with states described by the set W1 will remain in the 
system, simply loosing a part of their weight during each collision. 

Example 4.3 Consider subsets W 2 and W 2 of the space W x W, and define 

r(z, i, j, w1, w2) = r2( wi, wj, wi, w2) = ( 4.5) 

{ 
J'i,2 ~ 0, if (wi,wi) E W2 and (w1,w2) E W2, 
0 , otherwise. 

In this case, the distribution of the parameters w1 , w2 changes (cf. {3. 7)) in 
such a way that particles jump with larger probability from states described by 
the set W 2 into states described by the set W2 . 

Note that, unlike the introduction of fictitious jumps in Section 3, different 
choices of the function r lead to different stochastic particle schemes (1.1). 
What these schemes have in common, is the limit of their empirical measures 
(1.12) given by Theorem 2.1. However, the approach to this limit depends on 
the choice of r. 

If r = 0 , then there is the largest possible weight transfer function G and 
the lowest possible jump kernel Q (cf. (4.1)). Consequently, there is the 
slowest possible increase of the number of particles in the system. In particular, 
maximal one new particle may occur during a collision. 

If r > 0 , then only a part of the weights of the particles in the pre-collision 
states is transferred to the particles in the post-collision states during the 
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collision (cf. (4.1), (1.4)). This effect is compensated by a corresponding 
increase of the kernel Q leading to smaller time intervals between collisions 
( cf. (3.4) with the choice (3.8)) and, possibly, a change of the distribution of 
the parameters i,j,w1,w2 (cf. (3.5) with the choice (3.8), and (3.7)). Another 
effect of an increased kernel Q is a faster growth of the number of particles in 
the system. 

On the other hand, the distribution of the post-collision states w1 , w2 may 
be changed according to different purposes via an appropriate choice of the 
function I (cf. (4.1), (3.7)). The effect of an increased jump kernel Q is 
then compensated by a decrease of the weight transfer function G. Thus, if 
an artificially favoured post-collision state comes out, only a correspondingly 
smaller part of the weight is transferred. 

5. A model kinetic equation 

Consider the special case with the space W = [O, 1] , where the points 0 and 
1 are identified, and the kernel 

(5.1) 

where the function 1/; is defined as 

,,P(x)=x-n, xE[n,n+l), n=-1,0,1. 

Then Eq. (1.8) takes the form 

! [ cp(v) f(t, v) dv = [ [ cp(.,P(v1 + v2)) J(t, v1) f(t, v2) dv1 dv2 

- [ [ cp( vi) f ( t, vi) f ( t, v2) dv1 dv2 . (5.2) 

The first term on the right side of (5.2) is transformed by an appropriate 
substitution of the integration variables, 

l l cp(.,P(v1 + v2)) f(t, v1) f(t, v2) dv1 dv2 = 

= l l cp(u) f(t, v1) f(t, .,P(u - v1)) du dv1. (5.3) 

Removing the test functions one obtains from (5.2) and (5.3) the equation 

a r1 at f ( t' v) = J 0 dw [! ( t' 1/; ( v - w)) f ( t' w) - f ( t' v) f ( t' w)] . (5.4) 
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Remark 5.1 The limiting equation (5.4) is also obtained for 

(3( W1, W2, dW1, dW2) = ~ O,p(w1 +w:.J( dW1) O,p(w1 +w:.} ( dii2), (5.5) 

instead of (5.1}. The kernel (5.5} is preferable since it leads to a lower intensity 
function and thus to a slower growth of the number of particles in the system. 

We want to illustrate the new oppqrtunities achieved by the introduction 
of the generalized collision mechanism, where the parameters G and Q are 
considered as degrees of freedom of the numerical algorithm. To this end, we 
consider the problem of calculating small probabilities, i.e. functionals of the 
solution of Eq. (5.4) of the form 

p.(t) = {J(t,w)dw, e > 0. (5.6) 

For small c , only very few particles reach the integration set [1 - c, 1] . The 
standard statistical estimator ( cf. (1.13) and Example 4.1) of the functional 
(5.6) has large fluctuations. 

