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Abstract

The boundary function method for a singularly perturbed time dependent reaction-
diffusion problem with Neumann boundary conditions is modified by means of a small pa-
rameter (p) featuring in the layer functions, which allows the indication of their exponential
decay rates. These functions derived by first order perturbation theory are the ingredients
of upper and lower solutions providing existence of solution in the absence of a maximum
principle. This solution is also unique.

Outline

The singular perturbation approach is an analytical tool for systems in which
some states change faster than others, in that a full system can be divided into
two time-scale systems - reduced (slow) and layer (fast) models, for instance,
processes involving both electrical and mechanical phenomena, where electri-
cal phenomena evolve much faster than the mechanical ones. In electroanalyti-
cal chemistry, singularly perturbed problems model diffusion processes compli-
cated by chemical reactions. In physical chemistry or chemical engineering the
singular perturbation parameters multiplying the highest derivatives describe the
diffusion coefficients of substances, while reaction terms vary with temperature
or chemical concentration in a reactor and their sign denote exothermic or en-
dothermic reactions, respectively [5]. Discrepancies between magnitude orders
of different components of a phenomenon are described by small parameters
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within the mathematical model (singular perturbation parameters). They in-
duce extremely narrow regions in the solution, namely layers, which are difficult
to compute by standard methods. Based on perturbation theory, the boundary
function method of Vasil’eva [10] prescribes problems for functions depending
on rescaled variables which describe the layers.
We begin our analysis with the uniqueness of the solution. In Section 2 we
define the lower and upper solutions. An asymptotic analysis is performed in
Section 3 and perturbing the asymptotic expansion from [11], the upper and
lower solutions are set. The main result encompassed by Theorem 3.6 is the
existence of solution in a vicinity of the asymptotic expansion.

1 Uniqueness of solution and assumptions
For sufficiently smooth real functions u = u(x, t), φ(x) and f = f(x, t, u), con-
sider the non(semi)-linear initial-value problem with Neumann boundary con-
ditions

Fu ≡ ε2[ut − uxx] + f(x, t, u) = 0, (x, t) ∈ (0, 1)× (0, T ], (1)

u(x, 0) = φ(x), x ∈ [0, 1], (2)

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, t ∈ (0, T ]. (3)

The small positive parameter ε≪ 1 induces initial and corner layers and a weak
boundary layer at x = 0. For simplicity we neglect the boundary layer at x = 1.

Proposition 1.1. Problem (1), (2), (3) has at most one solution.

Proof. Assume that ū and u are two solutions of (1), (2), (3). Set d = u − ū,
which is solution of the problem

ε2[dt − dxx] + f(x, t, u)− f(x, t, ū) = 0, (x, t) ∈ (0, 1)× (0, T ], (4)

d(x, 0) = 0, x ∈ [0, 1], (5)

∂d

∂x
(0, t)0 =

∂d

∂x
(1, t), t ∈ (0, T ]. (6)

Further setting

p(x, t) :=

∫ 1

0

fu(x, t, u+ sd)ds,

by the mean value theorem, (4) yields

ε2
[
∂

∂t
− ∂2

∂x2

]
d+ d p(x, t) = 0.

For some positive constants K1 and K2, which may depend on ε and T, |u| and
|ū| are at least K1, hence fu ≥ −K2 in [0, 1]× [0, T ]× [−K1,K1]. By means of
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the transformation y := d e−tK2/ε2

, which satisfies
ε2
[
∂

∂t
− ∂2

∂x2

]
y + (K2 + p)y = 0

y(x, 0) = 0
∂y

∂x
(0, t) = 0 =

∂y

∂x
(1, t),

the maximum principle [8] yields y = 0 for all (x, t).

We consider the problem (1), (2), (3) under the following assumptions:
A1. The reduced equation, obtained by setting ε = 0 in (1)

f(x, t, u(x, t)) = 0, (x, t) ∈ (0, 1)× (0, T ) (7)

has a sufficiently smooth solution u0(x, t) that is stable, i.e., for some positive γ

fu(x, t, u0(x, t)) > γ2 > 0 ∀ (x, t) ∈ [0, 1]× [0, T ]; (8)

A2. The initial condition belongs to the domain of attraction of the reduced
solution u0 :

f(x, 0, u0(x, 0) + s)

s
> 0 ∀ s ∈ (0, φ(x)− u0(x, 0)], x ∈ [0, 1], (9)

with φ(x)− u0(x, 0) ≥ 0, otherwise (9) is satisfied for s ∈ [φ(x)− u0(x, 0), 0).
We further assume the compatibility conditions

φx(0) = 0, φx(1) = 0. (10)

Differentiating (1) with respect to x, we obtain

ε2(utx(x, t)− uxxx(x, t)) + fx(x, t, u(x, t)) + fu(x, t, u(x, t))ux(x, t) = 0,

where we set (x, t) = (0, 0) and use (3) and the first condition in (10). Thus,
skipping the first term of order O(ε2), we also impose the compatibility condition

fx(0, 0, φ(0)) = 0. (11)

2 Sub-solutions and super-solutions
Definition 2.1. Let α(x, t) and β(x, t) be functions continuously mapping
[0, 1] × [0, T ] into R. Function α(x, t) is sub-solution of the problem (1), (2),
(3) and β(x, t) is super-solution of the problem if:

α(x, t) ≤ β(x, t) ∀ (x, t) ∈ [0, 1]× [0, T ]; (12)

Fα ≤ 0, Fβ ≥ 0 ∀ (x, t) ∈ [0, 1]× [0, T ]; (13)

−∂α
∂x

(0, t) ≤ 0 ≤ −∂β
∂x

(0, t),
∂α

∂x
(1, t) ≤ 0 ≤ ∂β

∂x
(1, t) ∀ t ∈ [0, T ]; (14)

α(x, 0) ≤ φ(x) ≤ β(x, 0) ∀x ∈ [0, 1]. (15)
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Adapting Pao’s theorem from [7], we prove that existence of sub-solutions
and super-solutions provides existence of a unique solution of problem (1), (2),
(3) located between them.

Theorem 2.1. Existence of sub-solutions α and super-solutions β provides ex-
istence of a solution u(x, t) of the problem (1), (2), (3), with

α(x, t) ≤ u(x, t) ≤ β(x, t). (16)

Proof. While u is in the sector [α, β], the function fu(x, t, u) is bounded by

K(x, t) = max
u∈[α,β]

|fu(x, t, u)|

because it is continuous. Then for all (x, t) ∈ (0, 1) × (0, T ), and , α ≤ u2 ≤
u1 ≤ β,

f(x, t, u1)− f(x, t, u2) ≥ −(u1 − u2)K(x, t). (17)

Function K(x, t) being continuous,

B(x, t, u) ≡ K(x, t)u− f(x, t, u) (18)

is also continuous in [0, 1] × [0, T ] × [α, β] and monotone nondecreasing in u ∈
[α, β] :

B(x, t, u1)−B(x, t, u2) ≥ 0, β ≥ u1 ≥ u2 ≥ α. (19)

Following [7], we define the operator

L[u] ≡ ε2[ut − uxx] +K(x, t)u (20)

and consider the differential equation

L[u] = B(x, t, u) (21)

with B given by (18), which is equivalent to (1), and the same initial and
boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, u(0, x) = φ(x). (22)

The sub-solutions and super-solutions of the problem (21), (22) must satisfy the
same conditions as in Definition 2.1 for (1), (2), (3), with the only difference
that in (13) the operator F is replaced by L. We construct the sequences {α(k)}
by

L[α(k)] = B(x, t, α(k−1)), α(0) = α (23)

and {β(k)} by
L[β(k)] = B(x, t, β(k−1)), β(0) = β, (24)

where k = 1, 2, ..., with the boundary and initial conditions

∂α(k)

∂x
(0, t) =

∂α(k)

∂x
(1, t) = 0,

α(k)(0, x) = φ(x), (25)
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∂β(k)

∂x
(0, t) =

∂β(k)

∂x
(1, t) = 0,

β(k)(0, x) = φ(x), (26)

and refer to them as lower and upper sequences.
We prove that
(i) Each α(k) is a sub-solution and each β(k) is a super-solution; the lower and
upper sequences possess the monotone property

α ≤ α(k) ≤ α(k+1) ≤ β(k+1) ≤ β(k) ≤ β in [0, 1]× [0, T ]. (27)

Let w = β(0) − β(1) = β − β(1). In (13) of Definition (2.1) we replaced the
operator F by L, yielding

L[w] = L[β(0)]−B(x, t, β(0)) ≥ 0.

From (24) and (26)

∂w

∂x
(0, t) =

∂β

∂x
(0, t)− ∂β(1)

∂x
(0, t) ≤ 0,

∂w

∂x
(1, t) =

∂β

∂x
(1, t)− ∂β(1)

∂x
(1, t) ≥ 0,

w(x, 0) = β(x, 0)− φ(x) ≥ 0.

By the maximum principle [8, ch. 3], w(x, t) ≥ 0, so β(1) ≤ β(0). Similarly,
α(1) ≥ α(0). Let w(1) = β(1)−α(1). From (23), (24), (25), (26) and the monotone
property of B in (19) we have

L[w(1)] = B(x, t, β(0))−B(x, t, α(0)) ≥ 0,

∂w(1)

∂x
(0, t) = 0,

∂w(1)

∂x
(1, t) = 0,

w(1)(x, 0) = φ(x)− φ(x) = 0

and from the maximum principle it follows that w(1) ≥ 0 in [0, 1]× [0, T ]. Hence

α(0) ≤ α(1) ≤ β(1) ≤ β(0) in [0, 1]× [0, T ].

Assume now by induction that

α(k−1)(x, t) ≤ α(k)(x, t) ≤ β(k)(x, t) ≤ β(k−1)(x, t) in [0, 1]× [0, T ].

Then by (23), (24), (25), (26) and from the monotone property of B in (19),
w(k) = β(k) − β(k+1) satisfies

Lw(k) = B(x, t, β(k−1))−B(x, t, β(k)) ≥ 0

and the boundary and initial conditions as for w(1). Hence w(k) ≥ 0 and

β(k+1) ≤ β(k).

