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Abstract

The boundary function method for a singularly perturbed time dependent reaction-
diffusion problem with Neumann boundary conditions is modified by means of a small pa-
rameter (p) featuring in the layer functions, which allows the indication of their exponential
decay rates. These functions derived by first order perturbation theory are the ingredients
of upper and lower solutions providing existence of solution in the absence of a maximum
principle. This solution is also unique.

Outline

The singular perturbation approach is an analytical tool for systems in which
some states change faster than others, in that a full system can be divided into
two time-scale systems - reduced (slow) and layer (fast) models, for instance,
processes involving both electrical and mechanical phenomena, where electri-
cal phenomena evolve much faster than the mechanical ones. In electroanalyti-
cal chemistry, singularly perturbed problems model diffusion processes compli-
cated by chemical reactions. In physical chemistry or chemical engineering the
singular perturbation parameters multiplying the highest derivatives describe the
diffusion coefficients of substances, while reaction terms vary with temperature
or chemical concentration in a reactor and their sign denote exothermic or en-
dothermic reactions, respectively [5]. Discrepancies between magnitude orders
of different components of a phenomenon are described by small parameters



within the mathematical model (singular perturbation parameters). They in-
duce extremely narrow regions in the solution, namely layers, which are difficult
to compute by standard methods. Based on perturbation theory, the boundary
function method of Vasil’eva [10] prescribes problems for functions depending
on rescaled variables which describe the layers.

We begin our analysis with the uniqueness of the solution. In Section 2 we
define the lower and upper solutions. An asymptotic analysis is performed in
Section 3 and perturbing the asymptotic expansion from [11], the upper and
lower solutions are set. The main result encompassed by Theorem 3.6 is the
existence of solution in a vicinity of the asymptotic expansion.

1  Uniqueness of solution and assumptions

For sufficiently smooth real functions u = u(z,t), p(z) and f = f(z,t,u), con-
sider the non(semi)-linear initial-value problem with Neumann boundary con-
ditions

Fu = e*[uy — upy] + f,t,u) =0, (z,t) € (0,1) x (0,77, (1)
u(z,0) = p(z), x € [0,1], (2)
ou ou
%(Oat):%(lvt):(h t€(07T]. (3)

The small positive parameter € < 1 induces initial and corner layers and a weak
boundary layer at x = 0. For simplicity we neglect the boundary layer at x = 1.

Proposition 1.1. Problem (1), (2), (3) has at most one solution.

Proof. Assume that 4 and u are two solutions of (1), (2), (3). Set d = u — q,
which is solution of the problem

52[dt7dmac]+f(xat7y)7f(xat>ﬂ) :Oa (‘r7t) € (071) X (OaTL (4)
d(.Z',O) =0, U [07 1]7 (5)

od ad
om0="200, teT] (6)

Further setting
1
p(z,t) = / Julz,t,u+ sd)ds,
0
by the mean value theorem, (4) yields

2
52[3 B

For some positive constants K7 and Ko, which may depend on ¢ and T, |u| and
|a| are at least K7, hence f, > —Kj in [0,1] x [0,T] x [-K71, K;]. By means of



—tKo/e?

the transformation y := de , which satisfies

o 9
2\ - _ =
{& 6332} y+ (K2 +py=0
y(z,0) =0
dy %y
i —0=9%911
ax(()’t) 0 8:1:( 1)
the maximum principle [8] yields y = 0 for all (z,1).
O
We consider the problem (1), (2), (3) under the following assumptions:
Al. The reduced equation, obtained by setting ¢ = 0 in (1)
flz, t,u(x,t) =0, (x,t) € (0,1) x (0,T) (7)

has a sufficiently smooth solution ug(x,t) that is stable, i.e., for some positive v
fulw,tuo(,1) >9* >0V (,1) € [0,1] x [0, T]; (8)

A2. The initial condition belongs to the domain of attraction of the reduced
solution wug :

f(z,0,ug(z,0) + s)
s

>0 Vse (0,0(x) —uo(z,0)], xel0,1], (9)

with ¢(z) — ug(x,0) > 0, otherwise (9) is satisfied for s € [p(z) — ug(z,0),0).
We further assume the compatibility conditions

¢z (0) =0, ¢a(1) =0. (10)
Differentiating (1) with respect to x, we obtain
€2 (U (T, 1) — Uppe (7, 1)) + folz, t,u(z, b)) + fulz, t,u(e, t))ug (z,t) =0,

where we set (z,t) = (0,0) and use (3) and the first condition in (10). Thus,
skipping the first term of order O(g?), we also impose the compatibility condition

f2(0,0,¢(0)) = 0. (11)

2 Sub-solutions and super-solutions

Definition 2.1. Let «a(x,t) and ((z,t) be functions continuously mapping
[0,1] x [0,T] into R. Function «(z,t) is sub-solution of the problem (1), (2),
(3) and B(x,t) is super-solution of the problem if:

a(z,t) < B(z,1) V(x,t) € [0,1] x [0, T7; (12)
Fa <0, FB>0 V(Z‘,t)E[O,l]X[(LT]; (13)
—%(O,t) <0< —%(O,t), g%(l,t) <0< gfi(lj) Vte [O,T}; (14)
a(z,0) < ¢(z) < B(z,0) Vz e [0,1]. (15)



Adapting Pao’s theorem from [7], we prove that existence of sub-solutions
and super-solutions provides existence of a unique solution of problem (1), (2),
(3) located between them.

Theorem 2.1. Ezistence of sub-solutions o and super-solutions 3 provides ex-
istence of a solution u(x,t) of the problem (1), (2), (3), with

a(z,t) <wu(z,t) < B(z,t). (16)
Proof. While w is in the sector [«, 3], the function f,(z,¢,u) is bounded by

K(z,t) = max_|[fy(z,t,u)]

u€la,B]

because it is continuous. Then for all (z,t) € (0,1) x (0,7), and , o < uy <
up < ﬂv
f($7t,U1) *f(ﬁ!?,t,Ug) > 7(“’1 7u2)K($7t)' (17)

Function K (z,t) being continuous,
B(z,t,u) = K(z,t)u — f(x,t,u) (18)

is also continuous in [0,1] x [0,7] X [, 5] and monotone nondecreasing in u €

o, 6] :
B(x,t,u1) — B(z,t,uz) >0, [B>u >u > . (19)

Following [7], we define the operator
Lu] = 82[ut — U] + K(z,t)u (20)

and consider the differential equation
Lu] = B(z,t,u) (21)

with B given by (18), which is equivalent to (1), and the same initial and
boundary conditions

ou ou

Z200.1) = == (1.1) = = . 22

Mo =20 =0, u0,2) =) (22)
The sub-solutions and super-solutions of the problem (21), (22) must satisfy the
same conditions as in Definition 2.1 for (1), (2), (3), with the only difference
that in (13) the operator F is replaced by L. We construct the sequences {a(k)}
by

Lla®™] = B(z,t,a* V), o® =¢q (23)
and {3*)} by
LW = B(x,t,8%7Y), O =p, (24)
where k£ = 1,2, ..., with the boundary and initial conditions
oa k) oa®)
t) = 1,t) =
ax ) am ( ) ) 07
a®(0,2) = (x), (25)



9Bk B
or 7T oz (L,1)

58 (0,2) = (x), (26)

and refer to them as lower and upper sequences.

