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Abstract

In the deterministic context Bakushinskiı̆’s theorem excludes the existence of purely
data driven convergent regularization for ill-posed problems. We will prove in the present
work that in the statistical setting we can either construct a counter example or develop
an equivalent formulation depending on the considered class of probability distributions.
Hence, Bakushinskiı̆’s theorem does not generalize to the statistical context, although this
has often been assumed in the past. To arrive at this conclusion, we will deduce from the
classic theory new concepts for a general study of statistical inverse problems and perform
a systematic clarification of the key ideas of statistical regularization.

1 Introduction

We consider statistical inverse problems, where an unknown signal x should be reconstructed
from indirect noisy measurements ynoise = Tx + noise. The problem is assumed to be ill-
posed, i.e. the operator T is not continuously invertible such that we can only approximate
the signal. In classic inverse problems the noise is supposed to be deterministic and bounded.
Nevertheless it is well-known that various applications cannot be modeled appropriately in this
way. Therefore, stochastic models have been introduced, where the noise is taken as random
variable or stochastical process [2, 7, 17, 18]. In some studies, e.g. [10, 17, 32], not only the
noise but also the operator or the signal are stochastic.

In both the deterministic and the stochastic setting one crucial point is the knowledge of the
noise level which is often not available in application. However, the Bakushinskiı̆ veto [1] states
for classic inverse problems the equivalence of the ill-posedness of the problem and the nonex-
istence of purely data driven reconstruction methods, for which the approximated solution tends
to the exact signal x when the noise vanishes. This theorem is of particular importance since it
constitutes the need of supplemental information, as for instance the noise level.

For statistical inverse problems the situation is ambiguous as we will discuss in the paper at
hand. To study the existence of such reconstruction methods we need explicit definitions of the
involved objects. While an extensive theory for classic inverse problems has been developed
[11, 15, 32], only selected aspects of statistical inverse problems have been analyzed so far.
Additional difficulties, arising from the possible unboundedness of stochastic noise, are the need
of new error and convergence criteria [7, 12, 18, 27]. Cavalier explained in [9] how concepts of
nonparametric statistics, e.g. the white noise model, risk estimation and model selection, can
be applied to inverse problems. We will proceed in reverse by studying how the key ideas of the
classic inversion theory have to be modified for beeing suitable for a statistical setting.
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First of all we give a brief recapitulation of the classic regularization theory, in which we suggest
in particular a reduction of the usually required convergence properties. Our statistical setting
is introduced in section 3.1 being followed by the presentation of the main concepts and central
definition in section 3.2. There we propose to link the noise to the asymptotic of the noise level,
which will turn out to be the deciding idea for definition 3.20 of convergent statistical regular-
ization methods and our main result stated in section 4: We prove an equivalent formulation
and give a counterexample to Bakushinskiı̆’s theorem depending on the considered class of
probability distributions.

2 Classic inverse problems

We consider the usual setting of classic inverse problems. Let H1 and H2 denote separable
Hilbert spaces with scalar products 〈., .〉Hi

and the induced norms ‖.‖Hi
, i = 1, 2. Further let

T : H1 → H2 be a linear, compact and bounded operator with a nonclosed range R(T ). We
are interested in the problem

yδ = Tx+ δξ, (2.1)

where x ∈ H1 denotes the unknown signal, δ > 0 is the noise level and the normalized noise
ξ ∈ H2 satisfies ‖ξ‖H2 ≤ 1. With ker(T )⊥ as orthogonal complement of the kernel of T we
can define the generalized inverse T+ as the linear extension of the inverse of T |ker(T )⊥ . A
motivation and some properties of the generalized inverse can be found e.g. in [11]. Since the
range of T is assumed to be nonclosed, T+ is discontinuous and x+ := T+y ∈ H1 has to be
regularized.

In the following subsection we will not present the common definition of (convergent) regular-
ization methods given in [11], but the definitions introduced by Hofmann and Mathé in [19].
Research has shown that purely data driven regularization methods can yield remarkably good
results, see for instance [3, 11], although these methods are not convergent as the Bakushinskiı̆
veto proves. This teaches us to distinguish convergent and arbitrary regularization schemes as
is done in the following approach.

2.1 Linear and convergent regularization schemes

Notation 2.1 (Singular value decomposition (SVD) of T [11]). Let {(sj; vj, uj)}j∈N denote
the singular system of the operator T , where {sj}j∈N is arranged in decreasing order with
lim
j→∞

sj = 0. The following series expansion holds:

Tx =
∑
j≥1

sj 〈x, vj〉H1
uj

Definition 2.2 (Linear regularization [19]). A family F := {Fα}α>0 of linear and bounded

operators Fα :
[
0, ‖T‖2]→ R is called regularization (filter) if the following properties hold:
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1 The associated bias family {bα}α>0, where bα(ϑ) := 1− ϑFα(ϑ), converges pointwise
to zero: lim

α→0
bα(s2

j) = 0 for all sj > 0.

2 The bias family is uniformly bounded by some γ0 > 0, i.e. sup
α≤α0

sup
sj>0

∣∣bα(s2
j)
∣∣ ≤ γ0.

3 There is a constant γ∗ > 0 such that the parameter family can be normalized for all
α ∈ (0,∞) and sj > 0 by sj

∣∣Fα(s2
j)
∣∣ < γ∗/

√
α.

In this case, the family R := {Rα}α>0 of linear and bounded operators Rα : H2 → H1 with

Rαy := xα := Fα(T ∗T )T ∗y =
∑
sj>0

Fα(s2
j)sj 〈y, uj〉H1

vj, y ∈ H2, (2.2)

is called linear regularization scheme (in short: regularization), where the last equation follows
from the functional calculus described in [11].

Notation 2.3. Below, we will use without further comments the notations

F := {Fα}α>0 and R := {Rα}α>0 .

Example 2.4. The given definition is satisfied by many of the known linear regularization in
terms of [11] such as spectral cut-off, which is defined by

Fα(ϑ) := ϑ−1 χ(α,‖T‖2)(ϑ) such that xα = Rαy =
∑
s2
j>α

s−1
j 〈y, uj〉 vj,

where χ denotes the indicator function, α, ϑ ∈
(
0, ‖T‖2], and Tikhonov regularization with

Fα(ϑ) := 1/(α+ ϑ), such that xα = Rαy = (αI + T ∗T )−1T ∗y.

Remark 2.5.

