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Abstract

The Stefan problem is coupled with a spatially inhomogeneous and anisotropic Gibbs—
Thomson condition at the phase boundary. We show the long-time existence of weak solu-
tions for the non-degenerate Stefan problem with a spatially inhomogeneous and anisotropic
Gibbs-Thomson law and a conditional existence result for the corresponding degenerate Ste-
fan problem. To this end, approximate solutions are constructed by means of variational
problems for energy functionals with spatially inhomogeneous and anisotropic interfacial en-
ergy. By passing to the limit, we establish solutions of the Stefan problem with a spatially
inhomogeneous and anisotropic Gibbs—Thomson law in a weak generalized BV -formulation.

1 Introduction

The Stefan problem models phase transitions in materials. To allow for superheating and un-
dercooling, the Stefan problem is coupled with a geometrical condition at the phase boundary,
the so-called Gibbs—Thomson law. This condition takes surface tension effects into account such
that the temperature may differ from the melting temperature at the phase boundary. The
Gibbs—Thomson law states that the system is in thermodynamic equilibrium.

The classical Gibbs—Thomson law accounts for isotropic surface tension effects. In this case,
the temperature at the interface is proportional to the mean curvature. In many applications,
however, such as the solidification of alloys, the surface energy density is spatially inhomogeneous
and anisotropic, i.e. the density depends on the position in space and on the local orientation
of the interface. This means that the Stefan problem with a generalized Gibbs—Thomson law
has to be considered (see for instance [Gur88, Gur93] for a thermodynamic derivation). The
temperature at the interface is then related to a spatially inhomogeneous and anisotropic mean
curvature.

Heat conduction in materials often takes place on a much faster time scale than the evolution
of the interface. Therefore, a quasi-static version of the Stefan problem, the so-called degenerate
Stefan problem, is often used to describe melting and solidification processes.

To formulate the Stefan problem with Gibbs—Thomson law, let (0,7") be a given time interval,
Q C R™ be a bounded domain with Lipschitz boundary and Qp := (0,7") x Q. The phase field
variables are the temperature

u:Qpr — R
and a phase function

X :Qr — R,
where the liquid phase is represented by the set {(¢,2) € Qp : x(¢,2) = 1} and the solid phase
by the set {(¢,x) € Qp : x(¢t,z) = 0}.

The (non-degenerate) Stefan problem with isotropic Gibbs—Thomson law is formally de-
scribed by

6t(u—|—x)—Au:f in Qp,
u=H on T, (1.2)



where f: Qr — R is a given heat source, H : I' — R is the mean curvature and I' denotes the
phase boundary.
The degenerate Stefan problem models an infinite fast heat flow in the material, i.e. (1.1) is
replaced by
Oox —Lu=f in Qp. (1.3)

For a general theory of the Stefan problem, we refer to [Vis98, Mei92, Gup03|. Global existence
results for the non-degenerate Stefan problem with isotropic Gibbs—Thomson law in a weak
(generalized) BV -formulation are shown in [Luc90, Luc91, R6g04] and with anisotropic Gibbs—
Thomson law in [GS11]. For the degenerate Stefan problem, existence of classical solutions
locally in time has been proven by Chen, Hong and Yi [CHY96] and by Escher and Simon-
ett [ES97a], [ES97b]. An existence result for global solutions of the degenerate problem can be
found in [Che96], where the limit of a modified Cahn-Hilliard model is considered. However, the
isotropic Gibbs—Thomson law is only fulfilled in a rather weak and complex formulation. Using
the theory of varifolds, Roger [R6g05] established long-time existence of solutions of the degen-
erate Stefan problem with isotropic Gibbs—Thomson law in a weak generalized BV -formulation.
In contrast to the classical Stefan problem, global weak solutions of the Stefan problem with
Gibbs-Thomson law have sharp interfaces but are highly non-unique as discussed in [Luc90].
Uniqueness of classical solutions for the degenerate and non-degenerate Stefan problem with
Gibbs-Thomson law is established in [EPS03], [CHY96] and [Kne07]. In addition, it is shown
in [EPS03] that the free boundary is an analytic function in space and time.

The BV -formulation of the degenerate and non-degenerate Stefan problem with isotropic
Gibbs—Thomson law was introduced by Luckhaus and considered for the non-degenerate problem
in [Luc90, Luc9l] and for the degenerate problem in [LS95] (see also [GS98] for a multiphase
version): The temperature and the phase function

w€ up+ L*(0,T; Hy()), up € H(0,T;H(Q)), and  x € L®(0,T; BV(€;{0,1}))

satisfy for the non-degenerate problem

/ (u+ x)0:& + / VuVE — fé (1.4)
Qp Qp Qr

for all £ € C°(]0,T') x ),
for the degenerate problem

/ X&gﬁ—i—/ VuVeg — fé (1.5)
QT QT QT

for all £ € C2°(]0,T) x Q)

and for both problems

/ /( \Vx\ vg!giﬁ “EIx |>‘V |dt =0 (1.6)

for all £ € C°(Qr; R™).

In this BV -setting, global solutions for the non-degenerate case are obtained in [Luc90, Luc91] by

an implicit time discretization method. The time-discrete approximations x” and u" converge



to weak solutions of (1.1) and (1.2). In particular, the exclusion of loss of surface area in the
limit, i.e.

pim [ 1931 = / Y, (L.7)
—0 Qp

arises in a natural way from the dlscrete minimum problem.

For the degenerate system, i.e. (1.3) and (1.2), property (1.7) is in general not satisfied.
However, assuming (1.7), existence of global solutions can be shown in the BV-setting (see
[LS95]). Conditions of the form as in (1.7) are typical for such kind of geometric problems
and have been applied to several other geometric problems (see [ATW93, LS95, GS98, BGS98,
Ott98]).

In this paper we study the degenerate and non-degenerate Stefan problem with spatially in-
homogeneous and anisotropic Gibbs—Thomson law. This generalized Gibbs—Thomson law results
from an inhomogeneous and anisotropic surface energy, i.e.

/ o(z,v)dH" !,
r

where v is the outer unit normal of the liquid phase, H"~1) is the (n — 1)-dimensional Hausdorff
measure and o is an anisotropy function satisfying assumption A 2.1 (see Section 2.1). The
corresponding generalized Gibbs—Thomson law at the phase boundary reads as

u=H, on T (1.8)

with
H, =Vrop(z,v)+o04(z,v)v

where Vr denotes the tangential gradient of I' and o s is the first partial derivative of o with
respect to the variable s.

The aim of this work is to show existence of weak solutions for the Stefan problem with
spatially inhomogeneous and anisotropic Gibbs—Thomson law and existence of weak solutions
for the corresponding degenerate problem assuming a condition similar to (1.7). The results of
[Luc90, Luc9l, LS95, GS11] are generalized.

Our main results are under suitable assumptions as follows.

