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for some Non-Smooth Optimization Problems 
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Abstract. We consider the fast solution of non-smooth optimization prob-
lems as resulting for example from the approximation of elliptic free bound-
ary problems of obstacle or Stefan type. Combining well-known concepts 
of successive subspace correction methods with convex analysis, we derive 
a new class of multigrid methods which are globally convergent and have 
logarithmic bounds of the asymptotic convergence rates. The theoretical 
considerations are illustrated by numerical experiments. 
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1 Introduction 
The weak solution of an elliptic selfadjoint boundary value problem is ob-
tained by minimizing the corresponding quadratic energy functional :f. We 
will consider the more general problem 

:f(u) + cp(u) = mm 

with cp denoting a convex functional which is piecewise quadratic but not 
differentiable. Such non-smooth optimization problems are modeling phys-
ical phenomena involving a change of phase. Obstacle problems or time-
discretized two-phase Stefan problems are typical examples (see e.g. [6, 7, 14] 
for further applications). 
The continuous problem is discretized by piecewise linear finite elements with 
respect to a sequence of triangulations resulting from the successive adaptive 
refinement of a given initial mesh. A corresponding adaptive algorithm has 
been described in [20]. In this paper we will concentrate on the efficient 
solution of the nonlinear discrete problems arising on each refinement level. 
The most delicate question in constructing a multigrid method for a nonlin-
ear problem is how to represent the nonlinearity on the coarse grids. This 
process usually involves some kind of linearization. Unfortunately, the com-
puted corrections may exceed the region in which the actual linearization is 
valid. This problem is often remedied by a posteriori damping of the coarse 
grid correction [12]. The appropriate selection of damping parameters is a 
non-trivial task [13, 15]. The basic idea of monotone multigrid methods to 
be presented here i.s first to find out a neighborhood of the actual iterate in 
which the actual linearization is valid and then to constrain the coarse grid 
correction to this neighborhood. In this way, we ensure monotonically de-
creasing energy in course of the iteration. It turns out that such kind of local 
linearization is equivalent to the damping of the inaccessible nonlinear coarse 
grid correction. Suitable damping parameters are implicitly incorporated in 
the constraints. This approach provides globally convergent methods and 
we can prove asymptotic multigrid convergence rates. In comparison with 
previous multigrid algorithms, monotone multigrid methods turned out to be 
superior both from a theoretical and from a numerical point of view [18, 19]. 
As proofs of the basic convergence results have been already presented else-
where [18, 19], we will try to give an algorithmically oriented presentation 
here. In this way, we hope to simplify further generalizations of the un-
derlying ideas and the implementation in existing multigrid codes. A more 
detailed description will be contained in a forthcoming work [21]. 
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2 Discretization of the Continuous Problem 
Let n be a bounded, polygonal domain in the Euclidean space IR2

• We 
consider the optimization problem 

u EH: :J(u) + cjJ(u)::; :f(v) + cjJ(v), v EH, (2.1) 

on a closed subspace H C H 1 (f2). For simplicity, we select H = HJ(D,) cor-
responding to homogeneous Dirichlet boundary conditions. Other boundary 
conditions of Neumann or mixed type and the case of three space dimensions 
can be treated in a similar way [3, 4]. 
The quadratic functional :! , 

:f(v) = ~a(v,v)-l(v), (2.2) 

is induced by a continuous, symmetric, and H-elliptic bilinear form a(·,·) 
and a bounded, linear functional £. H is equipped with the energy norm 
11 ·II= a(·, ·)1/2. 
The convex functional cjJ of the form 

c/J(v) =lo <.P(v(x)) dx, (2.3) 

is generated by a scalar function <.P : IR-+ IR U { +oo }. We assume that <.P is 
convex and piecewise quadratic, 

(2.4) 

on a partition 

-oo ::; Bo < 81 < ... < ON < BN+1 ::; +oo 

of the closed interval Kc IR bounded by B0 , BN+i and that <.P(z) = oo holds, 
if z ~ K. To make sure that 0 E K, we assume Bo ::; 0 ::; BN+l· The 
convexity implies that <.P is continuous on K but the derivative <.P' may be 
discontinuous at the transition points Bi, i = 1, ... , N. 
From the assumptions on <.P, the functional cjJ is convex, lower semi-continuous, 
and proper (i.e. c/J(v) > -oo and cjJ ~ +oo). In particular, cjJ is finite and 
continuous on the closed convex set KC H, 

K = {v EH I v(x) EK, a.e. inn} f= 0. 

