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Abstract

In this paper, we analytically investigate multi-component Cahn-Hilliard and Allen-Cahn systems which
are coupled with elasticity and uni-directional damage processes. The free energy of the system is of the
form

R
Ω

1
2
Γ∇c : ∇c+ 1

2
|∇z|2 +W ch(c)+W el(e, c, z) dx with a polynomial or logarithmic chemical energy

density W ch, an inhomogeneous elastic energy density W el and a quadratic structure of the gradient
of the damage variable z. For the corresponding elastic Cahn-Hilliard and Allen-Cahn systems coupled
with uni-directional damage processes, we present an appropriate notion of weak solutions and prove
existence results based on certain regularization methods and a higher integrability result for the strain
e.

1 Introduction

Phase separation and damage are common phenomena in many fields, including material sciences, hydrody-
namics, biology and chemical reactions. Such microstructural processes take place to reduce the total free
energy, which may include bulk chemical energy, interfacial energy and elastic strain energy.

The knowledge of the mechanisms inducing phase separation and damage processes is very important for
technological applications as for instance in the area of micro-electronics due to the ongoing miniaturiza-
tion. The materials used in this area are typically alloys consisting of mixtures of several components (cf.
[HCW91]).

Phase separation and damage processes are usually described by two separate models in the mathematical
literature. To describe phase separation processes for alloys, phase-field models of Cahn-Hilliard and Allen-
Cahn type coupled with elasticity are well adapted. On the other side, damage processes for standard
materials are often modeled as unilateral processes within a gradient-theory. A phase-field approach which
describes both phase separation and damage processes in an unifying model has been recently introduced in
[HK11].

The main objective of this work is to prove under general assumptions existence results for multi-component
systems where Cahn-Hilliard as well as Allen-Cahn equations are coupled with rate-dependent damage dif-
ferential inclusions for elastic materials. We are interested in free energies of the system which may contain
a chemical energy of logarithmic or polynomial type, an inhomogeneous elastic energy and a quadratic term
of the gradient of the damage variable. To this end, we establish some regularization methods which enable
us to show existence results for gradient terms |∇z|p of the damage variable z in the free energy even if the
assumption p > n (n space dimension) is dropped. In contrast to [MR06, HK11] now the physical meaningful
term |∇z|2 can be treated, cf. [Fre02]. In addition, we also provide a higher integrability result for the strain
tensor. Therefore, chemical free energies may also have logarithmic structure such that we are not restricted
to polynomial growth as in [HK11]. We focus on the modeling of rate-dependent damage processes but the
results of this work can extended to rate-independent systems (i.e. the dissipation potential is homogeneous
of degree one) by some modifications. In the following, we will introduce the model formally.

The elastic material we want to consider in this work is an N component alloy occupying a bounded Lipschitz
domain Ω ⊆ Rn. To account for phase separation, deformation and damage processes in one model, a state
at a fixed time point is described by a triple (u, c, z) where u : Ω → Rn denotes the deformation, c : Ω → RN

the vector of the chemical concentrations and z : Ω → R the damage variable. The meaning of the variables
and its governing evolutionary process is explained in the sequel more explicitly.
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The mixture of the alloy is described by a phase field vector c = (c1, . . . , cN ), where the elements ck for
k = 1, . . . , N , denote the concentration of the component k. Therefore, we will restrict the state space for c
to the physically meaningful condition

∑N
j=1 cj = 1 in Ω. The constraint ck > 0, k = 1, . . . , N , in Ω is also

used for logarithmic chemical potentials (see below).

If an alloy is cooled down below a critical temperature then usually spinodal decomposition and coarsening
phenomena occur. Well established models for describing such effects are the Cahn-Hilliard and Allen-Cahn
equations, which describe mass preserving and mass non-preserving phase separation in solids, cf. [Cah61,
LC82, Gur96, AC79, CNC94] for modeling aspects. Analytical investigations of Cahn-Hilliard equations can
be found in [BCD+02, Gar00, CMP00, Gar05a, Gar05b, BP05] and for Allen-Cahn equations in [BdS04,
CP08, CGPGS10], respectively. The essential difference between these two equations is that that the Cahn-
Hilliard equation is a fourth order parabolic evolutionary equation expressible as a H−1 gradient flow of the
free energy with respect to c whereas the Allen-Cahn equation is a second order parabolic equation arising
from an L2 gradient flow. More precisely,

Allen-Cahn: ∂tc = −M
(
− div(Γ∇c) + W ch

,c (c) + W el
,c (e(u), c, z)

)
,

Cahn-Hilliard: ∂tc = div
(
M∇

(
− div(Γ∇c) + W ch

,c (c) + W el
,c (e(u), c, z)

))
.

(1)

Here, W ch denotes the chemical energy density, W el the elastic energy density, M the mobility matrix
satisfying

∑N
l=1 Mkl = 0 for all k = 1, . . . , N and Γ the gradient energy tensor which is a fourth order

symmetric and positive definite tensor, mapping matrices from RN×n into itself.

In this work, W ch may be a chemical energy density of polynomial type, i.e. W ch(c) = W ch,pol(c), or of
logarithmic type, i.e. W ch(c) = W ch,log(c) (see (A8)). Note that phase separation only arises if the matrix
A in (A8) is non-positive definite since the first term in (A8) is convex.

Elastic behavior is modeled by a deformation variable u so that each material point x ∈ Ω from the reference
configuration is located at x + u(t, x). We use the assumption that the strain e is sufficiently small so that
we can work with the linearized strain tensor given by e(u) = 1

2 (∇u + (∇u)t). In this work we will neglect
inertia effects ρü and volume forces l so that the momentum balance equation from the continuum mechanics
div(σ) + l = ρü becomes a quasi-static force equation, i.e.

div(σ) = 0. (2)

The stress tensor σ is defined by W el
,e , i.e. as the derivative of the elastic energy with respect to the strain.

Analytical results for multi-component Cahn-Hilliard equations coupled with elastic deformations can be
found in [Gar00] while Allen-Cahn systems with elasticity are studied in [BW05]. Numerical investigations
are conducted in [GRW01] and finite element error estimates of Cahn-Hilliard and Allen-Cahn equations
with logarithmic free energies are recently derived in [BM10]. It turns out that different elastic moduli of the
phases in the mixture influence the rate of coarsening and the morphology of the phases decisively [DM00].

The damage process we want to consider in this paper is uni-directional, i.e. it can only increase in time and
the material is not able to heal itself. The phase field variable z satisfying 0 ≤ z ≤ 1 is interpreted as damage
in a way that z(x) = 1 stands for a non-damaged and z(x) = 0 for a maximal damaged material point x ∈ Ω.
We assume that the damage in our model is not complete which means that a maximal damaged part has
still elastic properties. These constraints lead to a differential inclusion formulation for the evolution of z
which relates the energy dissipation of the system due to increasing damage with the derivative of the free
energy with respect to z. More precisely, we consider the doubly nonlinear differential inclusion

0 ∈ ∂ρ(∂tz)−∆z + W el
,z (e(u), z) + ∂I[0,∞)(z). (3)

The energy dissipation density due to damage progression is given by ρ where we use the ansatz

ρ(ż) = −αż +
β

2
|ż|2 + I(−∞,0](ż)
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with α, β > 0. Because of the quadratic term β
2 |ż|2 the damage evolution is called rate-dependent whereas

β = 0 would correspond to rate-independent systems. See [Mie05, EM06, MRZ10, MT10] for analytical
results on rate-independent damage and numerical experiments (without phase separation). We also refer
to [BSS05, FK09] for further analytical investigations of damage models. In comparison to [HK11] we use
a gradient-of-damage theory with the Laplacian ∆z in (3) instead of a p-Laplacian div(|∇z|p−2∇z) with
p > n.

In conclusion, the systems we would like to consider in this work are governed by (1), (2) and (3) and can
be rewritten as





∂tc = −Sw on ΩT ,

w = P(−div(Γ∇c) + W ch
,c (c) + W el

,c (e(u), c, z)) on ΩT ,

div(σ) = 0 on ΩT ,

∂ρ(∂tz)−∆z + W el
,z (e(u), z) + ∂I[0,∞)(z) 3 0 on ΩT ,





(S0)

where w denotes the chemical potential. Here, the matrix P denotes the orthogonal projection of RN onto the
tangent space TΣ =

{
x ∈ RN | ∑N

k=1 xk = 0
}

of the affine plane
Σ :=

{
x ∈ RN

∣∣ ∑N
l=1 xk = 1

}
. The operator S determines whether we have an Allen-Cahn or a Cahn-

Hilliard type diffusion of the system. More precisely,

Allen-Cahn: S : L2(Ω; RN ) → L2(Ω; RN ), S(f) := Mf,

Cahn-Hilliard: S : H1(Ω; RN ) → (
H1(Ω; RN )

)?
, S(f) := 〈M∇f,∇·〉L2 ,

(4)

In the Cahn-Hilliard case, the operator S is invertible when restricted to S : Y → D where the spaces Y and
D are defined as

Y :=
{

c ∈ H1(Ω; RN ) |
∫

Ω

c = 0,

N∑

k=1

ck = 0
}

,

D :=
{

c? ∈ (
H1(Ω; RN )

)? | 〈c?, c〉(H1)?×H1 = 0 for all c = d(x)(1, . . . , 1),

where d ∈ H1(Ω) and for all c = ek, k = 1, . . . N
}

. (5)

We need to impose some restrictions to the mobility matrix M. We assume that M is symmetric and
positive definite on the tangent space TΣ. In addition, due to the constraint

∑N
k=1 ck = 1, M has to satisfy

the property
∑N

l=1 Mkl = 0 for all k = 1, . . . , N . Note, that M = M P.