Theorem 1.1

Let 2 C R™ be a bounded domain with Lipschitz boundary, o be an anisotropy function satisfying
assumption A 2.1 (see Section 2.1) and f € L*(Qr). Furthermore, let up € H'(0,T; H'(2))
and the initial data ug € H*(Q2) N L>=(Q) and xo € BV(Q;{0,1}) be given. Then, there exist
functions x € L>(0,T; BV (€;{0,1})) and u € (up + L*(0,T; Hj(Q2))) N L>=(0,T; L*(Q)) that

are solutions of

/ (u+ x)0E +/ VuVE — fé (1.9)
Qo Qr

Qrp
for all £ € CL([0,T) x Q),

and

/ / DTE(t ) + 0l wlt, ) E(E ) — w(t, ) - VE(L ) 0 (vt )

—u(t, )€ ) - vl -)) IVx(t,-)dt =0 (1.10)



for all € € CH(Qr; R") with v = — X,

If, in addition, Q is a bounded domain with C'-~boundary then (1.10) even holds for all £ €
CH(Qr; R™) with & - vg = 0 on 052, where vq is the outer unit normal of 0.

The above existence result for the non-degenerate system is based on an implicit time discretiza-
tion method. In this case, we obtain for the time discrete approximations x”, h > 0, the following
generalized property of (1.7):

lim o(z,v")|Vx"| = / o(z,v)|Vxl, V= —LX:. (1.11)
h—0 Qr Qr |VX ‘

Under this condition, we are also able to show existence of weak solutions for the degenerate
problem.

Theorem 1.2

Let Q C R” be a bounded domain with Lipschitz boundary, o be an anisotropy function satisfying
assumption A 2.1, see Section 2.1, and f € L*(Qr). Furthermore, let up € WHL(0,T; H*(9))
and the initial datum xo € BV (Q;{0,1}) be given. If condition (1.11) (see Section 4 for the
definition of x") is satisfied then there exist functions xy € L>(0,T;BV(2;{0,1})) and u €
up + L*(0,T; HL(Y)) that are solutions of

/Q RUS /Q X(0)€(0) = /Q v~ [ g (1.12)

Qr

for all £ € CL([0,T) x Q),

and

T
L (oGt T et + ottt - €0 = v(t) - V() 7o)
—ult, ) €(t,) (L) ) [Vt )| dt =0 (1.10)

for all € € C(Qr, R") with v = — .

If, in addition, Q is a bounded domain with C'~boundary then (1.10) even holds for all ¢ €
CH(Qr,R™) with & - vg = 0 on OS2, where vq is the outer unit normal of 0.

A major task of the proof of the existence results for both problems has been to assure con-
vergence of the approximate terms, which arise from the spatially inhomogeneous character of
the interfacial energy. To handle this convergence problem, we work with slicing and indicator
measures and methods of geometric measure theory. We choose the notion of a generalized total
variation for BV -functions. Our results are based on weak convergence theorems for homoge-
neous functions of measures, on geometric properties for anisotropic surface energies and on
approaches of [GK09].

The paper is organized as follows: In Sections 2.1-2.2, we introduce some notation and the
assumptions. Then, we state some properties for anisotropy functions and slicing and indicator



measures, see Sections 2.3-2.4. In Section 3, we establish a suitable weak formulation of the
Stefan problem with spatially inhomogeneous and anisotropic Gibbs—Thomson law in a gener-
alized BV -setting. Section 4 is devoted to time-incremental minimization problems for energy
functionals with spatially inhomogeneous and anisotropic interfacial energy. We construct time
discretized solutions for (1.9), (1.10) and (1.12), (1.10) , respectively. Arguments similarly to
[Luc90, Luc9l, LS95, GS11] are only sketched. Finally, we pass to the limit in the time discretized
problems, cf. Sections 5.1-5.3, and prove Theorems 1.1 and 1.2 in Section 5.4.

2 Preliminaries

If not otherwise mentioned, we assume that 2 C R™ is a bounded domain with Lipschitz—
boundary. The first and second partial derivatives of a function with respect to the variables s
and p are abbreviated by f s and f .

We begin with stating the hypotheses for the anisotropy function o.

2.1 Anisotropy function

Assumption A 2.1
The anisotropy function o : Q0 x R™ — [0, +00) satisfies the following properties:

(i) 0 € C(AxR"),
T2,0p € C(Q x R™\{0}),
o pp € C(Q x R™M\{0}).

(ii) o is 1-homogeneous in the second variable, i.e. o(x,\p) = \o(x,p) for all p € R™ and any
A>0.

(iii) There exist constants A1 > 0 and Az > 0 such that

Mlp| < o(x,p) < X\ap| for allx € Q and all p € R".

(iv) o is convex as a 1-homogeneous function in the following sense: There exists a constant
do > 0 such that

(%) 4 - 4 > dolq|?
for all x € Q and all p,q € R" withp-q =0, |p| = 1.

Note that o is not differentiable at 0 € R". However, if we set 00, =0 and go, =0at 0 € R"
for g € C1(Q) with g = 0 in some neighborhood of 0, then the expressions oo, and go, are
well defined and continuous at 0.

2.2 Generalized total variation

To handle the spatially inhomogeneous and anisotropic Gibbs—Thomson law, we use the notion
of the generalized total variation of BV -functions introduced in [AB94].

Let 0 : Q x R"™ — [0,+00) be a continuous anisotropy function fulfilling (ii) and (iii) of
assumption A 2.1. Then the dual function o* : Q x R" — [0,+400) is given by

o*(x,q) = sup {q p:p€eR" o(x,p) < 1} = sup {0?3:];) ip € Rn\{O}} (2.1)



For any f € BV (Q) the generalized total variation of f (with respect to o) in € is defined by

/|Vf|g:sup{/fdivndm:nEKg(Q)},
Q Q

where K5(Q) = {n € CLQ,R") : o*(x,n(x)) < 1for a.e. z € Q}. The generalized total
variation can be represented by an integral formula in terms of the measure |V f]|, cf. [AB94,
AB95]:

[ 1¥sla= [ ot V11 2:2)
Q Q
where vy(z) = —%(x) for |V fl-a.e. z € Q.

We remark, [ |V f|s is L'(€2)-lower semicontinuous on BV (£2).

2.3 Properties of anisotropy functions

In the sequel, we take advantage from the following properties for anisotropy functions, cf. [BP96],
[Dzi99] and [Gig06]:

Lemma 2.2

Let o be an anisotropy function satisfying assumption A 2.1. Then, there exist constants C7 > 0
and Cy > 0 such that for all x € , v1,vo € S* ! and all p,p1,pa € R™\{0} the following
properties are fulfilled:

(i)

o p(z,p)-p=0(x,p), o"y(x,p)-p =0 (z,p), (2.3)

(i)
o(z,v1) — o p(w,10) - 11 > Cilvr — 1a|?, (2.4)

(ii)
o p(x,v1) — 0 p(z,1r)| < Colvy — s, (2.5)

(iv)
o p(x,A\p) =0 p(x,p) for A >0, (2.6)

(v)
U(m,afp(:v,pl)) =0"(z,0,p(z,p2)) = 1. (2.7)

(vi)
o(x,p) a:"p(:n, s,ayp(x,p)) =p, o (z,p) pr(:c, s,afp(:v,p)) =p. (2.8)

Anisotropy can be visualized by the Wulff shape W that varies in our situation with z € :
Wi(x)={qeR":0"(z,q) <1}.
The Wulff shape W is convex and its boundary can be expressed as follows:

oW (z) = {o p(z, D) : € S}, x € Q.



The outer unit normal at the point o ,(z,7) on 0W (zx) is 7. For more details on this topic, we
refer to [Gur93| and [Gig06].