1 Later on we will require a stricter bound instead of property (3) of definition 2.2:

sup
0<ϑ≤‖T‖2

|Fα(ϑ)| ≤ γ
α
, γ > 0. (2.3)

It is easy to show, that the given examples satisfy this property too. In [32] it is shown,
that (3) follows if (2) and (2.3) hold.

2 As generalization we could also require that the index family of F is an arbitrary subset
of the real numbers with at least one accumulation point, say h ∈ R. Then property (1)
has to be reformulated in the following way: lim

α→h
bα(s2

j) = 0 for all sj > 0. We cannot

skip it completely because it yields the following important proposition.

Proposition 2.6 (Pointwise convergence to T+ [23]). Let R denote a linear regularization and
D(T+) the domain of the generalized inverse T+ of T .

1 If y ∈ D(T+), then sup
α≤α0

‖xα‖H1
<∞ and xα = Rαy → T+y when α→ 0.

2 If y /∈ D(T+), then lim
α→0

‖xα‖H1
= ∞.
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In particular we get for all y ∈ H2 that lim
α→0

TRαy = TT+y = Qy, where Q : H2 → R(T )

denotes the orthogonal projection onto R(T ).

Remark 2.7. A similar result can be found in [11, proposition 3.6].

Convergence in general and especially convergence rates are established quality criteria for the
comparison of regularization schemes. Normally, one claims that the regularized solution xα

should converge uniformly to the exact one, if the error tends to zero:

Definition 2.8 (Parameter choice [23]). Let R denote a linear regularization scheme and α :
(0,∞)×H2 → (0,∞) a function. If for all y ∈ D(T+) it holds

lim
δ→0

(
sup

{
α(δ, yδ) : yδ ∈ H2, ‖y − yδ‖H2

≤ δ
})

= 0,

then α is called (classic) parameter choice. In particular we will say:

1 α is purely data driven or heuristic if it depends only on the data, i.e. α = α(yδ).
2 α is (classic) convergent w.r.t. R if for all y ∈ D(T+) it holds

lim
δ→0

(
sup

{∥∥T+y −Rα(δ,yδ)yδ

∥∥
H1

: yδ ∈ H2, ‖y − yδ‖H2
≤ δ
})

= 0.

The pair (R,α) of a linear regularization R and a parameter choice α is called (classic) con-
vergent regularization method of T+ if α is convergent w.r.t. R.

Notation 2.9.

� Here, we applied the usual error criterion for classic inverse problems:

e(R,α, x, δ) := sup
{∥∥T+y −Rα(δ,yδ)yδ

∥∥
H1

: yδ ∈ H2, ‖y − yδ‖H2
≤ δ
}
,

where y = Tx.
� Many parameter choice strategies depend on the applied regularization schemeR which

is why we should write α(R, δ, yδ). However, we will use for simplicity α(δ, yδ) instead.

Example 2.10. The discrepancy principle [11, 26] is a good example of a parameter choice
which is very common for classic inverse problems but cannot be applied in the statistical setting
as we will explain in remark 3.8. It chooses the regularization parameter for a given regulariza-
tion scheme R and a fixed constant τ > 1 by setting

α∗ := sup {α ≤ ‖A∗A‖ , ‖ARαyδ − yδ‖ ≤ τδ} .

Therein and in most of the established convergent methods the knowledge of the noise level δ is
needed. In contrast, the quasi-solution of Ivanov [20] yields convergent regularization assuming
instead of that an upper bound for the norm of the solution xα. Well-known purely data driven
parameter choices are the L-curve criterion of Hansen [16], the generalized cross-validation of
Wahba [33] and quasi-optimality [30].

Theorem 2.11 (Bakushinskiı̆ veto [1, 11]). A purely data driven (classic) convergent regulariza-
tion method exists if and only if the generalized inverse T+ is continuous.
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Proof sketch. With a purely data driven (classic) convergent regularization method (R,α) we
get necessarily for exact data that T+y = Rα(y)y for all y ∈ D(T+) such that for arbitrary
sequences {yn}n∈N ⊆ D(T+) with lim

n→∞
yn = y it holds lim

n→∞
T+yn = lim

n→∞
Rα(yn)yn = T+y,

which yields the well-posedness of the problem.

2.2 Reduction of the requirements

In the statistical setting we cannot require uniform convergence as we do in the determinis-
tic context since the noise may be unbounded. The resulting question is, if for classic inverse
problems the convergence criterion could also be diminished. We want to ensure that the ap-
proximated solution of the problem converges to the exact one if the noise tends to zero. But for
that purpose we do not need to include the supremum as is done in definition 2.8. It is only a
technical simplification. Additionally we want to skip the requirement that the function α has to
converge to zero if the noise vanishes. In fact, it is unimportant how α behaves as long as (2.4)
is satisfied.

Definition 2.12 (Generally convergent regularization). The pair (R,α) of a linear regularization
R and a function α : (0,∞) × H2 → (0,∞) is called (generally) convergent regularization
of T+ if the regularized solution converges in the following sense to the exact one: For all{
y(k)
}

k≥1
with y(k) := y + δ(k)ξ(k), δ(k) > 0,

∥∥ξ(k)
∥∥

H2
≤ 1 and lim

k→∞
δ(k) = 0 we have

lim
k→∞

∥∥T+y −Rα(δ(k),y(k))y
(k)
∥∥

H1
= 0. (2.4)

Remark 2.13. In order to achieve an easier notation, one could be tempted to claim only point-
wise convergence. But this would mean to fix the noise and vary only the noise level, which
forms a considerable and unrealistic restriction.

Conclusion 2.14 (The Bakushinskiı̆ veto for general methods). As the supremum is not nec-
essary for the proof of theorem 2.11, an equivalent formulation can be varified analoguosly for
generally convergent regularization.

3 Statistical inverse problems

In this section we provide new concepts for a general study of statistical inverse problems. As
main idea we link the noise to the asymptotic of the noise level varying its probability distribution.

3.1 Statistical setting

In recent publications about statistical inverse problems one can find two models of stochastical
noise, random variables [17, 18] and Hilbert-space processes [2, 7]. As every Hilbert-space val-
ued random variable with finite second moment can be identified with a Hilbert-space process,
we will concentrate mostly on the latter.
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Definition 3.1. A Hilbert-space process is a linear and continuous operator

Ξ : H2 → L2(Ω,F ,P), v 7→ Ξv =: 〈Ξ, v〉H2
,

where (Ω,F ,P) denotes a probability space, BT the Borel-σ-algebra generated by the topo-
logical space T and

L2(Ω,F ,P) := {Z : (Ω,F ,P) → (R,BR) square-integrable random variable} .