Hence, it follows from well-known results [10] that the optimization problem 
(2.1) has a unique solution u E Hand can be equivalently rewritten as the 
elliptic variational inequality of the second kind 

u EH: a(u,v - u) + cjJ(v) - c/J(u) 2:: l(v - u), v EH. (2.5) 
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Let Tj be a consistent partition of !1 in triangles with minimal diameter 
hi = 0(2-i). The interior nodes and edges of Tj are denoted by JVj and 
Ej, respectively. The finite element space Si C H contains all continuous 
functions v E H which are linear on each triangle t E Tj. Si is spanned by 
the nodal basis Aj ={.A~) Ip E Ni}· Replacing H by the finite dimensional 
approximation Si and the functional </J by its Srinterpolate cPi, 

cPi(v) = L <I>(v(p)) 1 .A~i)(x) dx, v E Sj, 
pEN; !l 

(2.6) 

we obtain the discrete optimization problem 

Observe that the discrete energy .:T + cPi is finite and continuous on the closed 
convex set JCi C Sj, 

It is easily seen that the discrete functional cPi still is convex, lower semi-
continuous, and proper. Hence, the discrete problem (2. 7) has ,a unique 
solution Uj E Si which is characterized by the variational inequality 

The convergence of the discretization (2. 7) follows from general results as 
condensed by Glowinski [10] and error estimates have been derived for ex-
ample by Brezzi et al. [5] or Elliot [9]. 
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3 Multilevel Relaxations 
Assume that 0 is resulting from j refinements of a given, intentionally coarse 
triangulation 10 of n. In this way, we obtain a sequence of triangulations 
10, ... , 0 and of corresponding nested finite element spaces S0 C ... C Si. 
To avoid additional technicalities, we assume for the moment that each tri-
angulation is uniformly refined, i.e. that each triangle t E 'Jk_ 1 is subdivided 
into four congruent subtriangles to obtain the next triangulation 'Jk. 
Collecting the nodal basis functions Ak = { Ai7) I i = 1, ... , nk} from all 
refinement levels, we define the multilevel nodal basis As, 

A - ('(j) \(j) \(j-1) \(j-1) \(0) \(0)) 
S - /\Pl ' • ' • ' /\Pnj' /\Pl ' ' •• ' /\Pnj-1 ' ••• ' /\Pl ' ••• ' /\Pno 

which is ordered from fine to coarse. We frequently write As = ( A1 , ... , Am) 
with m = ni + ... + n 0 • 

In the special case of an elliptic selfadjoint problem (i.e. </; = 0) one step of 
a classical multigrid V-cycle with Gauss-Seidel smoother can be regarded as 
the successive optimization of the energy functional :1 in the direction of the 
multilevel nodal basis functions Al E As ( cf. e.g. McCormick '[24], Xu [26], 
or Y serentant [27]). We will use a straightforward extension of this multilevel 
relaxation as the starting point for the construction of monotone multigrid 
methods for the non-smooth optimization problem (2. 7). To be precise, we 
introduce the splitting 

m 

Sj = L Vi, (3.1) 
l=l 

of Sj in the one-dimensional subspaces Vi= span{ AL}, l = 1, ... ,m. For a 
given v-th iterate uj E }(,j one step of a nonlinear multilevel relaxation now 
reads as follows. 

Algorithm 3.1 (Nonlinear Multilevel Relaxation) 
initialize: w 0 := u~ 

J 

J or l = 1 step 1 until m do 

VL E Vi : :1( Wl-1 + vl) +<Pi( Wl-1 + vc) :::; 
:::; :f(wc-1 + v) + <Pi(wc-1 + v), v E Vi 

wz := wz-1 + wlvz, wz E [O, 1] 

new iterate: uj+1 := Wm 

(3.2) 

Observe that we have introduced certain damping parameters wz which will 
be useful later on. Assuming 

wz = 1, l = 1, ... , ni, (3.3) 
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the leading fine grid corrections in direction of Az E Ai can be regarded as 
one step of the well-known single grid relaxation [10]. The corresponding 
iteration operator is denoted by J\llj and uj := A1;(uj) is called smoothed 
iterate. Note that we have u~ E Ki for an arbitrary initial iterate u~ E Si. 
The subsequent coarse grid corrections of the smoothed iterate uj in the 
directions Al E As\ Ai are intended to reduce the low frequency contributions 
of the error. 
The following convergence proof will be based on the global convergence of 
the leading single grid relaxation and on the monotonicity 

.:J(wz) + cPi(wz)::; .J(wz_i) + cPi(wz-1), l = 1, ... , m, (3.4) 

of the local corrections. 