The following lemma is an essential tool for constructing suitable approximations of the
Cahn-Hoffman vector o ,, cf. [GK09]. This auxiliary result is utilized to prove convergence of
the time discretized solutions.

Lemma 2.3 (cf. [GKO09])
Let o be an anisotropy function satisfying assumption A 2.1. Then, there exists a constant
C > 0 such that

Clo p(z,v) —pf* <olz,v) —p-v

for all z € Q, v € S* ! and all p € R"\{0} with o*(x,p) < 1.

2.4 Slicing and indicator measures

We outline some properties on slicing and indicator measures, which are required in the limit
process of the discrete spatially inhomogeneous and anisotropic Gibbs—Thomson law. For details
we refer to [AFP00], [Eva90], [Fon91] and [Fon92].
Let © be a finite, nonnegative Radon measure on 2 x R™. The canonical projection onto €2
is denoted by 7, i.e.
m(E) :=6O(E xR")

for each Borel set £ C .

Proposition 2.4 (cf. [AFP00])
For m—a.e. point x € €, there exists a Radon probability measure A\, on R™ such that

(i) the mapping x — [p. f(x,y) dX:(y) is m measurable,

(ii) Joumn f(@,9)dO(z,y) = [o ( [gn f(z,y)dX2(y)) dr(x)  (Fubini’s decomposition)
for every continuous and bounded function f: ) x R" — R.

Let i be an R"valued measure on ) with polar decomposition di = o dp. Then, the indicator
measure of i is the finite, non-negative Radon measure © on Q x S"~! defined by

©. f) = /Q £ (2, a(2)) du(x)

for every continuous and bounded function f : Q@ x R® — R. If F C Q is a set with finite
perimeter, i.e.

per(E) = / IVxE| < oo, XE : characteristic function of F,
Q
then the indicator measure of Vyg has the form
O,f) = / f(z,—vp(x)) dH" N(z), vp : unit outer normal of F,
o*E

where 0*F is the reduced boundary of E, cf. [Giu84, AFP00].



Proposition 2.5 (cf. [AFP00], [Fon92])

Let { i }ren be a sequence of R™—valued measures on §) with polar decompositions djix = o, djuy
and suppose that i, — i weakly* with fi = ap. Then, there exists a subsequence {k;}jcn and
a non-negative Radon measure O, = Too @ AL on  x S"~1 \° being probability measures,
such that

(i) O, = pg; ® 5akj (z) = Ooo = Too ® AT” weakly™ , 9y Dirac mass,
(i) pig; — Too Weakly™ ,
(ifi) oo > pi.

Moreover, for every f € C.(2 x R™)

lim f(xv Ak, (1‘))de] = /;2 g1 f(xa y)dGOO(xa y)

o = [( [ 1@nocm )i

3 Weak and strong formulations

In this section, we show that equation (1.10) is in fact a weak formulation of the spatially
inhomogeneous and anisotropic Gibbs—Thomson law (see (1.8)). This weak generalized BV-
formulation also includes a boundary condition for the interface with the outer boundary.

Theorem 3.1
Let Q be a bounded domain with C'~boundary, I' be a C?~hypersurface and let ' consists of
a finite number of C'—(n — 2)-dimensional surfaces. If (x,u) is a solution of (1.9) and (1.10) or
(1.12) and (1.10) then the following conditions are satisfied:
(i) Inhomogeneous and anisotropic Gibbs—Thomson law
oa(w,v(t)) v(t) + Vi) - op(z,v(t)) =ut) on I'(t) H"D-a.e. for ae. te (0,T),

where Vr denotes the tangential gradient of T'.

(ii) Force balance condition
op(z,v(t)) valt) =0 on OT'(t) N9Q HM2-ae. for ae tec (0,T),

where vq is the outer unit normal of 0S2.

Proof:

We consider equation (1.10) and take test functions of the structure & = nv on I', where 7 is an
arbitrary function of C}(Q7;R). For the first and third summand of the area part of equation
(1.10), we derive

T T
/ / U(t) - VE(t) 0. (2, w(t)) dHP\(8) dt = / / Vn(t) - o p (s v(t)) dH (1) dt
0 Jr@) 0 JI'(t)



and
/ ' / o (2, v () V-£() dH™ L (¢) dt
o Jre

T

_ /0 /F VO~ (T0)00) 00 V00 0y, v(0) )
T

_/ / (Vn(t) = Veayn(t)) - op(a,v(t) dH" () dt
o Jrw

/ / op(z,v(t) - v(t)) dH" 1 (t) dt,
I(t)

where £ (t) = V) -v(t) is the mean curvature. Applying the divergence theorem on manifolds
yields

T T
cop(x,v n—l o (x, v n—1
/O F(t)vmm(t) P, v () dH 7 (t) dt + /0 /F (t)n(t) Vi o p(a, v(t) dH" 1 (t) dt
T
= [ [, Trotaseso) oo
/ / op(z,v(t) - v(t)) dH"1(t) dt.

We infer

/ / D) V(1) — v{1) - VEW) (. 0(0) ) b (1) de

T
= / / n(t) Vi op(z,v(t)) dH"il(t) dt.
0o Jre

Since n € C}(Q2r) was arbitrary, we end up with

O (ZE, V(t)) -v(t) + Vp(t)-a,p(m, v(t)) = u(t)

on I'(t) H" t-a.e. for a.e. t € (0, 7).

To (ii): We choose arbitrary functions & € C1(Qr;R™) with £(¢) - vq(t) = 0 on S for a.e. t €
(0,7) and an orthonormal basis 71(t) = (t), m2(t), ..., Tn—1(t) of the tangent space T'I'(¢),
where 7p(t) is the outer unit normal of OI'(¢). Then, using the Einstein sum convention, we may
express § in the form § = n,v + 1., 7;. Applying the divergence theorem on manifolds leads to

T
/ / o, v(£)V- (s, ()7 (1)) AHO 1 (8) dit
o Jr

T
:/ / o (m,v(t)) (1) dH" (1)
o Jar@

T
_/ / VF(t)O'(ﬁ,l/ )) 777_]() ()dH'n 1()dt
0 I'(t)

T
. v n—1 )
+ /0 /F(t) U(l’, I/(t))nﬂ'j (t)l/(t)vf;—] (t) (t) dH (t)dt



Since (V(T]TjTj))TV = —(Vv)T (nr,75), we have

/ / V (1, (8)75(1)) 0 p (, (1)) AR () it
/ / (12, (75(8)) - VD)o () A1 (1)

Thus, we get for (1.10) the following representation

/ / (t) + ooz, v(t)) - £(F)

—v(t) VER) o p(z,v dH"l )dt — // t)dH" 1 (t) dt

T
- (—nu(t) plav(®) - (t) + o (@, v(1)) nfr<t>) aH" 2 (1) dt
0 6F(t

; nu )V p(a,v(t)) dH" () dt

/0

/ ' o— )0, (£ (&) VT (8w (t) dH" 1 (t) dt

T
+/ am () dH™ () dt—/ / YAH™H(t) dt = 0.
0
Since

T
/ / (/1)) e (1) — 1 (8) 0 (1)) - 70(0)) A2 (1)l
ar(t)