Definition 3.2. The covariance CovΞ : H2 → H2 of a Hilbert-space process Ξ is implicitly
defined by

〈CovΞy1, y2〉H2
= Cov

(
〈Ξ, y1〉H2

, 〈Ξ, y2〉H2

)
, y1, y2 ∈ H2.

Hence it is a bounded and linear operator.

Example 3.3. A centered Hilbert-space process Ξ with the unit matrix as covariance is called
white noise process. In this case Ξ is Gaussian if the associated random variables are Gaus-
sian, i.e. if 〈Ξ, v〉H2

∼ N
(
0, ‖v‖2

H2

)
. Inverse problems with Gaussian white noise have been

studied e.g. in [4, 18, 25].

Assumption 1. We assume Ξ : H2 → L2(Ω,F ,P) to be a centered Hilbert-space process
with E

[
〈Ξ, v〉H2

]
= 0 for all v ∈ H2 and ‖CovΞ‖ <∞.

Notation 3.4 (Observation model). Let Ξ be as in assumption 1. We consider the following
abstract observation model:

Yδ = y + δΞ, where y ∈ D(T+) and δ > 0. (3.1)

Conclusion 3.5. The realizations of Ξ and thus of Yδ do not have to be in H2 because Ξ is only
a weak random element of H2. As a consequence several basic concepts have to be revised:

Notation 3.6. We want to generalize the notation PΞ of image measures from random vari-
ables to Hilbert-space processes. Let Ξ be a Hilbert-space process. Then we interpret PΞ as
the probability measure which is well-defined by its finite-dimensional marginal distributions on
the space (RH2 , (BR)⊗H2), where RH2 denotes the space of all functions f : H2 → R and
(BR)⊗H2 denominates the associated σ-algebra. The existence and uniqueness of PΞ is en-
sured by the Kolmogorov extension theorem [28].

Definition 3.7 (Noise level). The definitions of the noise level of classic and statistical inverse
problems differ significantly. The noise level δ of an inverse problem is defined as scale factor of
the noise ξ or accordingly Ξ, such that

� ‖ξ‖H2
≤ 1 and therefore ‖y − yδ‖H2

≤ δ for all δ > 0 if yδ as in (2.1),

� E
[
‖Ξ‖2

H2

]
≤ 1 and therefore E

[
‖y − Yδ‖2

H2

]
≤ δ2 for all δ > 0 if Yδ ∈ L2(Ω,H2),

� ‖CovΞ‖1/2 ≤ 1 if Yδ as in notation 3.4.

Remark 3.8 (Discussion). From a statistical point of view, only the third case is of interest. For
instance, the discrepancy principle desribed in example 2.10 cannot be applied to observations
with white noise since the term

∥∥ARαY
δ(ω)− Yδ(ω)

∥∥
H2

could be infinite. For observations
with noise modelled as random variables it yields convergent methods by contrast. So, the
second case is very close to the deterministic setting as we will support by proposition 3.26.
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For the deterministic context we defined the regularization operators between the observed
Hilbert-spaces. The following notation allows us to apply them also to Hilbert-space processes:

Notation 3.9. We observe a Hilbert-space process Ξ : H2 → L2(Ω,F ,P) and a linear and
bounded operator R : H2 → H1. Then, we will interpret the composition R Ξ as a Hilbert-
space process on H1, i.e. as R Ξ : H1 → L2(Ω,F ,P) with v 7→ R Ξ v =: 〈R Ξ, v〉H1

=
〈Ξ, R∗v〉H2

.

Remark 3.10. R Ξ is well-defined, since 〈Ξ, R∗v〉H2
= Ξ(R∗v) ∈ L2(Ω,F ,P). The linearity

of R yields further that R Yδ = R y + δR Ξ.

As parameter choices do not have to be linear, we cannot interprete the term α (δ, Yδ) in a
similar way. That is why we will use, where necessary, the sequence space model, which was
discussed for instance in [4, 9, 31]:

Notation 3.11 (Sequence space model). Let {(sj; vj, uj)}j∈N denote the singular system of
the operator T . The sequence space model is defined by

Yδ(ω) := {Yδ,j(ω)}sj>0 with Yδ,j(ω) = 〈y, uj〉H2
+ δ 〈Ξ, uj〉H2

(ω), ω ∈ Ω. (3.2)

In application only finite data are available why we introduce additionally the following observa-
tion model, which is more realistic and has been studied for example in [8, 25]:

Notation 3.12 (Discretized data). Let us consider the one-sided discretization of Yδ:

QYδ = QAx+ δQΞ =
n∑

j=1

Yδ,jwj with Yδ,j(ω) = 〈y, wj〉H2
+ δ 〈Ξ, wj〉H2

(ω), (3.3)

where ω ∈ Ω and Q denotes the projection onto the linear span of an orthonormal system
{w1, ..., wn}.

Remark 3.13.

� We assume to have observations without repetitions.
� (3.3) conforms to the well-known regression model with orthonormal design.
� It is evident that this model leads to a supplemental error term, the discretization error,

which changes the convergence rates but not the underlying convergence behaviour if
we require that n = n(δ) with lim

δ→0
n(δ) = ∞.

To compare and qualify different methods we need an error criterion. Most authors use the mean
squared error (MSE) and so will we. It is defined as follows:

Notation 3.14 (Error criterion). Let Ξ satisfy assumption 1. We set

MSE(R,α, x, δ) :=
(
E
[∥∥T+y −RαYδ

∥∥2

H1

])1/2

, where y = Tx.

Proposition 3.15 (Finiteness of the mean squared error). Let Rα, α > 0, denote a regu-
larization operator with associated regularization filter Fα satisfying (2.3). If the operator T is
Hilbert-Schmidt, the MSE of Rα is finite for all x ∈ H1 and δ > 0.
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Proof. By Parseval’s identity and Fubini’s theorem we get for all y ∈ D(T+) the so called
bias-variance decomposition of the mean squared error:

E
[∥∥T+y −RαYδ

∥∥2

H1

]
=
∥∥T+y −Rαy

∥∥2

H1
+ δ2E

[
‖RαΞ‖2

H1

]
(3.4)

The first term is the squared bias, which is related to the approximation error and specifies the
difference between the exact solution and the expectation value of its estimate. It is finite for
all y ∈ D(T+) and vanishes if α → 0 as we have shown in proposition 2.6. The variance
measures the variability of the estimate caused by the noise. Applying the singular system
{(sj; vj, uj)}j∈N of T with sj ≤ ‖T‖ we get

E
[
‖RαΞ‖2

H1

]
=
∑
sj>0

∣∣Fα(s2
j)sj

∣∣2 E
[
Ξ2

j

]
≤
∑
sj>0

∣∣Fα(s2
j)sj

∣∣2 ≤ γ2

α2 ‖T‖2
HS . (3.5)

since from ‖CovΞ‖ ≤ 1 it follows that E
[
Ξ2

j

]
≤ 1 for all coordinates Ξj := 〈Ξ, uj〉H2 ,

j ≥ 1.