We abbreviate DT := [0, T ] × D and (∂Ω)T := [0, T ] × ∂Ω, where D ⊆ ∂Ω with Hn−1(D) > 0. The
initial-boundary conditions of our systems are summarized as follows:

c(0) = c0 on Ω, σ · −→ν = 0 on (∂Ω)T \DT ,

z(0) = z0 on Ω, Γ∇c · −→ν = 0 on (∂Ω)T ,

u = b on DT , ∇z · −→ν = 0 on (∂Ω)T

(IBC)

and additionally for Cahn-Hilliard systems

M∇w · −→ν = 0 on (∂Ω)T , (IBC)

where −→ν is the unit normal on ∂Ω pointing outward, b the boundary value function on the Dirichlet bound-
ary D, 0 ≤ z0 ≤ 1 a.e. on Ω and c0 ∈ Σ ∩ RN

>0. In the following, we assume that b can be extended to ΩT .

The paper is organized as follows: In Chapter 2, we introduce an appropriate notion of weak solutions for
the system (S0). To handle the differential inclusion rigorously, we adapt the concept of energetic solutions
originally introduced in the context of rate-independent systems (see for instance [Mie05]) to phase separation
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systems coupled with rate-dependent damage. This approach was firstly presented in [HK11]. The main
result and their assumptions are stated at the end of Chapter 2.

In Chapter 3, we prove existence of weak solutions for a regularization of system (S0) expressed in classical
formulation as





∂tc = −Sw on ΩT ,

w = P(−div(Γ∇c) + W ch,pol
,c (c) + W el

,c (e(u), c, z) + ε∂tc) on ΩT ,

div(σ) + εdiv(|∇u|2∇u) = 0 on ΩT ,

∂ρ(∂tz)−∆z − εdiv(|∇z|p−2∇z) + W el
,z (e(u), z) + ∂I[0,∞)(z) 3 0 on ΩT ,





(Sε)

where W ch,pol and W el satisfy certain polynomial growth conditions and p > n. The initial-boundary
conditions are

(IBC) with (σ + ε|∇u|2∇u) · −→ν = 0 instead of σ · −→ν = 0. (IBCε)

It turns out that the weak solutions of the regularized system have better regularity:
c ∈ H1(0, T ;L2(Ω; RN )), ∇u ∈ L4(ΩT ; Rn×n) and ∇z ∈ Lp(ΩT , Rn) (with p > n as above). They are
constructed by adapting the approximation techniques developed in [HK11].

The limit problem ε ↘ 0 for (Sε) corresponding to (S0) with W ch = W ch,pol is solved in Chapter 4. The
displacement field u obtained in this process has H1(Ω; Rn)-regularity in the first instance. To establish
existence results for chemical free energies of logarithmic type, we prove a higher integrability result for ∇u
in Chapter 5, which is based on some ideas of [EL91, Gar00, Gar05b].

Finally, Chapter 6 is devoted to logarithmic free energies for the concentration c. Following the approach
in [Gar00, Gar05b], we use a suitable regularization W ch,δ with polynomial growth of the logarithmic free
energy density W ch,log to obtain a solution for (S0). Using this regularization, the chemical components ck

become strictly positive in the limit.

The notation, we will use throughout this paper, are collected in the following.

Spaces and sets.

W 1,r(Ω; Rn) standard Sobolev space
W 1,r

+ (Ω) functions of W 1,r(Ω) which are non-negative almost everywhere

W 1,r
− (Ω) functions of W 1,r(Ω) which are non-positive almost everywhere

W 1,r
D (Ω; Rn) functions of W 1,r(Ω; Rn) which vanishes on D ⊆ ∂Ω in the sense of traces

BR(A) open neighborhood of A ⊆ Rn with thickness R

QR(x0) open cube {x ∈ Rn | ‖x− x0‖∞ < R}
{f = 0} zero set {x ∈ Ω | f(x) = 0} of a function f ∈ W 1,p(Ω) ↪→ C0(Ω)
ΩT the set [0, T ]× Ω

Functions, operations and measures.
[f ]+ non-negative part of f , i.e. max{0, f}
IM indicator function of a subset M ⊆ X

χM characteristic function of a subset M ⊆ X

W,e classical derivative of a function W with respect to the variable e

〈A, f〉 dual pairing of A ∈ (W 1,r(Ω; Rn))? and f ∈ W 1,r(Ω; Rn)
∂ClE generalized Clarke’s subdifferential of E

dE Gâteaux differential of E

p? Sobolev critical exponent np
n−p for n > p
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diam(Q) diameter of a subset Q ⊆ Rn

Hn Hausdorff measure of dimension n

Ln Lebesgue measure of dimension n

2 Existence theorem

2.1 Weak formulation

The weak notion, we will derive in this section for the doubly nonlinear differential inclusion occurring in
(S0), is inspired by the concept of energetic solutions for rate-independent systems (see for instance [Mie05]).
In the rate-independent setting the differential inclusion is formulated by a global stability condition and an
energy inequality. In [HK11] we introduced an approach which uses an energy inequality and a variational
inequality to handle the rate-dependence coming from the viscosity term β|∂tz|2 in the damage dissipation
density function ρ.

The Gâteaux-differentiable free energy Ẽ : H1(Ω; Rn)×H1(Ω; RN )× (H1(Ω)∩L∞(Ω)) → R and dissipation
functional R̃ : L2(Ω) → R of the system is given by

Ẽ(u, c, z) :=
∫

Ω

1
2
Γ∇c : ∇c +

1
2
|∇z|2 + W ch(c) + W el(e, c, z) dx,

R̃(ż) :=
∫

Ω

−αż +
β

2
|ż|2 dx.

with viscosity constants α, β > 0. To account for constraints, we extend the functionals Ẽ and R̃ above for
analytical reasons by indicator functions:

E(u, c, z) := Ẽ(u, c, z) +
∫

Ω

I[0,∞)(z) dx, R(ż) := R̃(ż) +
∫

Ω

I(−∞,0](ż) dx.

If we equip the space H1(Ω) ∩ L∞(Ω) with the norm ‖ · ‖H1∩L∞ := ‖ · ‖H1 + ‖ · ‖L∞ the generalized
subdifferential ∂Cl

z E at a point (u, c, z) ∈ H1(Ω; Rn)×H1(Ω; RN )× (H1(Ω) ∩ L∞(Ω)) is

∂Cl
z E(u, c, z) =

{
dzẼ(u, c, z) + r ∈ (H1(Ω) ∩ L∞(Ω))?

∣∣∣ r ∈ ∂IH1
+(Ω)∩L∞(Ω)(z)

}
. (6)

The inclusion L1(Ω) ⊂ (H1(Ω) ∩ L∞(Ω))? will be later used for the construction of a specific r. Using
property (6), the differential inclusion in (S0) can be rewritten in a weaker form as

0 ∈ ∂Cl
z E(u(t), c(t), z(t)) + ∂żR(ż(t)).

The analytical basis for a formulation of a weak solution is the following proposition (a proof of a related
proposition can be found in [HK11]):

Proposition 2.1 Let (u, c, w, z) ∈ C2(ΩT ; Rn × RN × RN × R) be a smooth solution satisfying (1) and (2)
with initial-boundary conditions (IBC). Then the following two conditions are equivalent:

(i) 0 ∈ ∂Cl
z E(u(t), c(t), z(t)) + ∂żR(ż(t)) for all t ∈ [0, T ],

(ii) the energy inequality

E(u(t), c(t), z(t)) +
∫ t

0

〈dżR̃(∂tz), ∂tz〉ds +
∫ t

0

〈Sw(s), w(s)〉ds
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≤ E(u(0), c(0), z(0)) +
∫

Ωt

W el
,e (e(u), c, z) : e(∂tb) dxds

for all 0 ≤ t ≤ T and the variational inequality

0 ≤
〈
dzẼ(u(t), c(t), z(t)) + r(t) + dżR̃(∂tz(t)), ζ

〉

for all ζ ∈ H1
−(Ω) ∩ L∞(Ω) and r(t) ∈ NF(H1

+(Ω) ∩ L∞(Ω); z(t)) and for all 0 ≤ t ≤ T .

If one of the two conditions holds then the following energy balance equation is satisfied:

E(u(t), c(t), z(t)) +
∫ t

0

〈dżR̃(∂tz), ∂tz〉ds +
∫ t

0

〈Sw(s), w(s)〉ds

= E(u(0), c(0), z(0)) +
∫

Ωt

W el
,e (e(u), c, z) : e(∂tb) dxds

Remarks on the proof. In contrast to [HK11], the energy inequality compares the energy at the beginning
s = 0 with the energy at an arbitrary time s = t instead of s = t1 with s = t2 for 0 ≤ t1 < t2 ≤ T .

Applying the chain rule in the right hand side of

E(u(t), c(t), z(t))− E(u(0), c(0), z(0)) =
∫ t

0

d
dt
Ẽ(u(s), c(s), z(s)) ds

and using (1), (2) as well as the variational inequality, the “≥”-part of the energy balance can be shown.

We will see that in our approach the mathematical analysis of (S0) requires several ε-regularization terms
(see (Sε)) to establish the energy and variational inequality for the differential inclusion and to handle the
logarithmic free energy. A transition to ε ↘ 0 will finally give us solution of the limit problem (S0).

Proposition 2.1 can also be formulated for the regularized system (Sε) with the regularized energy

Ẽε(u, c, z) :=
∫

Ω

1
2
Γ∇c : ∇c +

1
2
|∇z|2 + W ch,pol(c) + W el(e, c, z) +

ε

4
|∇u|4 +

ε

p
|∇z|p dx,

Eε(u, c, z) := Ẽε(u, c, z) +
∫

Ω

I[0,∞)(z) dx,

and the initial-boundary conditions (IBCε). Notice that P∂tc = ∂tc because of ∂tc(t, x) ∈ Σ.

We can now give a weak notion of (Sε) and (S0). (The energy densities W ch,pol and W el will satisfy some
polynomial growth conditions which are specified in the next subsection.)