S

ﬂ\ﬂ\ﬁ\ﬂ\

v(t)) = Vu(t)op(z,v(1))) - (nr, ()75(t)) dH™ (1)

+
[en]

/ / (0. v0) - v(0) 70(0) — v(0) (D)) - (1)) ) A2t
or(t
we obtain by choosmg suitable variations in the neighborhood of points of oI

(o p(, v (1) - v(t)r(t) — (0p(, v (1) - 10 (8)) v (t) = I(t) valt)
with
1(t) = [(op(x,v(t)) - v())7r0(t) — (0 p(z,v(1)) - 70 (1)) v(1)]
on I'(t) H" '-a.e. for a.e. t € (0,T). It follows
lvg-m =o0p(z,v) - v, lvg -v=—0y,(x,v)-m, vo-1;=0 forje{2,..., n—1}
on I'(t) H" '-a.e. for a.e. t € (0,7). This shows
op(x,v)-vo = (op(z,v) v)v-va)+ (0p(z,v) - 75) (7 - va)
= (= (op(z,v) V)(op(x,v) - 1) + (0p(x,v) - 1) (0 p(x,v) - ) /I
0

10



on I'(t) H" '-a.e. for a.e. t € (0, 7). [ |

We remark that the dependence of ¢ on z has no influence on the boundary condition at
intersections of the interface with the outer boundary.

4 The discretization

The proofs of the existence theorems are based on minimization problems, cf. [LS95, Luc91,
GS11]. For the degenerate problem, we choose an energy functional, which is similar to [LS95].
However, for the non-degenerate problem we introduce an energy functional, which differs from
[Luc9l, GS11].

Let (0,7) be the time interval of interest with discretization fineness h = &, M € N. For f
and up in Theorems 1.1 and 1.2, respectively, we choose discretizations f* and u}b such that f"

and uf, are constant on the intervals ((k — 1)h,kh],k = 1,--- , M, and f* — f in L}(Q7) and

uly — up in L2(0,T; H(Q)) as h — 0. We also may assume that the boundary values of up

are extended in 2 such that Aup(t) =0 for a.e. t € (0,7).
Now, we construct iteratively time discrete solutions x”* and u” for time steps A > 0. To this
end, we consider the following two minimization problems in each time step:

Degenerate Stefan problem
Minimize F}' : BV(9;{0,1}) — R,

h
00 = [1da+ 5 [ Fo50 = uy(e) — [ xubo), (1.1
Q 2 Jo 0
where v € H() is the weak solution of

X=Xt —h) = h(Dv+ fA@), v =uly(®)on. (4.2)

Note that (4.2) is the implicit time discretization of (1.3) for x = x"(¢) and v = u”(t).
Non-degenerate Stefan problem

Minimize &} : BV (;{0,1}) — R,

h 1
&0 = [ IVdat [ VeV —upe)+; [ [erodbo, @)
Q 2 Ja 2 Jo Q
where v € H(€) is the weak solution of
vt x = X"t —h) —ul(t—h) =h(Av+ (1), v =up(t)en (4.4)
Note that (4.4) is the implicit time discretization of (1.1) for x = x"(t) and v = u"(t).

Lemma 4.1
There exists a minimizer X" € BV (Q;{0,1}) of F}.

11



Proof:
Let {xx}ren, Xk € BV(€;{0,1}), be a minimizing sequence and {vj }xen be the corresponding
sequence of weak solutions of (4.2). In view of Au®) =0, we estimate

Fiow = [ [Vale+5 [ 19— ab@F = [ b0

The uniform boundedness of {xx}xeny in L*(€2;{0,1}) and the BV (Q)-compactness imply that
there exists a subsequence (still denoted by {xx}ren) such that

Xk — X in L*(Q) and x € BV (9;{0,1}).
In addition, by the uniform boundedness of {vi}xeny in H(2) and by (4.2) we derive
v — 0 in HYQ),

where 0 is the weak solution of (4.2) for x = x. From this property and the lower semi-continuity
of [, |Vxk|s, we conclude that ¥ is a minimizer of F}'. [ |

Lemma 4.2
There exists a minimizer x" € BV (2;{0,1}) of &}

Proof:
Let {xk}ren, xx € BV (€Q;{0,1}), be a minimizing sequence and {vy}ren be the corresponding
sequence of weak solutions of (4.4). Due to Au”t, = 0, we have

fmxk)z/Q\vXkra /m—uD DI+ /k /rvkm o).

Since { Xk} {reny is uniformly bounded in L?(2;{0,1}) and in BV (Q), there exists a subsequence
(still denoted by {xx }ren) with

Xk — X in L*(Q) and  x € BV(Q;{0,1}).

Moreover, the uniform boundedness of {v }xen in H'(£2) implies that there exists a subsequence
(still denoted by {xx }ren) with
vy =0 in HYQ).

Since
/Q(Xk: —xi) (g —vy) = _/Q(Uk —)? - h/Q IV (vg —v)]* — 0, as k,l — oo,

we conclude

v — O in HY(Q),

where 0 is a weak solution of (4.4) for x = x. This property and the lower semi-continuity of
Jo IVx|o assures that ¥ is a minimizer of &', [

From the minimization procedure, we obtain iteratively x” and u" (u” is the weak solution of

12



(4.2) and (4.4), respectively, for x = x") at the time steps ¢t = kh, k = 0,..., M. We extend
X" and v by x"(t) = x"(kh) and u”(t) = u"(kh) for t € ((k — 1)h,kh], k = 1,..., M, and
abbreviate 8; "g(t) := Mh(t% for a function g.

Next, we establish weak formulations of the Euler-Lagrange equations for F;* and &£, which
are connected to (1.8) and (1.10), respectively. To determine the first variation of the spa-
tially inhomogeneous and anisotropic interfacial energy, we fall back on the following variational
property, cf. [GK09]:

Lemma 4.3
Let @ : [—70,70] X G — G be a family of diffeomorphisms of G onto itself with G = Q or G = ().
If g € BV(;{0,1}) then

= [ va@ ),

=0

_ /Q <a(q>(7,x), U(r, )y (2)) tr(W) + 0 (®(7,2), U (T, )y (2)) - %@(7, 2)
+op(0(n ) V(@) 1 (@uln0) Tn@)| Voo,
7=0
where tr denotes the trace, ¥(7, z) = |det ® (7, 2)|(® (7, x))_T and vy = —‘g—g‘ for |Vg|-a.e. x €

Q.

Note that if M is an n x n—matrix then Id + nM, n € R, is invertible for |n| sufficiently small.
In addition,

det(Id + nM) = 1+ nte(M) + %nQ ((tx21)? — (382 + OGP,

and
(Id +nM)™t = Id —nM +n*M?* + O(n?).

Theorem 4.4

Let 2 be a domain with Lipschitz—boundary. Further, let assumption A 2.1 be satisfied. If
X"(t) € BV(9;{0,1}) is a minimizer of F' or &' and v = u”(t) is the corresponding weak
solution of (4.2) and (4.4), respectively, then

/Q (V"6 T - €C) + 0 (-7 (1)) - 66) = V() - VEC) 0 (5" (2,) ) IVX" (2, )
= [ €0 VR =0 @)

for all € € CH(Q;R™), where v'(t) = _lgi,fggl'

If, in addition, Q is a bounded domain with C'~boundary then (4.5) even holds for all £ €
C>(Q;R"™) with & - vg = 0 on 052, where vq is the outer unit normal of 0.