Similarly,
α(k+1) ≥ α(k),

β(k+1) ≥ α(k+1).
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By the principle of induction, assertion (i) is established for all k.
To prove that each element of the lower sequence is sub-solution, from (23) and
(25) we have

ε2[α
(k)
t − α(k)

xx ] = K(x, t)(α(k−1) − α(k))− f(x, t, α(k−1))

= K(x, t)(α(k−1) − α(k)) + [f(x, t, α(k))− f(x, t, α(k−1))]− f(x, t, α(k)),

so by (17) and (27)

Fα(k) = ε2[α
(k)
t − α(k)

xx ] + f(x, t, α(k)) ≤ 0.

Hence (13) is satisfied. Due to the boundary and initial conditions (25), (14)
and (15) are satisfied by α(k).
From (24) and (26) we have

ε2[β
(k)
t − β(k)

xx ] = K(x, t)(β(k−1) − β(k))− f(x, t, β(k−1))

= K(β(k−1) − β(k)) + [f(x, t, β(k))− f(x, t, β(k−1))]− f(x, t, β(k)),

so by (17) and (27)

Fβ(k) = ε2[β
(k)
t − β(k)

xx ] + f(x, t, β(k)) ≥ 0.

From the boundary and initial conditions (26) it follows that (14) and (15) are
satisfied by β(k) and from (27), that α(k) ≤ β(k).
Therefore, by Definition (2.1), α(k) is sub-solution and β(k) is super-solution of
(1), (2), (3).
(ii) The pointwise limits

lim
k→∞

β(k)(x, t) and lim
k→∞

α(k)(x, t) (28)

exist and satisfy in [0, 1]× [0, T ]

α(x, t) ≤ α(k)(x, t) ≤ α(k+1)(x, t) ≤ lim
k→∞

α(k)(x, t) ≤

≤ lim
k→∞

β(k)(x, t) ≤ β(k+1)(x, t) ≤ β(k)(x, t) ≤ β(x, t). (29)

Indeed, since by (i) the sequence {β(k)} is monotone nonincreasing and is
bounded from below and the sequence {α(k)} is monotone nondecreasing and
is bounded from above, the pointwise limits of these sequences exist and satisfy
(29).
(iii) If the limits (28) are solutions of (1), (2), (3), then

lim
k→∞

β(k)(x, t) = lim
k→∞

α(k)(x, t)

and is the solution in the [α, β].
Indeed, let

d = lim
k→∞

α(k)(x, t)− lim
k→∞

β(k)(x, t) ≤ 0.

Then d satisfies the relation

ε2[dt − dxx] = −f(x, t, α) + f(x, t, β) ≥
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≥ −K(x, t)[ lim
k→∞

β(k)(x, t)− lim
k→∞

α(k)(x, t)] = K(x, t)d

and the boundary and initial conditions

∂d

∂x
(0, t) = 0,

∂d

∂x
(1, t) = 0 for t ∈ [0, T ]; d(x, 0) = 0 for x ∈ [0, 1].

By the maximum principle d ≥ 0 in [0, 1]× [0, T ], yielding

lim
k→∞

β(k)(x, t) = lim
k→∞

α(k)(x, t).

3 Asymptotic analysis
We construct the sub-solutions and super-solutions by perturbing the asymp-
totic expansion from [11]. Assume that

∂u0

∂x
(1, t) = 0, (30)

so there is no boundary layer at x = 1. We shall see that there is a weak
boundary layer at x = 0. Performing a variable stretching

ξ = x/ε and τ = t/ε2

and denoting by v0 and v1 the terms of the boundary layer function, q0 and q1
the terms of the corner function and w0 the initial layer function, we write an
asymptotic expansion of order one of the solution:

uas = u0(x, t) + v0(ξ, t) + εv1(ξ, t) + w0(x, τ) + q0(ξ, τ) + εq1(ξ, τ). (31)

We define the functions

F (x, t, s) := f(x, t, u0(x, t) + s), F̃ (x, t, s; p) = f(x, t, u0(x, t) + s)− ps. (32)

The perturbed function F̃ , with |p| < ε, is used in the setting of perturbed
zero-order terms of the boundary-layer and initial-layer functions, which will be
included in the construction of sub-solutions - for negative small values −|p| -
and super-solutions - for positive small values |p|. The following properties of F
yield from u0 being a reduced solution:

F (x, t, s) = F (x, t, 0) +O(s) = O(s), (33)

Fx(x, t, 0) = Fxx(x, t, 0) = Ft(x, t, 0) = 0, (34)

giving

|Fx(x, t, s)| ≤ C|s|, |Fxx(x, t, s)| ≤ C|s|, |Ft(x, t, s)| ≤ C|s|. (35)

with C a positive constant. Analogously, F̃ (x, t, 0) = 0 implies F̃x(x, t, 0) = 0
and F̃t(x, t, 0) = 0, so F̃x(x, t, s)− F̃x(x, t, 0) = sF̃xs(x, t, ŝ) and

|F̃x(x, t, s)| ≤ C|s|, |F̃xx(x, t, s)| ≤ C|s|, |F̃t(x, t, s)| ≤ C|s|. (36)
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For any differentiable function g, with the notations

g
∣∣b
a = g(b)− g(a), g

∣∣c
a;b

= g(c)− g(b)− g(a), (37)

since
g(a+ b)− g(a)− g(b) + g(0) = a b g′′(θ),

if g(0) = 0, then
g
∣∣a+b

a;b
= O(|ab|).

Therefore, F̃ (x, t, 0) = 0 implies

F̃ (x, t, ·)
∣∣a+b

a;b
= O(|ab|). (38)

3.1 Boundary-layer function
From (31) and the left boundary condition we obtain

∂u0

∂x
(0, t) +

1

ε

∂(v0 + εv1)

∂ξ
(0, t) = 0,

i.e.,
1

ε

∂v0
∂ξ

(0, t) +
∂v1
∂ξ

(0, t) = −∂u0

∂x
(0, t) (39)

and equalize the terms in (39) containing same powers of ε :

ε−1 terms :
∂v0
∂ξ

(0, t) = 0

ε0 terms :
∂v1
∂ξ

(0, t) = −∂u0

∂x
(0, t). (40)

Set the zero-order term of the boundary-layer function v0(ξ, t) as the solution
of 

∂2v0
∂ξ2

= F (x, t, v0)

∂v0
∂ξ

∣∣
ξ=0

= 0

v0|ξ→∞ = 0.

(41)

Homogeneous boundary conditions in (41) and F (x, t, 0) = 0 imply that v0 = 0
is solution of (41). This is not the case for a problem with Dirichlet boundary
conditions [9, 2] . Therefore, the boundary-layer component of the asymptotic
expansion is v0 + εv1 = εv1, so we deal with a weak boundary layer.
Now set the boundary layer term of order one v1(ξ, t) as solution of

−∂
2v1
∂ξ2

+ v1Fs(0, t, v0(x, t)) + ξFx(0, t, v0(0, t)) = 0

∂v1
∂ξ

|ξ=0 = −∂u0

∂x
v1|ξ→∞ = 0.

(42)
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With (30) and v0 vanishing, (42) becomes
−∂

2v1
∂ξ2

+ v1Fs(0, t, 0) = 0

∂v1
∂ξ

|ξ=0 = −∂u0

∂x
(0, t)

v1|ξ→∞ = 0.

(43)

For v0 we have a nonlinear autonomous ordinary differential equation, whereas
for v1, a linear ordinary differential equation. Assumption A1 ensures existence
of v0 and existence and asymptotic properties of v1. Using assumption A1 to
set

γ2
L := min

t≥0
fu(0, t, u0(0, t)) > γ2, (44)

for some positive δ and γL we have the upper bounds

|v(k)
1 | ≤ Cδe

−(γL−δ)ξ for ξ ∈ [0,∞), k = 0, 4. (45)

A proof for this estimate features in [2] for the problem with Dirichlet bound-
ary conditions, while the property Fs(0, t, 0) ≥ γ2

L in our case simplifies the
argument therein. Also, the following estimates hold true:∣∣∣∣∂kṽ0

∂ξk

∣∣∣∣+ ∣∣∣∣∂lṽ0
∂tl

∣∣∣∣+ ∂ṽ0
∂p

≤ Cδe
−(γL−

√
p0−δ)ξ (46)

for ξ, t ≥ 0, k = 0, ..., 4, l = 0, 1, 2;

ε2
[
∂

∂t
− ∂2

∂x2

]
(εv1) + F (x, t, εv1) = O(ε2). (47)

3.2 Initial-layer function
Using the stretched variable τ = t/ε2, we construct a initial-layer function and
its perturbation to describe the solution near t = 0. We define w0(x, τ) as the
solution of the initial-value problem

∂w0

∂τ
= −F (x, 0, w0), τ > 0, w0(x, 0) = φ(x)− u0(x, 0) (48)

and set the perturbed function w̃0(x, τ ; p) with w̃0(x, τ ; 0) = w0(x, τ) as solution
of the initial-value problem

∂w̃0

∂τ
= −F̃ (x, 0, w̃0; p) τ > 0, w̃0(x, 0; p) = φ(x)− u0(x, 0). (49)

The problem for w0 {
w0,τ (x, τ) = −F (x, 0, w0(x, τ))

w0(x, 0) = φ(x)− u0(x, 0)
(50)

has a solution satisfying w0(x,∞) = 0 and the problem for the perturbed initial
layer function{

w̃0,τ (x, τ, p) = −F (x, 0, w̃0(x, τ, p)) + pw̃0(x, τ, p)

w̃0(x, 0, p) = φ(x)− u0(x, 0)
(51)
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also has a solution satisfying limτ→∞ w̃0(x, τ, p) = 0.
In comparison with a problem with Dirichlet boundary conditions where the
zero-order term of the initial-layer function in x = 0 is 0, for our problem the
initial-layer function in 0 does not vanish. Let