Definition 2.2 (Weak solution for the regularized system (Sε)) We call a quadruple q = (u, c, w, z)
a weak solution of the regularized system (Sε) with initial-boundary conditions (IBCε) if the following prop-
erties are satisfied:

(i) the components of q are in the following spaces:

u ∈ L∞(0, T ;W 1,4(Ω; Rn)), u|DT
= b|DT

,

c ∈ L∞(0, T ; H1(Ω; RN )) ∩H1(0, T ; L2(Ω; RN )), c(0) = c0, c ∈ Σ a.e. in ΩT ,

z ∈ L∞(0, T ; W 1,p
+ (Ω)) ∩H1(0, T ; L2(Ω)), z(0) = z0, ∂tz ≤ 0,

and

w ∈ L2(0, T ; H1(Ω; RN )) for C-H systems,

w ∈ L2(ΩT ; RN ) for A-C systems
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(ii) for all ζ ∈ H1(Ω; RN ) and for a.e. t ∈ [0, T ]:
∫

Ω

∂tc(t) · ζ dx =

{∫
ΩT

M∇w(t) : ∇ζ dxdt for C-H systems,∫
ΩT

Mw(t) · ζ dxdt for A-H systems
(7)

(iii) for all ζ ∈ H1(Ω; RN ) and for a.e. t ∈ [0, T ]:
∫

Ω

w(t) · ζ dx =
∫

Ω

PΓ∇c(t) : ∇ζ + PW ch,pol
,c (c(t)) · ζ dx

+
∫

Ω

PW el
,c (e(u(t)), c(t), z(t)) · ζ + ε∂tc(t) · ζ dx (8)

(iv) for all ζ ∈ W 1,4
D (Ω; Rn) and for a.e. t ∈ [0, T ]:

∫

Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) + ε|∇u(t)|2∇u(t) : ∇ζ dx = 0 (9)

(v) for all ζ ∈ W 1,p
− (Ω) and for a.e. t ∈ [0, T ]:
∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)))ζ dx

≥ −〈r(t), ζ〉, (10)

where r(t) ∈ (W 1,p(Ω))? satisfies 〈r(t), z(t)− ζ〉 ≥ 0 for all ζ ∈ W 1,p
+ (Ω)

(vi) energy inequality for a.e. t ∈ [0, T ]:

Eε(u(t), c(t), z(t))− Eε(u0, c0, z0) +
∫

Ω

α(z0 − z(t)) dx

+
∫

Ωt

β|∂tz|2 + ε|∂tc|2 dxds +
∫ t

0

〈Sw(s), w(s)〉 ds

≤
∫

Ωt

W el
,e (e(u), c, z) : e(∂tb) dxds + ε

∫

Ωt

|∇u|2∇u : ∇∂tb dxds, (11)

where u0 the unique minimizer of Eε(·, c0, z0) in W 1,4(Ω; Rn) with trace b(0)|D.

With the help of the operator S, the diffusion equation (7) can also be written as
∫

Ω

∂tc(t) · ζ dx = −〈Sw(t), ζ〉,

which will be used in the following.

Definition 2.3 (Weak solution for the limit system (S0)) A quadruple q = (u, c, w, z) is called a weak
solution of the system (S0) with initial-boundary conditions (IBC) if the following properties are satisfied:

(i) the components of q are in the following spaces:

u ∈ L∞(0, T ; H1(Ω; Rn)), u|DT = b|DT ,

c ∈ L∞(0, T ; H1(Ω; RN )), c ∈ Σ a.e. in ΩT ,

z ∈ L∞(0, T ; H1
+(Ω)) ∩H1(0, T ; L2(Ω)), z(0) = z0, ∂tz ≤ 0

and

w ∈ L2(0, T ; H1(Ω; RN )) for C-H systems,

w ∈ L2(ΩT ; RN ) for A-C systems

7



(ii) for all ζ ∈ L2(0, T ; H1(Ω; RN )) with ∂tζ ∈ L2(ΩT ; RN ) and ζ(T ) = 0:
∫

ΩT

(c− c0) · ∂tζ dx =
∫ T

0

〈Sw, ζ〉 dt

(iii) for all ζ ∈ H1(Ω; RN ) ∩ L∞(Ω; RN ) and for a.e. t ∈ [0, T ]:
∫

Ω

w(t) · ζ dx =
∫

Ω

PΓ∇c(t) : ∇ζ + PW ch
,c (c(t)) · ζ dx

+
∫

Ω

PW el
,c (e(u(t)), c(t), z(t)) · ζ dx

(iv) for all ζ ∈ H1
D(Ω; Rn) and for a.e. t ∈ [0, T ]:

∫

Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) dx = 0

(v) for all ζ ∈ H1
−(Ω) ∩ L∞(Ω) and for a.e. t ∈ [0, T ]:

∫

Ω

∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)))ζ dx ≥ −〈r(t), ζ〉,

where r(t) ∈ (H1(Ω) ∩ L∞(Ω))? satisfies 〈r(t), z(t)− ζ〉 ≥ 0 for all ζ ∈ H1
+(Ω) ∩ L∞(Ω)

(vi) energy inequality for a.e. t ∈ [0, T ]:

E(u(t), c(t), z(t)) +
∫

Ω

α(z0 − z(t)) dx +
∫

Ωt

β|∂tz|2 dxds +
∫ t

0

〈Sw(s), w(s)〉ds

≤ E(u(0), c(0), z(0)) +
∫

Ωt

W el
,e (e(u), c, z) : e(∂tb) dxds,

where u0 the unique minimizer of E(·, c0, z0) in H1(Ω; Rn) with trace b(0)|D.

Note that both notions of weak solution imply chemical mass conservation, i.e.
∫

Ω

c(t) dx ≡ const, c ∈ Σ a.e. in ΩT .

2.2 Assumptions and main results

The general setting, the growth assumptions and the assumptions on the coefficient tensors which are manda-
tory for the existence theorems are summarized below.

(i) Setting

Space dimension n ∈ N,

Components in the alloy N ∈ N with N ≥ 2,

Regularization exponent p > n,

Viscousity factors α, β > 0,

Domain Ω ⊆ Rn bounded Lipschitz domain,

Dirichlet boundary D ⊆ ∂Ω with Hn−1(D) > 0,

Time interval [0, T ] with T > 0
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(ii) Energy densities

Elastic energy density W el ∈ C1(Rn×n × RN × R; R+) with

W el(e, c, z) = W el(et, c, z), (A1)

W el(e, c, z) ≤ C(|e|2 + |c|2 + 1), (A2)

η|e1 − e2|2 ≤ (W el
,e (e1, c, z)−W el

,e (e2, c, z)) : (e1 − e2), (A3)

|W el
,e (e1 + e2, c, z)| ≤ C(W el(e1, c, z) + |e2|+ 1), (A4)

|W el
,c (e, c, z)| ≤ C(|e|2 + |c|2 + 1), (A5)

|W el
,z (e, c, z)| ≤ C(|e|2 + |c|2 + 1), (A6)

Chemical energy densities W ch,pol,W ch,log ∈ C1(RN ; R) with W ch,pol ≥ −C,

|W ch,pol
,c (c)| ≤ C(|c|2?/2 + 1), (A7)

W ch,log(c) = θ

N∑

k=1

ck log ck +
1
2
c ·Ac, θ > 0, A ∈ Rn×n

sym (A8)

(iii) Tensors

Mobility tensor M ∈ RN×N symmetric and positive definite on TΣ and
N∑

l=1

Mkl = 0 for all k = 1, . . . , N,

Energy gradient tensor Γ ∈ L(RN×n; RN×n) symmetric and positive definite
fourth order tensor

Remark 2.4 Due to the effect of damage on the elastic response of the material, W el is often modeled by
the following ansatz:

W el = (Φ(z) + η̃) Ŵ el,

where Φ : [0, 1] → R+ is a continuously differentiable and monotonically increasing function with Φ(0) = 0
and η̃ > 0 is a small value.

A typically form of the elastically stored energy density Ŵ el is as follows:

Ŵ el(c, e) =
1
2
(
e− e∗(c)

)
: C(c)

(
e− e∗(c)

)
.

Here, e∗(c) denotes the eigenstrain, which is usually linear in c, and C(c) ∈ L(Rn×n
sym ) is a fourth order

stiffness tensor, which is symmetric and positive definite. The elastic energy density is called homogeneous
if the stiffness tensor does not depend on the concentration, i. e. C(c) = C.

Note that due to the previous growth assumptions (A1)-(A6) this type of energy fits into our setting. In
particular, we are not confined to homogeneous elasticity as in [HK11]. There, the more restrictive growth
condition |W el

,c (e, c, z)| ≤ C(|e|+ |c|2 + 1) is used instead of (A5).

The main results of this work are summarized in the following theorems:

Theorem 2.5 (Existence theorem - polynomial case) Let the above assumptions be satisfied. Then
for every

b ∈ W 1,1(0, T ; W 1,∞(Ω; Rn)),

c0 ∈ H1(Ω; RN ) with c0 ∈ Σ a.e. in Ω,
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z0 ∈ H1(Ω) with 0 ≤ z0 ≤ 1,

there exists a weak solution q of the system (S0) with W ch = W ch,pol and initial-boundary condition (IBC)
in the sense of Definition 2.3.

Theorem 2.6 (Existence theorem - logarithmic case) Let the above assumptions be satisfied and, ad-
ditionally, let D = ∂Ω and Γ = γ Id with a constant γ > 0. Then for every

b ∈ W 1,1(0, T ; W 1,∞(Ω; Rn)),

c0 ∈ H1(Ω; RN ) with c0 ∈ Σ and c0
k > 0 a.e. in Ω for k = 1, . . . , N,

z0 ∈ H1(Ω) with 0 ≤ z0 ≤ 1,

there exists a weak solution q of the system (S0) with W ch = W ch,log and initial-boundary condition (IBC)
in the sense of Definition 2.3. Additionally, ck > 0 a.e. in ΩT for k = 1, . . . , N .