13



Proof:
Let ¢ € CH(£;R™) and consider
O(x;7)=x+7&) (4.6)

for x € Q and 7 € R. Then, ®(-;7) is a diffecomorphism of Q onto itself if |7| is sufficiently small.
Via the above diffeomorphism, we define

X?(t, x) = " (t, <I>_1($ : T))

Furthermore,
Vxp(t,z)

h [
R T T

We denote the weak solution of (4.2) and (4.4) for x = x*(t) by u(t). Since x"(t) = x"(t)|-=o
is a minimizer of 7 and &, respectively, we obtain
d

_ % hyh
and 0= M)

, respectively.
7=0

0= —F(x7 (1))

Next, we compute the above derivatives. Here, we take advantage from the following properties
of &:

i) |det P, (x;0)| =

(iil) L (@ (as7)”"

Lemma 4.3 gives

4T Y
i Jo (o) T )

_ /Q (o2 )€ + 0w (D) - €~ 14(1) - Ve, (2.0"(1) ) VX (1)

7=0

We abbreviate w?(t) = ul(t) — ul(t), wh(t) = u(t) — ul(t) and utilize Aul(t) = 0.
Hence, the remaining parts of FJ* at xy = x” can be rewritten as

5 [ Ve OVEhO - b)) - [ (e

/VwU!‘/MUh@

h

=5 [ 90 =o' ©)F +h [ V(o) -t @) Ve o + 5 [ [vehoF - [ doubo
_n w — W 2 hipy — ) h w" B (Pl
=5 [ 9o - o' @) - [ (ko =t + 5 [ Ve OF = [ xhedbe
_h W) — wh 2 (Pl (P h w"
=5 [ 9@ho - @) - [ oo+ [ oo +g [ [vetnr (4.7)
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Next, we compute the 7-derivative of the first term in (4.7).
In the following, we denote by C' > 0 some constant, which may differ from estimate to estimate.
Note that

bttt - )
h “(z7)) = XMt 2 wi(t, z) —wh(t,z
:_/Q(x (t,® <ﬁ>) Xt >)( (t >ﬁ (t >)dz
M, @712 7)) — XP(t, 2)\2 wy(t,2) — wh(t, 2)\?2
gCa/Q(X(t’q) (ﬁ)) Vit )) +5/Q< (t )ﬁ (t ))dz

for any 6 > 0 and some Cs5 > 0. In consequence, by Poincaré’s inequality

i/ﬁ [V (wh(t,2) — w2, 2) dz < 0/ & T)) Xt "’))de (4.8)

7_

for some constant C' > 0.
Now, we show that the term on the right-hand side of (4.8) is uniformly bounded as 7 — 0.
Denoting Qo(t) = {z € Q: x"(t,x) =0} and Q1 (t) = {x € Q: x"(t,z) = 1} we estimate

| (a7 ) = e 0) e
— [ e e - s / Nt @7 (5 7) = X (8 2) a2
Qo (t) Qi (t
< |27 (0t )\ (1) + \cb-l(szl(t)n)\szl(t)\

<2 [ [V (19 max [0 (a7 - @71 (350)
Q z€Q

<2 [ [V"(t,2) max o - (si7)|

z€Q
<2 [ V3"t 2) |7 max ¢(2)
Q 2€Q
<Cr
for some constant C' > 0 (independent of ¢). Hence,

71'/9 ‘V(wf(t,z) — wh(t, z))rdz < C.

Furthermore, for any g € (2,2*] with 2* = % if n >3 or any q € (2,00) if n = 2, we obtain

ﬁ wh z —wh z 2 ¥4
o RGO >)» d

X" (t, @ )) X (t, 2) | wh(t, 2) — 2) d
</ v = ﬁ :
< X ta o ( 2 )) - X (tvz) wT t? Z) — ’wh(t, Z)
= H ﬁ ’Lq%l(ﬂ)” VT La(Q)
|T’ - ( wh(t, z) — wh(t,z)>
f VT L2(Q)
— 0 for 7 — 0.
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In consequence,

(Z_h/ﬂ‘V(wf(t,z)—wh(t 2)

In addition,

o) e

d

i [ Xt 0

— / N (¢, 2)ul (£, 2) V€ (x)da + / X't 2) V' (t, 2)-&(x) do
o Jo Q (4.9)
B /Quh@ £(@) " ()] VX" (D).

This shows the claim for FJ* since the remaining terms of (4.7) do not depend on 7.

To verify the claim for £, we observe

1 2
5 [ v —uD<>>+§ [ ) = [ e+ o
. / Vul ()P + / Wb = 5 [ wh®) ~ [ Xy
-5 [ 9 OF +h [ 9wkt~ 0) Va0 + 5 [ (Ve OF + 5 [ whe)?

=5 [ 19Gho - @) = [ (o)~ u"@)ut0) - [ (66—t
5 [@hOr =3 [why 3 [ 1vahoF - [ doubo
_h W — w2+ 2 [ w8 — w02+ 2 w2 — B (pyuh
=5 [ o -t )P + 3 [ who) —w' o) +3 [ whe? - [ s
1 h
+ [ xroetn =5 [(whe2+g [ [wutor @)
Since
h —wh z 2 z wh z —wh z 2 z
b [ 19 2) — wh e ) e+ [ (e 2) -l (e 2)d
= —/Q (Xh(tji’_l(z;T)) — xh(t,z))(wﬁ(t,z) - wh(t, z))dz

we may use the same argumentation as before to derive

{0 o(eren-sto)f e (- orco)c

Due to (4.9), the assertion also follows for £ since the remaining terms of (4.10) do not depend
on 7.

=0
7=0
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If Q is a bounded domain with C'-boundary, we may choose a family of diffeomorphisms
®(7,-), T € [—70, 70, of  onto itself given by the initial value problem

¢(0,z) ==z and O (1,2) = &{(P(T, 7)), r € Q,
with &€ € CY(Q;R™) and € - vg = 0 on 9. Then, ® also fulfills the above properties (i)-(iii) and
|®(z;7) — ®(2;0)| < 7max, g [&(x)|. Thus,
/Q (o (V8T €C) + 0 (- V(1)) - €6) = V(8 ) - VEC) 0 (5112, ) VX (2, )
= [ €0 - V] =0

for all £ € C1(Q;R") with & - vg = 0 on 052, as required. |

5 Convergence to solutions

5.1 The degenerate case

We are going to establish compactness of the discrete solutions x”, h > 0, in L' () similarly
to [LS95].

