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Abstra
t: The asymptoti
s of the probability that the self-interse
tion lo
al time of a random walkon Z
d ex
eeds its expe
tation by a large amount is a fas
inating subje
t be
ause of its relation to somemodels from Statisti
al Me
hani
s, to large-deviation theory and variational analysis and be
ause ofthe variety of the e�e
ts that 
an be observed. However, the proof of the upper bound is notoriouslydi�
ult and requires various sophisti
ated te
hniques. We survey some heuristi
s and some re
entlyelaborated te
hniques and results. This is an extended summary of a talk held on the CIRM-
onferen
eon Ex
ess self-interse
tion lo
al times, and related topi
s in Luminy, 6-10 De
., 2010.

MSC 2000. 60K37, 60F10, 60J55.Keywords and phrases. Self-interse
tion lo
al time, upper tail, Donsker-Varadhan large deviations,variational formula. 1. Introdu
tion and heuristi
sWe dis
uss the logarithmi
 asymptoti
s for the upper tails of self-interse
tion lo
al times of randomwalks on Z
d. This topi
 has been studied a lot in the last de
ade, sin
e it is a natural question, and ari
h phenemonology of 
riti
al behaviours of the random walk arises, depending on the dimension, theinterse
tion parameter, the s
ale, and the type of the random pro
ess. Furthermore, the question iste
hni
ally di�
ult to handle, due to bad 
ontinuity and boundedness properties of the self-interse
tionlo
al time. A 
ouple of di�erent te
hniques for studying self-interse
tions have been introdu
ed yet,wi
h turned out to be more or less fruitful in various situations. It is the goal of this note to surveyand 
ompare some of the most fruitful te
hniques used in re
ent years.1.1 Self-interse
tion lo
al timeLet (Sn)n∈N0 be a dis
rete-time simple random walk in Z

d started from the origin. We denote by Pthe underlying probability measure and by E the 
orresponding expe
tation. The main obje
t of thispaper is the self-interse
tion lo
al time of the random walk. In order to introdu
e this obje
t, we needthe lo
al times of the random walk at time n ∈ N,
ℓn(z) =

n
∑

i=0

1l{Si=z}, for z ∈ Z
d. (1.1)Fix p ∈ (1,∞) and 
onsider the p-norm of the lo
al times:

‖ℓn‖p =
(

∑

z∈Zd

ℓn(z)p
)1/p

, for n ∈ N. (1.2)If p is an integer, then, 
learly
‖ℓn‖p

p =
n

∑

i1,...,ip=0

1l{Si1
=···=Sip} (1.3)is equal to the p-fold self-interse
tion lo
al time of the walk, i.e., the number of p-fold self-interse
tions.For p = 2, this is usually 
alled the self-interse
tion lo
al time. For p = 1, ‖ℓn‖p

p is just the number
n + 1, and for p = 0, it is equal to #{S0, . . . , Sn}, the range of the walk. It is 
ertainly also of interestto study ‖ℓn‖p

p for non-integer values of p > 1, see for example [HKM06℄, where this re
eived te
hni
al1



2importan
e. The typi
al behaviour of ‖ℓn‖p
p has been identi�ed as

E[‖ℓn‖p
p] ∼ Cad,p(n), where ad,p(n) =











n(p+1)/2 if d = 1,

n(log n)p−1 if d = 2,

n if d ≥ 3,

(1.4)for some C = Cd,p ∈ (0,∞); see [Ce07℄ for d = 2 and [BK09℄ for d ≥ 3. In the following, we will
on
entrate on d ≥ 2.1.2 The problemWe are interested in the logarithmi
 asymptoti
s of
P(‖ 1

nℓn‖p ≥ rn), n → ∞,for s
ale fun
tions (rn)n∈N satisfying rn − E[‖ 1
nℓn‖p] → ∞. In order to avoid trivialities and be
ause

‖ 1
nℓn‖p ≤ 1, we also assume that rn < 1. If even (nrn)p ≫ ad,p(n) (we write ≫ if the quotientdiverges), we speak of very large deviations, and if (nrn)p ∼ γad,p(n) with γ > 1, we speak of largedeviations. In this note, we will be mainly interested in very large deviations.In other words, we would like to understand how likely it is for the path to produ
e many self-interse
tions, and, additionally, what the typi
al behavior of the path is on the event {‖ 1

nℓn‖p ≥ rn}.Certainly, the answer will depend strongly on various issues, like the dimension, the de
ay of rn, thevalue of p et
. There is a 
ompetition between two e�e
ts: 
lumping together on a small region andthe spread-out strength 
oming from the di�usion me
hanism. In order to �nd the answer, we have toquantify the probabilisti
 