We prove that

(i) Each a®) is a sub-solution and each S*) is a super-solution; the lower and
upper sequences possess the monotone property

=0,

a <o) <o) < g+l < g < 5 in [0, 1] x [0, 7. (27)

Let w = 80 — g = g — g In (13) of Definition (2.1) we replaced the
operator F by L, yielding

Llw] = L[F] - B(x,t,5”) > 0
From (24) and (26)

w _ 9B

apm ow s apm

< = = — >
. (0,t) <0, c%c(l’t) Bm(l’t) . (1,t) >0,

w(:r,O) :ﬁ(m,O) (I)

By the maximum principle [8, ch. 3|, w(z,t) > 0,
a® > o Let w® = M — oM From (23), (24), (2
property of B in (19) we have

55 (0:1) =

BM < O Similarly,
(26) and the monotone

SO
5),
L{w™M] = B(z,t, ) — B(xz,t,a?) > 0,

dw™ ow™
o (Ovt) =0, oz (Lt) =0,

w(2,0) = p(z) — p(x) =0

and from the maximum principle it follows that w™) > 0 in [0, 1] x [0, T]. Hence

a® <o <M <3O in0,1] x [0,T].
Assume now by induction that
a* V(1) < o (z,t) < W (2,1) < B (a,) in [0,1] x [0, 7.

Then by (23), (24), (25), (26) and from the monotone property of B in (19),
wh® = gk) — g+1) gatisfies

Lw® = B(z,t, 3% V) — B(x,t,3%) >0
and the boundary and initial conditions as for w"). Hence w*) > 0 and
ﬂ(’H—l) < ﬂ(k).

Similarly,
ak+D) > o)

ﬁ(kJrl) > k1)



By the principle of induction, assertion (4) is established for all k.
To prove that each element of the lower sequence is sub-solution, from (23) and
(25) we have

2l — o] = K(z,)(a*D — a®) — f(z,t,a*"V)

= K(z,t)(a* ™ = a®) 4 [f(x,t,0®)) = f(x,t,a* )] = f(x,t,a*)),
so by (17) and (27)

Fo® =2[a® — a®] 4 f(z,t,a®) <0.

Hence (13) is satisfied. Due to the boundary and initial conditions (25), (14)
and (15) are satisfied by a(*).
From (24) and (26) we have

161 — B = Ko, ) (8% = 59) — f(a,1,647Y)

= K(B*D — W) 4 [f(,t,8%) — f(z,t, 857 = f(a,t, M),
so by (17) and (27)

FBW =3 — g + f(a,t,5%)) > 0.

From the boundary and initial conditions (26) it follows that (14) and (15) are
satisfied by 8*) and from (27), that a®) < gk,
Therefore, by Definition (2.1), a®) is sub-solution and S*) is super-solution of
(1), (2), (3).
(if) The pointwise limits

klingo BE) (2, t) and lim o™ (x,t) (28)

k—oo
exist and satisfy in [0, 1] x [0, T

alz,t) < a®(z,t) < oD (z,t) < klim o (z,1) <

< lim §O(z, ) < B4 (,1) < B0 (2,1) < Bla, 1), (29)

Indeed, since by (i) the sequence {#*)} is monotone nonincreasing and is
bounded from below and the sequence {a(®)} is monotone nondecreasing and
is bounded from above, the pointwise limits of these sequences exist and satisfy
(29).

(iii) If the limits (28) are solutions of (1), (2), (3), then

klim AR (z,t) = klim o (z,1)

and is the solution in the [«, 3].
Indeed, let
d= lim o™ (z,t) - Jim B (z,t) < 0.

k—oo

Then d satisfies the relation

EQ[dt - dmaﬂ] = 7f($7ta Oé) + f(l',t7ﬁ) 2



> —K(z,t)[ lim %) (z,t) — lim o (z,t)] = K(z,t)d
k—o0 k—o0
and the boundary and initial conditions

od od
- = —(1.%) = f T = fi 1].
Gx(o’t) 0, ax( ,t)=0 fortel0,T7; d(z,0) =0 forz € [0,1]
By the maximum principle d > 0 in [0, 1] x [0, T}, yielding

lim %) (z,t) = lim o™ (z,1).
k—o00 k—o00

3 Asymptotic analysis

We construct the sub-solutions and super-solutions by perturbing the asymp-
totic expansion from [11]. Assume that

8u0

—(1,t) =0 30

01, =0, (30)
so there is no boundary layer at x = 1. We shall see that there is a weak

boundary layer at x = 0. Performing a variable stretching
E=x/c and T =1t/

and denoting by vy and v; the terms of the boundary layer function, gy and ¢
the terms of the corner function and wq the initial layer function, we write an
asymptotic expansion of order one of the solution:

Uqs = UO(xat) + UO(& t) +51}1(5? t) + U}O(.Z',T) + QO({{’T) + EQI(‘faT)' (31>

We define the functions

F(z,t,s):= f(z,t,uo(z,t) +5), F(x,t,sp) = f(z,t,uo(x,t) +s) —ps. (32)

The perturbed function F , with [p| < ¢, is used in the setting of perturbed
zero-order terms of the boundary-layer and initial-layer functions, which will be
included in the construction of sub-solutions - for negative small values —|p| -
and super-solutions - for positive small values |p|. The following properties of I’
yield from ug being a reduced solution:

F(z,t,s) = F(z,t,0) + O(s) = O(s), (33)
Fo(z,t,0) = Fyp(2,¢,0) = Fi(z,¢,0) =0, (34)

giving
|Fy(z,t,8)| < Cls|, |Fuz(z,t,s)| < Cls|, |Fi(z,t,s)| < Cls|. (35)

with C a positive constant. Analogously, F(x, t,0) = 0 implies Fy(x,t,0) = 0
and Fi(z,t,0) =0, so Fy(x,t,8) — Fy(x,t,0) = sFys(x,t,§) and

|Fy(x,t,8)| < Cls|, |Frala,t,s)| <Clsl, |Fi(z,t,8)] <Cls|.  (36)



For any differentiable function g, with the notations

glo=90)—gla), g, =3(c) - g(b) - g(a), (37)
g(a+1b) —g(a) — g(b) +g(0) = abg"(6),
if g(0) = 0, then
gloy’ = O(labl).

Therefore, F'(z,t,0) = 0 implies

F(a,t,)[22" = O(|ab]). (38)

3.1 Boundary-layer function

From (31) and the left boundary condition we obtain

dug 19(vy + ev1) B
ie.,
1 81)0 8v1 (911/0
S2000,8) + =2(0,8) = ——2(0,¢
- G20, + RO = =520 (39)
and equalize the terms in (39) containing same powers of ¢ :
e ! terms : %—?(O,t} =0
&0 terms : %12(0, t) = —%(o, ). (40)

Set the zero-order term of the boundary-layer function vo(€,t) as the solution
of

2
687;20 = F(x,t,v9)
%| _ (41)
o¢ '€=0
UO‘{ﬂoo =0.

Homogeneous boundary conditions in (41) and F(x,¢,0) = 0 imply that vg =0
is solution of (41). This is not the case for a problem with Dirichlet boundary
conditions [9, 2] . Therefore, the boundary-layer component of the asymptotic
expansion is vg + ev; = vy, so we deal with a weak boundary layer.
Now set the boundary layer term of order one vy (&,t) as solution of

2
_8(9;21 +v1F5(0,t,v0(, 1)) + EF2(0,2,v0(0,2)) =0
%| -5 "
5 =0 Ox
N =0.



With (30) and vy vanishing, (42) becomes

82’01
5875'2+U1F8(07t70) :Oa
ou ) (43)
ag |€:O am (07 t)
vl‘f—m)o =0.