Theorem 3.1 For any initial iterate u~ E Sj and any sequence of damping 
parameters with the property {3.3} the sequence of iterates (uj)v~o produced 
by Algorithm 3.1 converges to the solution Uj of the discrete problem (2. 7). 

Proof: We will use the abbreviation J = .:! + cPi· The sequence of 
iterates uj, v ~ 0, is bounded because the monotonicity (3.4) yields 

J(uj)::; J(u~) < oo, v ~ 1, 

and we have J(uv) -too for any unbounded sequence (uv)v~o C Sj. 
Let uj", k ~ 0, be an arbitrary, convergent subsequence of uj with the limit 
u* E Sj, . 

(3.5) 
Such a subsequence exists, because uj is bounded and Sj has finite dimension. 
Observe that u* E Kj, because (uj")k~l C Kj and Ki is a closed subset of Sj. 
In order to prove u* = Uj, we will show that u* is a fixed point of the single 
grid relaxation Mi· It is easily checked that Mi is continuous so that 

(3.6) 

As each step of the multilevel relaxation starts with the single grid relaxation 
Mj, the local monotonicity (3.4) implies 

From (3.4) we also have 
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In virtue of the convergence (3.5), (3.6), and the continuity of j' on JC;, this 
leads to 

J'(M;(u*)) = J'(u*). (3.7) 
It is easily seen that (3. 7) holds, if and only if all local corrections of the 
single grid relaxation applied to u* are zero, i.e. M;( u*) = u*. The single 
grid relaxation is globally convergent so that u; is the only fixed point of 
M;, giving u* = u;. 
As (uj")k2:0 was an arbitrary convergent subsequence, the whole sequence uj 
must converge to u;. This completes the proof. 111 

In the special case</>; = 0 Algorithm 3.1 can be implemented as a V-cycle: 
Representing the bilinear form a(·,·) on the coarse grid spaces Sk by their 
values on Ak, one can update the residual and evaluate the local corrections 
without visiting the fine grid. This provides optimal numerical complexity, 
i.e. 0( n;) operations, for each iteration step. To find a related implementa-
tion for the nonlinear case, we will now consider the local subproblems for 
the local corrections 

ii1 = z,.A, E Vz 
in more detail. Using subdifferential calculus [8], (3.2) can be rewritten as 
the following scalar inclusion for the unknown coefficient Zl E IR 

0 E a(.Az, .Az)zz - (l(.Az) - a(wi-i, .A1)) + 8</>;(wz-1 + zz.Az)(.A,). (3.8) 

Observe that 8</>;(wz_1 + z.Az)(.Az) is a piecewise linear function in z because 
the scalar function q; which generates c/J; is piecewise quadratic. Hence, after 
some tedious calculations, the fine grid corrections in direction of .Az E A; are 
available in closed form [19, 20]. 
Let us consider the coarse grid correction in direction of some fixed .A, E Ak, 
k < j. It is clear that Zl can not be computed without evaluating the inter-

. mediate iterate wz_1 at all nodes p E int supp .A1, because the subdifferential 
8</>;(wl-1 + z.A1)(.A1) is nonlinear with respect to the argument w,_1 + z.A1. 
This leads to (at least) one additional prolongation for each local coarse grid 
correction. As a consequence, the number of operations for one complete 
iteration step is no longer linearly bounded but grows like O(n;log(n;)). 
To preserve the optimal numerical complexity of the classical V-cycle, we will 
now approximate the exact coarse grid corrections iii by a local linearization 
of the subproblems (3.8) in a neighborhood of the smoothed iterate uj. For 
this reason, we define the discrete phases Nj(uj) C N; of uj by 
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At the remaining critical nodes JVl(uj), 

N 
Ni•(u1j) =Ni\ LJ Nj(uj), (3.9) 

i=O 

uj has values in the set { 81 , ... , ()N} of transition points. 
Now the key observation is that <Pi( w) is a quadratic functional as long as the 
discrete phases of w remain invariant. Such a neighborhood of uj is given 
by the closed convex subset lCu.~ C Sj, 

:J 

where the obstacles 'P-v' 'Pu.~ E Si are defined by 
-Uj :J 

cp v.~ (p) = Bi, 'Pv.j (p) = Bi+i, 
:J 

cpuj(p) = 'Pv.j(P) = uj(p), 
if p E Nj(uj), 
if p E Nj•(uj). 