3 Existence of weak solutions of (Sε)

The proof is based on [HK11]. Arguments similar to [HK11] are only sketched.

Since ε > 0 is fixed in this section, we omit the ε-dependence in the notation, e.g. E always means here Eε

and so on. Furthermore, z0 is assumed to be in W 1,p(Ω) in this section.

1. Step: constructing time-discrete solutions.

Set u0 to be a minimizer of u 7→ E(u, c0, z0) defined on the space W 1,4(Ω) with the constraint u|D =
b(0)|D in the sense of traces.
Let the closed subspace Qm

M of H1(Ω; Rn)×H1(Ω; RN )×W 1,p(Ω) be defined by:

Qm
M =





u ∈ H1(Ω; Rn),
c ∈ H1(Ω; RN ),
z ∈ W 1,p(Ω)

∣∣∣∣∣
u|D = b(mτ)|D,∫
Ω

c− c0 dx = 0 for C-H systems,
0 ≤ z ≤ zm−1

M .





Based on the initial triple (u0, c0, z0), we construct (um
M , cm

M , zm
M ) for m = 1, . . . ,M recursively by

minimizing the following functional Em
M : Qm

M → R:

Em
M (u, c, z) := Ẽ(u, c, z) + τR̃

(
z − zm−1

M

τ

)
+

τ

2

∥∥∥∥
c− cm−1

M

τ

∥∥∥∥
2

X

+
ετ

2

∥∥∥∥
c− cm−1

M

τ

∥∥∥∥
2

L2

, (12)

where X denotes the space D (see (5)) with the scalar-product

(c1 | c2)X :=
∫

Ω

M∇S−1c1 · ∇S−1c2 dx

for Cahn-Hilliard systems and X = L2(Ω; RN ) with the scalar-product

(c1 | c2)X :=
∫

Ω

Mc1 · c2 dx

for Allen-Cahn systems.
Note that the last regularization term in (12) is not necessary for Allen-Cahn equations due to the
term with the X-norm. To use a uniform approach, we consider this term in both systems. By direct
methods in the calculus of variations the triple

(um
M , cm

M , zm
M ) := arg min

(u,c,z)∈Qm
M

Em
M (u, c, z)
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exists, cf. [HK11]. Furthermore, we set

wm
M :=




−S−1

(
cm

M−cm−1
M

τ

)
+ λm

M for C-H systems,

−S−1
(

cm
M−cm−1

M

τ

)
for A-C systems,

with the Lagrange multiplier λm
M (associated with the mass constraint for C-H systems) given by

λm
M := −

∫

Ω

W ch,pol
,c (cm

M ) + W el
,c (e(um

M ), cm
M , zm

M ) dx.

We define the time incremental solutions as

qm
M := (um

M , cm
M , wm

M , zm
M )

and introduce the piecewise constant interpolations qM , q−M , tM , t−M and the linear interpolation q̂M as

tM := min{mτ |m ∈ N0 and mτ ≥ t},
t−M := min{(m− 1)τ |m ∈ N0 and mτ ≥ t},

qM (t) := qm
M for t ∈ (

(m− 1)τ,mτ
]
,

q−M (t) := qm
M for t ∈ [

mτ, (m + 1)τ
)
,

q̂M (t) := βqm
M + (1− β)qm−1

M for t ∈ [
(m− 1)τ,mτ

)
and β =

t

τ
− (m− 1).

Due to the minimization properties of (um
M , cm

M , zm
M ), we establish the following variational formulas

and energy estimate (cf. [HK11, Lemma 6.2]):

Lemma 3.1 (Euler-Lagrange equation, energy estimate) The functions qM , q−M and q̂M satisfy
the following properties for all t ∈ (0, T ):

(i) for all ζ ∈ H1(Ω; RN ): ∫

Ω

(∂tĉM (t)) · ζ dx = −〈SwM (t), ζ〉 (13)

(ii) for all ζ ∈ H1(Ω; RN ):
∫

Ω

wM (t) · ζ dx =
∫

Ω

PΓ∇cM (t) : ∇ζ + PW ch,pol
,c (cM (t)) · ζ dx

+
∫

Ω

PW el
,c (e(uM (t)), cM (t), zM (t)) · ζ + ε∂tĉM (t) · ζ dx (14)

(iii) for all ζ ∈ W 1,4
D (Ω; Rn):
∫

Ω

W el
,e (e(uM (t)), cM (t), zM (t)) : e(ζ) + ε|∇uM (t)|2∇uM (t) : ∇ζ dx = 0 (15)

(iv) for all ζ ∈ W 1,p(Ω) with 0 ≤ ζ + zM (t) ≤ z−M (t):
∫

Ω

(ε|∇zM (t)|p−2 + 1)∇zM (t) · ∇ζ + W el
,z (e(uM (t)), cM (t), zM (t))ζ dx

+
∫

Ω

(−α + β(∂tẑM (t)))ζ dx ≥ 0 (16)
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(v) energy estimate:

E(uM (t), cM (t), zM (t)) +
∫ tM

0

∫

Ω

−α∂tẑM +
β

2
|∂tẑM |2 +

ε

2
|∂tĉM |2 dxds

+
∫ tM

0

1
2
〈SwM (s), wM (s)〉ds− E(u0, c0, z0)

≤
∫ tM

0

∫

Ω

W el
,e (e(u−M + b− b−M ), c−M , zM ) : e(∂tb) dxds

+ ε

∫ tM

0

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tb dxds (17)

2. Step: identifying convergent subsequences.

The energy estimate (v) in Lemma 3.1, growth condition (A4) and a Gronwall estimation argument
lead to a-priori estimates for the energy E(uM (t), cM (t), zM (t)) and for ‖∂tẑM‖L2(ΩT ), ‖∂tĉM‖L2(ΩT )

and
∫ T

0
〈SwM (s), wM (s)〉ds. By standard compactness arguments and a compactness theorem from

Aubin and Lions [Sim86], we deduce the following weak convergence properties, cf. [HK11]:

Lemma 3.2 There exists a subsequence {Mk} and an element (u, c, w, z) = q satisfying (i) from
Definition 2.2 such that for a.e. t ∈ [0, T ]

(i) uMk

?
⇀ u in L∞(0, T ;W 1,4(Ω)),

(ii) cMk
, c−Mk

?
⇀ c in L∞(0, T ;H1(Ω; RN )),

cMk
(t), c−Mk

(t) ⇀ c(t) in H1(Ω; RN ),
cMk

, c−Mk
→ c a.e. in ΩT ,

ĉMk
⇀ c in H1(0, T ; L2(Ω; RN )),

(iii) zMk
, z−Mk

?
⇀ z in L∞(0, T ;W 1,p(Ω)),

zMk
(t), z−Mk

(t) ⇀ z(t) in W 1,p(Ω),
zMk

, z−Mk
→ z a.e. in ΩT ,

ẑMk
⇀ z in H1(0, T ; L2(Ω))

and

(iv) wMk
⇀ w in L2(0, T ; H1(Ω; RN ))

wMk
⇀ w in L2(ΩT ; RN )

for C-H systems,
for A-C systems.

as k →∞.

Exploiting the Euler-Lagrange equations, we can even prove stronger convergence properties. To
proceed, we recall an approximation lemma from [HK11].

Lemma 3.3 ([HK11, Lemma 5.2]) Let q ≥ 1, p > n and f, ζ ∈ Lq(0, T ;W 1,p
+ (Ω)) with {ζ = 0} ⊇

{f = 0}. Furthermore, let {fM}M∈N ⊆ Lq(0, T ;W 1,p
+ (Ω)) be a sequence with fM (t) ⇀ f(t) in W 1,p(Ω)

as M → ∞ for a.e. t ∈ [0, T ]. Then there exists a sequence {ζM}M∈N ⊆ Lq(0, T ;W 1,p
+ (Ω)) and

constants νM,t > 0 such that

(i) ζM → ζ in Lq(0, T ; W 1,p(Ω)) as M →∞,

(ii) ζM ≤ ζ a.e. in ΩT for all M ∈ N,

(iii) νM,tζM (t) ≤ fM (t) a.e. in Ω for a.e. t ∈ [0, T ] and for all M ∈ N.

If, in addition, ζ ≤ f a.e. in ΩT then condition (iii) can be refined to

(iii)’ ζM ≤ fM a.e. in ΩT for all M ∈ N.

We are now able to prove strong convergence results by using uniform convexity estimates.

Lemma 3.4 (Strong convergence of the time incremental solutions) There exists a subsequence
{Mk} such that for a.e. t ∈ [0, T ]
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(i) uMk
, u−Mk

→ u in L4(0, T ;W 1,4(Ω; Rn)),
uMk

(t), u−Mk
(t) → u(t) in W 1,4(Ω; Rn),

uMk
, u−Mk

→ u a.e. in ΩT ,

(ii) cMk
, c−Mk

→ c in L2?

(0, T ; H1(Ω; RN )),
cMk

(t), c−Mk
(t) → c(t) in H1(Ω; RN ),

cMk
, c−Mk

→ c a.e. in ΩT ,
ĉMk

⇀ c in H1(0, T ; L2(Ω; RN )),

(iii) zMk
, z−Mk

→ z in Lp(0, T ;W 1,p(Ω)),
zMk

(t), z−Mk
(t) → z(t) in W 1,p(Ω),

zMk
, z−Mk

→ z a.e. in ΩT ,
ẑMk

⇀ z in H1(0, T ; L2(Ω))

as k →∞.

Proof. We omit the index k in the proof.