For vy we have a nonlinear autonomous ordinary differential equation, whereas
for v1, a linear ordinary differential equation. Assumption Al ensures existence
of vy and existence and asymptotic properties of v;. Using assumption Al to
set

vE = min fu(0,t,u0(0, 1)) > 77, (44)

for some positive § and v we have the upper bounds
¥ | < Cse=O2=9% for ¢ €0,00), k=0, 4. (45)

A proof for this estimate features in [2] for the problem with Dirichlet bound-
ary conditions, while the property Fs(0,¢,0) > 42 in our case simplifies the
argument therein. Also, the following estimates hold true:

Al Ay | Ao
Z 0 0 < —(yL—vPo—0)¢
'afk o | T ap < Cse (46)
for £, >0, k=0,...,4,1=0,1,2;
210 01 ) 4 Pt en) = O() 47)
3 ot 02 EV1 T,1,eV1) = g7).

3.2 Imitial-layer function

Using the stretched variable 7 = t/£2, we construct a initial-layer function and
its perturbation to describe the solution near t = 0. We define wg(z, 7) as the
solution of the initial-value problem

awo

or
and set the perturbed function wo(z, 7; p) with wo(x, 7;0) = woe(x, 7) as solution
of the initial-value problem

= —F(z,0,wp), 7>0, w(z,0)=¢(x)—up(z,0) (48)

0% — P 0ip) 70, (e, 0:p) = pla) —uo(r. ). (49)
The problem for wq
- F
wo, - (x,T) (2,0, wo(z, 7)) (50)
wO(mao) = QD(LL') —’U,O(.Z,O)

has a solution satisfying wg(z, 00) = 0 and the problem for the perturbed initial
layer function

(51)

11}077(1',7',]7) = —F(m707ﬁ)0(m,7’7p)) —l—pﬁ)o(x,T,p)
'lI)O(Zﬂ,O,p) :cp(x) _U’O(‘T70)



also has a solution satisfying lim, . Wo(x,7,p) = 0.

In comparison with a problem with Dirichlet boundary conditions where the
zero-order term of the initial-layer function in x = 0 is 0, for our problem the
initial-layer function in 0 does not vanish. Let

¥6 == min fu(z,0,u(z,0)) >+, (52)

z€[0,1]
where 7 is the positive constant from assumption Al. The non-negative value
7o will feature in the construction of layer-adapted meshes and in the following

Proposition 3.1. (i) There exists py € (0,72) such that for all p with |p| < po,
problem (51) has a solution.

(i) The initial-layer function wo and the perturbed initial-layer function iy
satisfy

wo(z,7) >0, — >0 Vzel0,1] Vr>0. (53)

For an arbitrarily small but fized § € (0,72 —po), there exists a positive constant
Cs such that for k =0,4 and | = 0,2 the following estimate holds true:

i

dp

0o

ook < CyemOB=Iol=0m v pe0,1];¥ 7 >0.  (54)

TN
orl

The proof from [2] for the initial-layer function of the problem with Dirichlet
boundary conditions is fully valid here and is based on the following result which
we shall also use in the next subsection to estimate the derivatives of the corner
function:

Lemma 1. Consider the initial value problem

%w = —¢(w) for 7>0, w(0)=wy >0, w(oo)=0, (55)
Let a sufficiently smooth function ¢ satisfy
#(0)=0, ¢'(0)>0, ¢(s)>0, Vse (0,w (56)

1. Then the problem (55) has a solution 0 < w < wy and for any arbitrarily
small, but fized 6 € (0,¢'(0)), there exists a constant Cs such that

|w| + | + W] < woCsexp[—(¢'(0) — &)7] for 7> 0. (57)

2. Set 3
— if wp>0
smdwm T (58)
e~ OT if Wy =0.

Then the linear problem

d /
XX (W) =9(7) forT >0; x(0) = x0; x(00) =0, (59)
where |xo| < C and

[p(D)| < C(A+7™)o(x,T) for some m >0, (60)

10
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Figure 1: Phase plane: the horizontal axis is w(z, 7); the vertical axis is w'(7). There
exists a trajectory that leaves the point (wo, —¢(wo)) and enters the point (0,0). The
fact that w > 0 and w’ < 0 means that the plot of ' versus w enters the origin from
quadrant IV. Hence w becomes zero at infinity

has a solution that satisfies
IX(1) < Clxo + 1+ 7" 1o (x, 7). (61)
If we also have xo =0 and 1p > 0, then x > 0 for all T > 0.

We only sketch the part of the proof which is going to be used in the corner
function; for the remaining part of the proof we refer the reader to [2].

Proof. 1. If wy = 0, then w(z,7) = 0 for all 7 and the assertion follows. If
wo > 0, from (56) this gives ¢(s) > 0, s € (0,wp]. Consider the phase plane
(w,w") for the equation w' = —¢(w). By (56), there exists a trajectory that
leaves the point (wg, —¢(wp)) and enters the point (0,0), as shown by Figure 1.
Furthermore, since ¢(w) > 0 for all w € (0,wp], this entire trajectory lies in the
quarter plane {w > 0,w’ < 0}. Therefore the corresponding solution w(z,7) is
positive and decreasing to zero. It remains to show that the solution trajectory
enters (0,0) as 7 — oo and also the exponential decay estimates (57). By the
definition of the derivative as a limit,

where ¢(0) =0, so
=¢'(0),

i.e. that for any 0 € (0,¢'(0)), there exists s5 € (0,wp) such that
o) <5 v e
s

which is

¢'(0)—6 < 2 < ¢ (0)+6, Vselo,ss). (62)

S

11



Furthermore, there exists 75 > 0 such that
w(z,75) = ss. (63)
Otherwise, if w is bounded away from zero, w(x,7) > s;5 for all 7, let

m= min ¢(s).
wE|[ss,wo)

We will use the function ¢ in its particular form ¢(s) = f(z,0,uo(z,0) + s).
Assumption A2 implies m > 0 and

pw)>m V1

yields

‘We have

wﬂ;w for w € [ss,wo]
d(w) > {(¢/(0) — 0w forw €10, ss], o

ie. ¢p(w) > Cw Yw € [0,wp], so
—¢(w) =u'(1) < —m,

which yields w(z,00) = —oo, in contradiction with (55). Hence (63) is estab-
lished.

e Case 7> 75
The function w(z, 7) is decreasing, so w(x, 7) < w(x, 75) = S5, thus w(z, 7) €
(0, s5) which implies that (62) holds true

€&

#'(0) —6 <= < ¢'(0)+6. (65)

Integrating (65) from 75 to 7 we obtain
[6(0) = 8](7 — 75) < (Inw)l7, < [¢(0) + 8](7 — 75)

(8 O+0)(r—rs) o W T) < e WOy > o (66)
w(:r, T5)

As w(z,75) < wo, the estimates for w and w’ in (57) follow from (66) and
(65).

o Case 0 <7< 75
As a decreasing function, w < wg and for C, := el®" (0)=017s e have

< —[¢’(0)=8)ms —[¢'(0)=0]
lw| < Crwpe < Ciwpe

yielding the estimate for w and from (64), where ¢p(w) = —w’, also the
estimate for w’.

O

12



3.3 Corner-layer function

The terms of order zero and one of the corner layer function gg + €¢q; are char-
acterized by

lim q0(£7 T) - 07 lim %(57 T) - 07 (67)
£—o00 T—00
lim ¢ (&, 7) =0, lim ¢1(§,7) =0. (68)
£—o0 T—00

Introducing (31) in (2) yields the compatibility condition

1}0(57 O) + EV1 (51 O) + qo(‘fa 0) + £q1 (ga O) =0.