Recall that Ku~ is fixed by the fine grid correction. 
:J 

By construction, the functional </;; on Ku~ can be rewritten as 
:J 

with the symmetric positive semidefinite bilinear form bu~(v,w), 
:J 

and the linear functional f u~ ( v), 
:J 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

To take advantage of the simple representation of bilinear forms and linear 
operators on the coarse spaces Sk, k < j, we want to constrain the local 
corrections in such a way that all the intermediate iterates Wt remain in lCu~. 

:J 
Equivalently, the coarse grid corrections must not cause a change of phase. 
Hence, the local subproblems (3.2) in Algorithm 3.1 are replaced by the 
quadratic obstacle problems 

vz E V[: :f(wl-1 + vi) + </Ji(wz-1 + vi) ~ 
~ :f(wz-1 + v) + </;j(Wz-1 + v), v E 'D[, 

(3.14) 
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with constraints 

v; = {v E Vz I Wz-1 + v E Kud c Vz. 
J 

(3.15) 

In the light of (3.11), the energy functional on Vi has the representation 

J'(wz-1 + v) + <Pi(wz-1 + v) = -21 au~(v,v) - ru~(wz-1)(v) + const. (3.16) 
J J 

where we have set ru~ ( wz-1) = lu~ - au~ ( wz-i, ·) and 
J J J 

a-v (· ·) = a(· ·) + b-. (· ·) lu~ = l + fu~. 
Uj ' ' U3 ' ' J J 

(3.17) 

The set Vi clearly contains all v E Vz satisfying 

'Pu-v - Wz-1 ::; V ::; 'Pu.~ - WZ-1· 
- j J 

(3.18) 

Hence, we still have to evaluate the intermediate iterate wz_1 E Sj to check 
wether some vis contained in v; or not. For this reason, we approximate v; 
by replacing the fine grid defect obstacles wz_1 - 'P-v' wz_1 - 'Pu.~ appearing 

-Uj J 

in (3.18) by coarse grid approximations 'l/;1, 'l/Jz E Vz. To make sure that the 
resulting subset 

Dz = { v E Vz I t ::; v ::; 'lj; z} C Vi 
satisfies 0 E Dz C Vi, .we require 

cp uj - Wz-1 ::; 'l/; 1 ::; 0 ::; 'l/Jz ::; 'Puj - wz-1. 

(3.19) 

(3.20) 

Let us postpone the construction of such monotone approximations 'lj;l' 'l/;1 
to the next section. We now summarize one complete step of our linearized 
multilevel relaxation. 

Algorithm 3.2 (Linearized Multilevel Relaxation) 
fine grid smoothing: uj :=Mi( uj) 
local linearization: au~ :=a+ bu~, lu.~ := l + fu~ 

J J J J 

coarse grid correction: 
initialization: Wn; := uj 
for l = nj + 1 step 1 until m do 

update 1)1 

vz E Dz: ~au~(vz,vz) - ru.~(wz_i)(vz)::; 
J 1 J (3.21) 

-2 au.~(v,v)- ru~(w1-1)(v), v E Dz 

wz := wz-1 + vz 
new iterate: uj+l :=Wm 

J J 
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It is the main result of this section that local linearization can be regarded 
a~ local damping. 

Lemma 3.1 For a given intermediate iterate WL-l E Sj the local corrections 
vl and vz resulting from the subproblems {3.2} and {3.21}, respectively, are 
related by 

VL = WzVL (3.22) 

with some wz E [O, 1]. 

Proof: If VL E Vz, then the inclusion Vz C Vi yields vz = vz. As vz E Vi 
and 'lj;l, 'lj;l E Vi, we only have to consider the remaining cases VL < '!£z and 
'l/Jz < VL. In the first case, (3.20) gives vz < vz = 'l/;1 ::; 0. The second case can 
be treated in a similar way. 11 

Lemma 3.1 implies that Algorithm 3.2 is a special case of Algorithm 3.1. 
In particular, it is globally convergent. By keeping the local coarse grid 
corrections vz in Vl, the damping parameters WL are implicitly selected in such 
a way that the local linearization (3.11) remains valid. A similar approach 
can be used, if the functional cPi is not piecewise linear but piecewise smooth. 
This will be the subject of a forthcoming paper. 
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4 Standard Monotone Multigrid Methods 
To complete the construction of a monotone multigrid method, we now derive 
suitable local obstacles 'lj;l and 'lj;z, l = ni + 1, ... , m. For symmetry reasons, 
it is sufficient to consider only the upper obstacles 'lj;l. The construction relies 
on suitable successive restrictions of the initial defect obstacle 'Pu.~ - uj. 