(i) We refer to [HK11, Lemma 6.6].
(ii) By Lebesgue’s convergence theorem and the weak convergence properties, we have cM → c in

L2?/2+1(ΩT ; RN ). Testing (14) with ζ = cM (t) and with ζ = c(t) gives after integration from
t = 0 to t = T :

∫

ΩT

PΓ∇cM : ∇cM dxdt =
∫

ΩT

wM · cM − PW ch,pol
,c (cM ) · cM dxdt

−
∫

ΩT

PW el
,c (e(uM ), cM , zM ) · cM + ε∂tĉM · cM dxdt

∫

ΩT

PΓ∇cM : ∇c dxdt =
∫

ΩT

wM · c− PW ch,pol
,c (cM ) · c dxdt

−
∫

ΩT

PW el
,c (e(uM ), cM , zM ) · c + ε∂tĉM · c dxdt

Passing to M →∞ and comparing the right sides of the equations shows
∫

ΩT

PΓ∇cM : ∇cM dxdt →
∫

ΩT

PΓ∇c : ∇c dxdt.

By using the properties P∇cM = ∇cM and P∇c = ∇c, we eventually obtain
∫

Ω

Γ∇cM : ∇cM dx →
∫

Ω

Γ∇c : ∇c dx.

We end up with ∫

Ω

Γ(∇cM −∇c) : (∇cM −∇c) dx → 0.

Therefore ∇cM → ∇c in L2(ΩT ; RN ) since Γ is positive definite.
(iii) Applying Lemma 3.3 with f = z and fM = z−M and ζ = z gives an approximation sequence

{ζM} ⊆ Lp(0, T ;W 1,p
+ (Ω)) with the properties:

ζM → z in Lp(0, T ; W 1,p(Ω)), (18a)

0 ≤ ζM ≤ z−M for all M ∈ N. (18b)

The estimate

Cuc|∇zM −∇z|p ≤ (|∇zM |p−2∇zM − |∇z|p−2∇z) · ∇(zM − z)

where Cuc > 0 is a constant and equation (16) tested with ζ = ζM (t) − zM (t) (possible due to
(18b)) yield:

Cuc

∫

ΩT

ε|∇zM −∇z|p dxdt +
∫

ΩT

|∇zM −∇z|2 dxdt
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≤
∫

ΩT

(
(ε|∇zM |p−2 + 1)∇zM − (ε|∇z|p−2 + 1)∇z

) · ∇(zM − z) dxdt

≤
∫

ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(zM − ζM ) dxdt

+
∫

ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(ζM − z)− (ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

≤
∫

ΩT

(W el
,z (e(uM ), cM , zM )− α + β∂tẑM )(ζM − zM ) dxdt

+
∫

ΩT

(ε|∇zM |p−2 + 1)∇zM · ∇(ζM − z)− (ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

≤ ‖W el
,z (e(uM ), cM , zM )− α + β∂tẑM‖L2(ΩT )︸ ︷︷ ︸

bounded

‖ζM − zM‖L2(ΩT )

+ (ε‖∇zM‖p−1
Lp(ΩT ) + ‖∇zM‖Lp/(p−1)(ΩT ))︸ ︷︷ ︸

bounded

‖∇ζM −∇z‖Lp(ΩT )

−
∫

ΩT

(ε|∇z|p−2 + 1)∇z · ∇(zM − z) dxdt

Due to (18a) and zM
?
⇀ z in L∞(0, T ;W 1,p(Ω)) as well as zM → z in L2(ΩT ), each term on the

right hand side converges to 0 as M →∞. ¥

3. Step: establishing a precise energy inequality.

In this step we establish an asymptotic energy inequality, which is sharper than the energy inequality
in (17). Note, that compared to (17) the factor 1/2 in front of 〈SwM (s), wM (s)〉 is missing. To simplify
notation, we omit the index k in the following.

Lemma 3.5 For every t ∈ [0, T ]:

E(uM (t), cM (t), zM (t)) +
∫ tM

0

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 dxds

+
∫ tM

0

〈SwM (s), wM (s)〉ds− E(u0, c0, z0)

≤
∫ tM

0

∫

Ω

W el
,e (e(u−M + b− b−M ), c−M , zM ) : e(∂tb) dxds

+ ε

∫ tM

0

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tb dxds + κM

with κM → 0 as M →∞.

Proof. Applying the estimate Em
M (qm

M ) ≤ Em
M (um−1

M + bm
M − bm−1

M , cm
M , zm

M ) for m = 1 to tM

τ yields (cf.
[HK11, Lemma 6.10]):

E(uM (t), cM (t), zM (t))− E(u0, c0, z0)

≤ ε

∫ tM

0

∫

Ω

|∇(u−M + b(s)− b−M )|2∇(u−M + b(s)− b−M ) : ∇∂tb(s) dxds

+
∫ tM

0

∫

Ω

W el
,e (e(u−M + b− b−M ), c−M , z−M ) : e(∂tb) dxds
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+
∫ tM

0

∫

Ω

W el
,c (e(u−M + bM − b−M ), ĉM , z−M ) · ∂tĉM dxds

︸ ︷︷ ︸
(?)1

+
∫ tM

0

∫

Ω

Γ∇ĉM : ∇∂tĉM + W ch,pol
,c (ĉM ) · ∂tĉM dxds

︸ ︷︷ ︸
(?)2

+
∫ tM

0

∫

Ω

W el
,z (e(u−M + bM − b−M ), cM , ẑM )∂tẑM dxds

︸ ︷︷ ︸
(??)1

+
∫ tM

0

∫

Ω

ε|∇ẑM |p−2∇ẑM · ∇∂tẑM +∇ẑM · ∇∂tẑM dxds

︸ ︷︷ ︸
(??)2

(19)

The elementary inequalities

(|∇ẑM |p−2∇ẑM − |∇zM |p−2∇zM ) · ∇∂tẑM ≤ 0 and (∇ẑM −∇zM ) · ∇∂tẑM ≤ 0

and (16) tested with ζ := −∂tẑM (t)τ leads to the estimate:

(??)1 + (??)2

≤ −
∫ tM

0

∫

Ω

−α∂tẑM + β|∂tẑM |2 dxds

+
∫ tM

0

∫

Ω

(W el
,z (e(u−M + bM − b−M ), cM , ẑM )−W el

,z (e(uM ), cM , zM ))∂tẑM dxds

︸ ︷︷ ︸
=:κ3

M

Furthermore,

(?)1 ≤
∫ tM

0

∫

Ω

W el
,c (e(uM ), cM , zM ) · ∂tĉM dxds

+
∫ tM

0

∫

Ω

(W el
,c (e(u−M + bM − b−M ), ĉM , z−M )−W el

,c (e(uM ), cM , zM )) · ∂tĉM dxds

︸ ︷︷ ︸
=:κ1

M

Using the elementary estimate Γ(∇ĉM −∇cM ) : ∇∂tĉM ≤ 0 gives

(?)2 ≤
∫ tM

0

∫

Ω

Γ∇cM : ∇∂tĉM + W ch,pol
,c (cM ) · ∂tĉM dxds

+
∫ tM

0

∫

Ω

(W ch,pol
,c (ĉM )−W ch,pol

,c (cM )) · ∂tĉM dxds

︸ ︷︷ ︸
=:κ2

M

.

Hence, applying equations (14) with ζ = ∂tĉM (t) and (13) with ζ = wM (t) by noticing P∂tĉM (t) =
∂tĉM (t) shows

(?)1 + (?)2 ≤ −
∫ tM

0

〈SwM (s), wM (s)〉ds−
∫ tM

0

∫

Ω

ε|∂tĉM |2 dxds + κ1
M + κ2

M .

Lebesgue’s generalized convergence theorem, growth conditions (A5)-(A7) and Lemma 3.4 shows
κM := κ1

M + κ2
M + κ3

M → 0 as M → ∞. We would like to emphasize that we need the bounded-
ness of ∇uM in L4(ΩT ; Rn×n) and the boundedness of ∂tĉM and ∂tẑM in L2(ΩT ) with respect to M .¥
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4. Step: passing to M →∞. Using Lemma 3.2, Lemma 3.4 and (13), (14) and (15) we establish (ii),
(iii) and (iv) of Definition 2.2. Moreover, Lemma 3.5 implies

E(uM (t), cM (t), zM (t)) +
∫

Ωt

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 dxds

+
∫ t

0

〈SwM (s), wM (s)〉 ds− E(u0, c0, z0)

≤
∫ tM

0

∫

Ω

W el
,e (e(u−M + b− b−M ), c−M , zM ) : e(∂tb) dxds

+ ε

∫ tM

0

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tb dxds + κM .

The energy estimate (vi) from Definition 2.2 follows from above by using the known convergence
properties and weakly semi-continuity arguments.

It remains to show (v) of Definition 2.2. To proceed, we cite the following lemma from [HK11] which
provides a tool to drop a restriction in the space of test-function for a variational inequality of a specific
form.

Lemma 3.6 ([HK11, Lemma 5.3]) Let f ∈ Lp(Ω; Rn), g ∈ Lp(Ω) and z ∈ W 1,p(Ω) with f ·∇z ≥ 0
and {f = 0} ⊇ {z = 0} a.e.. Furthermore, we assume that

∫

Ω

f · ∇ζ + gζ dx ≥ 0 for all ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then
∫

Ω

f · ∇ζ + gζ dx ≥
∫

{z=0}
[g]+ζ dx for all ζ ∈ W 1,p

− (Ω).

We are now able to prove the remaining property.

Lemma 3.7 It holds
∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)))ζ dx

≥ −〈r(t), ζ〉, (20)

for all ζ ∈ W 1,p
− (Ω) and for a.e. t ∈ [0, T ], where r(t) ∈ L1(Ω) ⊆ (W 1,p(Ω))? is given by

r(t) := −χ{z(t)=0}[W el
,z (e(u(t)), c(t), z(t))]+. (21)

Proof. First of all, we take any test-function ζ ∈ Lp(0, T ; W 1,p
− (Ω)) with

{ζ = 0} ⊇ {z = 0}. Lemma 3.3 gives a sequence {ζM} ⊆ Lp(0, T ;W 1,p
− (Ω)) with ζM → ζ in

Lp(0, T ;W 1,p(Ω)) and 0 ≥ νζM (t) ≥ −zM (t) where ν depends on M and t. Therefore (16) holds for
ζ = ζM (t). Integration from 0 to T and passing to M →∞ gives

∫

ΩT

(ε|∇z|p−2 + 1)∇z · ∇ζ + (W el
,z (e(u), c, z)− α + β(∂tz))ζ dxdt ≥ 0.