γ2
0 := min

x∈[0,1]
fu(x, 0, u0(x, 0)) > γ2, (52)

where γ is the positive constant from assumption A1. The non-negative value
γ0 will feature in the construction of layer-adapted meshes and in the following

Proposition 3.1. (i) There exists p0 ∈ (0, γ2
0) such that for all p with |p| ≤ p0,

problem (51) has a solution.
(ii) The initial-layer function w0 and the perturbed initial-layer function w̃0

satisfy

w0(x, τ) ≥ 0,
∂w̃0

∂p
≥ 0 ∀ x ∈ [0, 1] ∀ τ ≥ 0. (53)

For an arbitrarily small but fixed δ ∈ (0, γ2
0−p0), there exists a positive constant

Cδ such that for k = 0, 4 and l = 0, 2 the following estimate holds true:∣∣∣∣∂lw̃0

∂τ l

∣∣∣∣+ ∣∣∣∣∂w̃0

∂xk

∣∣∣∣+ ∣∣∣∣∂w̃0

∂p

∣∣∣∣ ≤ Cδe
−(γ2

0−|p0|−δ)τ ∀ x ∈ [0, 1] ;∀ τ ≥ 0. (54)

The proof from [2] for the initial-layer function of the problem with Dirichlet
boundary conditions is fully valid here and is based on the following result which
we shall also use in the next subsection to estimate the derivatives of the corner
function:

Lemma 1. Consider the initial value problem

d

dτ
ω = −ϕ(ω) for τ > 0, ω(0) = ω0 ≥ 0, ω(∞) = 0, (55)

Let a sufficiently smooth function ϕ satisfy

ϕ(0) = 0, ϕ′(0) > 0, ϕ(s) > 0, ∀ s ∈ (0, ω0]. (56)

1. Then the problem (55) has a solution 0 ≤ ω ≤ ω0 and for any arbitrarily
small, but fixed δ ∈ (0, ϕ′(0)), there exists a constant Cδ such that

|ω|+ |ω′|+ |ω′′| ≤ ω0Cδ exp[−(ϕ′(0)− δ)τ ] for τ ≥ 0. (57)

2. Set

ω̂ :=


ω

ω0
if ω0 > 0

e−ϕ′(0)τ if ω0 = 0.
(58)

Then the linear problem

d

dτ
χ+ χϕ′(ω) = ψ(τ) for τ > 0; χ(0) = χ0; χ(∞) = 0, (59)

where |χ0| ≤ C and

|ψ(τ)| ≤ C(1 + τm)ω̂(x, τ) for some m ≥ 0, (60)
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Figure 1: Phase plane: the horizontal axis is ω(x, τ); the vertical axis is ω′(τ). There
exists a trajectory that leaves the point (ω0,−ϕ(ω0)) and enters the point (0, 0). The
fact that ω > 0 and ω′ < 0 means that the plot of ω′ versus ω enters the origin from
quadrant IV. Hence ω becomes zero at infinity

has a solution that satisfies

|χ(τ)| ≤ C(χ0 + 1 + τm+1)ω̂(x, τ). (61)

If we also have χ0 = 0 and ψ ≥ 0, then χ ≥ 0 for all τ ≥ 0.

We only sketch the part of the proof which is going to be used in the corner
function; for the remaining part of the proof we refer the reader to [2].

Proof. 1. If ω0 = 0, then ω(x, τ) = 0 for all τ and the assertion follows. If
ω0 > 0, from (56) this gives ϕ(s) > 0, s ∈ (0, ω0]. Consider the phase plane
(ω, ω′) for the equation ω′ = −ϕ(ω). By (56), there exists a trajectory that
leaves the point (ω0,−ϕ(ω0)) and enters the point (0, 0), as shown by Figure 1.
Furthermore, since ϕ(ω) > 0 for all ω ∈ (0, ω0], this entire trajectory lies in the
quarter plane {ω > 0, ω′ < 0}. Therefore the corresponding solution ω(x, τ) is
positive and decreasing to zero. It remains to show that the solution trajectory
enters (0, 0) as τ → ∞ and also the exponential decay estimates (57). By the
definition of the derivative as a limit,

ϕ′(0) = lim
s→0

ϕ(s)− ϕ(0)

s− 0
,

where ϕ(0) = 0, so

lim
s→0

ϕ(s)

s
= ϕ′(0),

i.e. that for any δ ∈ (0, ϕ′(0)), there exists sδ ∈ (0, ω0) such that∣∣∣∣ϕ(s)

s
− ϕ′(0)

∣∣∣∣ ≤ δ ∀ s ∈ [0, sδ]

which is
ϕ′(0)− δ ≤ ϕ(s)

s
≤ ϕ′(0) + δ, ∀ s ∈ [0, sδ]. (62)
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Furthermore, there exists τδ > 0 such that

ω(x, τδ) = sδ. (63)

Otherwise, if ω is bounded away from zero, ω(x, τ) > sδ for all τ, let

m = min
ω∈[sδ,ω0]

ϕ(s).

We will use the function ϕ in its particular form ϕ(s) = f(x, 0, u0(x, 0) + s).
Assumption A2 implies m > 0 and

ϕ(ω) ≥ m ∀τ

yields
ω′ = −ϕ(ω) ≤ −m ∀ τ.

We have

ϕ(ω) ≥

{
m
ω0
ω for ω ∈ [sδ, ω0]

(ϕ′(0)− δ)ω for ω ∈ [0, sδ],
(64)

i.e. ϕ(ω) ≥ Cω ∀ω ∈ [0, ω0], so

−ϕ(ω) = ω′(τ) ≤ −m,

which yields ω(x,∞) = −∞, in contradiction with (55). Hence (63) is estab-
lished.

• Case τ ≥ τδ
The function ω(x, τ) is decreasing, so ω(x, τ) < ω(x, τδ) = sδ, thus ω(x, τ) ∈
(0, sδ) which implies that (62) holds true

ϕ′(0)− δ ≤ ω′

ω
≤ ϕ′(0) + δ. (65)

Integrating (65) from τδ to τ we obtain

[ϕ′(0)− δ](τ − τδ) ≤ (lnω)|ττδ
≤ [ϕ′(0) + δ](τ − τδ)

e−[ϕ′(0)+δ](τ−τδ) ≤ ω(x, τ)

ω(x, τδ)
≤ e−[ϕ′(0)−δ](τ−τδ), ∀τ ≥ τδ. (66)

As ω(x, τδ) ≤ ω0, the estimates for ω and ω′ in (57) follow from (66) and
(65).

• Case 0 ≤ τ ≤ τδ
As a decreasing function, ω ≤ ω0 and for C∗ := e[ϕ

′(0)−δ]τδ we have

|ω| ≤ C∗ω0e
−[ϕ′(0)−δ]τδ ≤ C∗ω0e

−[ϕ′(0)−δ]τ

yielding the estimate for ω and from (64), where ϕ(ω) = −ω′, also the
estimate for ω′.

12



3.3 Corner-layer function
The terms of order zero and one of the corner layer function q0 + εq1 are char-
acterized by

lim
ξ→∞

q0(ξ, τ) = 0, lim
τ→∞

q0(ξ, τ) = 0, (67)

lim
ξ→∞

q1(ξ, τ) = 0, lim
τ→∞

q1(ξ, τ) = 0. (68)

Introducing (31) in (2) yields the compatibility condition

v0(ξ, 0) + εv1(ξ, 0) + q0(ξ, 0) + εq1(ξ, 0) = 0.

Equalizing the terms containing the power −1 of ε, we obtain

q0(ξ, 0) = −v0(ξ, 0) (69)

and the terms containing the power 0 of ε give

q1(ξ, 0) = −v1(ξ, 0). (70)

Introducing (31) in (3) yields the compatibility condition

∂w0

∂x
(0, τ) +

1

ε

q0 + εq1
∂ξ

(0, τ) = 0. (71)

Equalizing the terms with the same powers of ε in (71), we have

∂q0
∂ξ

(0, τ) = 0 (72)

and
∂q1
∂ξ

(0, τ) = −∂w0

∂x
(0, τ). (73)

Using the equation from (41)

−∂
2v0
∂ξ2

+ F (0, t, v0) = 0

and (48), equation

− ∂2

∂ξ2
v0(ξ, 0) +

∂

∂τ
w0(0, τ) +

[
∂

∂τ
− ∂2

∂ξ2

]
q0+

+f(0, 0, u0(0, 0) + v0(ξ, 0) + w0(0, τ) + q0) = 0

becomes [
∂

∂τ
− ∂2

∂ξ2

]
q0 =

−F (0, 0, v0(ξ, 0) + w0(0, τ) + q0) + F (0, 0, w0(0, τ))− F (0, 0, v0(ξ, 0)). (74)

By v0 = 0 and F (0, 0, 0) = 0, the right-hand side of equation (74) becomes

−F (0, 0, v0(ξ, 0) + w0(0, τ) + q0) + F (0, 0, w0(0, τ))− F (0, 0, v0(ξ, 0)) =

= −F (0, 0, w0(0, τ) + q0) + F (0, 0, w0(0, τ)).
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In the horizontal part of the corner layer, along ξ, where τ = 0, we have

u0(x, 0) + v0(ξ, 0) + εv1(ξ, 0) + w0(ξ, 0) + q0(ξ, 0) + εq1(ξ, 0) = φ(x), (75)

which yields the initial condition for q1 :

q1(ξ, 0) = −v1(ξ, 0). (76)

Due to the initial value w0(x, 0) = φ(x)−u0(x, 0), (75) yields the initial condition
for q0

q0(ξ, 0) = −v0(ξ, 0). (77)

A boundary condition for q0 is given by (72) and the initial condition is given by
(69). Therefore, the problem for the zero-order term of the corner layer function
q0(ξ, τ) is

∂q0

∂τ − ∂2q0

∂ξ2 + F (0, 0, w0(0, τ) + q0)− F (0, 0, w0(0, τ)) = 0

q0(ξ, 0) = −v0(ξ, 0) = 0
∂q0

∂ξ (0, τ) = 0.