Assumption 2. In the following we assume the operator T to be Hilbert-Schmidt and any con-
sidered regularization filter to satisfy (2.3).

Remark 3.16. We stress that the bound in (3.5) does not yield optimal order.

3.2 Regularization of statistical inverse problems

To define convergent statistical regularization methods we need a reasonable handling of the
stochastical noise when studying the asymptotic of a regularization method for δ → 0. As crucial
point we recognize that not only the realization of the observations could vary for changing noise
levels but even the underlying probability distribution could alter.

Remark 3.17 (Main idea: Linking the noise to the asymptotic of the noise level). For a cho-
sen class of probability distributionsW we consider the asymptotic behaviour of a regularization
method (R,α) when the index k ≥ 1 tends to infinity, i.e. we study

lim
k→∞

∥∥T+y −Rα(δ(k),Y (k))Y
(k)
∥∥

H1
for y ∈ D(T+),

where Y (k) := Y (k)(y) := y + δ(k)Ξ(k) with Ξ(k) ∼ PΞ(k) ∈ W , δ(k) > 0 and lim
k→∞

δ(k) = 0.

Example 3.18.

� Let PΞ be any probability distribution and W := {PΞ}, i.e. we set Ξ(k) := Ξ for all
k ≥ 1. The assumed distribution can be interpreted as a priori knowledge of the noise
behaviour. The most popular example of this approach are observations with Gaussian
white noise.

� By setting W := {PΞ : Ξ ∼ PΞ centered Hilbert-space process with ‖CovΞ < ∞}
we approve arbitrary observations Y (k) := y + δ(k)Ξ(k) where Ξ(k) can be any Hilbert-
space process satisfying assumption 1. Here the change to the stochastic context causes
a loss of information.
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� As a compromise we could consider any subclass of W0 such as the Dirac measures or
the centered normal distributions with bounded covariance.

Remark 3.19 (Kinds of convergence). In order to formulate the aspired definitions we still lack
in a convenient kind of convergence. In consideration of definition 3.7 there are basically three
possibilities available: convergence in mean square, convergence in probability and conver-
gence in distribution. The latter is too weak to yield usefull results but convergence in probability
should suffice for a lot of cases. Nevertheless the convergence in mean square is often prefered
because of its technical advantages. One should decide as the case arises.

Definition 3.20 (Convergent statistical regularization). LetR be a linear regularization scheme,
α : (0,∞)× RN → (0,∞) a measurable function and W a class of probability distributions.
We set for any y ∈ D(T+)

MW(y) :=
{
Yδ = y + δΞ : δ > 0, PΞ ∈ W and ‖CovΞ‖ ≤ 1

}
. (3.6)

The pair (R,α) is called convergent statistical regularization w.r.t. W if for all y ∈ D(T+) and
arbitrary observations {Yδ}δ>0 ⊆ MW(y) the regularized solution converges P-stochastically
to the exact one when δ → 0:

For all
{
Y (k)

}
k≥1

⊆ MW(y) with Y (k) := y + δ(k)Ξ(k) and lim
k→∞

δ(k) = 0 we have

lim
k→∞

P
({
ω ∈ Ω :

∥∥T+y −Rα(δ(k),Y (k)(ω))Y
(k)(ω)

∥∥
H1
> ε
})

= 0 for all ε > 0.

Remark 3.21. The convergence in probability could be replaced by the convergence in mean
square. We call such schemes convergent statistical regularization in mean square w.r.t. W .

Example 3.22.

� Random variables: Hofinger and Pikkarainen study in [17, 18] convergence rates of the
Tikhonov regularization using the Ky-Fan metric as error criterion and allowing only ob-
servations whose noise can be modeled as random variable.

� Statistical parameter choices: In addition to modifications of classic parameter choices,
several strategies have been developed especially for the stochastic context. One of them
was introduced by Lepskiı̆ in [22] and since then adapted to various models as for exam-
ple statistical inverse problems with Gaussian white noise [3, 25]. Another common pa-
rameter choice is cross-validation. In Tsybakov [31] it is presented in a regression model
and in [33] one can find a δ-free version.

� Gaussian white noise in the abstract model (3.1): In [3] the convergence in mean square
of a Lepskiı̆-type parameter choice applied to spectral cut-off is proven for observations
with white noise.

� Gaussian white noise in the regression modell (3.3): Mathé and Pereverzev have shown
in [25] that Lepskiı̆’s procedure converges also with Tikhonov regularization. Our analysis
in section 4 will be based on this study. That is why we want to outline briefly the crucial
results. In [25] the authors focused on discretized data with random noise as described
in notation 3.12. They assumed that:

a) 〈Ξ, wj〉H2

iid∼ N (0, 1), j = 1, ..., n
b) x+ ∈ Tϕ(R) := {x ∈ H1 : x = ϕ(T ∗T )v, ‖v‖ ≤ R}, where ϕ : (0, ‖T‖2] →

R+ is an increasing and operator monotone function with ϕ(0) = 0.
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c) The singular values of T satisfy sj � j−r for all j ≥ 1 and some r > 0.
d) There is a constant C > 1 such that ‖(I −Q)T : H1 → H2‖ ≤ C rank(Q)−r.