Equalizing the terms containing the power —1 of ¢, we obtain

QO(ga 0) = _UO(& 0) (69)
and the terms containing the power 0 of ¢ give
q1 (67 0) =0 (57 0) (70)
Introducing (31) in (3) yields the compatibility condition
OJwy 1go+eq
-0 Z =0. 1
R0+ ;2T 0.r) =0 ()

Equalizing the terms with the same powers of € in (71), we have

8—5(0, T)=0 (72)
" 9 (g, 7y = -2 g, 7) (73)
o ox
Using the equation from (41)
9%vg

_ng‘l‘F(O,t,Uo) =0

and (48), equation

0? ad 0 02
—@00(570) + EMO(OJ) + {E - ({TSQ] qo+
+£(0,0,u0(0,0) +vo(&,0) +wo(0,7) + go) =0
o _o01. _
ar  oez| P~
7F(07 07 ’UO(ga O) + wo (O’ T) + q()) + F(O’ Oa w0(07 T)) - F(07 07 U0(§7 0)) (74)
By vg = 0 and F(0,0,0) = 0, the right-hand side of equation (74) becomes

becomes

—F(0,0,v0(&,0) + wo(0,7) + qo) + F(0,0,we(0,7)) — F(0,0,v9(&,0)) =

= —F(0,0,w0(0,7) 4+ qo) + F(0,0,wo(0,7)).
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In the horizontal part of the corner layer, along &, where 7 = 0, we have

UO($, 0) + Vo (57 0) +en (gv O) + wO(E? 0) + q0(€7 0) +eq (57 0) = go(a:), (75)

which yields the initial condition for ¢ :

QI('g?O) = —1}1(.5,0). (76)

Due to the initial value wo(z, 0) = p(x)—ug(x,0), (75) yields the initial condition
for qg
QQ(f,O) = _U0(§>O)' (77)

A boundary condition for g is given by (72) and the initial condition is given by
(69). Therefore, the problem for the zero-order term of the corner layer function

qo(&,7) is

B0 890+ F(0,0,w(0,7) + go) — F(0,0,w0(0,7)) = 0

QO(§7 0) = 7“0(53 0) =0 (78)
Ge(0,7) =0,

Having homogeneous initial and boundary condition, a solution of (78) is go = 0.

The first-order term of the corner layer function, ¢1(&,7) is obtained by
formally introducing

Uqs = uo(e€,€2T) + v (€,62T) + ev1 (€,€%T) +wo(e&, T) +equ (€, 7)

in the original equation (1):
2
(51~ ez ) [0(e€.6%7) + 0l £27) + evn(6,227) 4wl ) + (€l
+F(5€’ 527—7 Vo (57 527—) +evy (57 527_) + w0(5€7 T) +eq (‘57 T)) =0.
a  0?
52 (& — W) Ug = 0(82).

We use the estimates from [2]

Here we have

0 02
52 l:&—w} ('U()+5'U1)+F(.Z',t7@0+€'l)1) 20(52)‘ (79)
and
2[2 - Py 4 Flast,w) = O() (50)
9 ot 02 wo T,l,Wy) = g7).

6(ql,‘r - QI,§E) - F(€€7 827—7 w0(5£7 T)) - F((fé-, 627—7 ’00(67 527—) + gV (57 827—))+
+F(€€a 527‘7 U0(€7 527—) + w0(€§> T) + €V (57 827-) + €q1 (67 T)) + 0(52) =0.
By notation (37), this can be written as
[vo(&,e2T)+ev1 (€,6°7)]+wo(e€,7)

2
(g1 — qree) + F(e€,e7, ')}[vu(5,527)+ev1(£,52'r)} ;wo (e€,7) *

14



2 v0(£,6°7)+ev1 (&%) fwo(e€,m)+eqi(§,m) _ 2
B, 87, e ey peun e2r) (o6, ) =0() (81)

and becomes

[ 01(£,6°7)]+wo (€,7)+eq1 (€,7)
e(q1,r — quee) + F(e€, €2 ‘[;1(5’;7)1 ;10:(§§,T) cq =0(?). (82)

Now set the function G(e) as

[Evl(f e27)]4wo(e€,7)+eq1 (&, T)
G( ) 857 |[sv1(§ e27)] s wo(e€,7)

Then
G'(e) =

2 2
_ fo(ef,EZ , )|Ev1(5,«€ T)+wo(€€,7')+€q1(5,T)+2ETFt(E§7527_7 )|Ev1(§,5 7—)+w0(55,7—)+gq1(577—)+

Ve (6,627) swo (e6,7) Vlevi(€,627) swo(e€,7)
+2%701,4(6,€°7) + 01(€,677) + Ewoa (€6, 7) + @1 (6, 7))
Fy(c€, &%, ev1(&,%T) + wo(e€, 7) + equ(&,7))—
—[2e%7v14(&,€%7) + v1(€,€27)] - Fy(e€, &1 ev1(€,€%7))—
—&wo (€, 7) - Fy(e€, €21, wo(e€, 7)) (83)
and

(<€)
G(0) = F(0,0,) | e ey = 0.

A calculation shows that

G'(0) = [v1(£,0) + q1]F5(0,0,wp (0, 7)) — v1(£,0)F4(0,0,0).

Using the conditions (70) and (73), ¢1 is given by the linear problem

wo (0,7
9 04 1 gy Fy(0,0,w(0,7)) = v (£,0)F4(0,0,)] 7

q1(£,0) = —v1(&,0) (84)
G(0,7) = =922(0, 7).

Note that, by (46) and (54)

wo(0,7) < C"Ul(f,O)H’wo(O, 7_)| < 066*(’YL*5)5*(%21*5)T’

(85)
i.e., the right-hand side of the first equation in (84) is exponentially decaying.
From the initial condition in (50) for z = 0, we obtain

—v1(£,0)F5(0,0, )],

wo,5(0,0) = ¢5(0) — u0,:(0,0).
From (40) for ¢ = 0 we have
v1,¢(0,0) = —up..(0,0).
Thus, by (10), i.e. ¢.(0) = 0, we have
v1,¢(0,0) = wp (0, 0), (86)
i.e., compatibility at the corner (0,0). We are going to investigate solutions of

the problem (84).
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3.3.1 Fundamental solution for the term of order one of the corner-
layer function

We now construct the operator

L= —(,%Z—l-)\(T), (87)
where
/\(T) = E9(0707w0(0a7—)) (88>

and in the half plane we consider the problem

{thrLz:b(f,T), —0<€&<oo, T7>0 (89)
2(0,¢&) = 0.
The solution of (89) is
’ = d d§oG (€ — s I b ) ’ 90
v(€ ) /0 To/_OO §0G (€ — &0, 7 — 70)b(60,T0) (90)

where G is the Green’s function of problem (89), which will be explicitly defined

by
2 2
= L ﬁ 674(75*70) = ;ei‘l('fim) . (91)
V2T \T —To NN
Note that we do not enjoy A > 0, but A = A(7) is a function of one variable, 7,
which will facilitate our analysis. In the quarter plane we have

G(§7 T = TO)

vy + Lu=b(&,t), £€>0,7>0
v(0,§) =0 (92)
ve(0,7) = 0.

