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1Abstra
t We des
ribe the large-time moment asymptoti
s for the paraboli
 Andersonmodel where the speed of the di�usion is 
oupled with time, indu
ing an a

eleration orde
eleration. We �nd a lower 
riti
al s
ale, below whi
h the mass �ow gets stu
k. On thiss
ale, a new interesting variational problem arises in the des
ription of the asymptoti
s.Furthermore, we �nd an upper 
riti
al s
ale above whi
h the potential enters the asymptoti
sonly via some average, but not via its extreme values. We make out altogether �ve phases,three of whi
h 
an be des
ribed by results that are qualitatively similar to those from the
onstant-speed paraboli
 Anderson model in earlier work by various authors. Our proofs
onsist of adaptations and re�nements of their methods, as well as a variational 
onvergen
emethod borrowed from �nite elements theory.1 Introdu
tionWe 
onsider the solution u(t) : [0,∞) × Z
d → [0,∞), t > 0, to the Cau
hy problem for theheat equation with random 
oe�
ients and t-dependent di�usion rate,

∂

∂s
u(t)(s, z) = κ(t)∆u(t)(s, z) + ξ(z)u(t)(s, z), s > 0, z ∈ Z

d, (1.1)
u(t)(0, ·) = 1l0,where ∆ is the dis
rete Lapla
ian,

∆f(z) =
∑

x∈Zd : |x−z|=1

[f(x) − f(z)],

(ξ(z))z∈Zd is a �eld of independent and identi
ally distributed random variables, and
κ : [0,∞) → [0,∞) is a fun
tion with limt→∞ tκ(t) = ∞. Our main goal is to understandthe asymptoti
 behaviour as t→ ∞ of the expe
ted total mass at time t,

U(t) =
∑

z∈Zd

u(t)(t, z).The total mass may be represented in terms of the famous Feynman�Ka
 formula,
U(t) = E

(t)

0

[
exp

{∫ t

0

ξ(Xs) ds
}]
, (1.2)where (Xs)s∈[0,∞) is a random walk with generator 2dκ(t)∆, starting from zero under E

(t)

0 .Denoting by 〈 · 〉 the expe
tation with respe
t to the random potential ξ, we will study thelogarithmi
 asymptoti
s of 〈U(t)〉 for various 
hoi
es of the di�usion fun
tion t 7→ κ(t).The model with 
onstant di�usion rate κ(t) ≡ 1 has been analysed in [GM98℄ and [BK01℄for three important 
lasses of tail distributions of ξ(0), see also [GK05℄ for a survey and[CM94℄ for more ba
kground. In [HKM06℄ a 
lassi�
ation of all potential distributions intofour universality 
lasses was made out su
h that the qualitative behaviour of 〈U(t)〉 in ea
hof the 
lasses is similar. This 
lassi�
ation holds under mild regularity assumptions anddepends only on the upper tails of the potential. Heuristi
ally, the main e�e
t in ea
h ofthese 
lasses is the 
on
entration of the total mass on a so-
alled intermittent island thesize of whi
h is t-dependent and deterministi
. The (res
aled) shape of the solution and thepotential on this island 
an be des
ribed by a deterministi
 variational formula. The thinnerthe tails of the potential distribution are, the larger the islands are, ranging from single sitesto large areas, however still having a radius ≪ t1/d.In (1.1), the di�usion is 
oupled with time so that it is a

elerated if the di�usion fun
tion
t 7→ κ(t) grows or de
elerated if it de
reases. Now an interesting 
ompetition between the