ost of the 
lumping.1.3 Rough heuristi
sLet us give a rough heuristi
 about what to expe
t. We 
onsider the very-large deviation 
ase (nrn)p ≫
ad,p(n).The starting point of our heuristi
 is that the optimal strategy of the path to meet the event
{‖ 1

nℓn‖p ≥ rn} is that the path �lls a ball Bαn of radius 1 ≪ αn ≪ n1/d within a time interval
[0, tn] with 1 ≪ tn ≤ n in order to produ
e the required amount (nrn)p of self-interse
tions, andthat the path runs freely in the time interval [tn, n], where he produ
es the ordinary amount of self-interse
tions, whi
h is negligible with respe
t to (nrn)p. Certainly, the short-time 
lumping may alsotake pla
e at some other time instant, e.g. in the interval [n − tn, n] or 
an be divided into severaltime stret
hes, but this should not a�e
t the logarithmi
 asymptoti
s. We may assume that all thelo
al times ℓn(z) ≈ ℓtn(z) with z ∈ Bαn are of the same order, as non-homogeneous strategies aremore 
ostly. This order must be equal to tnα−d

n sin
e altogether tn hits are distributed on #Bαn sites.Furthermore, the p-norm of the lo
al times is required to equal nrn, i.e.,
(nrn)p ≍ ‖ℓn‖p

p ≈
∑

z∈Bαn

ℓtn(z)p ≍ αd
n(tnα−d

n )p = tpnαd(1−p)
n , i.e., tn ≍ nrnαd(p−1)/p

n .This requires that αn ≤ r
p

d(1−p)
n . The negative logarithm of the probabilisti
 
ost to squeeze a tn-steprandom walk into a ball with radius αn is of order

− log P(S[0,tn] ⊂ Bαn) ≍ tn
α2

n

≍ nrnα
d
p
(p−1)−2

n , (1.5)as may be seen from a de
omposition of the path into tnα−2
n equally long pie
es of length α2

n andinvoking the 
entral limit theorem. This assertion holds as long as the quantity in (1.5) diverges.Re
all that we want to argue whi
h 
hoi
e of αn (i.e., of tn) yields the maximal probability, i.e., theminimal value in (1.5). It is obvious that this depends on the dimension. Indeed, in the sub
riti
al



3dimensions d < 2p
p−1 , the exponent of αn in the last term is negative and hen
e the optimal 
hoi
e isto pi
k αn (and hen
e tn) as large as possible. A

ordingly, in the super
riti
al dimensions d > 2p

p−1 ,they must be pi
ked as small as possible. Be
ause of the restri
tions tn ≤ n and αn ≥ 1, this meansthat the optimal 
hoi
es are
tn ≍

{

n if d < 2p
p−1 ,

nrn if d > 2p
p−1 ,

, and αn ≍







r
p

d(1−p)
n if d < 2p

p−1 ,

1 if d > 2p
p−1 .

(1.6)Hen
e, we may expe
t that
− 1

n
log P(‖ 1

nℓn‖p ≥ rn) ≍ 1

n

tn
α2

n

≍ 1

α2
n

≍







r
2p

d(p−1)
n if d < 2p

p−1 ,

rn if d > 2p
p−1 .

(1.7)Re
all that (nrn) ≫ ad,p(n), whi
h implies that rn ≫ n
1
p
−1. Hen
e, αn ≪ t

1/d
n . This means that therandom walk should stay within a region with volume ≪ tn until time tn, and ea
h lo
al time in thatregion should be of order tn/αd

n ≫ 1.This heuristi
s says nothing about the 
riti
al dimension d = 2p
p−1 , and this question is indeed deli
ateto answer (see Se
tion 2.4). Interestingly, for rn ≪ 1, the two s
ales on the right of (1.7) di�er here,but they 
oin
ide for rn ≍ 1, where the probability under interest runs on the exponential s
ale n inany dimension.1.4 Pre
ise heuristi
sWe now give a heuristi
 for a more pre
ise version of (1.7), whi
h strengthens `≍' to `∼' with expli
itidenti�
ation of the prefa
tor. This is based on Donsker-Varadhan large-deviation theory. We keep theassumption ad,p(n) ≪ (nrn)p (the very-large deviation 
ase) and assume that rn ≪ 1 and �rst turn tothe sub
riti
al dimensions d < 2p

p−1 .De�ne the s
aled normalized version Ln : R
d → [0,∞) of the lo
al times ℓn by

Ln(x) =
αd

n

n
ℓn

(

⌊xαn⌋
)