Lemma 5.1 (Uniform bound)
There exists a constant C > 0 (depending only on [, [Vx(0)lo, [[up|lwi1o.rm @) [1fllL2p))
such that

sssupicior) [ V0l + [V (OF <. (5.1)
Qr

Proof:
We first like to mention that for weak solutions @"(¢), h > 0, of —Av = f"(t) with v = u, ()|aq

it holds .
/ 1@ (8)2 0 dt < D
0

where Dy > 0 is some constant depending on ||up|ly1.10,1m1 () and [|f|[z2p)- In view of
Fr(x"M1)) < FMX"(t — h)), we obtain

/ X () / V()7 (u () — b (1))
9]

/ VX By + / Fr(E) () — ub (1)) + /Q () — Xt — Byl (1),

By Young’s and Poincaré’s inequality, we estimate

L9 @l 41Dy [ (96 OF < [ 193 = 1)+ BDalL £ 0 gy + B3 b (O

FHE O+ [ (0 -3 =m0 62)
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with some constants Dy, D3 > 0. Since

[ s [ oo

we obtain for k =1,2,...,4, j < M,
J
S (3" Ck) = 3" (0= D)) i)
k=1

Jh
. / / ol (X" (¢ — h) + / VEGR) b (jh) — / V(0 (h)
Q Q
/ /\a ()] + 21|l e 001 @))

< Dullupllwra(0,1:L1 (@)

where Dy > 0 is some constant.
Now we take inequality (5.2) iteratively for ¢ = kh, k € N, and sum over k = 1,2,...,7,
J < M, which leads to

Lo Gl 02 [ 19 OF < [ [90)l+ Dl

Qjn

+ Ds |[upllw1 0,701 () + Do
for some constants D5 > 0 and Dg > 0. Hence, the assertion is obvious. [ |

The following lemma is used to control time differences of X", see [LS95].

Lemma 5.2 ([LS95])
Let ¢ € BV(Q) with |[p|[@) < M for some constant M > 0. Then, there exist constants
C >0 and py >0 (dependmg only on Q and M ) such that for all p < py

_ C
[1et<o( [ 196l +cn109) + lielin-o
Q Q P

Lemma 5.3 (Compactness in L' (7))
(i) (Compactness in space)
The discrete solutions x", h > 0, are bounded in L*(0,T; BV (Q2)).

(ii) (Compactness in time, cf. [LS95])
The discrete solutions x", h > 0, fulfill

/ o / X4 T) — Xl < OV
0 Q

for some C' > 0.

In consequence,

Y=y in LY(Q7) (5.3)

for a subsequence as h — 0.
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Proof:

To (i): This property immediately follows from Lemma 5.1.

To (ii): Without loss of generality, we may assume 7 = kh and ¢t = [h. From (4.2) and Lemma
5.1, we infer

N0 = Olloy = s | [ () - xh(t))g‘
HgHHl(Q>:1 Q
t+71 o
/ / X 5 h)gds
ol " (5.4)
e ohl o) hfa '
S/ W (s) — X (s h)H N
t h H(9)

t+7 h 2 h 9 3 .
<7 </t <HU ()i +I1f (S)HL2(Q))> < CO73.

Choosing p = 7%/* in Lemma 5.2 shows (ii).
We infer from (i) and (ii) that {x"} is relatively compact in L'(Q7) (cf. [Sim78, Sim87]), i.e
there exists a subsequence {x"*}eny such that

(SIS

Y=y in LY(Q7).

5.2 The non-degenerate case

To pass to the continuous problem, we first establish a priori estimates for v and y".

Lemma 5.4 (Uniform bound)
There exists a constant C' > 0 (depending only on [ [u(0)|?, [o, |Vx(0)ls, llupla 0,785 ()
11l z2(0p)) such that

ess s 0 ( JRCRT IVxh(t)l)> - iR <c (5.5)

and

T
/0 107 (u (8) + X 0) B2y < C- (5.6)

Proof:
Equation (4.4) yields

’;/Q}v(v_ug(m\?:_;/Q(U+X—uh<t_h)_Xha_h))(u_ug(t))

+5 [ O —ub).  67)
Q
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Utilizing (5.7), & can be rewritten in the following form:

/ Vo + 2 / )+ X )+ PR (0 — s (8)
—;/Q(v—i—x v —ul(t /U—/U+XUD
= [ VN5 [ W= 1) = 1)+ 0) (0= )
~5 [ o =5 [ x(o+ub)
Note that
/ VX — By — 2 (@ () — Pt — ) (8 (1) — (1))
/ PO = () + 5 [ @0) = [ @0+ = m)ady(o)

= [ 19+ /Q (0 (¢ — ) + (D) (i (1) — ulp(1)
~ 5 L @@= m)ab(o -

where 4" (t) is the weak solution of

v —ul(t — h) :h(Av+fh(t)), v =u ()]0 (5.9)
Due to & (x"(t)) < EF(x"(t — h)) we conclude

Z(ER O () — £ - ) =

2 [ (9l = 19t - 1) -

e oo () — () (5.10)
+/Q(u (t—h) + nfhe) =0

- (u%) —i0) 0 e D)o <o

Multiplying (4.4) by (u"(t) — u’(t)) gives

ul(t) — ul(t — h) y ul(t) — (t —h)

up(t) +
/ﬂv ) —ulb ()P + /fh (t) —up(t)). (5.11)
In addition, testing (5.9) with (a"(t) — uf,(t)) yields

al(t) — u"(t — h) b (8)

—/Q|V(1lh —ul(t |2 /fh —th). (5.12)

al(t) —uh(t —h)
N at(t) -
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Adding (5.11) and (5.12) shows

= [196 0~ b ) = [ V(@0 — )P + [ 110000 - 20b(0) +30)
_ E((uh(t))z — P (t = Bl (t) + (" (1) — u(t — h)at(t)
= (1) = 2u(t = h) + 8 ()l () + B O M (uh (1) — (1))
> (1 0)” ~ (Wt ) =l (e~ ) (1) — ()

= (u(e) = 2"t = h) + @ (1)) uly () + RO () (u (1) — wh(D)) ).
Moreover, adding (5.10) and (5.13) leads to

2 (93¢0l — 19 (e~ —2/8 ()
’LLh 2 h(y
[ oo (e 1A - h))+/< (0= (w1
s—/ﬂ(!vwo BN + V(" (8) — +2/fht ) — ub(1)).

From (4.4), we deduce

18" (8) = u"(O)72(0) < IIX"() = X" (t = W)l L2 18" (1) — u" (D)]| 20
—hl|V(@"(t) = u" ()| 20
and therefore,
|6 () — u" ()] r2() < IX"(E) = X" (t = 1)|| 12(q)

Hence, we obtain

/Ifh ) —up ()] < 11O 22X (&) = X" (¢ = 1)l 20y

+ Csl[ /" ()] 22 + 0llu" (8) — up()][72(q)
for any § > 0 and some Cs > 0. Note that

t
10; "ulh (5)1? < [|Bupl 720, )-
0 Ja

By means of Poincaré’s and Young’s inequality, we finally establish

esssupte(O,T)(/ ((uh(t))2+\VXh(t)D) _|_/OT/Q’Vuh(t)‘2dxdt

Q
scl( | exo+ [ |u<o>|2+HuDH%p(O,T;Hm)ﬁ|f|r%z(QT>) en

where C1,Cy > 0 are some constants and (5.5) is established.
Due to (4.4), we obtain for n € H}(Q2) with HnHHl <1

1/2
—h
/Qat (u"(t) + x"(t))n < (/Q(Wuh(t)|2+|fh(t)|2)) .
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From (5.5), we infer
T
107 0+ X 0) vy < C
for some constant C3 > 0. [ |

Next we take advantage from an L'-bound for fractional time derivatives of x and u” (see
[Luc90, Luc91] ), which ensures compactness of x* and u” in L'(Qr).