J 

To identify the supporting points and the levels of Az E As, we will use the 
notation 

Azilc = -A17), i = 1, ... , nk, k = 0, ... ,j. 
Then the correction 

V (k) = v(k) + + v(k) 
Pl • • • Pn1c 

is the sum of all local corrections vzi1c = v},';) in direction of the basis functions 
Azi1c = -A17) on level k. The following lemma is easily proved by induction. 

Lemma 4.1 Assume that the mappings R~+i : Sk+i -t Sk, k = j -1, ... , 0, 
are monotone in the sense that 

( 4.1) 

holds for all non-negative v E Sk+l . Then, for a given smoothed iterate uj 
and the initial defect obstacle 'lj;(i) = 'Pu.~ - uj ~ 0, the recursive restriction 

J 

,,1.(k) - Rk ("''(k+i) - (k+i)) k - . - 1 0 
o/ - k+l o/ v ' - J ' ... ' ' (4.2) 

provides local upper obstacles 'lj;1 E Vl with the property (3.20) by the definition 

- - -(k) . (k) . -'lj;zil. - 'lf; (Pi)APi , i - 1, ... , nk. (4.3) 

As we are interested in multigrid convergence rates, we want to exclude the 
trivial choice R%+1 = 0 which would bring back the single grid relaxation. 
Hence, we will now derive monotone restrictions R~+l satisfying 

for non-negative v E Sk+i, instead of the weaker lower estimate in ( 4.1). It 
will turn out later on that such quasioptimal restrictions provide asymptotic 
multigrid convergence rates. Let us select a certain ordering of the edges 
Ek = {e1, ... , es} with midpoints Pe E Ni+i, e E Ek. Then the restriction 
operator R~+i : Sk+i -t Sk is defined by 

( 4.5) 
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Here Isk denotes the Sk-interpolation and the operators Re : Sk+i --+ Sk+i, 
e E £k, are of the form 

R v = v + v ;\ ( k+i) + v ;\ (k+i) 
e i Pl 2 P2 ' (4.6) 

with Pi, P2 E Nk denoting the vertices of e 
vi, v2 E IR in ( 4.6) are chosen such that 

(Pi, P2) E £k. The scalars 

In particular, we set V1 = 0, if v(pi) :::; v(pe) or v(pi) + v(p2) ::; 2v(pe)· In 
the remaining case, Vi is determined by 

_ { 2v(pe) - v(p1) - v(p2), if v(p2) ::; v(pe) ::; v(pi), 
Vi - v(pe) - v(p1), if v(pe) ::; v(p), P =Pi, P2· 

The value of v2 is obtained in a symmetrical way. 
The following proposition can be checked by elementary considerations. 

Proposition 4.1 For any fixed enumeration of £k the definition (4.5) pro-
vides a quasioptimal upper restriction operator R~+l in the sense of (4.4). 

We will now formulate Algorithm 3.2 as a multigrid V-cycle. For this reason, 
we rewrite the computation of the correction v(k) from all local subproblems 
(3.21) on a fixed level k as one step of a projected Gauss-Seidel-method. The 
corresponding iteration operator for a bilinear form a= a(·,·), a right hand 
side r' and obstacles 'lj;, 'lj; is denoted by Mk( a, r, 'lj;, 'lj;) : sk --+ Sk. Recall 
that Mi : S; --+ S; stands for the nonlinear single grid relaxation. Lower and 
upper monotone restrictions will be denoted by R~+i and R~+l' respectively. 