, for x ∈ R
d. (1.8)Then Ln is a random element of the set of all probability densities on R

d. In the spirit of the 
elebratedlarge-deviation theorem of Donsker and Varadhan, if αn satis�es 1 ≪ αd
n ≪ ad,0(n) (see (1.4)), then Lnsatis�es a weak large-deviation prin
iple in the weak L1-topology with speed nα−2

n and rate fun
tion
I : L2(Rd) → [0,∞] given by

I(f) =

{

1
2

∥

∥∇f
∥

∥

2

2
if f ∈ H1(Rd) and ‖f‖2 = 1,

∞ otherwise. (1.9)Roughly, this large-deviation prin
iple says that,
P(Ln ∈ · ) = exp

{

− n

α2
n

[

inf
f2∈ ·

I(f) + o(1)
]}

, (1.10)and the 
onvergen
e takes pla
e in the weak topology. This prin
iple has been partially proved in aspe
ial 
ase in [DV79℄, a proof in the general 
ase was given in [HKM06, Prop. 3.4℄.Now note that
‖ℓn‖p =

(

∑

z∈Zd

ℓn(z)p
)1/p

= nα−d
n

(

∑

z∈Zd

Ln

(

z
αn

)p
)1/p

= nα
d(1−p)

p
n ‖Ln‖p = nrn‖Ln‖p.



4By our 
hoi
e of αn in (1.6) with `≍' repla
ed by `=', we have that
{‖ 1

nℓn‖p ≥ rn} =
{

‖Ln‖p ≥ 1
} and n

α2
n

= nr
2p

d(p−1)
n . (1.11)Using (1.10) for the set {f : ‖f2‖p ≥ 1}, we see that

lim
n→∞

r
2p

d(1−p)
n

n
log P(‖ 1

nℓn‖p ≥ rn) = −χd,p, (1.12)where
χd,p = inf

{1

2
‖∇f‖2

2 : f ∈ H1(Rd), ‖f2‖p = 1 = ‖f‖2

}

. (1.13)It turned out in [GKS07, Lemma 2.1℄ that χd,p is positive if and only if d(p− 1) ≤ 2p. Formula (1.12)is the pre
ise version of (1.7). We see that the main 
ontribution to the event {‖ 1
nℓn‖p ≥ rn} 
omesfrom those random walk realisations that make the res
aled lo
al times, Ln, look like the minimiser(s)

f2 of the variational formula on the right-hand side of (1.13).An analogous heuristi
 applies for the super
riti
al dimensions d > 2p
p−1 . We keep the assumption

ad,p(n) ≪ (nrn)p, but drop the assumption that rn ≪ 1 and assume that r = limn→∞ rn ∈ [0, 1]exists. Pi
k αn = 1, and the time n must be redu
ed to stn = snrn ≤ n, and later we optimize over
s ∈ (0, 1/r). Hen
e, we approximate

{‖ 1
nℓn‖p ≥ rn} ≈

{

‖ℓstn‖p ≥ nrn

}

=
{∥

∥

∥

1

stn
ℓstn

∥

∥

∥

p
≥ 1

s

}

.(The set is non-empty only for s ≥ 1, but this will 
ome out naturally when optimising.) This timewe use that 1
stn

ℓstn satis�es a large-deviation prin
iple on the set of probability measures on Z
d withs
ale stn. The rate fun
tion I (d) 
omes via a 
ontra
tion prin
iple from a prin
iple for the empiri
almeasures of Markov 
hains; we abstain from writing it down. Hen
e, we obtain

lim
n→∞

1

nrn
log P(‖ 1

nℓn‖p ≥ rn) = −χd,p, (1.14)where
χd,p = inf

s∈(0,1/r)
s inf

{

I (d)(g2) : g ∈ ℓ2(Zd), ‖g2‖p =
1

s
, ‖g‖2 = 1

}

= inf
{I (d)(g2)

‖g2‖p
: g ∈ ℓ2(Zd), ‖g‖2 = 1, ‖g2‖p ≥ r

}

.

(1.15)We see that the main 
ontribution to the event {‖ 1
nℓn‖p ≥ rn} 
omes from those random walk real-isations that make the normalized lo
al times 1

stn
ℓstn equal to a minimizer g2 of the formula on theright-hand side of (1.15) inside some box of bounded radius. In parti
ular, the parameter s shouldbe 
hosen as ‖g2‖−1

p . After time stn, the random walk leaves that bounded box and runs like a freesimple random walk and produ
es a negligible amount of self-interse
tions.1.5 Continuous-time random walksThe assertion in (1.12)-(1.13) should also be literally true for a 
ontinuous-time simple random walk
(St)t∈[0,∞), and also the s
ale in (1.14) should be the same as in the dis
rete-time 
ase. However therate fun
tion (and therefore the formula for χd,p) is di�erent in the super-
riti
al dimensions: it is
g2 7→ 1