In other words,
∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + W el
,z (e(u(t)), c(t), z(t))ζ dx

+
∫

Ω

(−α + β(∂tz(t)))ζ dx ≥ 0

16



holds every ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z(t) = 0} and a.e. t ∈ [0, T ]. To finish the proof, we need to

extend the variational inequality to the whole space W 1,p
− (Ω).

Setting f = (ε|∇z(t)|p−2 + 1)∇z(t) and g = W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)), Lemma 3.6 shows

for every ζ ∈ W 1,p
− (Ω)

∫

Ω

(ε|∇z(t)|p−2 + 1)∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)))ζ dx

≥
∫

{z(t)=0}
[W el

,z (e(u(t)), c(t), z(t))− α + β(∂tz(t))]+ζ dx

≥
∫

{z(t)=0}
[W el

,z (e(u(t)), c(t), z(t))]+ζ dx.

Now, variational inequality (20) follows by setting

r(t) := −χ{z(t)=0}[W el
,z (e(u(t)), c(t), z(t))]+.

¥

Remark 3.8 Lemma 3.7 gives more information than (v) from Definition 2.2. It provides a special
choice for r(t) given by (21).

4 Existence of weak solutions of (S0) - polynomial case

In this chapter, we show that an appropriate subsequence of the regularized solutions qε for ε ∈ (0, 1] of
Definition 2.2 converges in “some sense” to q which satisfies the limit equations given in Definition 2.3. Beside
that, the initial damage profile z0 in this chapter is in H1(Ω). We approximate z0 ∈ H1(Ω) by a sequence
{z0

ε} in W 1,p(Ω) such that z0
ε → z0 in H1(Ω) as ε ↘ 0.

Using the energy inequality and Gronwall’s inequality, we establish again the following energy estimate.

Lemma 4.1 It holds

Eε(uε(t), cε(t), zε(t)) +
∫ t

0

∫

Ω

−α∂tzε + β|∂tzε|2 + ε|∂tcε|2 dxds +
∫ t

0

〈Swε(s), wε(s)〉 ds

≤ C(Eε(u0
ε, c

0, z0
ε) + 1)

for a.e. t ∈ [0, T ] and every ε ∈ (0, 1].

Since Eε(u0
ε, c

0, z0
ε) ≤ Eε(u0

1, c
0, z0

ε) ≤ E1(u0
1, c

0, z0
ε), the left hand side is also uniformly bounded with respect

to a.e. t ∈ [0, T ] and every ε ∈ (0, 1]. By using standard compactness theorems and uniform convexity
properties of W el (see (A3)), this results in the following convergence properties (cf. [HK11]).

Lemma 4.2 (Convergence properties of qε) There exists a subsequence {εk} with εk ↘ 0 as k → ∞
and an element (u, c, w, z) = q satisfying (i) of Definition 2.3 such that for a.e. t ∈ [0, T ]

17



(i) uεk
→ u in L2(0, T ; H1(Ω; Rn)),

3
√

εk∇uεk
→ 0 in L∞(0, T ; L4(Ω; Rn)),

uεk
(t) → u(t) in H1(Ω; Rn),

uεk
→ u a.e. in ΩT ,

u0
εk
→ u0 in H1(Ω; Rn),

3
√

εk∇u0
εk
→ 0 in L4(Ω; Rn),

(ii) cεk

?
⇀ c in L∞(0, T ; H1(Ω; RN )),

εk∂tcεk
→ 0 in L2(ΩT ; RN ),

cεk
(t) ⇀ c(t) in H1(Ω; RN ),

cεk
→ c a.e. in ΩT ,

(iii) zεk

?
⇀ z in L∞(0, T ; H1(Ω)),

p−1
√

εk∇zεk
→ 0 in L∞(0, T ;Lp(Ω)),

zεk
(t) ⇀ z(t) in H1(Ω),

zεk
→ z a.e. in ΩT ,

zεk
⇀ z in H1(0, T ; L2(Ω))

as k →∞. We additionally obtain for Cahn-Hilliard systems

wεk
⇀ w in L2(0, T ; H1(Ω; RN ))

and for Allen-Cahn systems

wεk
⇀ w in L2(ΩT ; RN ),

cεk
⇀ c in H1(0, T ; L2(Ω; RN )).

as k →∞.

As usual, we omit the index k in the subscripts.

Remark 4.3 We would like to mention that the arguments in [HK11, Lemma 6.14] cannot be adapted to
prove strong convergence properties of ∇cε and ∇zε due to the more generous growth condition (A5) as well
as the usage of Lemma 3.3 where the compact embedding W 1,p(Ω) ↪→ C0,α(Ω) for p > n is exploited.

We are now able to establish existence of weak solutions of (S0) in the polynomial case.

Proof of Theorem 2.5. Whenever we refer in the following to (7)-(11) the functions u, c, w, z and r are
substituted by uε, cε, wε, zε and rε. Moreover, Lemma 4.2 is used without mentioning in the following.

(i) Let ζ ∈ L2(0, T ; H1(Ω; RN )) with ∂tζ ∈ L2(ΩT ; RN ) and ζ(T ) = 0. Integration from t = 0 to t = T of
(7) and integration by parts yields

∫

ΩT

(cε − c0) · ∂tζ dxds =
∫ T

0

〈Swε, ζ〉ds.

Passing to ε ↘ 0 shows (ii) of Definition 2.3.

(ii) Let ζ ∈ L2(0, T ; H1(Ω; RN )) ∩ L∞(ΩT ; RN ). Integration from t = 0 to t = T of (8) and passing to
ε ↘ 0 yields

∫

ΩT

w · ζ dxds =
∫

ΩT

PΓ∇c : ∇ζ + (PW ch,pol
,c (c) + PW el

,c (e(u), c, z)) · ζ dxds.

Note that
∣∣∣∣
∫

ΩT

ε∂tcε · ζ dxds

∣∣∣∣ ≤ ε‖∂tcε‖L2(ΩT ;RN )‖ζ‖L2(ΩT ;RN ) → 0

as ε ↘ 0. This shows (iii) of Definition 2.3 with W ch
,c = W ch,pol

,c .
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(iii) Let ζ ∈ W 1,4
D (Ω; Rn) be arbitrary. Passing to ε ↘ 0 in (9) yields for a.e. t ∈ [0, T ]

∫

Ω

W el
,e (e(u(t)), c(t), z(t)) : e(ζ) dx = 0, (22)

by noticing
∣∣∣∣
∫

Ω

ε|∇uε(t)|2∇uε(t) : ∇ζ dx

∣∣∣∣ ≤ ε‖∇uε(t)‖3L4(Ω)‖ζ‖L4(Ω) → 0.

A density argument shows that (22) also holds for all ζ ∈ H1
D(Ω; Rn). Therefore, (iv) of Definition 2.3

is shown.

(iv) The characteristic functions χ{zε=0} are bounded in L∞(ΩT ) with respect to ε ∈ (0, 1]. We select a
subsequence such that χ{zεk

=0}
?
⇀ χ in L∞(ΩT ) as k → ∞. We omit the index k in the notation.

Integrating (10) from t = 0 to t = T and passing to ε ↘ 0 shows
∫

ΩT

∇z · ∇ζ + (W el
,z (e(u), c, z)− α + β(∂tz))ζ dx ≥

∫

ΩT

χ[W el
,z (e(u), c, z)]+ζ dxds (23)

for all ζ ∈ Lp(0, T ; W 1,p
− (Ω)) ∩ L∞(ΩT ). We also use the fact that

∣∣∣∣
∫

ΩT

ε|∇zε|p−2∇zε · ∇ζ dxds

∣∣∣∣ ≤ ε‖∇zε‖p−1
Lp(ΩT )‖∇ζ‖Lp(ΩT ) → 0.

It follows
∫

Ω

∇z(t) · ∇ζ + (W el
,z (e(u(t)), c(t), z(t))− α + β(∂tz(t)))ζ dx

≥
∫

Ω

χ(t)[W el
,z (e(u(t)), c(t), z(t))]+ζ dx

for all ζ ∈ H1
−(Ω) ∩ L∞(Ω) and a.e. t ∈ [0, T ]. Set r := −χ[W el

,z (e(u), c, z)]+. For every ξ ∈ L∞([0, T ])
with ξ ≥ 0 a.e. on [0, T ] and every ζ ∈ H1

+(Ω) ∩ L∞(Ω) we also have

0 ≥
∫ T

0

(∫

Ω

rε(t)(ζ − zε(t)) dx

)
ξ(t) dt =

∫

ΩT

rε(ζ − zε)ξ dxdt

→
∫

ΩT

r(ζ − z)ξ dxdt =
∫ T

0

(∫

Ω

r(t)(ζ − z(t)) dx

)
ξ(t) dt.

This shows
∫
Ω

r(t)(ζ − z(t)) dx ≤ 0 for a.e. t ∈ [0, T ]. We obtain the inequalities (v) of Definition 2.3.

(v) Weakly semi-continuity arguments lead to

lim inf
ε↘0

(
Eε(uε(t), cε(t), zε(t)) +

∫

Ωt

α|∂tzε|+ β|∂tzε|2 + ε|∂tcε|2 dxds +
∫ t

0

〈Swε, wε〉ds
)

≥ E(u(t), c(t), z(t)) +
∫

Ωt

α|∂tzε|+ β|∂tz|2 +
∫ t

0

〈Sw, w〉ds.