Further, they set
1) Rα := (αI +B∗B)−1B∗ with B := QT
2) α0 := δ2 and αj := α0 q

j, where q > 1 and j = 1, ...,m := d2 logq(‖T‖2/δ)e
3) xj,δ := Rαj

Qyδ = (αjI +B∗B)−1B∗QYδ(ω)

4) n = n(α) � dα−1/2re andQ = Qn, where α > 0 andQ the described orthonor-
mal projection onto span({w1, ..., wn})

5) Let CΨ, C1 and C2 > 0 be such that

Ψ(j) := CΨ

√
1

4αj
rank(Q) ≥ E

[
‖Rαj

QΞ‖2
]

(decreasing) and

Φ(j) := C1ϕ(C2αj) ≥ ‖T+y −Rαj
QTx‖ (increasing) with j = 0, ...,m

satisfy δΨ(α0) ≥ Φ(α0).
Now, the regularization parameter is chosen according to α∗ := αj∗ with

j∗ := max {j = 1, ...,m : ‖xk,δ − xj,δ‖ ≤ 4κ δ Ψ(k) for all k ≤ j} , (3.7)

where κ :=
√
m. The idea of this choice is to approximate the parameter αopt which

satisfies δΨ(αopt) = Φ(αopt). Finally, we get with Θ(t) := t(2r+1)/4rϕ(t), 0 < t ≤
‖T‖2, and δ0 > 0 sufficiently small, that

sup
x∈Tϕ(R)

(
E
[
‖x− xj∗,δ‖2

])1/2 ≤ Call

√
d2 logq (‖T‖2/δ)eϕ

(
Θ−1

(
δ
R

))
, δ ≤ δ0,

what converges to zero when δ → 0.

Remark 3.23. For more details about the concepts of general source conditions and operator
monotone functions we refer to [6, 24, 25] and the references therein.

3.3 Relation between classic and statistical regularization methods

As justification for section 3.2 and as preparation of section 4 we are interested in the con-
nection of regularization methods of the two settings. In general, we have to modify at least the
parameter choice α because of the changed domain of definition. In order to formulate sufficient
criteria for the stochastical convergence of (R, α̃) we need to control the decay of α̃(δ, Yδ). The
following notation will help us to describe it conveniently.

Notation 3.24 (Stochastic Landau-Symbol ). Let (Zn)n∈N be a sequence of random variables
on a probability space (Ω,F ,P) and (cn)n∈N a sequence of real-valued constants. We denote

Zn = oP(cn) :⇐⇒ lim
n→∞

P
(
|Zn

cn
| > ε

)
= 0 for all ε > 0.

Proposition 3.25. Let (R,α) be any generally convergent regularization,

W ⊆ {PΞ : Ξ ∼ PΞ centered Hilbert-space process with‖CovΞ‖ <∞} =: W0 (3.8)
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and MW(y), y ∈ D(T+), such as in (3.6). The modified method (R, α̃) constitutes a conver-
gent statistical regularization w.r.t.W for any measurable function α̃ : (0,∞)×RN → (0,∞)
if for arbitrary observations

{
Y (k)

}
k≥1

with Y (k) := y + δ(k)Ξ(k) ∈ MW(y) it holds

lim
k→∞

P
(
α̃(δ(k), Y (k)) > ε

)
= 0∀ ε > 0 and (α̃(δ(k), Y (k)))−1 = oP((δ

(k))−1). (3.9)

Proof. Let y ∈ D(T+),
{
Y (k)

}
k≥1

⊆ MW(y) with Y (k) := y + δ(k)Ξ(k) and lim
k→∞

δ(k) = 0.

Proposition 3.15 yields with assumption 2 for any number α > 0 the finiteness of the mean
squared error:

E
[∥∥T+y −RαY

(k)
∥∥2

H1

]
≤
∥∥T+y −Rαy

∥∥2

H1
+
(
δ(k) ‖T‖HS γ/α

)2
<∞ , k ≥ 1.

Now, we consider a measurable function α̃ : (0,∞)×RN → (0,∞) satisfying (3.9) and insert

in place of the numberα the function value α̃(δ(k), Y (k)(ω)), where Y (k)(ω) = {Y (k)

δ(k),j
(ω)}j≥1

for ω ∈ Ω and k ≥ 1. In doing so we allow for a moment that the parameter choice and the reg-
ularization operator are applied to different realizations of Y (k), k ≥ 1. We get from proposition
2.6 that

lim
k→∞

P
({
ω ∈ Ω : E

[∥∥T+y −Rα̃(δ(k),Y (k)(ω))Y
(k)
∥∥2

H1

]
> ε
})

= 0 (3.10)

for any ε > 0 since the sum of two stochastical convergent sequences converges stochastically.
So, we can say: For all ε > 0 there exists a subset Ωε ⊆ Ω with P(Ωε) ≥ 1− ε, such that

lim
k→∞

E
[∥∥T+y −Rα̃(δ(k),Y (k)(ω̃))Y

(k)
∥∥2

H1

]
= 0 for all ω̃ ∈ Ωε with P(ω̃) > 0.

Further we can deduce that for all ε, η > 0 and ω̃ ∈ Ωε with P(ω̃) > 0

lim
k→∞

P
({
ω ∈ Ω :

∥∥T+y −Rα̃(δ(k),Y (k)(ω̃))Y
(k)(ω)

∥∥2

H1
> η
})

= 0.

Finally, we achieve

lim
k→∞

P
({
ω ∈ Ω :

∥∥T+y −Rα̃(δ(k),Y (k)(ω))Y
(k)(ω)

∥∥2

H1
> η
})

≤ ε

for all ε, η > 0. Since ε is independent of η, we can conclude stochastical convergence.

Proposition 3.26. Any generally convergent regularization (R,α), where α is measurable,
satisfies definition 3.20 of convergent statistical regularization w.r.t.

W1 ⊆ W2 := {PΞ : Ξ ∈ L2(Ω,H2) with E
[
‖Ξ‖2

H2

]
≤ 1}. (3.11)

The converse holds if W1 contains the Dirac measures.

Proof. Let (R,α) be a generally convergent regularization method with measurable α, y ∈
D(T+) and

{
Y (k)

}
k≥1

with Y (k) := y + δ(k)Ξ(k), PΞ(k) ∈ W1, δ(k) > 0 for all k ≥ 1 and

lim
k→∞

δ(k) = 0. We fix ε > 0, set C := ε−1/2 and define for any ω ∈ Ω the set

K(ω) :=
{
k ≥ 1 :

∥∥Ξ(k)(ω)
∥∥

H2
≤ C

}
⊆ N and the number

k(ω) := argmin
k≥1

{∥∥T+y −Rα(δ(k),Y (k)(ω))Y
(k)(ω)

∥∥
H1
≤ ε ∀ l ∈ K(ω) with l ≥ k

}
.
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Then it follows from Chebychev’s inequality and the convergence of (R,α) that

P
({
ω ∈ Ω :

∥∥T+y −Rα(δ(k),Y (k)(ω))Y
(k)(ω)

∥∥
H1
> ε
})

≤ P ({ω ∈ Ω : k /∈ K(ω)}) + P ({ω ∈ Ω : k < k(ω)}) < 2ε

for k ≥ 1 sufficiently large and finally

lim
k→∞

P
({
ω ∈ Ω :

∥∥T+y −Rα(δ(k),Y (k)(ω))Y
(k)(ω)

∥∥
H1
> ε
})

= 0 for all ε > 0.