We consider two strategies of tackling this problem using special choices of 
the function 'Y in ( 4.1). The first strategy is to avoid that particles disappear 
once they have reached the region [1-c, 1]. The second strategy is to encourage 
particles to enter the desired region, i.e. to give a preference to certain out-
comes of collisions by an appropriate choice of the corresponding probability 
distribution. 

We introduce the function 

where the functions 'Yi and 12 are defined in ( 4.4) and ( 4.5), respectively, with 
the corresponding sets 

VV'1 {(UJ1,UJ2) 
VV'2 - {( UJi, UJ2) 

W2 - {( UJi, UJ2) 

UJ1 E [1-e, 1] or UJ2 E [1-e, 1]} , 
UJ1, UJ2~[1-c,1]}, 
w1, w2E[1-e,1]}. 

Note that w1 = w2 with probability one, according to (5.5). The function 'Y 
takes the form 

1(z, i,j, wi, w2) = 

{ 

~1, 
~2, 

0 

if UJi E [1-e, 1] or 
if UJi, UJi ~ [1-e, 1] 
otherwise. 

13 
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UJj E [1-e,1], 

and wi, w 2 E [1-e, 1], 



Consider Qma:z: in the form ( cf. (3.9), ( 4.3), ( 4.2), (5.5)) 

Q" ( . ') 1 + max(J<C1, J<C2) ( ) ma:z: Z, ?, , J = 2 9i + 9i · (5.8) 

According to (3.10) with Cq,ma:z: = l+maxJ"1 ·"2 ) , the parameter of the waiting 
time distribution is 

m 

11-(z) = (1 + max(J<C1, J<C2)) (m - 1) L 9i. (5.9) 
i=l 

The indices i,j are distributed according to (3.11), i.e. independently of 
J<C1 and J<C2 . 

The jump is fictitious with probability (cf. (3.6), (4.1), (5.5), (5.8)) 

1 _1+1(z,i,j,-rf;(wi+wi),'lfa(wi+wi)) max(gi,9i) 
1 + max( J<C1, J<C2) (9i + 9i) · 

The parameters w1 ,-w2 are determined as (cf. (3.7), (4.1), (5.5)) 

(5.10) 

Consider, for example, the case J<C1=1, K.2 ~ J<C1 . The jump is fictitious with 
probability 

2 max(gi,9i) 1-------
1 + J<C2 (gi + 9i) , 

if Wi E [1-e:,1] or w; E [1-e:,1]. In the case Wi,wi ~ [1-e:,1], the jump is 
fictitious with probability 

1 - max(gi,gi) if w1,w2E[1-e:,1], 
(gi+9i) , 

and 

This means that for large K.2 jumps to a state inside the set [1 - e:, 1] are 
significantly favoured. However, during each such jump only the amount of 
weight [1 + J<C2J-1 min (gi, 9i) is transferred. 
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6. Numerical experiments 

We consider the model equation (5.4) and calculate the functional (5.6), 
which has the form 

fw <,o(w) J(t, w) dw with <,o(w) = ,[1--.., 11 (w), (6.1) 

where ~ denotes the indicator function. The functional (6.1) is approximated 
by the random variables ( cf. ( 1.13)) 

m(n) (t) 

e(n)(t) = I: g!n)(t) cp(w!n)(t)). (6.2) 
i=l 

In order to estimate the fluctuations of the random variables (6.2), a num-
ber N of independent ensembles of particles is generated. The corresponding 
values of the random variables are denoted by ein)(t), ... , e};)(t). Then the 
empirical mean 

(6.3) 

converges as N-+ oo to the expectation of the random variable (6.2). The 
statistical :fluctuations around this deterministic limit are characterized by the 
quantity jv<~(t) , where V(n) ( t) denotes the mean square deviation of the ran-
dom variable (6.2) from its expectation. The order of convergence of the fluc-
tuations is )& . H9wever, the actual size of the fluctuations depends strongly 
on the value of V(n)(t). 

We want to compare the stochastic particle scheme based on the function 
r defined in (5. 7), with the standard algorithm, which corresponds to r = 0, 
or K1 =K2 =0 (cf. Example 4.1). 