Testing (9) with ζ = u0
ε − b(0) and (iv) of Definition 2.3 with ζ = u0 − b(0) yield

ε

∫

Ω

|∇u0
ε|4 dx = ε

∫

Ω

|∇u0
ε|2∇u0

ε : ∇b(0) dx

−
∫

Ω

W el
,e (e(u0

ε), c
0, z0

ε) : e(u0
ε − b(0)) dx
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→ −
∫

Ω

W el
,e (e(u0), c0, z0) : e(u0 − b(0)) dx = 0

as ε ↘ 0.
Therefore, we can pass ε ↘ 0 in (11) and obtain (vi) from Definition 2.3. ¥

5 Higher integrability of the strain tensor

To prove existence results for chemical free energies of logarithmic type, a higher integrability result for
the strain tensor based on [Gar00, Gar05b] will be established. We adapt the higher integrability result for
solutions of the elliptic equation of the form

{
div(W el

,e (e(u), c)) on ΩT ,

W el
,e (e(u), c) · −→ν = σ? · −→ν on (∂Ω)T

}

to our setting with non-constant Dirichlet boundary data b and the additional damage variable z in (S0). In
the sequel, we will use the assumption D = ∂Ω.

The proof of the higher integrability result is based on the following special cases of the Sobolev-Poincaré
inequalities and on a reverse Hölder inequality.

Theorem 5.1 (Sobolev-Poincaré type inequalities) Let 1 ≤ p < n. There exists a constant C > 0
such that

(i) for all rectangles Q ⊆ Rn and all u ∈ W 1,p(Q):
(
−
∫

Q

|u−−
∫

Q

u|p?

) 1
p?

≤ C

(
−
∫

Q

|∇u|p
) 1

p

(diamQ)

(ii) for all rectangles Q =
∏n

i=1(ai, bi) ⊆ Rn and all u ∈ W 1,p(Q) with u = 0 on{
(x1, . . . , xn−1, an) | ai ≤ xi ≤ bi, i = 1, . . . , n− 1

} ⊆ ∂Q (in the sense of traces):
(
−
∫

Q

|u|p?

) 1
p?

≤ C

(
−
∫

Q

|∇u|p
) 1

p

(diamQ)

Theorem 5.1 can be obtained by considering the corresponding inequalities on the unit cube (0, 1)n (for
instance the case 1 < p < n was proven by Sobolev [Sob38] while Nirenberg [Nir59] gave a proof to p = 1)
and then using a scaling argument.

Theorem 5.2 (Reverse Hölder inequality, see [Gia83]) Let Q ⊆ Rn be a cube, g ∈ Lq
loc(Q) for a q > 1

and g ≥ 0. Suppose that there exist a constant b > 0 and a function f ∈ Lr
loc(Q) with r > q and f ≥ 0 such

that

−
∫

QR(x0)

gq dx ≤ b

(
−
∫

Q2R(x0)

g dx

)q

+−
∫

Q2R(x0)

fq dx

for each x0 ∈ Q and all R > 0 with 2R < dist(x0, ∂Q). Then g ∈ Ls
loc(Q) for s ∈ [q, q + ε) for some ε > 0

and
(
−
∫

QR(x0)

gs dx

) 1
s

≤ c




(
−
∫

Q2R(x0)

gq dx

) 1
q

+

(
−
∫

Q2R(x0)

fs dx

) 1
s




for all x0 ∈ Q and R > 0 such that Q2R(x0) ⊆ Q. The positive constants c, ε > 0 depend on b, q, n and r.
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Theorem 5.3 (Higher integrability) Let b ∈ W 1,∞(Ω; Rn), z ∈ L∞(Ω) with 0 ≤ z ≤ 1 a.e. in Ω and
c ∈ Lµ(Ω; RN ) for a µ > 4. Then there exists some p ∈ (2, µ/2] such that for all u ∈ H1(Ω; Rn) which
satisfies u|D = b|D and

∫

Ω

W el
,e (e(u), c, z) : e(ζ) dx = 0 for all ζ ∈ H1

D(Ω; Rn), (24)

we obtain u ∈ W 1,p(Ω; Rn) and

‖∇u‖Lp(Ω;Rn×n) ≤ C(‖∇u‖L2(Ω;Rn×n) + ‖c‖2L2p(Ω;RN ) + 1). (25)

The positive constants p and C are independent of u, c, z.

Proof. The proof is based on [Gar00, Lemma 4.4 and Theorem 4.3] and uses a covering argument. Due
to the non-constant boundary condition, we need to apply a more general Sobolev-Poincaré inequality (see
Theorem 5.1 (ii)) than in [Gar00].

(i) Higher integrability at the boundary.

Let x0 ∈ ∂Ω. Then there exists an R0 > 0 and a bi-Lipschitz function τ : Q → Rn with the open cube
Q := QR0(0) such that x0 ∈ τ(Q) and

τ(Q+) ⊆ Ω,

τ(Q−) ⊆ Rn \ Ω.

where Q+ := {x ∈ Q |xn > 0} and Q− := {x ∈ Q |xn < 0}. Define the transformated functions
ũ, b̃ ∈ H1(Q+; Rn), c̃ ∈ H1(Q+) and z̃ ∈ L∞(Q+) as

(ũ, b̃, c̃, z̃)(x) := (u, b, c, z)(τ(x)).

To proceed, let y0 ∈ Q and R < 1
2dist(y0, ∂Q) and define for each R′ > 0 the sets

Q±
R′(y0) := {x ∈ QR′(y0) |xn ≷ 0}.

We distinguish three cases:

Case 1. We first consider the case Q+
R(y0) 6= ∅ and Q−

3
2 R

(y0) 6= ∅.
The bi-Lipschitz continuity of τ ensures

dist(τ(∂Q+
2R(y0)) ∩ Ω, τ(∂Q+

R(y0)) ∩ Ω) > RC1,

where C1 > 0 is independent of R and y0. Let ξ ∈ C∞0 (Ω) be a cutoff function with the properties:

(a) ξ = 0 in Ω \ τ(Q2R(y0)),

(b) 0 ≤ ξ ≤ 1 in Ω,

(c) ξ ≡ 1 in τ(QR(y0)) ∩ Ω,

(d) |∇ξ| ≤ 2
C1

R−1.

Testing (24) with ζ = ξ2(u− b), using the computation

e(ζ) = ξ2e(u)− ξ2e(b) + ξ((u− b)(∇ξ)t +∇ξ(u− b)t),

and (A1), we obtain
∫

Ω

ξ2W el
,e (e(u), c, z) : e(u) dx

=
∫

Ω

ξ2W el
,e (e(u), c, z) : e(b) dx− 2

∫

Ω

ξW el
,e (e(u), c, z) : ((u− b)(∇ξ)t) dx (26)
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By (A3), (A4) and (A2) we also have the estimates

η|e(u)|2 ≤ W el
,e (e(u), c, z) : e(u) + C(|c|2 + 1)|e(u)|,

|W el
,e (e(u), c, z) : ((u− b)(∇ξ)t| ≤ C

R
(|e(u)|+ |c|2 + 1)|u− b|,

|W el
,e (e(u), c, z) : e(b)| ≤ (|e(u)|+ |c|2 + 1)|e(b)|.

Therefore, (26) can be estimated to

η

∫

Ω

ξ2|e(u)|2 dx ≤ C

∫

Ω

ξ2(|c|2 + 1)|e(u)| dx +
C

R

∫

Ω

ξ(|e(u)|+ |c|2 + 1)|u− b| dx

+ C

∫

Ω

ξ2(|e(u)|+ |c|2 + 1)|e(b)| dx.

Young’s inequality yields

c1

∫

Ω

ξ2|e(u)|2 dx ≤ C

∫

Ω

ξ2(|c|4 + 1) dx +
C

R2

∫

Ω

|u− b|2 dx. (27)

We choose µ = −
∫

Q+
2R(y0)

ũdx. The calculation e(ξ(u−µ)) = ξe(u)+ 1
2 ((u−µ)(∇ξ)t +∇ξ(u−µ)t) leads

to
∫

Ω

|e(ξ(u− µ))|2 dx ≤ 2
(∫

Ω

ξ2|e(u)|2 dx +
∫

Ω

|u− µ|2|∇ξ|2 dx

)
. (28)

Combining (27) and (28), applying Korn’s inequality for H1-functions with zero boundary values and
using (a) and (b) gives

∫

Ω

|∇(ξ(u− µ))|2 dx ≤ C

∫

τ(Q+
2R(y0))

(|c|4 + 1) dx +
C

R2

∫

τ(Q+
2R(y0))

|u− b|2 dx

+
C

R2

∫

τ(Q+
2R(y0))

|u− µ|2 dx.

Because of ∇(ξ(u−µ)) = ξ∇u+(u−µ)(∇ξ)t we derive by (a) and (c) the following type of Caccioppoli-
inequality:

∫

τ(Q+
R(y0))

|∇u|2 dx ≤ C

∫

τ(Q+
2R(y0))

(|c|4 + 1) dx +
C

R2

∫

τ(Q+
2R(y0))

|u− b|2 dx

+
C

R2

∫

τ(Q+
2R(y0))

|u− µ|2 dx.

Integral transformation by τ implies
∫

Q+
R(y0)

|∇ũ|2 dx ≤ C

∫

Q+
2R(y0)

(|c̃|4 + 1) dx +
C

R2

∫

Q+
2R(y0)

|ũ− b̃|2 dx

+
C

R2

∫

Q+
2R(y0)

|ũ− µ|2 dx.

The condition Q−
3
2 R

(y0) 6= ∅ and D = ∂Ω imply that ũ − b̃ vanishes on ∂
(
Q+

2R(y0)
) ∩ Rn−1 × {0}.