The proof is complete.

Proposition 3.27. Any purely data driven convergent statistical regularization (R,α) w.r.t.W0,
induces a purely data driven generally convergent regularization (R, α̃).

Proof sketch. Let us contemplate deterministic observations of the form y(k) := y+ δ(k)ξ(k) ∈
H2 with y ∈ D(T+),

∥∥ξ(k)
∥∥

H2
≤ 1, δ(k) > 0 for all k ≥ 1 and lim

k→∞
δ(k) = 0. We define for

any k ≥ 1 the following Hilbert-space valued random variable

Y (k)(ω) :=

{
y(k), if ω ∈ Ω1

−y(k), if ω ∈ Ω2,

where P(Ω1) = P(Ω2) = 0.5. Every random variable Y (k), k ≥ 1, can be identified with a
centered Hilbert-space process, such that the function

α̃ : H2 → (0,∞), y(k) 7→ α

({
y

(k)

δ(k),j

}
j≥1

)
,

where y(k)

δ(k),j
:= Y

(k)

δ(k),j
(ω) for any ω ∈ Ω1 and j ≥ 1, constitutes with the regularization R a

purely data driven generally convergent regularization.

Remark 3.28. The proposition holds also for methods w.r.t. a subclass W ⊆ W0 if W allows
for arbitrary deterministic observations

{
y(k)
}

k≥1
of the above form the definition of a sequence{

Y (k)
}

k≥1
⊆ MW(y) with P ({ω ∈ Ω : Yk(ω) = yk}) > η for η > 0.

4 The Bakushinskiı̆ veto for statistical inverse problems

The following study was motivated by the paper ¨Regularization independent of the noise level:
an analysis of quasi-optimality¨ by Bauer and Reiß [4], which raised the question of the trans-
ferability of the Bakushinskiı̆ veto to statistical inverse problems.

Theorem 4.1.

1 A purely data driven convergent statistical regularization method w.r.t. W0, see (3.8),
exists if and only if the range R(T ) of the operator T is closed.
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2 For certain probability distributions PΞ there exist purely data driven convergent statistical
regularization w.r.t. W := {PΞ} even if the problem is ill-posed.

Remark 4.2 (Generalization). The first statement remains valid for sufficiently large subclasses
of W0 such as W2 of (3.11) or the class of all Dirac measures. We refer to remark 3.28.

For the proof of the second statement we need some preperation:

Notation 4.3 (Setting). In order to construct an example supporting theorem 4.1 (2) let us focus
on an operator T : L2([0, 1]) → L2([0, 1]) and data with Gaussian white noise modeled by
Yδ(t) = Tx(t) + δ Ξt, t ∈ [0, 1] , which is consistent with (3.1). We consider the equidistant
decomposition Zn := (0 = t0 < t1 < ... < tn = 1) with tj := j/n for j = 0, ..., n and
the orthornormal system {ϕj}j=1,...,n, where ϕj := (

√
tj − tj−1)

−1 χ[tj−1,tj). By projecting
Yδ onto the linear span of {ϕj}j=1,...,n we get a finite set of coefficients

Yδ,j := 〈Yδ, ϕj〉L2([0,1]) =
(√

tj − tj−1

)−1
∫ tj

tj−1

Tx(s)ds+ δεj, εj
iid∼ N (0, 1)

with j = 1, ..., n, such that

QYδ(t) =
n∑

j=1

Yδ,jϕj(t) = (tj − tj−1)
−1

∫ tj

tj−1

Tx(s)ds+
√
n δ εj for t ∈ [tj−1, tj) .

Remark 4.4 (Outline). This setting conforms to the regression model with orthonormal de-
sign and without repetitions as discribed in notation 3.12. In example 3.22 we mentioned that
Tikhonov regularization forms with a Lepskiı̆-type parameter choice a convergent statistical reg-
ularization method (R,α) w.r.t. N (0, I) [25]. Plugging in an estimation of the noise level into
this method we can deduce a purely data driven one as we will verify now.

For that purpose we want to use the following estimator:

Definition 4.5 (The estimator [14]).

δ̃2
n :=

1

2n2

n∑
j=1

(QYδ(tj)−QYδ(tj−1))
2 (4.1)

Before studying its asymptotical behaviour we remind of the following notation:

Notation 4.6. ([5]) Let I denote an interval. A function f : I → R is called Hölder continuous
with exponent s ∈ (0, 1] if for all t0 ∈ I a neighborhood U ⊆ R exists, such that

sup
t,t′∈U∩I,t6=t′

|f(t)− f(t′)|
|t− t′|s

<∞.

Assumption 3. Let y = Tx ∈ L2([0, 1]) be Hölder-continuous of order s ∈ (1/2, 1].
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Example 4.7. Assumption 3 is satisfied for any integral operator

T : L2([0, 1]) → L2([0, 1]), (Tx)(t) =

∫ t

0

k(t, u)x(u)du,

with kernel k : [0, 1]2 → R satisfying for some constant C > 0

sup
u∈[0,1]

|k(t, u)− k(t′, u)| ≤ C|t− t′|s, t, t′ ∈ [0, 1] .

Conclusion 4.8. Assumption 3 implies in pursuance of [29, pages 212-213] that

(Qy(tj−1)−Qy(tj))
2 � O(n−2s), j = 1, ..., n,

what from we can deduce the asymptotical unbiasedness of δ̃2
n when n→∞:

E(δ̃2
n) = δ2 +O(n−(1+2s)) and E(δ̃2

n) ≥ δ2

Remark 4.9. In proposition 4.13 we need s > 1/2.

Proposition 4.10 (Concentration inequality). Let n = n(δ) � dδ−ηe with 2 > η ≥ 2/(1+2s),
δ̂ := τ δ̃n and

Ω+ := Ω+(δ, τ,K) :=
{
ω ∈ Ω : δ̂(ω) ∈ [δ,Kτδ]

}
, τ,K > 1 appropriate. (4.2)

The following assertions hold for all δ ≤ δ0 with δ0 > 0 sufficiently small:

1 There are constants C1, C2 > 0 such that P(Ω \ Ω+) ≤ C1 exp (−C2 n
2(α, δ) δ2) .

2 It holds for α > 0 and some C3 > 0 that

sup
T+y∈Tϕ(R)

∫
Ω

‖T+y −RαQYδ‖4dP ≤ C3 δ
4α−4n2(α, δ).