We shall define a solution of (92) in terms of the Green’s function G of (89).
We extend the function b(§, 7) to the left quarter plane and denote it by b*:

X b= m) if& <0
b6 ) = {b(g,r) if & > 0. (93)

This is an even continuation. Let v*(£, 7) satisfy

{V:JrLu*—b*, EER, 7>0 (94)

V*(€,0) = 0.

Function b* being even , v* will also be even with respect to &, so v*(¢§,7) =
v*(=¢&, 7). By (90), the solution of problem is (94), we have

v, ) I/O dTo[ déo G(§ — &o, 7 — 70)b" (&0, 70) =

T0 0 To e}
/0 dro /_ A6 G607V (o) + /0 dro /0 dfoG(éfoJTo)b*((fo,)To),
95
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where b* is from (93). We make the variable change &) := —&y in the first
integral of (95):

0 [es}
/ d&oG(& — &, 7 — 70)b" (&0, T0) :/0 d&yG (& + &y, 7 — 10)b(&H, T0)

— 00

- /0 dE0G (€ + €0, — 70)b(E0s T0).

Hence
) :/O dTo/O déolG(& + &o, 7 — 10) + G(§ — &0, 7 — 70)]0(60,70)  (96)
and - .
= d d 3S$y 710 b ) ’ 97
) /0 To/o £09(€0, €, 70, 7)b(€0, T0) (97)
with
= G(§+£07T_TO) +G(§_€0a7—_7—0)' (98)

Next, we focus on the problem (89) in the half plane, which we rewrite as

{[51 352]z+)\( )z=b, £€ER, 7>0 (99)

z(£,0) =0.

An estimate of the solution of problem (99) features in [3, chapter IV, p. 320,
352]. We derive an estimate consistent to the one in [3], but with the precise
specification of the exponential decay constant. Apply a Fourier transform to
z:

Z2={((s,71)

= 5 | e i

Introducing it in the original equation, we obtain

% (5,7) + ) + 82 (5,7) = bls, ).
The transformation ((s,7) defined by
((s.7) = (s, m)e*" (100)
yields ) i ) .
Cr(s.7) + A(T)C(s,7) = bs, 7)™, (101)
(s,0) = ((s,0) Jﬂ/ 2(£,0)e7%¢dg = 0. (102)

As wg» < 0 is a particular solution of the homogeneous problem

[% + )\(T)] wo,r =0
IUQ-,—(O) = 0,

which follows by differentiating the equation and the initial condition in (50)
and A is defined in (88), we obtain

5(5,7) = wo, (1) /OT Mdm. (103)

wo,- (7o)

17



Denote the inverse Fourier transform by F~!. Then

2er) = F i = \/% 1 7 (s, m)eds,

where -
¢= e |:u)0’7-(’7')/ ’LUOT(To)l;(S,To)€SQTUdTO:| .
0
Then
1 e _s2r T 7 s2 7 is&
z2(&,7) = — e " Two, (1) wOT(To)b(s,To)e‘ °drg | €% ds.
27 J o 0
‘We have
1 > 2 T A
, - - s T - b S Tod ’Léfd .
z(€,7) \/%/7006 Wo (T)/O wOT(Tg) (s,70) T0e"*5ds

- / wor(rwg Ly - F~Vb(s,0) - Cs, 7 — o)), (104)
0
where G(s,7 — 70) = e~* (7=70)_ By the convolution theorem,

b(€, m0) * G(§, 7 — 70)
Var ’

F1[b(s, 70)Cs, 7 — 70)] = \/% /_OO b(Eo, 70)G(€ — €0, — T0)do,  (105)

where

f_l[ (s, TO)G( ,T—1T0)] =

G(€,7—0) = FG(s,7—mp)] = F e > 7] = %ﬁ / ds[e’ts =" (=),
T J—00

Using [1, §4.3b], we obtain
1 N2 L 1 __ e

e -1 = — ¢ 4(z-70) (106)

V2m VT =10 V2T =T

G(§7 T = TO) =
and (104) becomes

“(€7) = “’OTS:) /0 " droug M) [ G(€ = €0, 7 — 7)b(E0, 70)dSo.

Therefore, the solution of problem (99) is

1 (c-g0)?
// wo - (T U)OT(TQ)2 e 4(’5’0’5(507T0)d§0dT0« (107)

(T — T9)

and in the quarter plane the solution of (92) is

v(g,f):% /0 dro /O A€ol G(E + €0, — ) + G(E — €0, 7 — 70)]b(E0, T0)

1 (£—€0)?

1 T o0 (6+€0)?
= d d - —1 S P ) 1=r0) | b(&o, T0)-
2ﬁ/o 7'0/0 €o wo,-(T)wg - (7o) =) e +e (€0, 70)
(108)
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3.3.2 Upper bounds for ¢; and its derivatives

In the previous subsection we solved the problem (92) with homogeneous bound-
ary conditions. However, the problem for the first-order term of the corner layer
function satisfies nonhomogeneous boundary conditions. Consider thus the lin-
ear initial value problem with Neumann boundary condition

[% - %Q} (& 1) + A(T)®(E,7) = b€, 7), (109)
P (0,7) =n(7), (110)
D(£,0) = Po(€) (111)
with
1(0) = 24,(0), (112)

where A\(7) is given by (88).
A7) := F5(0,0,w0(0,7)).
In the quarter plane (z,t) € (0,1) x (0,7] equation (109) is

& [% - %] Bz, 1) + A(r)®(z, £) = b(a, 1), (113)

A comparison principle and un upper bound for the solution of this problem
feature in [6]. The bound is in the L?—norm and depends on the space derivative
of the solution and on f,,(0,0,we(0,7)). The following result from [4] is also
worth mentioning.

Theorem 3.2. Let D be a bounded domain in R with a piecewise smooth bound-
ary. A solution of the problem (109), (111) exists, is unique and satisfies the
following estimate

1@llwzopxiory < ADPEL2) + Ifll2 D0yl (114)

We shall prove

Lemma 2. The solution of the problem (109), (110), (111) is invariant in the
maximum norm, i.e., the upper bound satisfied by the solution is satisfied by its
derivatives, too.

More precisely,

Lemma 3. Let ®(§,7) be the solution of the problem (109), (110), (111) and
satisfying (112). Define

72 = min{tén[g%] Fu(0, ¢, (0, t))7wren[(i)r’11] fu(z,0,u(z,0))}. (115)
Assume that for some positive constant C' and some small § > 0 , we have
()| + ' ()] < Cem G20, (116)

|0 (€)] + 25 ()] < Cem -0, (117)
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b| < Cmin{e~(Z97 ¢~ (-—0)¢y, (118)

Then the pointwise estimate

@] < Cmin{e~(F20)7 o= (- —20)8} (119)
holds true.
Proof. Set
. —(v=—9)¢
_ g g (e
& = 20(©) I 4 [o(r) ~ 0T (<) az0)

so that, using (112), we obtain

(@—-@)| _,=0,
o -
c’Tg@ - <I>)|€:0 =0
and 5 52
e (F=OT (-9 | e~ (=0T
= —®y(¢) Py S {n (TH”(O)W -
PV RGeS
0 (7= — 0)3
2 2 —(7=—96)§
AT Rl — ) — o) ISRz
We have R )
[b—b] < Cmin{e” (=797 =(==0¢y, (122)
Then ® — ® satisfies
o o - _
(E_a?“m) @ — & = b—b=b. (123)

‘We have

1 /T o wo,+(0,7) 1 _(e-g)? _(+en)? ] -
- dTo/ dé'o s e A(r-10) + e A(r—70) b 5077—0 3
2V Jo 0 wy (0,70) /T —To ( )

(124)
Using the proof of Lemma 1, for all 7 > 7
wO,T(()?T) S Ce*(’yff(s)(‘f‘fﬁ)). (125)
wO,T(O7 TO)
We introduce the function
. (0, A .
B(eo,m ) = —2orOT) G g (126)

wy (0,7 —7)
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where
T=T7—10.