(78)

Having homogeneous initial and boundary condition, a solution of (78) is q0 = 0.

The first-order term of the corner layer function, q1(ξ, τ) is obtained by
formally introducing

uas = u0(εξ, ε
2τ) + v0(ξ, ε

2τ) + εv1(ξ, ε
2τ) + w0(εξ, τ) + εq1(ξ, τ)

in the original equation (1):

ε2
(
∂

∂t
− ∂2

∂x2

)
[u0(εξ, ε

2τ) + v0(ξ, ε
2τ) + εv1(ξ, ε

2τ) + w0(εξ, τ) + εq1(ξ, τ)]+

+F (εξ, ε2τ, v0(ξ, ε
2τ) + εv1(ξ, ε

2τ) + w0(εξ, τ) + εq1(ξ, τ)) = 0.

Here we have

ε2
(
∂

∂t
− ∂2

∂x2

)
u0 = O(ε2).

We use the estimates from [2]

ε2
[
∂

∂t
− ∂2

∂x2

]
(v0 + εv1) + F (x, t, v0 + εv1) = O(ε2). (79)

and

ε2
[
∂

∂t
− ∂2

∂x2

]
w0 + F (x, t, w0) = O(ε2). (80)

ε(q1,τ − q1,ξξ)− F (εξ, ε2τ, w0(εξ, τ))− F (εξ, ε2τ, v0(ξ, ε
2τ) + εv1(ξ, ε

2τ))+

+F (εξ, ε2τ, v0(ξ, ε
2τ) + w0(εξ, τ) + εv1(ξ, ε

2τ) + εq1(ξ, τ)) +O(ε2) = 0.

By notation (37), this can be written as

ε(q1,τ − q1,ξξ) + F (εξ, ε2τ, ·)
∣∣[v0(ξ,ε2τ)+εv1(ξ,ε2τ)]+w0(εξ,τ)

[v0(ξ,ε2τ)+εv1(ξ,ε2τ)] ; w0(εξ,τ)
+
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+F (εξ, ε2τ, ·)
∣∣v0(ξ,ε2τ)+εv1(ξ,ε2τ)+w0(εξ,τ)+εq1(ξ,τ)

v0(ξ,ε2τ)+εv1(ξ,ε2τ)+w0(εξ,τ)
= O(ε2) (81)

and becomes

ε(q1,τ − q1,ξξ) + F (εξ, ε2τ, ·)
∣∣[εv1(ξ,ε2τ)]+w0(εξ,τ)+εq1(ξ,τ)

[εv1(ξ,ε2τ)] ; w0(εξ,τ)
= O(ε2). (82)

Now set the function G(ε) as

G(ε) = F (εξ, ε2τ, ·)
∣∣[εv1(ξ,ε2τ)]+w0(εξ,τ)+εq1(ξ,τ)

[εv1(ξ,ε2τ)] ; w0(εξ,τ)
.

Then
G′(ε) =

= ξFx(εξ, ε2τ, ·)
∣∣εv1(ξ,ε2τ)+w0(εξ,τ)+εq1(ξ,τ)

εv1(ξ,ε2τ) ; w0(εξ,τ)
+2ετFt(εξ, ε

2τ, ·)
∣∣εv1(ξ,ε2τ)+w0(εξ,τ)+εq1(ξ,τ)

εv1(ξ,ε2τ) ; w0(εξ,τ)
+

+[2ε2τv1,t(ξ, ε
2τ) + v1(ξ, ε

2τ) + ξw0,x(εξ, τ) + q1(ξ, τ)]·

·Fs(εξ, ε
2τ, εv1(ξ, ε

2τ) + w0(εξ, τ) + εq1(ξ, τ))−

−[2ε2τv1,t(ξ, ε
2τ) + v1(ξ, ε

2τ)] · Fs(εξ, ε
2τ, εv1(ξ, ε

2τ))−

−ξw0,x(εξ, τ) · Fs(εξ, ε
2τ, w0(εξ, τ)) (83)

and
G(0) = F (0, 0, ·)

∣∣w0(εξ,τ)

0; w0(εξ,τ)
= 0.

A calculation shows that

G′(0) = [v1(ξ, 0) + q1]Fs(0, 0, w0(0, τ))− v1(ξ, 0)Fs(0, 0, 0).

Using the conditions (70) and (73), q1 is given by the linear problem
∂q1

∂τ − ∂2q1

∂ξ2 + q1Fs(0, 0, w0(0, τ)) = −v1(ξ, 0)Fs(0, 0, ·)
∣∣w0(0,τ)

0

q1(ξ, 0) = −v1(ξ, 0)
∂q1

∂ξ (0, τ) = −∂w0

∂x (0, τ).

(84)

Note that, by (46) and (54)∣∣∣−v1(ξ, 0)Fs(0, 0, ·)
∣∣w0(0,τ)

0

∣∣∣ ≤ C|v1(ξ, 0)||w0(0, τ)| ≤ Cδe
−(γL−δ)ξ−(γ2

0−δ)τ ,

(85)
i.e., the right-hand side of the first equation in (84) is exponentially decaying.
From the initial condition in (50) for x = 0, we obtain

w0,x(0, 0) = φx(0)− u0,x(0, 0).

From (40) for t = 0 we have

v1,ξ(0, 0) = −u0,x(0, 0).

Thus, by (10), i.e. φx(0) = 0, we have

v1,ξ(0, 0) = w0,x(0, 0), (86)

i.e., compatibility at the corner (0, 0). We are going to investigate solutions of
the problem (84).
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3.3.1 Fundamental solution for the term of order one of the corner-
layer function

We now construct the operator

L = − ∂2

∂ξ2
+ λ(τ), (87)

where
λ(τ) = Fs(0, 0, w0(0, τ)) (88)

and in the half plane we consider the problem{
zt + Lz = b(ξ, τ), −∞ < ξ <∞, τ > 0

z(0, ξ) = 0.
(89)

The solution of (89) is

ν(ξ, τ) =

∫ τ

0

dτ0

∫ ∞

−∞
dξ0G(ξ − ξ0, τ − τ0)b(ξ0, τ0), (90)

where G is the Green’s function of problem (89), which will be explicitly defined
by

G(ξ, τ − τ0) =
1√
2π

√
π√

τ − τ0
e
− ξ2

4(τ−τ0) =
1√

2
√
τ − τ0

e
− ξ2

4(τ−τ0) . (91)

Note that we do not enjoy λ > 0, but λ = λ(τ) is a function of one variable, τ,
which will facilitate our analysis. In the quarter plane we have

ντ + Lu = b(ξ, t), ξ > 0, τ > 0

ν(0, ξ) = 0

νξ(0, τ) = 0.

(92)

We shall define a solution of (92) in terms of the Green’s function G of (89).
We extend the function b(ξ, τ) to the left quarter plane and denote it by b∗:

b∗(ξ, τ) =

{
b(−ξ, τ) if ξ0 < 0

b(ξ, τ) if ξ0 > 0.
(93)

This is an even continuation. Let ν∗(ξ, τ) satisfy{
ν∗τ + Lu∗ = b∗, ξ ∈ R, τ > 0

ν∗(ξ, 0) = 0.
(94)

Function b∗ being even , ν∗ will also be even with respect to ξ, so ν∗(ξ, τ) =
ν∗(−ξ, τ). By (90), the solution of problem is (94), we have

ν∗(ξ, τ) =

∫ τ

0

dτ0

∫ ∞

−∞
dξ0G(ξ − ξ0, τ − τ0)b

∗(ξ0, τ0) =

∫ τ0

0

dτ0

∫ 0

−∞
dξ0G(ξ−ξ0, τ−τ0)b∗(ξ0, τ0)+

∫ τ0

0

dτ0

∫ ∞

0

dξ0G(ξ−ξ0, τ−τ0)b∗(ξ0, τ0),

(95)
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where b∗ is from (93). We make the variable change ξ′0 := −ξ0 in the first
integral of (95):∫ 0

−∞
dξ0G(ξ − ξ0, τ − τ0)b

∗(ξ0, τ0) =

∫ ∞

0

dξ′0G(ξ + ξ′0, τ − τ0)b(ξ
′
0, τ0)

=

∫ ∞

0

dξ0G(ξ + ξ0, τ − τ0)b(ξ0, τ0).

Hence

ν(ξ, τ) =

∫ τ

0

dτ0

∫ ∞

0

dξ0[G(ξ + ξ0, τ − τ0) +G(ξ − ξ0, τ − τ0)]b(ξ0, τ0) (96)

and
ν(ξ, τ) =

∫ τ

0

dτ0

∫ ∞

0

dξ0g(ξ0, ξ, τ0, τ)b(ξ0, τ0), (97)

with
g := G(ξ + ξ0, τ − τ0) +G(ξ − ξ0, τ − τ0). (98)

Next, we focus on the problem (89) in the half plane, which we rewrite as{[
∂
∂τ −

∂2

∂ξ2

]
z + λ(τ)z = b, ξ ∈ R, τ > 0

z(ξ, 0) = 0.
(99)

An estimate of the solution of problem (99) features in [3, chapter IV, p. 320,
352]. We derive an estimate consistent to the one in [3], but with the precise
specification of the exponential decay constant. Apply a Fourier transform to
z :

ẑ = ζ(s, τ) =
1√
2π

∫ ∞

−∞
z(ξ, τ)e−isξdξ.

Introducing it in the original equation, we obtain

∂ζ

∂τ
(s, τ) + (λ(τ) + s2)ζ(s, τ) = b̂(s, τ).