Lemma 5.5 (Compactness in time, cf. [Luc90, Luc91])
Let 2 C R™ be a bounded domain with Lipschitz-boundary. Furthermore, let

up € H'(Qr), we L¥(0,T;L*)), u—up € L*(0,T,Hi(Q)),
x € L>(0,T7; BV (£:;{0,1}))

and
Oy(u+x) € L*(0,T; H ().

Then, there exists a constant C > 0 (depending on the above norms) such that

T—r
/ / IX(-+7) = x() + [ul- +7) —u(-)| SCT‘S"
0 Q

with 1/6, =13 — 2

Due to the a priori estimates and Lemma 5.5 we can select (weakly) convergent subsequences
as following.

Corollary 5.6
There exist

€ (up + L*(0,T; Hy(Q))) N L>(0,T; L*(Q)), up € H'(Qr),
and
x € L*®(0,T; BV (€;{0,1}))

such that

(i) u" = win L*(0,T; H'(Q)),

(ii) u" — win L'(0,T; L' (),

(iii) x" — x in L?(0,T; L*(9)),

(iv) u(t) — u(t) in L}(Q) for a.e. t € (0,T),

(v) x"(t) — x(t) in L*(Q) for a.e. t € (0,T),
for some subsequence as h — co.

In the following lemma, we show that for the non-degenerate problem loss of surface area is
excluded in the limit.

Lemma 5.7
The functions x"(t), h > 0, fulfill for a.e. t € (0,T):

/|Vxh U—»/VX ash — 0.
Q
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Proof:
Since x"(t) — x(t) in L?(Q) for a.e. t € (0,T), we immediately get

/ IVx(t)|o < liminf/ VX" (t)|s for a.e. t € (0,T)
Q h—0 Q

by the lower semicontinuity property of [, VX" ()]s
Now, we prove the opposite inequality. Since

M) < EM(x)

we derive
[ (9 @0+ 5 0)2 + 519 0) = ab0) = (a0 + X" ®) (1)) <
Q
| (190l + 5607 + FIV6E0 b O) = (0(0) + x(®)ub(0). (514

where 9" (t) is the weak solution of

vt —h) () = X"(t—h)
h + h

Note that from (4.4), we conclude

hip)— sh())? = — Ry G — 5 () — W) —
/Q (u(t) — 3" (1)) /Q (" () — x(®) (u () — (1)) — /Q 7 (1)

In consequence,

=Dv+ 1), v=up(t)loe

[ () = 0" ()] 20y < IIX"(8) = X(Dll2g@) =0 ash—0

for a.e. t € (0,7). We estimate

1 1, R
[ (0 = ub)eo - [ (500 - b)) o0
<y Ozl (0 = " Ollz + 5 [ (WO1+ ) W)~ "0 =0 as k0,

and

/Q (") — X(t))U’i‘p(t)‘ < IIX"() = xO)l 2@ [lup @)l r2) =0 ash—0

for a.e. t € (0,T) since u(t) — d"(t) — 0, x"(t) — x(t) and u’(t) — up(t) in L*(Q) for
a.e. t € (0,7). In addition,

/\v ) —up(t ]—h/W

/Q <(vh(t))2 = (@()? = (u"(t = h) + up (1)) (8"(t) — u" (1)) = hfM(B) (2" (1) — u"(2))

= (x(®) = X"(O))up () + x(t) 0" (8) = X" (8) u" (8) = X" (t = h) (8" (1) — uh(ﬂ)) '

— 0 as h—0
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for a.e. t € (0,7"). From (5.14), we conclude

/|VX |U>hmbup/]Vx

for a.e. t € (0,7). [

5.3 The spatially inhomogeneous and anisotropic Gibbs—Thomson law

Before we pass to the limit in the weak formulation of the discrete spatially inhomogeneous and
anisotropic Gibbs—Thomson law, we verify some approximation properties, cf. [GK09].

Lemma 5.8
Suppose

/U(-, ‘VX |—>/a(-,y(t, '))|Vx(t,-)|, h — 0, (5.15)
Q Q

for a.e. t € (0,T), where v" = —Vx"/|Vx"| and v = —~Vx/|Vx|.
Then, using the same notation as in Proposition 2.5:

() Jougn-10 (- )dOx(t,-,-) < [q 0 NIVx(t,-)| for a.e. t € (0,T).
(ii) There exists a sequence {g!}1en of functions g € C1(Q), t € (0,T), such that
o= oyt ) in LYV )
for a.e. t € (0,T).

(iii) A3°(t) = Oy—p(t,z) for [Vx(t)]-a.e. ¥ € Q and a.e. t € (0,T).

Proof:
To (i): Due to Proposition 2.5, we infer

/ o () dOn(t, ) < liminf/ o(-) O (£, ")
Qxsn—1 J=eo Jaxsn—1

:liminf/ga(-,uhj(t,-)) IVt (¢, )|

_ / o (- v(t, ) [V x(t, )]
Q

for a.e. t € (0,7).
To (ii): Smooth approximations g} for the Cahn-Hoffman vector o , can be constructed as
follows: Due to (2.2), there exists for every § > 0 and a.e. t € (0,7) approximative functions
g} € K, such that

/Q (0(ow(t, ) — g() - v(t, ) [V x(t, )] < 82,
Thus, by Lemma 2.3,
/ﬂ 090t )) — g3V [Vt )] < Cr 6
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for some constant C; > 0 and a.e. t € (0,7). This implies the existence of a sequence {g!}ien,
gt € CLQ;R™), with g} — o ,(-,v(t,-)) in LY(|Vx(t,-)|) for a.e. t € (0,T) since § > 0 may be
chosen arbitrarily small.

To (iii): Since x"(t) — x(t) in L(Q) for a.e. t € (0,T) and limsup, .o [ |Vx"(t)| is bounded
for a.e. t € (0,7, we obtain

V" (t) — Vx(t) weakly™

for a.e. t € (0,T). Hence, we can choose a set S C (0,7") of Lebesgue measure zero such that
X"(t) — x(t) in L(Q) and Vx"(t) — Vx(t) weakly* for t € (0,7)\S.
From Proposition 2.5, we conclude that there exist a sequence {h;};cn and a non-negative Radon
measure O (1) = Too(t) @ AP(t) on Q x S*~1 ¢ € (0,T)\S, such that

(a) On,(t) = VX" (t)| @6 n; o~ Ono(t) = Too(t) @ A°(t)  weakly™, dy Dirac mass,

(b) [VX" ()] = 7oo(t)  weakly”,

(€) Too(t) = [VX(1)],

(d)

lim [ F(z, vhi(t, z)) V" (t, z)|

Jj—oo Jo

/ F(,y)dOw(t,2,y)
Qxsn—1

/Q (/Sn1 F(%?/)dﬁo(t’y))dwo@(t,x)

for any F € C.(Q x R™) and all ¢t € (0,7)\S.