Algorithm 4.1 (Standard Monotone Multigrid Method) 
fine grid smoothing: uj := M ;( uj) 
local linearization: au':' := a+ bu':', lu':' := l + fu':' 

J J J J 

coarse grid correction: 
initialize: 

bilinear form and residual: aU) := au':', r(j) := lu':' - au':' ( u1~, ·) 
J J J 

defect obstacles: 'lj;(j) := cp u':' - uj} 'lj;(j) := 'Puj - uj 
3 

global correction: vj := 0 
for k = j - 1 step - l until 0 do 

canonical restrictions: a(k) := a(k+i) lskxsk, r(k) := r(k+i) lsk 
quasioptimal restrictions: 'lj;(k) := R~+l 'lj;(k+l), 'lj;(k) := R:+i 'l/J(k+l) 
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coarse grid smoothing: v(k) := Mk( a(k), r(k), 'l/l(k), 'l/l(k))(O) 
update: 

residual: r(k) := r(k) - a(k) ( v(k), . ) 

defect obstacles: 'l/l(k) := 'l/l(k) - v(k) 
1 

'l/l(k) := 'l/l(k) - v(k) 
for k = 0 step 1 until j - 1 do 

canonical interpolation: vj := vj + v(k) 
new iterate: uj+l := ii/j + vj 

Note that Algorithm 4.1 contains a slightly improved variant of Mandels 
method [23] for linear complementary problems as a special case. See [18] 
for details. 
We will now briefly sketch that quasioptimal restrictions R~+l' R~H lead to 
asymptotic multigrid convergence rates. It can be shown that for large v the 
discrete phases of the iterates uj are equal to the discrete phases Nj ( Uj), 
i = 0, ... , N, of the exact finite element solution u;, if the discrete problem 
(2. 7) is non-degenerate in the sense that 

p E N;•(u;) ==? l(A~i)) - a(ui, A~i)) E int {}</J;(u;)(A~)). (4.7) 

Let us assume for the moment that the discrete phases of u; are known. Then 
it is easily .checked that u; = uj is the unique solution of the reduced linear 
problem 

uj E SJ: au;(uj,v) = lu;(v), v E SJ, (4.8) 
where the bilinear form au; and the linear functional lu; are defined in analogy 
to (3.17), SJ = {v E Si I v(p) = u;(p), p E N;•(u;)} and the reduced 
subspace SJ CS; is given by 

SJ = {v ES; I v(p) = 0, p E N;•(u;)}. ( 4.9) 

Observe that the reduced multilevel basis 

(4.10) 

generates a splitting of SJ in one-dimensional subspaces which in turn gives 
rise to a corresponding multigrid method for ( 4.8). It is not difficult to see 
that for non-degenerate problems the undampened version of Algorithm 3.1 
is asymptotically reducing to this multigrid method. The linearized Algo-
rithm 4.1 has the same property (i.e. it asymptotically coincides with the 
"optimal" undampened Algorithm 3.1), if quasioptimal restrictions R:+u 
R%+1 ( cf. ( 4.4)) are used. 
As a consequence, we can derive asymptotic estimates of the convergence 
rates of the nonlinear Algorithm 4.1 by investigating the corresponding re-
duced multigrid method for the linear problem ( 4.8). This can be done 
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by using recent results of Kornhuber and Y serentant [22], Oswald [25], and 
Griebel and Oswald [11]. 

Theorem 4.1 The standard monotone multigrid method described in Algo-
rithm 4 .1 is globally convergent. 

, Assume that the discrete problem {2. 7} is non-degenerate in the sense of 
(4- 7}. Then the phases of the iterates ( uj)11~0 converge to the phases of Uj 

and the error estimate 

( 4.11) 

holds} if v is large enough. The positive constant c < 1 depends only on the 
ellipticity of a(·,·), on the maximal coefficient bi, i = 0, ... , N, of~, and on 
the initial triangulation Ta . 

We emphasize that the estimate (4.11) describes the worst case. Absolutely 
no regularity assumptions on the continuous or discrete free boundary enter 
the constant c. In addition, we have considered the most simple variant 
of standard monotone multigrid methods. By repeating the (approximate) 
optimization in the direction of the basis functions .xik) on each level k = 
j, · · ·, 0 in reversed order, we obtain a standard monotone multigrid method 
with symmetric smoother. For this variant, we get a O(j2 (log j)2 ) estimate. 
We can further improve this bound by imposing regularity conditions on 
a(·,·) (providing O(j2)) or by using L 2-like projections instead of modified 
interpolation operators. In contrast to ( 4.11) the latter estimates also hold 
in the case of more than two space dimensions. However, we then need a 
certain regularity of the critical set Nl(ui)· A detailed discussion can be 
found in [22, 25]. 
Let us now consider non-uniform refinement. In this situation, the canonical 
ordering of the multilevel nodal basis As would contradict our requirement 
that each multilevel relaxation should start with a fine grid relaxation step. 
Of course, one could rearrange As in a suitable way. For the implementation 
in an existing multigrid code it might be simpler to use the search directions 
A= (Aj, As) instead of As or, equivalently, to start with a complete fine grid 
relaxation and then linearize all corrections in direction of Az E As. Both of 
these algorithms have the convergence properties stated in Theorem 4.1. The 
second algorithm will be used in our numerical experiment reported below. 
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5 Truncated Monotone Multigrid Methods 
The standard multigrid method relies on the condition that the coarse grid 
correction must not change the phases of the smoothed iterate uj. In par-
ticular, it must not change the values of uj at the critical nodes p E JV1•(uj). 
Hence, all A1 E As\ A1 with the property 