2‖∇g‖2
2 = 1

2

∑

z,z′∈Zd : z∼z′(g(z)−g(z′))2, whi
h is the dis
rete-spa
e version of the prin
iple that
Ln satis�es. Using a simple s
aling argument we have that (1.15) must be repla
ed here by

χd,p = inf
{ 1

2‖∇g‖2
2

‖g2‖p
: g ∈ ℓ2(Zd), ‖g‖2 = 1, ‖g2‖p ≥ r

} (1.16)



5whi
h redu
es in the 
ase rn → r = 0 to
χd,p = inf

{1

2
‖∇g‖2

2 : ‖g2‖p = 1
}

. (1.17)1.6 Exponential momentsThe statements in (1.12) and (1.14) are intimately 
onne
ted with analogous statements about theexponential moments of ‖ℓn‖p. This is a version of the well-known Gärtner-Ellis theorem (see [DZ98,Se
t. 4.5℄). More pre
isely, via the exponential Chebyshev inequality, they follow from the logarithmi
asymptoti
s of suitable exponential moments, and the lower bound 
an be proved with the help of atransformation in the spirit of the Cramér transform.More pre
isely, if d < 2p
p−1 , abbreviate λ = 2p+d−dp

2p ∈ (0, 1), then (1.14) follows from the assertion
1

n
log E

(

eθn‖ℓn‖p

)

∼ θ1/λ
n ρ(c)

d,p(1), n → ∞, (1.18)for (ad,p(n)1/p/n)λ/(1−λ) ≪ θn ≪ 1, where
ρ(c)

p,d(θ) = sup
{

θ‖f2‖p −
1

2
‖∇f‖2

2 : f ∈ H1(Rd), ‖f‖2 = 1
}

= θ1/λλ

(

2p

d(p − 1)
χd,p

)
λ−1

λ

, θ > 0.

(1.19)Indeed, apply the exponential Chebyshev inequality with θn = (rnλ/ρ(c)

d,p(1))
λ/(1−λ) and to use these
ond line of (1.19) (whi
h 
an be shown elementarily by s
aling arguments, see [BK10, Remark 1.3℄),to derive the upper bound in (1.12) . The reason that also the lower bound 
an be shown with thehelp of a Cramér-type transformation using (1.18) is that − log P(‖ 1

nℓn‖p ≥ rn) is asymptoti
ally a
onvex fun
tion of rn (it is ∼ χd,pnr
2p

d(p−1)
n , and the power is larger than one); note that this method,the Gärtner-Ellis method, produ
es only 
onvex rate fun
tions.In the super
riti
al dimension, this line of arguments works as well in the 
ase rn ≪ 1 sin
e

− log P(‖ 1
nℓn‖p ≥ rn) is asymptoti
ally linear in rn. However, in the 
ase rn → r ∈ (0, 1), it doesnot seem to work sin
e both χd,p's de�ned in (1.15) and in (1.16) depend on r, and it seems not
lear whether the map r 7→ rχd,p is 
onvex. This is also re�e
ted by the fa
t that the logarithmi
rate of the exponential moments of ‖ℓn‖p is possibly not di�erentiable, see [BK10, Theorem 1.1(i) andRemark 1.5℄, where it was shown that, for any θ > 0, for 
ontinuous-time random walk,

lim
t→∞

1

t
log E

(

eθ‖ℓt‖p

)

= ρ(d)

p,d(θ) = sup

{

θ‖g2‖p −
1

2
‖∇g‖2

2 : g ∈ ℓ2(Zd), g ≥ 0, ‖g‖2 = 1

}

. (1.20)Note that the right-hand side is the dis
rete version of ρ(c)

p,d(θ) de�ned in (1.19).1.7 Di�
ultiesThere are several serious obsta
les to be removed when trying to turn the above heuristi
s into anhonest proof: (1) the large-deviation prin
iples only hold on 
ompa
t subsets of R
d resp. Z

d, (2) thefun
tional f2 7→ ‖f2‖p is not bounded in 
ontinuous, nor in dis
rete spa
e, and (3) this fun
tional isnot 
ontinuous in the topology of the large-deviation prin
iple.Removing the obsta
le (1) is easy and standard (see Se
tion 1.8), but it is in general notoriouslydi�
ult to over
ome the obsta
les (2) and (3) for related problems. In the sub
riti
al dimensions,the transition from dis
rete to 
ontinuous spa
e while taking the limit 
auses additional te
hni
alities.In the super
riti
al dimensions, the redu
tion of the time s
ale from n to stn is also hard to justifyrigorously. The 
riti
al dimension d = 2p
p−1 , i.e., p = d