The transformation ζ̃(s, τ) defined by

ζ(s, τ) := ζ̃(s, τ)e−s2τ (100)

yields
ζ̃τ (s, τ) + λ(τ)ζ̃(s, τ) = b̂(s, τ)es2τ , (101)

ζ̃(s, 0) = ζ(s, 0) =
1√
2π

∫ ∞

−∞
z(ξ, 0)e−isξdξ = 0. (102)

As w0,τ < 0 is a particular solution of the homogeneous problem{[
∂
∂τ + λ(τ)

]
w0,τ = 0

w0,τ (0) = 0,

which follows by differentiating the equation and the initial condition in (50)
and λ is defined in (88), we obtain

ζ̃(s, τ) = w0,τ (τ)

∫ τ

0

b̂(τ0)e
s2τ0

w0,τ (τ0)
dτ0. (103)

17



Denote the inverse Fourier transform by F−1. Then

z(ξ, τ) = F−1ζ =
1√
2π

∫ ∞

−∞
ζ(s, τ)eisξds,

where
ζ = e−s2τ

[
w0,τ (τ)

∫ τ

0

w−1
0,τ (τ0)b̂(s, τ0)e

s2τ0dτ0

]
.

Then

z(ξ, τ) =
1√
2π

∫ ∞

−∞

[
e−s2τw0,τ (τ)

∫ τ

0

w−1
0,τ (τ0)b̂(s, τ0)e

s2τ0dτ0

]
eisξds.

We have

z(ξ, τ) =
1√
2π

∫ ∞

−∞
e−s2τw0,τ (τ)

∫ τ

0

w−1
0,τ (τ0)b̂(s, τ0)e

s2τ0dτ0e
isξds =

=
1√
2π

∫ τ

0

w0,τ (τ)w−1
0,τ (τ0)dτ0

∫ ∞

−∞

[
b̂(s, τ0)e

−s2(τ−τ0)
]
eisξds =

=

∫ τ

0

w0,τ (τ)w−1
0,τdτ0 · F−1[b̂(s, τ0) · Ĝ(s, τ − τ0)], (104)

where Ĝ(s, τ − τ0) = e−s2(τ−τ0). By the convolution theorem,

F−1[b̂(s, τ0)Ĝ(s, τ − τ0)] =
b(ξ, τ0) ∗G(ξ, τ − τ0)√

2π
,

F−1[b̂(s, τ0)Ĝ(s, τ − τ0)] =
1√
2π

∫ ∞

−∞
b(ξ0, τ0)G(ξ − ξ0, τ − τ0)dξ0, (105)

where

G(ξ, τ−τ0) = F−1[Ĝ(s, τ−τ0)] = F−1[e−s2(τ−τ0)] =
1√
2π

∫ ∞

−∞
ds[eiξs−s2(τ−τ0)].

Using [1, §4.3b], we obtain

G(ξ, τ − τ0) =
1√
2π

√
π√

τ − τ0
e
− ξ2

4(τ−τ0) =
1√

2
√
τ − τ0

e
− ξ2

4(τ−τ0) (106)

and (104) becomes

z(ξ, τ) =
w0,τ (τ)√

2π

∫ τ

0

dτ0w
−1
0,τ (τ0)

∫ ∞

−∞
G(ξ − ξ0, τ − τ0)b(ξ0, τ0)dξ0.

Therefore, the solution of problem (99) is

z(ξ, τ) =

∫ τ

0

∫ ∞

−∞
w0,τ (τ)w−1

0,τ (τ0)
1

2
√
π(τ − τ0)

e
− (ξ−ξ0)2

4(τ−τ0) b(ξ0, τ0)dξ0dτ0. (107)

and in the quarter plane the solution of (92) is

ν(ξ, τ) =
1

2
√
π

∫ τ

0

dτ0

∫ ∞

0

dξ0[G(ξ + ξ0, τ − τ0) +G(ξ − ξ0, τ − τ0)]b(ξ0, τ0)

=
1

2
√
π

∫ τ

0

dτ0

∫ ∞

0

dξ0 w0,τ (τ)w−1
0,τ (τ0)

1√
(τ − τ0)

[
e
− (ξ−ξ0)2

4(τ−τ0) + e
− (ξ+ξ0)2

4(τ−τ0)

]
b(ξ0, τ0).

(108)
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3.3.2 Upper bounds for q1 and its derivatives

In the previous subsection we solved the problem (92) with homogeneous bound-
ary conditions. However, the problem for the first-order term of the corner layer
function satisfies nonhomogeneous boundary conditions. Consider thus the lin-
ear initial value problem with Neumann boundary condition[

∂

∂τ
− ∂2

∂ξ2

]
Φ(ξ, τ) + λ(τ)Φ(ξ, τ) = b(ξ, τ), (109)

Φξ(0, τ) = η(τ), (110)

Φ(ξ, 0) = Φ0(ξ) (111)

with
η(0) = Φ′0(0), (112)

where λ(τ) is given by (88).

λ(τ) := Fs(0, 0, w0(0, τ)).

In the quarter plane (x, t) ∈ (0, 1)× (0, T ] equation (109) is

ε2
[
∂

∂t
− ∂2

∂x2

]
Φ(x, t) + λ(τ)Φ(x, t) = b(x, t). (113)

A comparison principle and un upper bound for the solution of this problem
feature in [6]. The bound is in the L2−norm and depends on the space derivative
of the solution and on fu(0, 0, w0(0, τ)). The following result from [4] is also
worth mentioning.

Theorem 3.2. Let D be a bounded domain in R with a piecewise smooth bound-
ary. A solution of the problem (109), (111) exists, is unique and satisfies the
following estimate

||Φ||W 1,0
2 (D×(0,T )) ≤ c(T )[||Φ0(ξ)||L2(D) + ||f ||L2(D×(0,T ))]. (114)

We shall prove

Lemma 2. The solution of the problem (109), (110), (111) is invariant in the
maximum norm, i.e., the upper bound satisfied by the solution is satisfied by its
derivatives, too.

More precisely,

Lemma 3. Let Φ(ξ, τ) be the solution of the problem (109), (110), (111) and
satisfying (112). Define

γ2
∗ = min{ min

t∈[0,T ]
fu(0, t, u(0, t)), min

x∈[0,1]
fu(x, 0, u(x, 0))}. (115)

Assume that for some positive constant C and some small δ > 0 , we have

|η(τ)|+ |η′(τ)| ≤ Ce−(γ2
∗−δ)τ , (116)

|Φ0(ξ)|+ |Φ′′0(ξ)| ≤ Ce−(γ∗−δ)ξ, (117)
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|b| ≤ Cmin{e−(γ2
∗−δ)τ , e−(γ∗−δ)ξ}. (118)

Then the pointwise estimate

|Φ| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ} (119)

holds true.

Proof. Set

Φ̃ = Φ0(ξ)e
−(γ2

∗−δ)τ + [η(τ)− η(0)e−(γ2
∗−δ)τ ]

(
−e

−(γ∗−δ)ξ

γ∗ − δ

)
, (120)

so that, using (112), we obtain

(Φ− Φ̃)
∣∣
τ=0

= 0,

∂

∂ξ
(Φ− Φ̃)

∣∣
ξ=0

= 0

and

b̃ =

(
∂

∂τ
− ∂2

∂ξ2
+ λ(τ)

)
Φ̃ =

= −Φ0(ξ)
e−(γ2

∗−δ)τ

γ2
∗ − δ

− e−(γ∗−δ)ξ

γ∗ − δ

[
η′(τ) + η(0)

e−(γ2
∗−δ)τ

γ2
∗ − δ

]
−

−Φ′′0(ξ)e−(γ2
∗−δ)τ − η(τ)− η(0)e−(γ2

∗−δ)τ

(γ∗ − δ)3
e−(γ∗−δ)ξ+

+λ(τ)

[
Φ0(ξ)e

−(γ2
∗−δ)τ − [η(τ)− η(0)e−(γ2

∗−δ)τ ]
e−(γ∗−δ)ξ

γ∗ − δ

]
. (121)

We have
|b− b̃| ≤ Cmin{e−(γ2

∗−δ)τ , e−(γ∗−δ)ξ}. (122)

Then Φ− Φ̃ satisfies(
∂

∂τ
− ∂2

∂ξ2
+ λ(τ)

)
[Φ− Φ̃] = b− b̃ = b̂. (123)

We have
Φ− Φ̃ =

1

2
√
π

∫ τ

0

dτ0

∫ ∞

0

dξ0
w0,τ (0, τ)

w0,τ (0, τ0)

1√
τ − τ0

[
e
− (ξ−ξ0)2

4(τ−τ0) + e
− (ξ+ξ0)2

4(τ−τ0)

]
b̂(ξ0, τ0).

(124)
Using the proof of Lemma 1, for all τ ≥ τ0

w0,τ (0, τ)

w0,τ (0, τ0)
≤ Ce−(γ2

∗−δ)(τ−τ0). (125)

We introduce the function

Ψ̂(ξ0, τ, τ̂) =
w0,τ (0, τ)

w0,τ (0, τ − τ̂)
b̂(ξ0, τ − τ̂), (126)
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where
τ̂ = τ − τ0.