(5.1) 

must not contribute to the coarse grid correction of the standard multigrid 
method. This leads to a poor representation of the low frequency parts of the 
error. To improve the convergence rates by improved coarse grid transport, 
we will now modify all A1 E As\ A1 with the property (5.1) according to 
the actual guess of the free boundary. Again, it is sufficient to consider only 
uniform refinement. The non-uniform case can be treated in the same way 
as described above. 
We define the modified basis functions 

~ (k) = TI! A (k) p E JVik, 
p J,k p ) (5.2) 

by using the truncation operators Tj,k, k = 0, ... , j, 

T~ k = Is~ o ... o I sv. 
J, J k 

(5.3) 

Here ls~ : 81--+ S'k denotes the S'k-interpolation, and the spaces S'k c Sk, 

(5.4) 

are the reduced subspaces with respect to JVf =Nin JV;8(uj), k = 0, ... ,j. 

Replacing the multilevel nodal basis As by the actual truncation A.5, 

we can now derive a globally convergent truncated monotone multigrid method 
by the same reasoning as described in the previous section. The resulting al-
gorithm can be implemented as a variant of the standard monotone multigrid 
method. More precisely, in the neighborhood of the critical nodes p E Nl ( uj) 
( cf. (3.9)) the restrictions and prolongations appearing in Algorithm 4.1 have 
to be modified as follows: 
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Modifications of Algorithm 4.1 (Truncated Monotone Multigrid Method) 
modified restrictions of the bilinear form and of the residual: 

treat all entries from the actual critical nodes Ni• ( uj) as zero 
modified quasioptimal restrictions of the upper (lower) defect obstacle: 

treat all entries from the actual critical nodes Nl ( uj) as oo ( - oo) 
modified prolongations of the corrections: 

prolongate zero to all critical nodes 

Again, we can derive asymptotic estimates of the convergence rates by ana-
lysing the corresponding reduced method for the solution of the linear re-
duced problem ( 4.8). This time the reduced method is generated by the 
one-dimensional subspaces spanned by the truncation As C SJ with respect 
to the exact critical set Nl(ui)· Related algorithms have been recently con-
sidered by Hoppe and Kornhuber [16],Bank and Xu [1, 2], and Kornhuber 
and Y serentant [22]. 
Observe that 5.1k) = A1k) holds for all A1k) E Sj, giving As c As. Hence, 
we can hope for improved asymptotic convergence rates of the truncated 
multigrid method as compared to the standard case. This is supported by the 
numerical results reported below. However, the theoretical analysis suffers 
from the fact that there is no strengthened Cauchy-Schwarz inequality for 
the spans of truncated basis functions 5.1k) f/. Sk. Without any additional 
regularity this leads to even mo~e pessimistic estimates than for the standard 
case. 

Theorem 5.1 The truncated monotone multigrid method is globally conver-
gent. 
Assume that the discrete problem (2. 7} is non-degenerate in the sense of 
(4. 7). Then the phases of the iterates (uj)v~o converge to the phases of Uj 

and the error estimate 

(5.5) 

holds, if v is large enough. The positive constant c < 1 depends only on the 
ellipticity of a(·,·), on the maximal coefficient bi, i = 1, ... , N, of q>, and on 
the initial triangulation To. 