d−2 , is even more deli
ate sin
e the question if the



6dis
rete or the 
ontinuous pi
ture arises seems to depend on the pre
ise 
hoi
e of rn. See Se
tion 2.4for a rigorous answer.These di�
ulties make the proofs of (1.12) and (1.14) a demanding task.1.8 Compa
ti�
ationIn most of the proofs of upper bounds for probabilities under interest here, one of the main steps isto estimate ‖ℓn‖p ≤ ‖ℓ(R)
n ‖p, where ℓ(R)

n are the lo
al times of the periodized version of the walk in thebox BR = [−R,R]d ∩Z
d with R = Rn = Lαn and a large parameter L. This estimate is easily veri�edand understood: when putting the free walk onto the torus, one does not lower the number of self-interse
tions, but possibly in
reases them. Hen
e, one is left with the same task for the periodized walk,whi
h lives on a 
ompa
t part of the spa
e Z

d, whi
h depends on n. If one 
an manage the problem onthe torus BLαn up to logarithmi
 equivalen
e, one ends up with an L-dependent variational formula,whi
h is elementarily shown to 
onverge towards the 
orre
t one as L → ∞. In these notes, we willtherefore sometimes ta
itly impose the 
ondition S[0,n] ⊂ BR without mentioning that the transitionprobabilities of the walk have been slightly 
hanged. However, this estimate is useful only in the 
asesin whi
h the typi
al behavior of the path is to �ll a 
entred box of side length R more or less uniformly.This applies to the sub
riti
al dimensions, but rules out the super
riti
al ones.1.9 Lower boundsA
tually, the proof of the lower bounds in (1.12) and (1.14) is quite simple and is done as follows inthe sub
riti
al dimensions. Pi
k q > 1 su
h that 1
p + 1

q = 1 and pi
k some 
ontinuous and boundedfun
tion f having 
ompa
t support and satisfying ‖h‖q = 1. Then Hölder's inequality gives that
‖Ln‖p ≥ 〈h,Ln〉. Now the large-deviation prin
iple for Ln 
an safely be applied to 〈h,Ln〉, sin
e themap f2 7→ 〈h, f2〉 is 
ontinuous and bounded in the topology of the prin
iple. Hen
e, we obtain thelower bound in (1.12) with χd,p repla
ed by inf{I(f) : f2 ∈ Lp(Rd), 〈h, f2〉 = 1}. Optimizing over hand thereby using the duality between Lp and Lq, we see that the lower bound of (1.12) arises, afteremploying some elementary approximation arguments. A similar argument applies in the super
riti
aldimensions. 2. Te
hniques for proving upper boundsIn this se
tion, we survey various te
hniques to prove the upper bound in the statements (1.12) and(1.14) and 
losely related variants of them.2.1 Triangular de
omposition and smoothingIn a long series of papers, among a lot of further results on interse
tions of random motions, Chen alsogives a proof of (1.12) in the most interesting 
ases d = 2 = p and d = 3, p = 2, see [Ch09, Theorems8.2.1 and 8.4.2℄. A
tually, he admits more general random walks and mu
h smaller 
hoi
es of the s
alefun
tion (rn)n∈N. He shows that (1.12) is even true for rn = 1

n(E[‖ℓn‖2
2] + nbn)1/2 with 1 ≪ bn ≪ n.A
tually, he proves the exponential version (1.18).The three main ideas of the proof method he uses are a triangular de
omposition of the numberof self-interse
tions (this restri
ts the method to p = 2), a smoothing te
hnique with the help ofa 
onvolution of a smooth approximation of the delta measure, and a series of Bana
h spa
e toolsin
luding the Minkowski fun
tional, the Hahn-Bana
h theorem and Arzelá-As
oli's theorem.Indeed, he writes

‖ℓn‖2
2 =

2N
∑

j=1

η(N)

j +

N
∑

j=1

2j−1
∑

k=1

ξ(N)

j,k , (2.1)



7where N ∈ N is a large auxiliary parameter and
η(N)

j =
∑

(j−1)n2−N <i<i′≤jn2−N

1l{Si = Si′},

ξ(N)

j,k =
∑

(2k−2)n2−j <i≤(2k−1)n2−j

(2k−1)n2−j <i′≤(2k)n2−j

1l{Si = Si′}.
(2.2)This de
omposition was already used by Le Gall [Le86℄, it 
an also be de�ned via an iterated bise
tionof the path. Its advantage is that η(N)

1 , . . . , η(N)