We want to use the following Lemma for the proof of proposition 4.10:

Lemma 4.11.

1 Let X be a Gaussian random vector in a Banach space B and ‖X‖p := E [‖X‖p
B]

1/p,
0 < p < ∞, the Lp-norm of X . For all 0 < p, q < ∞ there is a constant Kp,q > 0
such that ‖X‖p ≤ Kp,q‖X‖q.

2 Let X ∈ L4(Ω,F ,P) be nonnegative. It holds∫
Ω

X4(ω)dP(ω) = 4

∫ ∞

0

t3 P(X > t)dt.

3 ‖(αI +B∗B)−1B∗B‖ ≤ 1

Proof of lemma 4.11. The first statement can be found in [21, page 60] and the second one
follows by a generalized version of partial integration, which is given in [13, chapter 5, § 6]. By

spectral calculus we get the inequality in (3).
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Proof of proposition 4.10.

1 Using Lemma 4.11 (1) we get with δ̃n = ‖Xn‖, where

Xn := (
√

2n)−1 (QYδ(t1)−QYδ(t0), ..., QYδ(tn)−QYδ(tn−1)) ∼ N (EXn, In),

that

P(Ω \ Ω+) = P
({
ω ∈ Ω : τ δ̃n(ω) < δ

})
+ P

({
ω ∈ Ω : τ δ̃n(ω) > τ Kδ

})
= P

(
K−1

2,1‖δ̃n‖2 − δ̃n > K−1
2,1‖δ̃n‖2 − δ

τ

)
+ P

(
δ̃n −K1,2‖δ̃n‖2 > Kδ −K1,2‖δ̃n‖2

)
≤ P

(
|E
[
δ̃n

]
− δ̃n| > K−1

2,1‖δ̃n‖2 − δ
τ

)
+ P

(
|δ̃n − E

[
δ̃n

]
| > Kδ − ‖δ̃n‖2

)
since the Cauchy-Schwarz inequality yields K1,2 = 1. At this point, we would like to
apply the concentration inequality (3.2) in [21, page 57] what for we have to ensure that
τ‖δ̃n‖2 > K2,1δ and Kδ > ‖δ̃n‖2. The first requirement is satisfied for all τ > K2,1 as
‖δ̃n‖2 ≥ δ. For the second we need that K � 1 since we have for a constant c > 0

‖δ̃n‖2 ≤ δ + cn−(1+2s)/2 � δ + c δη(1+2s)/2 ≤ (c+ 1) δ for δ ∈ (0, 1).

Supposing that τ and K are appropriate it follows that for some constants C1, C2 > 0

P(Ω \ Ω+) ≤ 2 exp

(
− 2

π2n
2(α, δ)

[
K−1

2,1‖δ̃n‖2 − δ/τ
]2)

+ 2 exp

(
− 2

π2n
2(α, δ)

[
Kδ − ‖δ̃n‖2

]2)
≤ C1 exp

(
−C2 n

2(α, δ) δ2
)
.

2 After lemma 4.11 (2) and (3) and the concentration inequality (3.5.) in [21, page 59] it
holds for x+ = T+y and some constant C3 > 0 that∫

Ω

‖x+ −RαQYδ‖4dP = 4

∫ ∞

0

t3P
(
‖x+ −RαQYδ‖ > t

)
dt

≤ 4

∫ 2‖x+‖H1

0

t3dt+ 16

∫ ∞

2‖x+‖H1

t3 P
(
2‖x+‖+ δ‖RαQΞ‖ > t

)
dt

≤ 16‖x+‖4
H1

+ 16

∫ ∞

2‖x+‖H1

t3 exp
(
−(t− 2‖x+‖H1)

2/E
)
dt

= 16‖x+‖4
H1

+ 16

∫ ∞

0

(
t3 + 6t2‖x+‖H1 + 12t‖x+‖2

H1
+ 8‖x+‖3

H1

)
e−t2/Edt

= 16‖x+‖4
H1

+ 1
2
E2 + 3

2

√
π‖x+‖H1E

3/2 + 6‖x+‖2
H1
E + 4

√
π‖x+‖3

H1

√
E

≤ 16‖x+‖4
H1

+ C3 δ
4α−4n2(α, δ),

where 0 < sj ≤ ‖T‖ yields

E := 8E
[
‖δRαQΞ‖2

]
= 8δ2

∑
sj>0

| sj

α+s2
j
|2E
[
|〈QΞ, uj〉H2|2

]
≤ 8δ2‖T‖2α−2n(α, δ).

The assertion follows for all δ ≤ δ0 with δ0 > 0 sufficiently small.
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Remark 4.12 (Asymptotic behaviour of n). In example 3.22 we set n � dα−1/2re, r > 0, but
in proposition 4.10 it was more advantageous to link n to δ. Combining the two approaches we
get

n := n(α, δ) = max{n1(α), n2(δ)}, where n1(α) � dα−1/2re and n2(δ) � dδ−ηe. (4.3)

Due to the fact that we take another asymptotic behaviour of n as basis of our analysis than
stated in example 3.22 we have to revise the convergence result.

Proposition 4.13. Let α∗ := αj∗(δ, Yδ) denote the regularization parameter according to Lep-
skiı̆’s principle as described in example 3.22. If we assume that n = n(α, δ) as in (4.3) with
η < 2 (instead of n = n(α) � dα−1/2re as before) then

lim
δ→0

(
sup

T+y∈Tϕ(R)

E
[
‖T+y −Rα∗QYδ‖2

])
= 0.

Proof. Mathé and Pereverzev have shown in [25, Theorem 5] that under the assumptions and
notations of example 3.22 it holds for some C0 > 0 that

sup
T+y∈Tϕ(R)

E
[
‖T+y −Rα∗QYδ‖2

]
≤ C0

√
d2 logq(‖T‖2/δ)eϕ(α̌),

where α̌ := αǰ with ǰ := max {j ≤ m : Φ(j) ≤ δΨ(j)}. The proof of this bound does
not depent on the asymptotic behaviour of n aside from the requirement of the existence of
a constant D > 0 satisfying Ψ(j) ≤ DΨ(j + 1) for all j = 0, ...,m − 1. Since this is
fulfilled even for our new choice of n we cite the given inequality without further proof. The
only modification which we made is a slight change of the definition of ǰ, which simplifies the
notation. Now, we want to prove that the right hand side converges to zero. We follow the ideas
in [25] and set

Θδ(t) := max{dt1/4se, dδη/2e}
√
tϕ(t), t > 0, and α∗ := inf {α > 0 : Θδ(α) ≥ δ} .