Therefore, we obtain by applying both variants of the Poincaré-Sobolev inequality in Theorem 5.1 for
p = 2n/(n + 2)

∫

Q+
R(y0)

|∇ũ|2 dx ≤ C

∫

Q+
2R(y0)

(|c̃|4 + 1) dx +
C

R2
Ln(Q+

2R(y0))−
2
n diam(Q+

2R(y0))2
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·



(∫

Q+
2R(y0)

|∇ũ−∇b̃| 2n
n+2 dx

)n+2
n

+

(∫

Q+
2R(y0)

|∇ũ| 2n
n+2 dx

)n+2
n


 . (29)

Note that if n = 1 we cannot apply Theorem 5.1 because of p = 2n/(n + 2) < 1. In this case, we
can work with the inequalities in Theorem 5.1 where p is substituted by 1 and p? is substituted by 2.
However, we will only treat the more delicate case n ≥ 2 in the following.

The estimates diam(Q+
2R(y0)) ≤ CR and Ln(Q+

2R(y0)) ≥ Rn (because of Q+
R(y0) 6= ∅) show

Ln(Q+
2R(y0))−

2
n diam(Q+

2R(y0))2 ≤ C. (30)

Now, dividing (29) by Ln(QR(y0)) and using (30) and

1
R2

1
Ln(Q2R(y0))

≤ C

(
1

Ln(Q2R(y0))

)n+2
n

gives

1
Ln(QR(y0))

∫

Q+
R(y0)

|∇ũ|2 dx ≤ C

Ln(Q2R(y0))

∫

Q+
2R(y0)

(|c̃|4 + 1) dx

+ C

(
1

Ln(Q2R(y0))

∫

Q+
2R(y0)

|∇ũ| 2n
n+2 dx

)n+2
n

+ C

(
1

Ln(Q2R(y0))

∫

Q+
2R(y0)

|∇b̃| 2n
n+2 dx

)n+2
n

.

Observe that
(

1
Ln(Q2R(y0))

∫

Q+
2R(y0)

|∇b̃| 2n
n+2 dx

)n+2
n

≤ ‖∇b‖2L∞(Ω).

Define the following functions on Q:

g(x) :=

{
|∇ũ(x)| 2n

n+2 for x ∈ Q+,

0 for x ∈ Q \Q+

and

f(x) :=

{
C(|c̃|4 + ‖∇b‖2L∞(Ω) + 1)

n
n+2 for x ∈ Q+,

0 for x ∈ Q \Q+.

We eventually get

−
∫

QR(y0)

g
n+2

n dx ≤ −
∫

Q2R(y0)

f
n+2

n dx + C

(
−
∫

Q2R(y0)

g dx

)n+2
n

. (31)

Case 2. Assume Q+
R(y0) 6= ∅ and Q−

3
2 R

(y0) = ∅.
The bi-Lipschitz continuity of τ implies

dist(τ(∂Q 3
2 R(y0)), τ(∂QR(y0))) > RC1,

where C1 > 0 is independent of R and y0. Therefore, we can choose a cutoff function ξ ∈ C∞0 (Ω) which
satisfies
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(a) ξ = 0 in Ω \ τ(Q 3
2 R(x0)),

(b) 0 ≤ ξ ≤ 1 in Ω,

(c) ξ ≡ 1 in τ(QR(x0)),

(d) |∇ξ| ≤ 2
C1

R−1.

Testing (24) with ξ = ζ2(u− µ) and µ := −
∫

Q 3
2 R

(x0)
ũdx yields as in the previous case

∫

τ(QR(x0))

|∇u|2 dx ≤ C

∫

τ(Q 3
2 R

(x0))

(|c|4 + 1) dx +
C

R2

∫

τ(Q 3
2 R

(x0))

|u− µ|2 dx.

Consequently,

−
∫

QR(x0)

|∇ũ|2 dx ≤ C−
∫

Q 3
2 R

(x0)

(|c̃|4 + 1) dx + C


−

∫

Q 3
2 R

(x0)

|∇ũ| 2n
n+2 dx




n+2
n

.

Therefore, the inequality (31) is also satisfied in this case.

Case 3. Assume Q+
R(y0) = ∅.

In this case, inequality (31) trivially holds.

In all three cases, the reverse Hölder inequality (see Theorem 5.2) shows g ∈ Ls
loc(Q) for all s ∈[

n+2
n , n+2

n + ε
)
and some ε > 0 depending on R0 and n.

(ii) Higher integrability in the interior.

This case follows with much less effort and is only sketched here.

Let x0 ∈ Ω arbitrary and R > 0 such that Q2R(x0) ⊆ Ω. We take a cutoff function ξ ∈ C∞0 (Ω) with
(a) ξ = 0 in Ω \Q2R(x0),

(b) 0 ≤ ξ ≤ 1 in Ω,

(c) ξ ≡ 1 in QR(x0),

(d) |∇ξ| ≤ 2
R .

Testing (24) with ξ = ζ2(u−µ) and µ = −
∫

Q2R(x0)
udx yields with the same computation as in the case

(i):
∫

QR(x0)

|∇u|2 dx ≤ C

∫

Q2R(x0)

(|c|4 + 1) dx +
C

R2

∫

Q2R(x0)

|u− µ|2 dx

Poincaré-Sobolev inequality implies

−
∫

QR(x0)

|∇u|2 dx ≤ C−
∫

Q2R(x0)

(|c|4 + 1) dx + C

(
−
∫

Q2R(x0)

|∇u| 2n
n+2 dx

)n+2
n

.

Applying Theorem 5.2 with g = |∇u| 2n
n+2 , q = n+2

n and f = C(|c|4 + 1)
n

n+2 finishes the proof. ¥

6 Existence of weak solutions of (S0) - logarithmic case

The challenge here is to establish the integral equation (iii) in Definition 2.3 because the derivative of the
logarithmic free chemical energy (A8) becomes singular if one of the ck’s approaches 0. We only sketch
the proof in this section since all essential ideas can be found in [Gar00, Gar05b]. We use a regularization
method suggested in [EL91] and also used in [Gar00, Gar05b].
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The energy gradient tensor is assumed to be of the form Γ = γ Id with a constant γ > 0. Define a C2(RN )
regularization with the regularization parameter δ > 0 as

W ch,δ(c) := θ

N∑

k=1

φδ(ck) +
1
2
c ·Ac,

with

φδ(x) :=

{
x log(x) for d ≥ δ,

x log(δ)− δ
2 + x2

2δ for x < δ.

Elliott and Luckhaus showed that the regularization W ch,δ is uniformly bounded from below.

Lemma 6.1 (cf. [EL91]) There exists constants δ0 > 0 and C > 0 such that

W ch,δ(c) ≥ −C for all c ∈ Σ, δ ∈ (0, δ0).

Let qδ denote a weak solution in the sense of Definition 2.3 with the free chemical energy W ch = W ch,δ. By
applying Lemma 6.1 and using Gronwall’s inequality in the energy inequality (vi) of Definition 2.3, we can
show a-priori estimates analogous as in Section 4 except the a-priori estimate of wδ.

In the Allen-Cahn case, we have ∂tcδ = −Mwδ and, consequently, the boundedness of cδ in L2(Ω; RN ) and
wδ ∈ TΣ pointwise lead to boundedness of wδ in L2(Ω; RN ).

However, in the case of Cahn-Hilliard systems, we can use the following lemma.

Lemma 6.2 ([Gar00, Lemma 4.3]) There exists a constant C > 0 such that for all δ ∈ (0, δ0)

∫ T

0

(
−
∫

Ω

PW ch,δ
,c (cδ(t)) dx

)2

dt < C.

The proof of this lemma is similar to [Gar00, Lemma 4.3], since all arguments can be adapted to our case.
Therefore we will omit the proof.

This lemma and the integral equation
∫

Ω

wδ(t) dx =
∫

Ω

PW ch,δ
,c (cδ(t)) + PW el

,c (e(uδ(t)), cδ(t), zδ(t)) dx

together with the already known boundedness properties shows
∫ T

0

(
−
∫

Ω

wδ(t) dx

)2

dt < C

for a constant C > 0. Therefore wδ is bounded in L2(0, T ; H1(Ω)) by Poincaré’s inequality. In conclusion,
we can extract a subsequence {qδk

} such that we have the same convergence properties as in Lemma 4.2.
We omit the subscript k.

Proof of Theorem 2.6. The remaining crucial step is to show that the limit c satisfies ck > 0 a.e. on ΩT

for all k = 1, . . . , N and W ch,δ
,c (cδ) → W ch,log

,c (c) in L1(ΩT ) as ε ↘ 0. Then the rest follows as in Section 4.

To this end, we need an additional boundedness property.

Lemma 6.3 There exists constants q > 1 and C > 0 such that for all δ ∈ (0, δ0) and all k = 1, . . . , N

‖(φδ)′(ck
δ )‖Lq(ΩT ) < C.
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We omit the proof of this lemma, since by utilizing Theorem 5.3 the arguments are analogous to [Gar00,
Lemma 4.5].

Note that

lim
δ↘0

(φδ)′(ck
δ ) =

{
log(ck) + 1 if limδ↘0 ck

δ = ck > 0,

∞ else.

holds pointwise a.e. on ΩT and for all k = 1, . . . , N . Together with Lemma 6.3 we obtain

ck > 0 a.e. on ΩT

and

(φδ)′(ck
δ ) → log(ck) + 1 a.e. on ΩT .

This and Lemma 6.3 further shows

(φδ)′(ck
δ ) → log(ck) + 1 in L1(ΩT )

by Vitali’s convergence theorem. Finally, we can pass to δ ↘ 0 in the equation
∫

ΩT

wδ · ζ dxdt =
∫

ΩT

γ∇cδ : ∇ζ + PW ch,δ
,c (cδ) · ζ + PW el

,c (e(uδ), cδ, zδ) · ζ dxdt

and obtain (iii) from Definition 2.3. The remaining properties can be easily established as in Section 4.

Theorem 2.6 is proven. ¥
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