Thus we rewrite (124) in the new variable 7 as

(E—£)? (6+£0)?

- 2\F/ d”’/ déo—= [6_ T e O | (g, 7). (127)

n (127) we have

o (5*45_}0)2 n e_(ez&;ﬂ < 26_(&—45;)2' (128)
By (122) and (125),
T 7 T 07 . — — — — _ _ _
) = b(§o77'o);uo’ ( TTO) < C'min{e (2 5)70’6 (v« 6)50}'6 (¥2=8)(—70) <
0,7\
< Cmin{e~ (797 ¢~ =0o—(rZ=0)7 (129)

Now (124) implies B
| — | <

C'min {e 07~ / dr/ d§0 -

/ d%e—ﬁf—'m/ d§072@—“1§+‘” ~(r—0)0 Y, (130)
0 0 T

Write - )
0
oo [y (z2ey € o0
:/ déoe [49=+( = T 6)504“44 :/ déo ef[a1§g+2a2§0+a3]7 (131)
0 0
where a; = J%, az = 7457 + (v« —9)/2, a3 = i—i. The right-hand side of (131)
becomes

/°° dgoef[m(fﬁ%f)zm;r%] :€7a3+§ Ooe—[\/ﬁ(&ﬁr%)]zdgo. (132)
0

0

A change of variable
N a N
é=var(s0+ ), aé=vardsy
yields in (132)

oo ag )2 a%] 2 oo 2

—lai(&o+52) +as—5= C _ o3 _f2 oa c _ az

/ dfoe [ ( 1) 1] = 2o a3+u’1/ e gdgg e a3+u’1’
0

(133)
where )
2 2
as 3 f
- = =2 447 «—0)/2
as + ai 47 + [ 47 +0 9/ )}
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SN RS §
R PR ST

= (1 = 0) + (e — 6)2F < —E(7x — 8) + (42 — 0)7,

as ¢ is sufficiently small. Therefore

S —£(ve—8)+(v2—0)F
/ déoe™ 07 (r.—8)to < ¢ — ‘ (134)
0 2V7
In (130) we have R
|® —P| <
R / i / 26 s / e~ (=) = E(rn—0)+(i-0)7
min 7 o= 1
V7 oW
(135)
1. We analyse the following term from (135)
T —(V2=0)F o—(ve—8)+(V2-8)F
/ I - < Ore (=0, (136)
0 V7 PWE
_e—g0)?
2. Next we analyse e~ (72~ o [Td [T dﬁof We claim that
NG 50)2
/ d7 / deg S
Indeed, using £ = 5\/‘59, we obtain
(E—t)? o »
/ dege= ST = 2\@/ =" de’ < OV (137)
Then
_ (&= En) T P
dT/ d{o / dir— =CT. (138)
/ 0 NG
Cre= 00 *_5)7 < Ce~ (12207,
This gives
_ (&= So)
76)7—/ dT/ dfO < Cef('yff%)-r'
In view of (136), the estimate (135) becomes
& — @] < Cmin{Tef(V*f‘s)é,Tef("’f*‘;)T}.
If (77 = 20)7 > (7% — 20)§, then
@ — | < Cre~(E=07 < Cel-72-20)7,
Otherwise, if (72 — 26)7 < (74 — 26)¢, then
|® — ®| < Cre” (=98 < Oge™ 708 < Ce=(1-720)¢,
These inequalities and (120) imply (119). O
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Lemma 4. Under the conditions of Lemma 3, if for some positive constant C'
and some small 6 > 0

(7)] < Co 029 (139)
and )
b,| < Cminfe~ (=07 ===} (140)
then the pointwise estimate
|0, < Cmin{e~ (=207 o= —20)¢} (141)

holds true.

Proof. We differentiate with respect to 7 the solution ® = ® + (® — ), where
® is from (120), so

T _(~2_ 2 67(’\/* 9)€
& = —0(&) (72 = 0)e™ T+ [/ (1) +1(0) (7F — 6)e= -] (‘ﬁ)'

We use (117) and (116) to obtain
|®,| < Cmin{e=(F20)7 o=(--20)¢) (142)

and ® — ® is from (127), so :
d—-P =

Qde/ / dey L {e = &m e (£+£0) }@(50,77) (143)
In (143) we have

2/7(® — D),

& 1 (£—£9)? (£+60)?
= déo— |:€7 T e ar } U (&, 7, 7)+
/ \F

/ dfo/ 7 {e‘ (ogo” +e_(£+‘*i0)2] di (&, 7, 7), (144)

where, by (126), we have

A o wor(0,7) .
\11(5077—7 7) = mb(&)ﬂ— - T)v
\ij(&)vTv T) % (507 )

By (129), we have

B(€o, 7, 7)| < Cmin{e= 207 =0 =06-(E=07} < o= (=002 -0)7
(145)
We combine (145) with (128) and (134) with 7 replaced by 7, which gives

o 1 (e—€0)? ctep? | -
d&o—— [6_ ir e ar } U (&o, 7, T)
J, o

2 [ (6=¢0)2
< Ce*('vffﬁ)fi/ dége™ o~ (=08 <
VT Jo

<
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9 o= (=8¢ +(vi-0)T
< Ce_("/f_‘;)TFe = Ce—(==0)¢0 (146)
2V

On the other hand, by (137), we have

0 1 (e-€0)? (e+en)? | -
déy— |:6_ T e 4r } W (&y, T, 7T)
f, o

0
< Cem (=97, (147)
Combining (146) and (147), we obtain

< C'min{e ("7 (=98} <

o0 1 (6-60)2 c+e0)? | =
déy— |:67 i e ar } U (&, T,7T)
[ e

< Cmin{e‘wz—z‘s)T,e_(“**_%)é}. (148)

Next, we estimate

(e 7,7) = bl T~ 7) <w<0>)> .

dr dr w%_’T(O, T—T

wo~(0,7) > .
+7w077(0,77%)b7(€0’7— 7).

d
Recall (125) and that the proof of Lemma 1 yields a similar estimate for e <
-

Combining this with (118), (140), then differentiating (121) with respect to
and using (116) and (139), we obtain

d -
"I’(&),T, #)| < Cmin{e~ =97 (==},

dr

In view of this estimate, comparing the term featuring in (144)

& T d7 (c-£0)? c+e)? | d -
d / — {ef 1w 4e a7 ] — (&, T, T
/O o V- e (&0, 7,7)

with (127) and (129), in a similar manner as in the proof of Lemma 3 we obtain

°° Tdr (6-¢0)? €+re? | d -
d / [e_ 7w 4e ar } — U (&, 7,7)| <
/0 €o V- 7 V(&o,7,7)
< Cmin{eiﬁf*%h, e~ (-72008) (149)
Combining the estimates from (148) and (149) with (144) and (142), the proof
is completed. O

Corollary 3.3. For a positive constant C' and sufficiently small 6, the solution
of (84) satisfies the pointwise estimate

lg1] < Cmin{e_(ﬁ_%)T,e_(w*_Qé)g}. (150)
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Proof. By (45) for v1, we have that ¢, (&, 0) satisfies (117) of Lemma 3. By (54)
for wp, we have that %—‘?(0,7) satisfies (116) of the Lemma 3. By (85), the
right-hand side of the equation for ¢; satisfies (118) of the Lemma 3. Now we
check (112) for the initial and boundary conditions of (84)

8wo 6@1
———(0,0) = ——=(0,0). 151
50,0 =~ 20,0 (151)
This is the compatibility condition at the corner (0,0) derived as (86). There-
fore, we have (150). O

Corollary 3.4. The following estimate holds true for the first order derivative
of the corner layer function term ¢y :

%(

o < C’min{eiﬁf*%ﬁ, e~ (72008 (152)

§7)

where C' is some positive constant and § > 0 is sufficiently small.