Θδ is increasing in t such that for every δ > 0 there is a unique choice for α∗. We notice that

δΨ(α∗) = δ CΨ

√
n(α∗,δ)

4α∗
= CΨ

2
δ
(
max{d(α∗)1/4se, dδη/2e}

√
α∗
)−1

≤ CΨ

2
ϕ(α∗).

This leads to α̌ ≤ α∗ because of the definition of Φ and the monotonicity of Φ and Ψ. Finally,
we can deduce

lim
δ→0

(
sup

T+y∈Tϕ(R)

E
[
‖T+y −Rα∗QYδ‖2

])
≤ lim

δ→0
Call

√
d2 logq(‖T‖2/δ)eϕ(α∗(δ)) = 0

since lim
δ→0

α∗(δ) = 0 if η < 2.

Remark 4.14. The convergence rate given in the last equation has not to be optimal.
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Finally, we achieve:

Proof of theorem 4.1. Any purely data driven convergent statistical regularization (R,α) w.r.t.
W0 induces the existence of a purely data driven convergent regularization (R, α̃) in terms of
definition 2.12, as shown in proposition 3.27. If so, the range R(T ) of T is closed, see lemma
2.14. So, we turn to the second statement:
We consider the setting desribed in notation 4.3 with Tx satisfying assumption 3, the esti-
mator δ̃2

n given in definition 4.5 and the set Ω+ introduced in (4.2). Let Rα, m, {αj}j=0,...,m,
{xj,δ}j=0,...,m, Tϕ(R), Ψ, Φ and κ be as in example 3.22 and n := n(α, δ) as in (4.3). First
of all we want to verify if the assumptions of example 3.22 are satisfied. The first one follows
by definition and the second if x+ ∈ Tϕ(R). The definition of the projection Q and the Hölder
continuity of Tx yield by [29, pages 212-213] asumption (d) since

‖(I −Q)T : H1 → H2‖ ≤ C rank(Q)−s,

where s ∈ (1/2, 1] denominates the Hölder exponent of Tx. Assumption (c) has been used
in [25] as basis of assumption (d) and in order to prove the order optimality of the convergence
result, why we can ignore it. As a consequence we set r := s in n1(α) � dα−1/2re such that

n1(α) ≤ n1(α0) � δ−1/s ≤ δ−η � n2(δ) if η ≥ 1/s.

Now, we want to examine

E
[
‖T+y −Rα̂∗QYδ‖2

]
=

∫
Ω+

‖T+y −Rα̂∗QYδ‖2dP +

∫
Ω\Ω+

‖T+y −Rα̂∗QYδ‖2dP,

where α̂∗ := αj∗(δ̂, Yδ) with δ̂ := τ δ̃n denotes the regularization parameter resulting from
Lepskiı̆’s principle (3.7) when using the estimated noise level. It is quite evident that

Ω+ ⊆ Ωκ := Ωκ(δ) :=

{
ω ∈ Ω : max

j=1,...,m(δ)

δ ‖Rαj Qn Ξ(ω)‖H2

Ψδ(j)
≤ κ

}
if the constant CΨ > 0 in Ψ is sufficiently large. As αj∗(δ, Yδ) and α̂∗ lead on Ω+ to the same
asymptotic behaviour of RαQYδ we can deduce from proposition 4.13 that the first term on the
right vanishes when δ → 0 if η < 2. Furthermore, the Hölder-inequality yields that∫

Ω\Ω+

‖T+y −Rα̂∗QYδ‖2dP ≤
(∫

Ω

‖T+y −Rα̂∗QYδ‖4dP
)1/2

(P(Ω \ Ω+))1/2 .

Hence, it follows from proposition 4.10 that for all δ < δ0 with δ0 > 0 sufficiently small it holds
with η := 1/s ≥ 2/(1 + 2s), where s ∈ (1/2, 1], that

sup
T+y∈Tϕ(R)

∫
Ω\Ω+

‖T+y −Rα̂∗QYδ‖2dP ≤ Calldδ−(2+η)e exp
(
− 1

2
C2 δ

2−2η
)
,

and finally

lim
δ→0

(
sup

T+y∈Tϕ(R)

E
[
‖T+y −Rα̂∗QYδ‖2

])
= 0,

which completes the proof.

17



Remark 4.15 (Numerical procedure). The numerical procedure including the estimation of the
noise level can be described with the notations of example 3.22 as follows:

Choose: τ > K2,1; p > 1; q > 1; n ∈ N; m ∈ N; ε > 0; δ̂0 := 0; k := 0;
Do: k := k + 1;

δ̂k := 1
2
τ n−2

∑n
j=1 (yδ(j/n)− yδ((j − 1)/n))2 ;

α := δ̂2
k;

n := max{n(α, δ̂k), p ∗ n};
While:

(
(k < m)ε+ (k > m) max{|δ̂k − δ̂j|, j = k −m, ..., k} > εδ̂k

)
;

Adapt: κ :=
√
m; n = n(α, δ̂k); B := QnT ; x1 := (αI +B∗B)−1B∗yδ; k := 0;

Do: k := k + 1;
α := q ∗ α;

n := n(α, δ̂k);
B := QnT ;
xk := (αI +B∗B)−1B∗yδ;

While:
(
‖xj − xk‖ ≤ 4κδ

√
ψ(αqj−k), j ≤ k and α ≤ ‖T‖2

)
;

Return: xk−1;

The second part is a modified version of the strategy presented in [25].

5 Conclusion

In this paper we have developed new concepts for the study of statistical inverse problems.
The central idea was to link the noise to the asymptotic of the noise level δ → 0, varying
its probability distribution, which is assumed to be an element of a fixed class W w.r.t. which
the convergence of the considered regularization is required. By means of this approach we
were able to disprove the often supposed general transferability of the Bakushinskiı̆ veto to the
stochastical context.

A lot of continuative issues arise out of this result: The estimation of the noise level gained in
importance. In particular estimation methods which utilize just one data set are of special in-
terest as the estimate can be incorporated into a regularization method. How does the various
parameter choices react to the usage of an estimated noise level and how can we compen-
sate unwanted behaviors? For which other classes of probability distributions does an analog
statement to the Bakushinskiı̆ veto hold and for which ones can we derive counter examples?
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