Thus we rewrite (124) in the new variable τ̂ as

Φ− Φ̃ =
1

2
√
π

∫ τ

0

dτ0

∫ ∞

0

dξ0
1√
τ̂

[
e−

(ξ−ξ0)2

4(τ̂) + e−
(ξ+ξ0)2

4(τ̂)

]
Ψ̂(ξ0, τ, τ̂). (127)

In (127) we have

e−
(ξ−ξ0)2

4τ̂ + e−
(ξ+ξ0)2

4τ̂ ≤ 2e−
(ξ−ξ0)2

4τ̂ . (128)

By (122) and (125),

|Ψ̂| =

∣∣∣∣∣b̂(ξ0, τ0) w0,τ (0, τ)

w0,τ (0, τ0)

∣∣∣∣∣ ≤ Cmin{e−(γ2
∗−δ)τ0 , e−(γ∗−δ)ξ0} · e−(γ2

∗−δ)(τ−τ0) ≤

≤ Cmin{e−(γ2
∗−δ)τ , e−(γ∗−δ)ξ0−(γ2

∗−δ)τ̂}. (129)

Now (124) implies
|Φ− Φ̃| ≤

Cmin
{
e−(γ2

∗−δ)τ

∫ τ

0

dτ̂

∫ ∞

0

dξ0
1√
τ̂
e−

(ξ−ξ0)2

4τ̂ ,∫ τ

0

dτ̂e−(γ2
∗−δ)τ̂

∫ ∞

0

dξ0
1√
τ̂

2e−
(ξ−ξ0)2

4τ̂ −(γ∗−δ)ξ0
}
. (130)

Write ∫ ∞

0

dξ0e
− (ξ−ξ0)2

4τ̂ e−(γ∗−δ)ξ0 =

=

∫ ∞

0

dξ0e
−
[

ξ2
0

4τ̂ +(−2ξ
4τ̂ +γ∗−δ)ξ0+

ξ2

4τ̂

]
=

∫ ∞

0

dξ0 e
−[a1ξ2

0+2a2ξ0+a3], (131)

where a1 = 1
4τ̂ , a2 = − ξ

4τ̂ + (γ∗ − δ)/2, a3 = ξ2

4τ̂ . The right-hand side of (131)
becomes∫ ∞

0

dξ0e
−
[
a1

(
ξ0+

a2
a1

)2
+a3−

a2
2

a1

]
= e−a3+

a2
2

a1

∫ ∞

0

e
−
[√

a1

(
ξ0+

a2
a1

)]2

dξ0. (132)

A change of variable

ξ̂ =
√
a1

(
ξ0 +

a2

a1

)
, dξ̂ =

√
a1 dξ0

yields in (132)∫ ∞

0

dξ0e
−
[
a1

(
ξ0+

a2
a1

)2
+a3−

a2
2

a1

]
=
C

a1
e−a3+

a2
2

a1

∫ ∞

a2√
a1

e−ξ̂2

dξ̂ ≤ C
√
a1
e−a3+

a2
2

a1 ,

(133)
where

−a3 +
a2
2

a1
= − ξ

2

4τ̂
+ 4τ̂

[
− ξ

4τ̂
+ (γ∗ − δ)/2)

]2
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= − ξ
2

4τ̂
+ 4τ̂

[
ξ2

16τ̂2
+ (γ∗ − δ)2/4− (γ∗ − δ)

ξ

4τ̂

]
= −ξ(γ∗ − δ) + (γ∗ − δ)2τ̂ ≤ −ξ(γ∗ − δ) + (γ2

∗ − δ)τ̂ ,

as δ is sufficiently small. Therefore∫ ∞

0

dξ0e
− (ξ−ξ0)2

4τ̂ e−(γ∗−δ)ξ0 ≤ C
e−ξ(γ∗−δ)+(γ2

∗−δ)τ̂

1
2
√

τ̂

. (134)

In (130) we have
|Φ− Φ̃| ≤

Cmin

e−(γ2
∗−δ)τ

∫ τ

0

dτ̂

∫ ∞

0

dξ0
e−

(ξ−ξ0)2

4τ̂

√
τ̂

,

∫ τ

0

dτ̂
e−(γ2

∗−δ)τ̂

√
τ̂

e−ξ(γ∗−δ)+(γ2
∗−δ)τ̂

1
2
√

τ̂

 .

(135)
1. We analyse the following term from (135)∫ τ

0

dτ̂
e−(γ2

∗−δ)τ̂

√
τ̂

e−ξ(γ∗−δ)+(γ2
∗−δ)τ̂

1
2
√

τ̂

≤ Cτe−(γ∗−δ)ξ. (136)

2. Next we analyse e−(γ2
∗−δ)τ

∫ τ

0
dτ̂
∫∞
0
dξ0

e−
(ξ−ξ0)2

4τ̂√
τ̂

. We claim that

∫ τ

0

dτ̂

∫ ∞

0

dξ0
e−

(ξ−ξ0)2

4τ̂

√
τ̂

≤ τ.

Indeed, using ξ′ = ξ−ξ0

2
√

τ̂
, we obtain∫ ∞

0

dξ0e
− (ξ−ξ0)2

4τ̂ = 2
√
τ̂

∫ ∞

− ξ0
2
√

τ̂

e−ξ′2dξ′ ≤ C
√
τ̂ . (137)

Then ∫ τ

0

dτ̂

∫ ∞

0

dξ0
e−

(ξ−ξ0)2

4τ̂

√
τ̂

≤ C

∫ τ

0

dτ̂
τ̂√
τ̂

= Cτ. (138)

Cτe−(γ2
∗−δ)τ ≤ Ce−(γ2

∗−2δ)τ .

This gives

e−(γ2
∗−δ)τ

∫ τ

0

dτ̂

∫ ∞

0

dξ0
e−

(ξ−ξ0)2

4τ̂

√
τ̂

≤ Ce−(γ2
∗−2δ)τ .

In view of (136), the estimate (135) becomes

|Φ− Φ̃| ≤ Cmin{τe−(γ∗−δ)ξ, τe−(γ2
∗−δ)τ}.

If (γ2
∗ − 2δ)τ ≥ (γ∗ − 2δ)ξ, then

|Φ− Φ̃| ≤ Cτe−(γ2
∗−δ)τ ≤ Ce(−γ2

∗−2δ)τ .

Otherwise, if (γ2
∗ − 2δ)τ ≤ (γ∗ − 2δ)ξ, then

|Φ− Φ̃| ≤ Cτe−(γ∗−δ)ξ ≤ Cξe−(γ∗−δ)ξ ≤ Ce−(γ∗−2δ)ξ.

These inequalities and (120) imply (119).
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Lemma 4. Under the conditions of Lemma 3, if for some positive constant C
and some small δ > 0

|η′′(τ)| ≤ Ce−(γ2
∗−δ)τ (139)

and
|bτ | ≤ Cmin{e−(γ2

∗−δ)τ , e−(γ∗−δ)ξ}, (140)

then the pointwise estimate

|Φτ | ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ} (141)

holds true.

Proof. We differentiate with respect to τ the solution Φ = Φ̃ + (Φ− Φ̃), where
Φ̃ is from (120), so

Φ̃τ = −Φ0(ξ)(γ
2
∗ − δ)e−(γ2

∗−δ)τ + [η′(τ)+ η(0)(γ2
∗ − δ)e−(γ2

∗−δ)τ ]

(
−e

−(γ∗−δ)ξ

γ∗ − δ

)
.

We use (117) and (116) to obtain

|Φ̃τ | ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ}. (142)

and Φ− Φ̃ is from (127), so
Φ− Φ̃ =

=
1

2
√
π

d

dτ

∫ τ

0

dτ̂

∫ ∞

0

dξ0
1√
τ̂

[
e−

(ξ−ξ0)2

4τ̂ + e−
(ξ+ξ0)2

4τ̂

]
Ψ̂(ξ0, τ, τ̂). (143)

In (143) we have
2
√
π(Φ− Φ̃)τ =

=

∫ ∞

0

dξ0
1√
τ

[
e−

(ξ−ξ0)2

4τ + e−
(ξ+ξ0)2

4τ

]
Ψ̂(ξ0, τ, τ)+

+

∫ ∞

0

dξ0

∫ τ

0

dτ̂√
τ̂

[
e−

(ξ−ξ0)2

4τ̂ + e−
(ξ+ξ0)2

4τ̂

]
d

dτ
Ψ̂(ξ0, τ, τ̂), (144)

where, by (126), we have

Ψ̂(ξ0, τ, τ̂) =
w0,τ (0, τ)

w0,τ (0, τ − τ̂)
b̂(ξ0, τ − τ̂),

Ψ̂(ξ0, τ, τ) =
w0,τ (0, τ)

w0,τ (0, 0)
b̂(ξ0, 0).

By (129), we have

|Ψ̂(ξ0, τ, τ)| ≤ Cmin{e−(γ2
∗−δ)τ , e−(γ∗−δ)ξ0−(γ2

∗−δ)τ} ≤ Ce−(γ∗−δ)ξ0−(γ2
∗−δ)τ .

(145)
We combine (145) with (128) and (134) with τ̂ replaced by τ , which gives∣∣∣∣∫ ∞

0

dξ0
1√
τ

[
e−

(ξ−ξ0)2

4τ + e−
(ξ+ξ0)2

4τ

]
Ψ̂(ξ0, τ, τ)

∣∣∣∣ ≤
≤ Ce−(γ2

∗−δ)τ 2√
τ

∫ ∞

0

dξ0e
− (ξ−ξ0)2

4τ −(γ∗−δ)ξ0 ≤
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≤ Ce−(γ2
∗−δ)τ 2√

τ

e−(γ∗−δ)ξ0+(γ2
∗−δ)τ

1
2
√

τ

= Ce−(γ∗−δ)ξ0 . (146)

On the other hand, by (137), we have∣∣∣∣∫ ∞

0

dξ0
1√
τ

[
e−

(ξ−ξ0)2

4τ + e−
(ξ+ξ0)2

4τ

]
Ψ̂(ξ0, τ, τ)

∣∣∣∣ ≤ Ce−(γ2
∗−δ)τ 2√

τ

∫ ∞

0

dξ0e
− (ξ−ξ0)2

τ ≤

≤ Ce−(γ∗−δ)τ . (147)

Combining (146) and (147), we obtain∣∣∣∣∫ ∞

0

dξ0
1√
τ

[
e−

(ξ−ξ0)2

4τ + e−
(ξ+ξ0)2

4τ

]
Ψ̂(ξ0, τ, τ)

∣∣∣∣ ≤ Cmin{e−(γ2
∗−δ)τ , e−(γ∗−δ)ξ} ≤

≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ}. (148)

Next, we estimate

d

dτ
Ψ̂(ξ0, τ, τ̂) = b̂(ξ0, τ − τ̂)

d

dτ

(
w0,τ (0, τ)

w2
0,τ (0, τ − τ̂)

)
+

+
w0,τ (0, τ)

w0,τ (0, τ − τ̂)
b̂τ (ξ0, τ − τ̂).

Recall (125) and that the proof of Lemma 1 yields a similar estimate for
d

dτ

(
w0,τ (0, τ)

w0,τ (0, τ − τ̂)

)
.