Proof. The first derivative ¢; ¢ is the solution of the problem

0 02 wo(0,7)
5 - g AD)] de = € ORO0T sy
where |v1,¢(€,0)| is exponentially decaying in £ and ‘FS(O, 0,-) SUU(O’T)’ is expo-

nentially decaying in 7, thus satisfying (118), subject to the initial condition

01.6(& ) lr=0 = —v16(€, 1) i=0, (154)

where [v1 ¢(£,0)] + [v1¢¢(£,0)] < Ce™(==9¢ thus it satisfies (117), and the
Dirichlet boundary condition

q1,6(€,7)|e=0 = —wo,2(2, T)| =0, (155)

which satisfies | — wo (0, 7)] + | — woer(z, )] < Ce (=97 Thus (116) is
satisfied. By (151), the problem for ¢, ¢ satisfies the zero-order compatibility
condition at (0,0). The analogue of Lemma 3 for the problem with Dirichlet
boundary conditions is then applied to the problem for ¢ ¢. O

Lemma 5. The following derivative estimates for the term q1 of the corner
layer function hold true:

a) lg1,ee(&,7)] < C’min{e_(”f_%”, e_("’*_%)f},
b) |41.-(€,7)| < Cmin{e™ (0272007 = (20063,

¢) |41.7-(€,7)] < Cmin{e™ (77207 = (=200}
d) |g1.¢6¢(€,7)| < Cmin{e™ (=727 (=0 =20)¢3,

where in each case C' is some positive constant and 6 > 0 are sufficiently small.
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Proof. a) The second- order derivative qi ¢¢(§,7) is the solution of the problem

0 0? wo (0,7
<E } a??) a1.¢6(6,7) + A(Maree(§,7) = —v1.e(&,0)FL(0,0,)[5° 7, (156)

with the initial condition
q1,e¢lr=0 = —v1,¢¢t=0, (157)

which is exponentially decaying in &. Also, | — vi eelr=o| + | — v1,geelr=o| is
exponentially decaying in £, thus it satisfies (117). By extracting the second
term from equation (153), we obtain for (156) the Neumann boundary condition

9 9q., wo(0,7)
genss o= [ (B 120 + meg 0RO 00|

i.e.

wo(O,T)
0

2
0 ‘gzo - |: 0 wo \ a’w():| (158)

g e “oroe Mo

+v1,£(0,0)F(0,0, )
0

o=
< Qe (=97

thus satisfying (116). The right-hand side of (156) satisfies (118). We now check
whether 7(0) = ®((0), i.e. whether

(9211)0 8’(1)0 (0,7)
|:<_67'62C - )\(T)E> z=0 1 U1,§(07 O)F.S(O7 07 ) SUO ! i| o = _U17§§§|t=0'
(159)
Remind the problems for wy :
wo,r + F(2,0,wo) =0 (160)
wo(z,0) = p(x) — ug(x, 0)
and for vy :
—vree +v1F5(0,2,0) =0 (161)
ULE (0, t) = UO@ (0, t).
Recall also that
A(T) = F5(0,0,wo(7)).
By (160),
_ 90wy (0,0,w0(0,0)) + Fu(0,0, wo(0, 0))wo.0 (0, 0) (162)
6:687'(070) z\V, U, WoY, s\Y, U, WolY, 0,2(Y,Y),

82w0 8w0
<_(97'3x B MT)%)

= F;(0,0,w0(0,0)) + F5(0,0,wo(0,0))wo - (0,0) — Fs(0,0,w(0,0))wo »(0,0) =

= F,(0,0,w0(0,0)). (163)
From (180) we obtain
v1,(0,0)F,(0,0, )|« = —%(O,O)Fs(o,o, e (164)

26



and

—v1,¢¢¢(0,0) = —v1 £(0,0)F5(0,0,0) = up,(0,0)F,(0,0,0). (165)
In view of (163), (164) and (165), we see that (159) is equivalent to

wo (0,0
F(0,0,w5(0,0)) — g0 (0,0)Fy| 2 = ug ,.(0,0) F, (0,0, 0);

or
F,(0,0,w0(0,0)) — up ,(0,0)F5(0,0,wy(0,0)) = 0;

or, recalling the definition F(z,t,s) = f(z,t,uo(x,t) + s) and the condition
u(0,0) = ¢(0)

fz(07 0, ‘P(O)) =0,
which is satisfied by assumption (11). After cancellations and using ug ,(0,0) =
0, this is

fm (07 07 ’l,L()(O7 0)+U)0 (O, O))+[UO,T (0, O)+w0,z(0, O)]fu(O, O7 UQ(O, O)+w0(0, 0)) = 07

(166)
where
uo(0,0) + wo(0,0) = ¢(0) =0
and
UO,Z(O»O) + wO,z(070) = (pz(o) = O
Hence (166) is equivalent to
f2(0,0,0) =0, (167)

which is satisfied by (11) and ¢(0) = 0. Thus (159) is established.
From (86) we have
11135(0, 0) = woyz(O, 0).

Thus we apply Lemma 3.
b) For |¢1 |, we use the equation from (84)

32(11

+ |q1/\(7—)| + vl(fv O)FS(O,O, ) 0

bl

€2

where [A(7)| < C and we use (85) and the estimates that we have obtained for
lg1] in (150) and for |gi ¢¢| in a).
¢) We have

dA d 0,
Qe = Queer = 01— Mir — 01 2B (0,077 (168)

Applying Lemma 4 for ® = ¢; ¢¢, we have that

d®
1,e¢r = I
satisfies (141). In (168) we have that |2|, |\ and |4 F,(0,0,") ZU(O’T) are
bounded. For |¢1], |¢1,7| and |v1| we use the estimates previously obtained.
d) The third-order derivative satisfies the problem
o 0 (0.7)
[E - 752} Qreee(&7) + M7)qreee(§7) = —v1,ee¢(€,0)Fo(0,0,-)[ 7,
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where | — v1,¢¢¢(£,0)| is exponentially decaying in £ and |Fs(0,0,-) ;UU(O’T)| i

exponentially decaying in 7, thus satisfying (118), with the initial condition

q1.e¢6(6,0) = —v16¢(£,0)

which satisfies (117) and the Dirichlet boundary condition g¢; ¢¢¢(0,7) given by
the right-hand side of (158). This satisfies (116). Condition (112) is satisfied
due to (159). O

3.4 Perturbed asymptotic expansion and existence of so-
lution
Using the stretched variables
E=uaje, T=t/e,
we set the super-solution as
B,t,p) = uo(x, ) +evi (€, 1) +io(w, 7, p)+eqi (€, 7)+Cople ™0/ el =0)/ 4]

1= Ugs + W + Cople 0%/ e 0l=2)/e 4 1], (169)

with p a sufficiently small perturbation parameter which is positive for the
super-solution and negative for the sub-solution, Cy, ¢y are positive constants
and

W:W(.Z‘,7'7p) :7110(36,7';]3) 7w0(x77-)' (170)
By (54),
W < pw = e~ (E=970(p). (171)
/4
Due to

tas(2,0) = (),
condition (15) of Definition 2.1 is satisfied:
az,0) < p(z) < B(z,0) Vael0,1]. (172)
Denote the last term in (169) by
p=e 0/ pemcollmn/e (173)

which has the property
1<p<3. (174)

The rapidly decaying function Cypp has been chosen to capture the Neumann
boundary conditions. (In the case of a similar problem with Dirichlet boundary
conditions [2], a term of the form Cyp would feature instead).