2N are i.i.d. with distribution equal to the number ofself-interse
tions of a random walk of length ≈ n2−N and that, for any j ∈ {1, . . . ,N}, the variables
ξ(N)

j,1 , . . . , ξ(N)

j,2j−1 are i.i.d. with distribution equal to the number of mutual interse
tions of two inde-pendent random walks of length ≈ n2−j . This de
omposition was already used in the 1960ies for thestudy of the self-interse
tions of two-dimensional Brownian motion.The se
ond idea is to 
onvolute the normalised and res
aled lo
al times Ln de�ned in (1.8) with somesmooth approximation, ϕε, of the Dira
 delta measure as ε ↓ 0. The repla
ement of ‖Ln‖p
p with thesmoothed ones, ‖Ln ⋆ ϕε‖p

p, with full 
ontrol of the asymptoti
s requires some te
hni
al 
are, but 
anbe done using more or less standard means.The large-deviation arguments for ‖Ln ⋆ϕε‖p are easier to derive than for ‖Ln‖p, but however requiresome substantial work, see [Ch09, Se
t. 4.2℄. The reason is that the map Ln 7→ ‖Ln ⋆ ϕε‖p has stillbad 
ontinuity properties. Chen's ingenious way to solve this problem uses a 
ompa
tness 
riterionintrodu
ed in [dA85℄, formulated in terms of bounds for 
ertain exponential integrals of the Minkowskifun
tional of a 
onvex, positively balan
ed set. The way to make this 
riterion appli
able is longand uses a series of ideas from fun
tional analysis, like the Arzelá-As
oli theorem, topologi
al dualitybetween the spa
es Lp and Lq for 1
p = 1

q = 1, and the Hahn-Bana
h theorem.2.2 Iterated bise
tionAs we mentioned in Se
tion 2.1, Le Gall [Le86℄ introdu
ed a te
hnique of su

essive division of thepath into approximately equally long pie
es and 
ontrolling the self-intera
tion of ea
h pie
e and themutual intera
tion between them. This indu
tion pro
edure is equivalent to the splitting te
hniquedes
ribed in (2.1)-(2.2). A priori this method works only for p = 2. However, it has been furtherdeveloped by Asselah [A10℄ to be used for any value of p ∈ (1,∞). This enables him to prove bothassertions in (1.7) for both large and very large deviations. However, his approa
h admits only a studyof dimensions d ≥ 3, sin
e he uses transien
e of the walk at some pla
e.The kernel of Asselah's bise
tion te
hnique for ‖ℓn‖p
p, i.e., for a sum of p-th powers of integers, is theestimate

(l1 + l2)
p ≤ lp1 + lp2 + 2p

∞
∑

i=0

bp−2
i+1 l1l21l{bi ≤ max{l1, l2} < bi+1} l1, l2 ∈ N,where 1 = b0 < b1 < b2 < . . . de�nes a suitable partitioning of [1,∞). Using this estimate iterativelyfor bise
tions of the path, one obtains an upper bound for ‖ℓn‖p

p in terms of a sum of the p-normsof the respe
tive fragments of the path (whi
h are independent) plus an additional term 
oming fromtheir mutual intera
tion. One additional ingredient of the proof is a de
omposition of the spa
e intoregions where the lo
al times are small, medium-sized or large. The event {‖ℓn‖p ≥ rn} is de
omposedin several partial events, whose probabilities are estimated using various arguments.2.3 Surgery on 
ir
uits and 
lustersAs we explained in Se
tion 1.4, in the super
ritial dimension, the signi�
ant 
ontribution to a largevalue of the interse
tion lo
al time 
omes from paths that have extremely high values on a bounded



8region. This intuitive pi
ture is the leading idea in the proof given in [A09℄ (see also [A08a℄), where(1.14) is proved for p = 2, d ≥ 5 and rn ≍ n−1/2, i.e., for the large-deviation regime.The main te
hni
al tool is an upper estimate of ‖ℓn‖2
2 − E[‖ℓn‖2

2] in terms of ‖1lΛℓs
√

n‖2
2 for many
hoi
es of a �nite set Λ ⊂ Z

d on the event {Ss
√

n = 0}, i.e., for a 
ir
uit. To derive this, Asselahintrodu
es for in�nite-time random walk, using some iterative pro
edure 
alled surgery, a map from�nite n-dependent boxes to bounded subboxes that 
ompares paths with high values of lo
al times inthe large box to those having high lo
al time values in the small box. Parti
ular attention is given tothe region where the lo
al times are of order √n; �nally it is shown that this set is bounded in n.The out
ome of this te
hnique is that the existen
e and non-triviality of the limit in (1.14) is shown.In a se
ond step, its value is identi�ed as 1
2 times the 
onstant on the right-hand side of (2.4) bya 
omparison between the two problems of mutual interse
tions of two independent walks and self-interse
tions of one walk.2.4 Dynkin's isomorphismThe 
riti
al 
hoi
e p = d