First we illustrate the effect of the parameter K,2 on the variance of the 
estimators (6.2). We choose c = 0.01 and the parameters K1 = 1, n = 100, 
N = 1000. Figure 1 shows the curves for the quantities Jv<~(t) on the time 
interval [O, 0.6], for various values of K 2 • The curves are ordered from above 
according to the increasing values of K,2 • 
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Figure 1 
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Note that the :fluctuations are very small at time zero, since we are able to 
approximate the initial distribution by particle systems with variable weights. 

Variance reduction is obtained for increasing values of K,2 • But another 
effect has to be taken into account. When "'2 is large, the number of collisions 
increases rapidly (cf. (5.9)), although many of them are fictitious (cf. (5.10)). 
The algorithm becomes much more time-consuming. Table 1 shows this effect 
at t = 0.6. In the fourth column, the products of the variance and the CPU-
time (in appropriate units) are displayed. These products give a rough estimate 
of the effort needed with different schemes to reach a given statistical accuracy. 

Table 1 

"'2 variance V CPU-time T V*T 
0.5 23 13 299 

1 19 13 247 
2.5 12 15 180 

5 8 20 160 
10 5 32 160 
20 4 66 264 
50 3 311 933 

In order to illustrate the powerful variance reduction, which can be achieved 
by the algorithm based on the function 1, we choose e = 0.0001, the time 
interval (0, 0.6], and the parameters "'i = 1 and K,2 = 100. In the following 
figures, the solid lines correspond to the 1-algorithm and the dashed-dotted 
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lines correspond to the standard algorithm. The dashed lines represent the 
exact solution, which can be ~alculated analytically for an appropriate choice 
of the initial value -Ao . 

First we consider n = 100 and N = 100000 . Figures 2 and 3 show the curves 
for the empirical mean values ( cf. (6.3)) and the confidence intervals (with a 
confidence level of 0.99), respectively. 

Figure 2 

0.000205 ~-.....--.-~--..--.....--.-............... .......--..........-..,........,........-,-.......-.--.--..--.....--.-~ 

0.0002025 

0.0002 

0.0001975 

0.000195 

0.0001925 

0.00019 

0.0001875 

0.000185 0 

0.00021 

0.0002 

0.00019 

\ ,'\ /'J\, 
, I """""... "'' /' ~ \ ,\ ... "\"' J \ 

...... ...... . \ ,... \./"-,, 
-- ~ I --- - - - \-?\- - :- t.t - - -

\I \ I I 

0.1 0.2 0.3 0.4 0.5 0.6 

Empirical mean values for n=lOO and N=lOOOOO 

Figure 3 
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The small fluctuations of the 1-algorithm allow us to conclude that there is 
still a systematic error. 

Next we consider n = 100000 and N = 100 in order to eliminate the system-
atic error. Figures 4 and 5 show the corresponding curves for the empirical 
mean values and the confidence intervals, respectively. 

Figure 4 
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Figure 5 
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The reduction of the fluctuations achieved by the parameter K,2 is approxi-
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mately by a factor 10. To obtain this simply by averaging over more indepen-
dent samples, one would have to increase N by a factor 100. The relation of 
the CPU-times for both algorithms gives a factor of about 13. So there is still 
a considerable advantage in using the -y-algorithm. 

The test example was designed in order to illustrate the opportunities of 
the free parameters in the -y-algorithm. A more detailed study of various test 
cases will be published in a separate publication. 

The partial weight transfer during the collisions causes an increase of the 
number of particles in the system. If there are no special effects like flow 
out of the region or absorption at the boundary, then after some time it will 
become necessary to reduce the number of particles in the system. A reduction 
procedure preserving mass, momentum and energy in the system was studied 
in [14]. We avoided this problem by restricting the test example to a relatively 
small time interval. 

It will be of interest to apply the generalized algorithm in more realistic 
examples, including the Boltzmann equation. The possible dependence of the 
collision mechanism on the spatial cells is quite obvious. But it is also possible 
to work with general parameters depending on the pre-collision as well as 
post-collision velocities. We expect this to be useful in problems, where the 
particle density changes by several orders of magnitude in different regions. 
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