As in the standard case, we can derive various improvements of the worst-
case result (5.5). For example, we get a CJ(j3) estimate, if symmetric smoo-
thers are used. 
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6 Numerical Experiments 
We will now illustrate the numerical performance of monotone multigrid 
methods in the framework of an adaptive algorithm. In this case, the under-
lying hierarchy of triangulations is resulting from the adaptive refinement of 
an ir:itial triangulation To. The adaptive refinement strategy and stopping 
criteria for the iterative solver on each refinement level are based on a poste-
riori estimates of the approximation error llu - uill and of the algebraic error 
llui - uill of some given Uj E Si. A detailed description is contained in [20]. 
We consider the following model problem involving a jump discontinuity of 
Stefan type together with an upper obstacle. We choose the bilinear form 
a(·, ·) and the functional £ according to 

with a peak source 

and n = (0, 1) x (0, 1). The scalar function q> defined in (2.4) is given by'the 
parameters N = 1, 80 = -oo, 81 = 0.5, 82 = 0. 75, and bo = 400, fo = 200, 
Co= 50, b1 = 0, f1 = -100, C1 = -50. 
The initial triangulation To is obtained by subdividing n in four congruent 
triangles. We now apply the adaptive algorithm as described in [20], using 
the truncated monotone multigrid method as iterativer solver. On each re-
finement level j the discrete problem is solved up to an (estimated) accuracy 
of 0.5% in order to obtain the approximate finite element solution Uj E Si· 
The whole adaptive algorithm stops as soon as the (estimated) approxima-
tion error llu - uill is less than 5%. 
This final accuracy is reached after 8 adaptive refinement steps, providing 
the triangulation 78 together with the approximate solution u8 as depicted 
in Figure 6. Observe the occurrence of a "mushy" region where u8 = 81 and 
of a contact zone where u8 = 82 • Both are reflected by the adaptively refined 
mesh. 
The complete approximation history is given in Table 6.1. Recall that the 
refinement depth is the maximal number of successive refinements. The 
effectivity index is the ratio of the a posteriori estimation and of a sufficiently 
accurate approximation of the exact error ( cf. e.g. [4, 20] ). 
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Figure 6.1: Final Approximation ua and Final Triangulation Is 

Level Depth Nodes Iterations est. Approx. Error Eff ecti vi ty 
0 0 1 2 7.6 % 0.22 
1 1 5 2 16.8 % 1.21 
2 2 25 2 14.7 % 1.24 
3 3 77 2 13.0 % 1.42 
4 4 277 3 10.4 % 1.69 
5 5 733 3 8.33 % 1.90 
6 6 2937 2 6.2 % 2.06 
7 7 4413 2 5.6 % 2.06 
8 7 7249 2 4.9 % 1.99 

Table 6.1: Approximation History 

From the moderate number of iterations on each refinement level it can be 
hardly perceived that we are dealing with a nonlinear problem. Only the 
severe underestimation of the error on the initial level indicates that it may 
be dangerous to start an adaptive algorithm from such a coarse mesh. 
In order to compare the convergence properties of the standard monotone 
multigrid method (STDKH) and of the truncated version (TRCKH), we now 
consider the iterative solution of the discrete problem on the final triangu-
lation Ts. Starting with the initial iterate u~ = 0, we obtain the algebraic 
errors llus - u~ll, v = 0, ... , 20, as shown in Figure 6. 
The overall convergence behavior can be divided into a transient phase, domi-
nated by the search for the (discrete) free boundary, and an asymptotic phase, 
corresponding to the iterative solution of the reduced linear problem ( 4.8). As 
compared to the standard method STDKH, the truncated version TRCKH 
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G-e-E) STDKH 

5 10 15 20 
number of iterations 

Figure 6.2: Iteration History: Initial Iterate "!'J = 0 

exhibits a tremendous improvement of the asymptotic convergence rates, 
giving a numerical justification of the truncation of nodal basis functions. 
Note that the transient convergence properties remain basically the same. 
Replacing the artificial initial iterate zero by the interpolation from the pre-
vious level, the transient phase is eliminated from the convergence history. 
This is illustrated by Figure 6. 

5 10 
number of iterations 

15 20 

*"---*-* iKCKH 

G-e-E)STDKH 

Figure 6.3: Iteration History: Interpolated Initial Iterate 

To study the convergence properties for increasing j, we introduce the asymp-
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totic efficiency rates pj, 

Pj = vo fJj° I 8J, j = 0, ... , 21, (6.1) 

where 5j denotes the algebraic error after v iteration steps and the triangu-
lations 79, ... , 721 are obtained by further adaptive refinement. We choose 
Vo such that fJj° < 10. - 12 • The results are shown in Figure 6. 
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0.1 
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Figure 6.4: Asymptotic Efficiency Rates 
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G-9--E) STDKH 

The asymptotic efficiency rates for both multigrid methods seem to saturate 
with increasing j. This is better than predicted by the theoretical results. 
Even for the "bad" initial iterate zero, we observed uniform global bounds of 
the convergence rates. A theoretical verification of these experimental results 
will be the subject of future research. 
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