d−2 in dimensions d ≥ 3 is 
onsidered in [Ca10℄. A
tually, it is shown therethat, in the 
ontinuous-time 
ase, (1.12) is true with χd,p as in (1.16), for any n
1
p
−1 ≪ rn ≪ 1.This interestingly shows that the 
riti
al dimension d = 2p

p−1 belongs to the lower 
riti
al 
ase, as it
on
erns the radius αn of the ball in whi
h the main bulk of the self-interse
tions o

ur, but to theupper 
riti
al dimension, as it 
on
erns the nature of the variational formula des
ribing the pre
iselogarithmi
 asymptoti
s.The main idea used in [Ca10℄ is Dynkin's isomorphism theorem [D88℄, whi
h says that the joint lawof the lo
al times of a symmetri
 re
urrent Markov pro
ess stopped at an independent exponentialtime is related to the law of the square of a Gaussian pro
ess whose 
ovarian
e fun
tion is the Greenkernel of the stopped Markov pro
ess. To apply this, in a �rst step, the exponential moments of ‖ℓt‖pare estimated from above against the exponential moments of ‖ℓ(R)
τ ‖p, where ℓ(R) are the lo
al times ofthe torus version of the walk on BR, and τ is an independent exponential time with parameter ≍ rt.Now introdu
e a Gaussian pro
ess Z = (Zx)x∈BR

with 
ovarian
e matrix equal to the Green fun
tion,
GR,τ , of the stopped walk (S(R)

t∧τ )t∈[0,∞) on the torus BR. Then the exponential moments of ‖ℓ(R)
τ ‖p
an be written in terms of exponential moments of ‖Z‖2

2p with some slightly modi�ed density. Thegreat advantage of this rewrite is that now 
on
entration inequalities for Gaussian integrals 
an beapplied to the exponential moments of (‖Z‖2p − M)2, where M denotes the median of ‖Z‖2p. Theseinequalities are so pre
ise that they prove the 
ru
ial fa
t that the tail behaviour of ‖Z‖2p−M is equalto that of a Gaussian variable with varian
e equal to sup{〈f,GR,τ f〉 : f ∈ ℓ2p(Zd), ‖f‖2p = 1}. If onepi
ks R ≍ t1/d, then this supremum 
onverges towards χd,p de�ned in (1.16), and this is the kernel ofthis proof method.2.5 Polynomial momentsAnother su
essful te
hnique is based on an expansion of exp{θα
2−d+d/p
t ‖ℓt‖p} and a pre
ise estimationof the polynomial moments of ‖ℓt‖p with suitable t-dependent powers. More pre
isely, in sub
riti
aldimensions in the proof of [HKM06, Prop. 2.1℄ it is shown that, for any L ∈ (0,∞), in the time-
ontinuous 
ase,

E
(

‖ℓt‖pk
p 1l{S[0,t] ⊂ BLαt}

)

≤ kkpCkα
k[d+(2−d)p]
t , k ≥ t

α2
t

, (2.3)for some C ∈ (0,∞) and for all su�
iently large t. It is easy to see that this implies that
lim sup

θ↓0
lim sup

t→∞

α2
t

t
log E

[

exp
{

θα
− 1

p
[d+(2−d)p]

t ‖ℓt‖p1l{S[0,t] ⊂ BLαt}
]

≤ 0,



9whi
h was one of the partial goals in [HKM06℄. This statement is a bit less than the upper bound in(1.18), but identi�es the 
orre
t s
ale.The proof of (2.3) 
onsists of a 
ombinatorial analysis of the polynomial moments by expli
itlywriting out ℓt(z) =
∫ t
0 δz(Sr) dr and the pk-th moments and summarizing and transforming the arisingmulti-sum as far as possible. No attempt to optimize (2.3) nor to �nd the best value of C was madein [HKM06℄. The method works in any sub
riti
al dimension, but only for αt ≪ t1/(d+1), whi
h is asevere restri
tion. The kernel of the reason why this methods works is the integrability of the p-thpower of the Green fun
tion of Brownian motion around its singularity.This method was applied also in the super
riti
al dimensions in [CM09℄ for the 
losely related problemof the mutual interse
tions of p independent 
opies S(1), . . . , S(p) of (Sn)n∈N0 rather than the self-interse
tions of one walk. Here it is possible (and the main interest of [CM09℄) to 
onsider theseinterse
tions with in�nite time horizon and to study its upper tails. Denote by