Lemma 6. Let F be given by (1), uqs, 8 by (169) and p by (185). Then
1. Fugs = O(e%);

2. FB—
= CoppFy(x,t,0)+pwo(1+CopA) —pcdle~ 0/ 4 e=c0l=n)/] 4 O(e2 4 p?),
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where A = A(z,t) = Fss(z,t, dwp) for some 9 = 9(z,t) € (0,1).
Proof. 1. Write

]:uas = 52(“&5,75 - uas,zz) + f(fl?,t, uas) =

2
=€ (UO,t + EV1,t + Wo,t + €q1,t — U0,zx — EVl,zx — WO,z — €q1,zz)+

+F(x,t,evi(&,t) + wo(z, 7) + €q1(€,7)).

where
Fluo(z,t)] = 0(62).
From
F(ug +wo) = O(e?) = F(x,t,wo) + F(z,t,wo) = O(£?).
we have

Fluo(z,t) + wo(z, 7)) = O(?).

If vy (&, 7) is a solution of

0%,
~ 7 +v1F5(0,t,v0) = —EF,(0,t,v0)
(%1 (O,t) =0
v1(00, t) =0.

then it is also a solution of

—V1¢e + UlFS(O, t, 0) =0
U1,¢ (07 t) = U0,z (07 t)7

From (79)
Flug +vo + ev1) = O(e2),

where vy = 0, we obtain
Fluo(z,t) + evi(&,1)] = O(?).
Recall (82):

[ev1(&,%7)]+wo (e€,7)+eq1 (€,7) _ 0(52).

2
e(qrr — quee) + F(e€, e, ')‘[am(f,a?‘r)] ;wo (€€,7)
Combining this with (176), (178), (182), we obtain
| Fgs| = 0(82).

2.Write
FB=F|" + Fus.

We analyze

o 0? s
FB = Fugy = & {a - w} (W +p) + Fa,t,)|)
where
2 Q_‘lzw__WF( t,wo) + pwo + O(e* + p*)
ot Ox? - <\ B o) T Pt -
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and p; = 0 yields

19} 02
’ a9 9.2 = 2 —Pyr ) = — 2 —CuI/E —Cu(l—z)/a
c [Bt 61'2} Copp = £"Cop(—paz) pCocile +e 1,
SO a 82
2 2

) {5 - @] P 2%, (185)
We have .
F(x7t7 )|5 s - F(I,t’ .)|5a5+W + F(I7t7 ) Z:j+ ’ (186)

where from ev; + W +eg; = O(e + p) we obtain

Uqs+W+C
Pt = Pt )]0 1T = CopplFu(a,two) + O(e +p)] =
= Copp[Fs(z,t,0) + Mwo] + O(2 + p?). (187)

The second term in (186) is

Ugs+W
Uas

evi+wo+eq+W
ev1two+eqy

F(z,t,-) = WFS(x,t,6v1+w0+€q1)+0(p2) =

= F(z,t,)|
= WE(z,t,wo) + O(|W[e(v1 + q)]| +p?), (188)
where |[W| = O(p) and (v + ¢1) = O(¢), so
O(|We(v1 + a1)| +p%) = O(* + p°).
Combining (183), (184), (185), (186), (187) with Fu,s = O(g?), we obtain
FfB = CoppFy(x,t,0) + pwo (1 + Cop)) — pci[e~c0/s 4 e=0(1=2)/e) L O (2 + p?).
O

Corollary 3.5. For all |p| < pg there exist some positive constants cg, Co and
C1 such that

> Copy® _ 2 2 :
fﬂ{ : Cy(e* +p?) ifp>0 (189)

2
< -Gl 4 (e 1+ p?)  ifp<o.

Proof. In the term pwo(1 + CopA) we have 1 < p < 3. and wy > 0. Choose Cy
sufficiently small, such that

14 CopA >1—-3Ch|A| >0,
where we used (174). Then for p > 0
FB = Copy* = 2pci — C1(* +p°).
Choosing cg sufficiently small, such that

C 2
07 92 >0,

we obtain (189) for p > 0. The case p < 0 is similar. O
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We are now able to prove that § set by (169) satisfies Definition 2.1 of a
super-solution, leading to the final result of existence of solution.

Theorem 3.6. There exist a sufficiently small ey > 0 such that for all € < &,
a solution u of problem (1), (2), (3) exists and is unique. Furthermore, for this
solution and its asymptotic expansion we have

[u(x,t) — ugs(z,t)| < Ce* VY (x,t) € [0,1] x [0,T). (190)
Proof. We prove that [ defined by (169) is super-solution and « defined by
a(z,t;p) = B(z,t; —p), where 0 < p < p, is sub-solution of problem (1), (2), (3).
Set p = Cye?, where Cy > 4C1 /(Cyy?) so that C%Wz > (C1e2. We seek to have

072
%zclﬁ%

SO )
5< G0
4C4
which is guaranteed by choosing ¢ sufficiently small. Then, by Corollary 3.5
we obtain

FB(x,t;—p) <0 < FB(x, t;p). (191)

Condition (15) is satisfied due to (172).
We shall now deal with the boundary condition at z = 0. We evaluate ugs o (2, t)
imnr=0andx=1:

Ugs,z(0,) = 10 ,2(0,t) + wo,(0,7) +v1£(0,t) + q1,£(0,7) =0, (192)

as u,(0,t)+v1,6(0,t) = 0 and wo 5 (0, 7) +¢q1,¢(0,7) = 0. Similarly, uqs o(1,t) =
0. To prove (14), we note that for all |p| < pg we have

B o) 9
%’zzo - %(uas W+ Copp)‘z=0 = %W |Z=0 + Coppz‘zzo )
where
d
%W}zzo < Cwlp|
and ‘o "
_ _ Y _ _—co/e > 20
px|m:0 c (1 e ) = 9
for sufficiently small 3. Choosing ¢( sufficiently small, we obtain for p > 0
0 t; C C
_€M| 0> 0Cop —eCwp > 0CoP < 0. (193)
ox =
Similarly,
9B(z,t; —p) 0B(x,t; p)
e | S0 e >0, (194)
wd 9B(,t;p) 08 (.t —p)
L,5p z,t;—p
202e——7"— . 1
Bl 20z e, V>0 (195)
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Comparing (193), (194) and (195) with (14), (191) with (13), and having (172)
and also (12), we obtain that 3(x,¢;p) is a super-solution and S(z,t; —p) is a
sub-solution as defined in Definition 2.1; between them, applying |7, Theorem
5.2], we have existence of a solution u of (1), (2), (3):

B(z,t; —p) < u(w,t) < B(x,t;p). (196)

Furthermore, Proposition 1.1 implies that this a unique solution. Since, by (169)
and (171), we have

ﬁ($7t7 :l:ﬁ) = Ugs + O(ﬁ) = Uqs + 0(52)7

then |u — uq,| < Ce2. O
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