Combining this with (118), (140), then differentiating (121) with respect to τ
and using (116) and (139), we obtain∣∣∣∣ ddτ Ψ̂(ξ0, τ, τ̂)

∣∣∣∣ ≤ Cmin{e−(γ2
∗−δ)τ , e−(γ∗−δ)ξ}.

In view of this estimate, comparing the term featuring in (144)∣∣∣∣∫ ∞

0

dξ0

∫ τ

0

dτ̂√
τ̂

[
e−

(ξ−ξ0)2

4τ̂ + e−
(ξ+ξ0)2

4τ̂

]
d

dτ
Ψ̂(ξ0, τ, τ̂)

∣∣∣∣
with (127) and (129), in a similar manner as in the proof of Lemma 3 we obtain∣∣∣∣∫ ∞

0

dξ0

∫ τ

0

dτ̂√
τ̂

[
e−

(ξ−ξ0)2

4τ̂ + e−
(ξ+ξ0)2

4τ̂

]
d

dτ
Ψ̂(ξ0, τ, τ̂)

∣∣∣∣ ≤
≤ Cmin{e−(γ2

∗−2δ)τ , e−(γ∗−2δ)ξ}. (149)

Combining the estimates from (148) and (149) with (144) and (142), the proof
is completed.

Corollary 3.3. For a positive constant C and sufficiently small δ, the solution
of (84) satisfies the pointwise estimate

|q1| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ}. (150)
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Proof. By (45) for v1, we have that q1(ξ, 0) satisfies (117) of Lemma 3. By (54)
for w0, we have that ∂q1

∂ξ (0, τ) satisfies (116) of the Lemma 3. By (85), the
right-hand side of the equation for q1 satisfies (118) of the Lemma 3. Now we
check (112) for the initial and boundary conditions of (84)

−∂w0

∂x
(0, 0) = −∂v1

∂ξ
(0, 0). (151)

This is the compatibility condition at the corner (0, 0) derived as (86). There-
fore, we have (150).

Corollary 3.4. The following estimate holds true for the first order derivative
of the corner layer function term q1 :∣∣∣∣∂q1∂ξ (ξ, τ)

∣∣∣∣ ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ}, (152)

where C is some positive constant and δ > 0 is sufficiently small.

Proof. The first derivative q1,ξ is the solution of the problem[
∂

∂τ
− ∂2

∂ξ2
+ λ(τ)

]
q1,ξ = −v1,ξ(ξ, 0)Fs(0, 0, ·)

∣∣w0(0,τ)

0
, (153)

where |v1,ξ(ξ, 0)| is exponentially decaying in ξ and
∣∣∣Fs(0, 0, ·)

∣∣w0(0,τ)

0

∣∣∣ is expo-
nentially decaying in τ, thus satisfying (118), subject to the initial condition

q1,ξ(ξ, τ)|τ=0 = −v1,ξ(ξ, t)|t=0, (154)

where |v1,ξ(ξ, 0)| + |v1,ξξ(ξ, 0)| ≤ Ce−(γ∗−δ)ξ, thus it satisfies (117), and the
Dirichlet boundary condition

q1,ξ(ξ, τ)|ξ=0 = −w0,x(x, τ)|x=0, (155)

which satisfies | − w0,x(0, τ)| + | − w0,xτ (x, τ)| ≤ Ce−(γ2
∗−δ)τ . Thus (116) is

satisfied. By (151), the problem for q1,ξ satisfies the zero-order compatibility
condition at (0, 0). The analogue of Lemma 3 for the problem with Dirichlet
boundary conditions is then applied to the problem for q1,ξ.

Lemma 5. The following derivative estimates for the term q1 of the corner
layer function hold true:

a) |q1,ξξ(ξ, τ)| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ},

b) |q1,τ (ξ, τ)| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ},

c) |q1,ττ (ξ, τ)| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ},

d) |q1,ξξξ(ξ, τ)| ≤ Cmin{e−(γ2
∗−2δ)τ , e−(γ∗−2δ)ξ}.

where in each case C is some positive constant and δ > 0 are sufficiently small.
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Proof. a) The second- order derivative q1,ξξ(ξ, τ) is the solution of the problem(
∂

∂τ
− ∂2

∂ξ2

)
q1,ξξ(ξ, τ) + λ(τ)q1,ξξ(ξ, τ) = −v1,ξξ(ξ, 0)Fs(0, 0, ·)|w0(0,τ)

0 , (156)

with the initial condition

q1,ξξ|τ=0 = −v1,ξξ|t=0, (157)

which is exponentially decaying in ξ. Also, | − v1,ξξ|τ=0| + | − v1,ξξξ|τ=0| is
exponentially decaying in ξ, thus it satisfies (117). By extracting the second
term from equation (153), we obtain for (156) the Neumann boundary condition

∂

∂ξ
q1,ξξ

∣∣∣∣ξ=0 =

[(
∂q1,ξ

∂τ
+ λ(τ)q1,ξ

)
+ v1,ξ(ξ, 0)Fs(0, 0, ·)

∣∣w0(0,τ)

0

]∣∣∣∣
ξ=0

,

i.e.

∂

∂ξ
q1,ξξ

∣∣∣∣ξ=0 =

[
− ∂

2w0

∂τ∂x
− λ(τ)

∂w0

∂x

]∣∣∣∣
x=0

+ v1,ξ(0, 0)Fs(0, 0, ·)
∣∣w0(0,τ)

0
(158)

≤ Ce−(γ2
∗−δ)τ ,

thus satisfying (116). The right-hand side of (156) satisfies (118). We now check
whether η(0) = Φ′0(0), i.e. whether[(

− ∂
2w0

∂τ∂x
− λ(τ)

∂w0

∂x

) ∣∣∣x=0 + v1,ξ(0, 0)Fs(0, 0, ·)
∣∣w0(0,τ)

0

]∣∣∣∣
τ=0

= −v1,ξξξ|t=0.

(159)
Remind the problems for w0 :{

w0,τ + F (x, 0, w0) = 0

w0(x, 0) = φ(x)− u0(x, 0)
(160)

and for v1 : {
−v1,ξξ + v1Fs(0, t, 0) = 0

v1,ξ(0, t) = u0,x(0, t).
(161)

Recall also that
λ(τ) = Fs(0, 0, w0(τ)).

By (160),

− ∂

∂x

∂w0

∂τ

∣∣
(0,0)

= Fx(0, 0, w0(0, 0)) + Fs(0, 0, w0(0, 0))w0,x(0, 0), (162)(
− ∂

2w0

∂τ∂x
− λ(τ)

∂w0

∂x

) ∣∣
x = 0,
τ = 0

=

= Fx(0, 0, w0(0, 0)) + Fs(0, 0, w0(0, 0))w0,x(0, 0)− Fs(0, 0, w0(0, 0))w0,x(0, 0) =

= Fx(0, 0, w0(0, 0)). (163)

From (180) we obtain

v1,ξ(0, 0)Fs(0, 0, ·)
∣∣w0(0,0)

0
= −∂u0

∂x
(0, 0)Fs(0, 0, ·)

∣∣w0(0,0)

0
(164)

26



and
−v1,ξξξ(0, 0) = −v1,ξ(0, 0)Fs(0, 0, 0) = u0,x(0, 0)Fs(0, 0, 0). (165)

In view of (163), (164) and (165), we see that (159) is equivalent to

Fx(0, 0, w0(0, 0))− u0,x(0, 0)Fs

∣∣w0(0,0)

0
= u0,x(0, 0)Fs(0, 0, 0);

or
Fx(0, 0, w0(0, 0))− u0,x(0, 0)Fs(0, 0, w0(0, 0)) = 0;

or, recalling the definition F (x, t, s) = f(x, t, u0(x, t) + s) and the condition
u0(0, 0) = φ(0)

fx(0, 0, φ(0)) = 0,

which is satisfied by assumption (11). After cancellations and using u0,x(0, 0) =
0, this is

fx(0, 0, u0(0, 0)+w0(0, 0))+[u0,x(0, 0)+w0,x(0, 0)]fu(0, 0, u0(0, 0)+w0(0, 0)) = 0,
(166)

where
u0(0, 0) + w0(0, 0) = φ(0) = 0

and
u0,x(0, 0) + w0,x(0, 0) = φx(0) = 0.

Hence (166) is equivalent to

fx(0, 0, 0) = 0, (167)

which is satisfied by (11) and φ(0) = 0. Thus (159) is established.
From (86) we have

v1,ξ(0, 0) = w0,x(0, 0).

Thus we apply Lemma 3.
b) For |q1,τ |, we use the equation from (84)

|q1,τ | ≤
∣∣∣∣∂2q1
∂ξ2

∣∣∣∣+ |q1λ(τ)|+
∣∣∣v1(ξ, 0)Fs(0, 0, ·)

∣∣w0(0,τ)

0

∣∣∣ ,
where |λ(τ)| ≤ C and we use (85) and the estimates that we have obtained for
|q1| in (150) and for |q1,ξξ| in a).
c) We have

q1,ττ = q1,ξξτ −
dλ

dτ
q1 − λq1,τ − v1

d

dt
Fs(0, 0, ·)

∣∣w0(0,τ)

0
. (168)

Applying Lemma 4 for Φ = q1,ξξ, we have that

q1,ξξτ =
dΦ

dτ

satisfies (141). In (168) we have that
∣∣dλ
dτ

∣∣ , |λ| and
∣∣∣ d
dtFs(0, 0, ·)

∣∣w0(0,τ)

0

∣∣∣ are
bounded. For |q1|, |q1,τ | and |v1| we use the estimates previously obtained.
d) The third-order derivative satisfies the problem[

∂

∂τ
− ∂2

∂ξ2

]
q1,ξξξ(ξ, τ) + λ(τ)q1,ξξξ(ξ, τ) = −v1,ξξξ(ξ, 0)Fs(0, 0, ·)

∣∣w0(0,τ)

0
,
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where | − v1,ξξξ(ξ, 0)| is exponentially decaying in ξ and |Fs(0, 0, ·)
∣∣w0(0,τ)

0
| is

exponentially decaying in τ, thus satisfying (118), with the initial condition

q1,ξξξ(ξ, 0) = −v1,ξξξ(ξ, 0)

which satisfies (117) and the Dirichlet boundary condition q1,ξξξ(0, τ) given by
the right-hand side of (158). This satisfies (116). Condition (112) is satisfied
due to (159).