I =

∞
∑

i1,...,ip=0

1l{S(1)

i1
= · · · = S(p)

ip
}this interse
tion lo
al time, then the main result of [CM09℄ is

lim
a→∞

a−1/p log P(I > a) = −p inf
{

‖h‖q : h ∈ ℓq(Zd), h ≥ 0, ‖Ah‖ ≥ 1
}

, (2.4)where 1
p + 1

q = 1, and the operator Ah : ℓ2(Zd) → ℓ2(Zd) is de�ned by
Ahg(x) =

√

eh(x) − 1
∑

y∈Zd

G(x, y)
√

eh(y) − 1,and G is the Green fun
tion of the walk. For 
ontinuous-time simple random walk, the right-handside of (2.4) is shown to equal −χd,p de�ned in (1.16). It is expe
ted that for the in�nite-time self-interse
tion lo
al times, i.e., after repla
ing I by ‖ℓ∞‖p
p, (2.4) remains true with the fa
tor p removedon the right-hand side, and that ‖ℓ∞‖p

p may also be repla
ed by ‖ℓf(a)‖p
p for some expli
it fun
tion

f(a). Similarly, also in the dis
rete-time 
ase, the right-hand side of of (2.4) should be equal to −χd,pin (1.15). Details are 
urrently being worked out in [BK11+℄.The proof of (2.4) is again based on the asymptoti
al analysis of high polynomial moments. It isused [KM02, Lemma 2.1℄ that, for any positive random variable X,
lim

k→∞
1

k
log E

[Xk

k!p

]

= κ ⇐⇒ lim
a→∞

a−1/p log P(X > a) = −peκ/p.For the identi�
ation of the high polynomial moments of I, some 
ompa
ti�
ation pro
edure is devel-oped that is in the spirit of the periodization idea mentioned in Se
tion 1.8, but this time for the p-thpowers of the Green fun
tion of the walk instead of the p-th power of the lo
al times. The fa
t thatthis pro
edure gives the 
orre
t upper bound may be interpreted by saying that the main bulk of theinterse
tions o

ur in some box of bounded radius, whi
h may be far from the origin.2.6 Density of lo
al timesThe following is restri
ted to 
ontinuous-time random walk (St)t∈[0,∞). The approa
h of [BK10℄ is toemploy an expli
it formula for the joint density of the lo
al times (ℓt(z))z∈B in a �nite subset B of Z
d,whi
h has been derived in [BHK07℄. This makes it possible to expli
itly write down a formula for theexpe
ted exponential moments of ‖ℓt‖p on the event {S[0,t] ⊂ B}. Even though the representation forthis density derived in [BHK07, Theorem 2.1℄ is almost impossible to penetrate, [BHK07, Theorem 3.6℄gives a handy upper bound for su
h expe
tations.



10For the sub
riti
al dimension, in [BK10℄, it was obtained in this way that
1

t
log E

(

exp
{

tα−2λ
t

∥

∥

1
t ℓ

(Lαt)

t

∥

∥

p

})

≤ ρ(d)

d,p(Lαt, α
−2λ
t ) + εt, (2.5)where we re
all that λ = 2p+d−dp

2p ∈ (0, 1) and
ρ(d)

d,p(R, θ) = sup
µ∈M1(BR)

[

θ‖µ‖p − ‖ (−AR)1/2 √µ‖2
2

]

,and AR is the generator of the periodized version of the random walk on the box BR, re
all Se
tion 1.8,and εt is some expli
it error term. It is required that εt ≤ exp{o(rt)
2p

d(p−1) }, and this in turn enfor
esthat rt ≫ (log t/t)
d(p−1)
p(d+2) , whi
h imposes a restri
tion on the validity for te
hni
al reasons.The main term on the right-hand side of (2.5), ρ(d)

d,p(Lαt, α
−2λ
t ) is a 
ompa
t-spa
e version of ρ(d)

p,d(θ)introdu
ed in (1.20), and there is a 
lose 
onne
tion to the 
ontinuous version de�ned in (1.19). Indeed,the main work in [BK10℄ is devoted to the proof of
lim sup

L→∞
lim sup

t→∞
α2

t ρ
(d)

d,p(Lαt, α
−2λ
t ) ≤ ρ(c)

p,d(1), (2.6)and this �nishes the proof of the upper bound in (1.18). The proof of (2.6) is in the spirit of Gamma-
onvergen
e te
hniques, some elements of �nite element theory is employed. Unfortunately, in the
ourse of the proof, the te
hni
al assumption that d < 2
p−1 must be made, whi
h severely restri
ts thevalidity in the dimension. Referen
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