For any & € Q, we take r > 0 such that B(z,r) = {z € R" : ||z — Z|| < r} € Q and set

Fy(m,y;t) = @1(2)P2(y)|op(z,y) — gi(2) ],
where @1 € C.(Q) with0 < &) < 1in Q and &1 =1 in B(z,7) and 9 € C.(R") with ®2(y) =0

in {y € R" : ||ly|| < h} for some h > 0, Po(y) = 1 on S* ! and ¢g; € K,(Q). Consequently,
Fy(-,-5t) € Ce(£2 x R™). Proposition 2.5 assures (modulo a subsequence)

fa@( [ o0

0 o(z.) —gt<x>12dAz°<t,y>> Vx(t )|

< [o( [ oatloston - a@Paxs ) Janao,o)

= lim ; 1 () Do (V" (1, 2)) |0 p (2, V1 (8, 2)) — gu() 2|V (2, )]

j—o0

< lim axuhftm—thVhftaz
. 7p’ bl g X bl
j— Jo

(5.16)
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for every ¢t € (0,7)\S. Taking advantage from Lemma 2.3, we estimate

lim | Clop(e, 0" (t,2)) = gi(2)*[Vx" (t,2)|

j—oo Jo

< lim [ (o(z, vhi(t,x)) — gi(z) - vl (t,z)) VX" (t, z)|

j—o0 Jo
= [ (otavit.o) = @) - vit.2)) Tx(t.a)

< /Q |05 (2, v(t2)) = 9u(2)| [ Vx(t, )]
(5.17)

for every t € (0,7)\S, where C' > 0 is some constant. Hence, (ii) combined with (5.16) and
(5.17) shows

[ai@( [ oaten) - apfantta)Pa ) ) Do) =0

for t € (0,7)\S. In particular

Lo [ loaas-operita) sPOS.m) 9] =0
for t € (0,7)\S. This implies, according to Lemma 2.2 (ii),
/ lv(t,z) — y‘4d)\§°(t,y) =0 for |Vx(t)|-a.e. x € B(z,r) and t € (0,T)\S.
S§n—1

Hence we obtain that A\2° is a Dirac mass, i.e. A2°(t) = 0y—p (1), for [Vx(t)|-a.e. x € B(%,7)
and t € (0,7)\S and the claim follows as & € 2 was arbitrary. [

Lemma 5.9

Let Q) be a bounded domain with Lipschitz—boundary and suppose assumption A 2.1 is satisfied.
If x"(t) € BV(Q;{0,1}) is a minimizer of F' and condition (5.15) is satisfied, or if x"(t) €
BV(Q;{0,1}) is a minimizer of £}, then

lim [ (0 () V6t + 0 (5 (E0) €8 =0 (1) TE(E ) 0 (P (1)) TR (E)

h—0 Qr

= [ (owt )V (0 0 (8) 608 = v(t) - V() 7, (10 ) T
: (5.18)

for all £ € CH(Qp;R™), where v = —% and v = —%.
If, in addition, Q is a bounded domain with C'-boundary then (5.18) is satisfied for all £ €

CH(Qr; R™) with & - vg = 0 on 052, where vq is the outer unit normal of 0.
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Proof:
In view of Lemma 5.8 (i), we have

/ o(,4) dOus (1,2, ) < / o, v(t, 2) [V x(t, 2)|
Qx§n—1 Q

for a.e. t € (0,T). Since, by Lemma 5.8, A2°(t) = 0,y (11) for |Vx(t)|-a.c. € Q and a.e. t €
(0,7), we infer from Lemma 2.5

/Qa(x,z/(t,z))|vx(t,x)| :/Q </§n : o(x,y)d\;°(t,y >\VX (t, )|

:/Q (/Sn_l o(z,y) dAgO(t,y)) g(t, @) dreo(t, )
S/stn 1a(:L",y) dOu(t, z,y),

where g is the density of |V x| with respect to mo, and 0 < g(t,z) < 1 for m—a.e. x € Q and
a.e. t € (0,T). Consequently, as [y, o(z,y) dA;°(t,y) > 0 for mc-a.e. z € Q and a.e. t € (0,T),
we deduce

g=1 and |Vyx| =7y for me-ae z€Qandae. te(0,7).
Moreover, Oy, (t,Q x ") = ’Vth (t)!(Q) converges to |Vx()|(2) = O (t,Q x S~ 1) for a.e.
€ (0,7).

Next we utilize the property that lim; . Oy, (t,Q x S" 1) = O (¢, 2 x S*71) and Op, () —
O (t) weakly*, t € (0,7, implies

lim u(w,y) dOy, (t,x,y) = / u(z,y) O(t, z,y)
Qxsn—t

=00 JOxsn—1

for every continuous and bounded function v : Q x S*~! — R. We conclude

lim [ f(x,0M(t, x) ‘VX (t,z)| = lim f(z,y)dOn,(t,x,y)

i—e Jo J—00 Jaxsn-1

- / F(2,y) Ous(t, ) = / f (@ v(t,2)) | Vx(t, 2)|
QxSn—1 Q

for every continuous and bounded function f :  x S*~! — R and a.e. t € (0,7). Thus, we infer

tim [ oo (1,2))9 - €(0) VN (0)| = [ o (m(t,))V - €(t0)|Txt o)
—0Jo Q

hm U (ﬂj‘ v (t,l‘)) g(ta $)‘VXh(t793)| = /QO'J;(QL’,V(t, .’E)) f(t,$)|VX(t,fL‘)|
hm/ ) - VE(t x)ap(x v (t))\VXh(t,a:)] :/Q v(t,z) - VE(t,z)o, (a; v(t, a:))]VX(t x)|

for h — 0 and the claim is established by Lebesgue’s convergence theorem. [ |
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5.4 Proofs of Theorems 1.1 and 1.2

Now, we are well prepared to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2: From Lemma 5.1 and Lemma 5.4, respectively, we conclude
u ~u in L2(0,T; HY()) and " — x in L?(0,T; L*(Q)).
The weak compactness of L?(0,T; H}(€)), in turn, implies
u € up + L*(0,T; HY()).

To establish (1.12) and (1.9), respectively, we consider the time discretization of the diffusion
equations see (4.2) and ( 4), for x = x"(t) and v = u"(t). Discrete integration of the terms
Jo, O "¢ and Ja,. O " (u + x")€ by parts and passing to the limit A — 0 in (4.2) and (4.4)
shows (1 12) and (1. 9) respectlvely.

Now, we show equation (1.10). From equation (5.18) of Lemma 5.9, we derive the convergence
of the discrete curvature term to the corresponding expression in (1.10). In addition,

}ILIL% QO uh(t,.)g(t,.)'yh(t, )‘VX = }llli% div(uh(t")f(t")) Xh(t")
— [ aiv(u(t )€ ) (e = [ ot o )|Vl ).
Qrp Qr
Hence the assertion follows. [ |

5.5 Conclusion

The Stefan problem with Gibbs—Thomson law has many applications in material sciences,
i.e. describing melting and solidification processes in materials. It has been addressed math-
ematically by several authors. For a realistic modeling, such as solidification of alloys, it is
quite important to take surface tension effects into account, which are spatially inhomogeneous
and anisotropic. In this work, we have presented existence results for Stefan problems with
spatially inhomogeneous and anisotropic Gibbs-Thomson law. Previous results to this topic
(cf. [Luc90, Luc9l, LS95, GS11]) have been generalized. We like to mention that in contrast to
the isotropic case we cannot apply the Reshetnyak convergence theorem [AFP00] since we do not
directly obtain the property [, |VX"(t)] — [, |Vx(t)| as h — 0. To tackle both inhomogeneity
and anisotropy, we have used slicing and indicator measures and methods of geometric measure
theory.
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