3.4 Perturbed asymptotic expansion and existence of so-
lution

Using the stretched variables

ξ = x/ε, τ = t/ε2,

we set the super-solution as

β(x, t, p) = u0(x, t)+εv1(ξ, t)+w̃0(x, τ, p)+εq1(ξ, τ)+C0p[e
−c0x/ε+e−c0(1−x)/ε+1]

:= uas +W + C0p[e
−c0x/ε + e−c0(1−x)/ε + 1], (169)

with p a sufficiently small perturbation parameter which is positive for the
super-solution and negative for the sub-solution, C0, c0 are positive constants
and

W = W (x, τ ; p) = w̃0(x, τ ; p)− w0(x, τ). (170)

By (54),

|W | ≤ p
∂w̃0(x, τ ; p̃)

∂p
= e−(γ2

∗−δ)τO(p). (171)

Due to
uas(x, 0) = φ(x),

condition (15) of Definition 2.1 is satisfied:

α(x, 0) ≤ φ(x) ≤ β(x, 0) ∀ x ∈ [0, 1]. (172)

Denote the last term in (169) by

ρ = e−c0x/ε + e−c0(1−x)/ε + 1, (173)

which has the property
1 ≤ ρ ≤ 3. (174)

The rapidly decaying function C0pρ has been chosen to capture the Neumann
boundary conditions. (In the case of a similar problem with Dirichlet boundary
conditions [2], a term of the form C0p would feature instead).

Lemma 6. Let F be given by (1), uas, β by (169) and ρ by (185). Then

1. Fuas = O(ε2);

2. Fβ =
= C0pρFs(x, t, 0)+pw0(1+C0ρλ)−pc20[e−c0x/ε +e−c0(1−x)/ε]+O(ε2+p2),
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where λ = λ(x, t) = Fss(x, t, ϑw0) for some ϑ = ϑ(x, t) ∈ (0, 1).

Proof. 1. Write

Fuas = ε2(uas,t − uas,xx) + f(x, t, uas) =

= ε2(u0,t + εv1,t + w0,t + εq1,t − u0,xx − εv1,xx − w0,xx − εq1,xx)+

+F (x, t, εv1(ξ, t) + w0(x, τ) + εq1(ξ, τ)). (175)

where
F [u0(x, t)] = O(ε2). (176)

From
F(u0 + w0) = O(ε2)− F (x, t, w0) + F (x, t, w0) = O(ε2). (177)

we have
F [u0(x, t) + w0(x, τ)] = O(ε2). (178)

If v1(ξ, τ) is a solution of
−∂

2v1
∂ξ2

+ v1Fs(0, t, v0) = −ξFx(0, t, v0)

v1(0, t) = 0

v1(∞, t) = 0.

(179)

then it is also a solution of{
−v1,ξξ + v1Fs(0, t, 0) = 0

v1,ξ(0, t) = u0,x(0, t),
(180)

From (79)
F(u0 + v0 + εv1) = O(ε2), (181)

where v0 = 0, we obtain

F [u0(x, t) + εv1(ξ, t)] = O(ε2). (182)

Recall (82):

ε(q1,τ − q1,ξξ) + F (εξ, ε2τ, ·)
∣∣[εv1(ξ,ε2τ)]+w0(εξ,τ)+εq1(ξ,τ)

[εv1(ξ,ε2τ)] ; w0(εξ,τ)
= O(ε2).

Combining this with (176), (178), (182), we obtain

|Fuas| = O(ε2).

2.Write
Fβ = F

∣∣β
uas

+ Fuas.

We analyze

Fβ −Fuas = ε2
[
∂

∂t
− ∂2

∂x2

]
(W + ρ) + F (x, t, ·)

∣∣β
uas
, (183)

where

ε2
[
∂

∂t
− ∂2

∂x2

]
W = −WFs(x, t, w0) + pw0 +O(ε2 + p2) (184)
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and ρt = 0 yields

ε2
[
∂

∂t
− ∂2

∂x2

]
C0pρ = ε2C0p(−ρxx) = −pC0c

2
0[e

−c0x/ε + e−c0(1−x)/ε],

so

ε2
[
∂

∂t
− ∂2

∂x2

]
ρ ≤ 2pc20. (185)

We have
F (x, t, ·)

∣∣β
uas

= F (x, t, ·)
∣∣β
uas+W

+ F (x, t, ·)
∣∣uas+W

uas
, (186)

where from εv1 +W + εq1 = O(ε+ p) we obtain

F (x, t, ·)
∣∣β
uas+W

= F (x, t, ·)
∣∣uas+W+C0pρ

uas+W
= C0pρ[Fs(x, t, w0) +O(ε+ p)] =

= C0pρ[Fs(x, t, 0) + λw0] +O(ε2 + p2). (187)

The second term in (186) is

F (x, t, ·)
∣∣uas+W

uas
= F (x, t, ·)

∣∣εv1+w0+εq1+W

εv1+w0+εq1
= WFs(x, t, εv1+w0+εq1)+O(p2) =

= WFs(x, t, w0) +O(|W [ε(v1 + q1)]|+ p2), (188)

where |W | = O(p) and ε(v1 + q1) = O(ε), so

O(|Wε(v1 + q1)|+ p2) = O(ε2 + p2).

Combining (183), (184), (185), (186), (187) with Fuas = O(ε2), we obtain

Fβ = C0pρFs(x, t, 0)+ pw0(1+C0ρλ)− pc20[e−c0x/ε + e−c0(1−x)/ε] +O(ε2 + p2).

Corollary 3.5. For all |p| ≤ p0 there exist some positive constants c0, C0 and
C1 such that

Fβ

{
≥ C0pγ2

2 − C1(ε
2 + p2) if p > 0

≤ −C0|p|γ2

2 + C1(ε
2 + p2) if p < 0.

(189)

Proof. In the term pw0(1 + C0ρλ) we have 1 ≤ ρ ≤ 3. and w0 ≥ 0. Choose C0

sufficiently small, such that

1 + C0ρλ ≥ 1− 3C0|λ| ≥ 0,

where we used (174). Then for p > 0

Fβ ≥ C0pγ
2 − 2pc20 − C1(ε

2 + p2).

Choosing c0 sufficiently small, such that

C0γ
2

2
− 2c20 ≥ 0,

we obtain (189) for p > 0. The case p < 0 is similar.
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We are now able to prove that β set by (169) satisfies Definition 2.1 of a
super-solution, leading to the final result of existence of solution.

Theorem 3.6. There exist a sufficiently small ε0 > 0 such that for all ε ≤ ε0,
a solution u of problem (1), (2), (3) exists and is unique. Furthermore, for this
solution and its asymptotic expansion we have

|u(x, t)− uas(x, t)| ≤ Cε2 ∀ (x, t) ∈ [0, 1]× [0, T ]. (190)

Proof. We prove that β defined by (169) is super-solution and α defined by
α(x, t; p) = β(x, t;−p), where 0 < p < p̄, is sub-solution of problem (1), (2), (3).
Set p̄ = C2ε

2, where C2 ≥ 4C1/(C0γ
2) so that C0p̄γ2

4 ≥ C1ε
2. We seek to have

C0p̄γ
2

4
≥ C1p̄

2,

so

p̄ ≤ C0γ
2

4C1
,

which is guaranteed by choosing ε0 sufficiently small. Then, by Corollary 3.5
we obtain

Fβ(x, t;−p̄) ≤ 0 ≤ Fβ(x, t; p̄). (191)

Condition (15) is satisfied due to (172).
We shall now deal with the boundary condition at x = 0. We evaluate uas,x(x, t)
in x = 0 and x = 1 :

uas,x(0, t) = u0,x(0, t) + w0,x(0, τ) + v1,ξ(0, t) + q1,ξ(0, τ) = 0, (192)

as u0,x(0, t)+v1,ξ(0, t) = 0 and w0,x(0, τ)+q1,ξ(0, τ) = 0. Similarly, uas,x(1, t) =
0. To prove (14), we note that for all |p| ≤ p0 we have

∂β

∂x

∣∣
x=0

=
∂

∂x
(uas +W + C0pρ)

∣∣
x=0

=
∂

∂x
W |x=0 + C0pρx|x=0 ,

where ∣∣∣∣ ∂∂xW ∣∣x=0

∣∣∣∣ ≤ CW |p|

and
−ρx

∣∣
x=0

=
c0
ε

(1− e−c0/ε) ≥ c0
2ε

for sufficiently small ε0. Choosing ε0 sufficiently small, we obtain for p > 0

−ε∂β(x, t; p)

∂x

∣∣
x=0

≥ C0c0p

2
− εCW p >

C0c0p

4
> 0. (193)

Similarly,

−ε∂β(x, t;−p)
∂x

∣∣
x=0

≤ 0 ≤ −ε∂β(x, t; p)

∂x

∣∣
x=0

, ∀p > 0, (194)

and
ε
∂β(x, t; p)

∂x

∣∣
x=1

≥ 0 ≥ ε
∂β(x, t;−p)

∂x

∣∣
x=1

, ∀p > 0. (195)
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Comparing (193), (194) and (195) with (14), (191) with (13), and having (172)
and also (12), we obtain that β(x, t; p̄) is a super-solution and β(x, t;−p̄) is a
sub-solution as defined in Definition 2.1; between them, applying [7, Theorem
5.2], we have existence of a solution u of (1), (2), (3):

β(x, t;−p̄) ≤ u(x, t) ≤ β(x, t; p). (196)

Furthermore, Proposition 1.1 implies that this a unique solution. Since, by (169)
and (171), we have

β(x, t;±p̄) = uas +O(p̄) = uas +O(ε2),

then |u− uas| ≤ Cε2.
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