2speed of the di�usion and the thi
kness of the tails of the potential distribution arises: thefaster κ(t) is, the stronger the �attening e�e
t of the di�usion term is. One rightfully expe
tsthat if the speed of this fun
tion is not too extreme, then similar formulas should be validas for 
onstant di�usion rate. Indeed, we will identify a lower 
riti
al s
ale for κ(t), whi
hdepends on the upper tails of the potential distribution, and marks the threshold belowwhi
h the mass does not �ow unboundedly far away from the origin in the Feynman�Ka
formula, see below Assumption 2.1. Then we are in the 
ase of [GM98℄. Furthermore, wewill see that � if κ(t) is above this lower 
riti
al s
ale � t2/d presents an upper 
riti
al s
alein the sense that, for κ(t) ≪ t2/d, the main 
ontribution to the total mass 
omes fromextremely high potential values, while for κ(t) ≈ t2/d, it 
omes from just super-average, butnot extreme, values. This is re�e
ted by the fa
t that the asymptoti
s 
an be des
ribed interms of the upper tails of the potential distribution in the former 
ase (then we �nd theformulas derived in [BK01℄ and [HKM06℄), but all the details of this distribution are requiredin the latter. (If the speed is even faster, then, 
onje
turally, only a rough mean behaviourof the potential values will in�uen
e the asymptoti
s.)The paper is organised as follows. In Se
tion 2, we formulate our assumptions on thepotential and on the fun
tion κ. Then we state our results for the moment asymptoti
sof U(t) in Se
tion 3. Our main result will be the identi�
ation of �ve phases with qualitativelydi�erent behaviour, whi
h we will des
ribe informally in Se
tion 3.1 and rigourously inSe
tion 3.2 (for four of them). We will also give a proposition 
on
erning the 
onvergen
e ofa dis
rete variational formula to the 
orresponding 
ontinuous version, representing one ofthe main tools used in the proof of the asymptoti
s. In Se
tions 4�6, we give sket
hes of theproofs of this proposition and of the theorems. The details are rather lengthy and involved;they may be found in the se
ond author's thesis [S10℄.2 Assumptions and Preliminaries2.1 Model AssumptionsLet
H(t) = log〈etξ(0)〉, t > 0,be the logarithmi
 moment generating fun
tion of ξ(0). We assume H(t) <∞ for all t > 0,whi
h is su�
ient for the existen
e of a nonnegative solution of (1.1) and the �niteness ofall its positive moments [GM90℄. Now we re
all the dis
ussion on regularity assumptions in[HKM06, Se
tion 1.2℄. If we assume that t 7→ H(t)/t is in the de Haan 
lass, then the theoryof regularly varying fun
tions provides us with an asymptoti
 des
ription of H that dependsonly on two parameters γ and ρ, see [BGT87℄ and [HKM06, Proposition 1.1℄. This leads tothe following assumption whi
h will be in for
e throughout the rest of this paper.Assumption 2.1 There exist parameters γ ≥ 0 and ρ > 0 and a 
ontinuous fun
tion

KH : (0,∞) → (0,∞), regularly varying with parameter γ, su
h that, lo
ally uniformly in
y ∈ [0,∞),

lim
t→∞

H(ty) − yH(t)

KH(t)
= ρĤ(y), (2.1)where

Ĥ(y) =






y log y if γ = 1,

y − yγ

1 − γ
if γ 6= 1.

(2.2)The s
ale fun
tion KH roughly des
ribes the thi
kness of the potential tails at in�nity. Aswe will see later, the fun
tion t 7→ KH(t)/t presents a lower 
riti
al s
ale for the di�usionfun
tion κ(t). The following lemma is a 
onsequen
e of [BGT87, Theorem 3.6.6℄.



3Lemma 2.2. Let Assumption 2.1 hold.(a) If ess sup ξ(0) ∈ {0,∞}, then H is regularly varying with index γ.(b) If 〈ξ(0)〉 = 0, then H is regularly varying with index γ ∨ 1.Now we formulate some mild regularity assumptions on the speed fun
tion κ.Assumption 2.3 The following limits exist:
lim

t→∞
tκ(t) = ∞, lim

t→∞
tκ(t)

KH(t)
∈ [0,∞], lim

t→∞
κ(t)

t2/d
∈ [0,∞].We also need a s
ale fun
tion α : [0,∞) → [0,∞), whi
h will be interpreted as the orderof the radius of the relevant island. While we 
an de�ne α = 1 in the results for Phases 1and 2 of our 
lassi�
ation, we will need the following �xed point equation in Phase 3:

KH

( t

αd
t

)
=
tκ(t)

αd+2
t

. (2.3)Let us state existen
e and some important properties of a solution of (2.3).Lemma 2.4. Let κ(t) be regularly varying with index β ∈ (γ − 1, 2/d). Then there existsa regularly varying fun
tion α su
h that (2.3) holds for all large t. Any solution α(t) = αtsatis�es limt→∞ αt = ∞. Furthermore, t/αd
t ≫ 1 and αx

t ≪ tκ(t) for ea
h x < d+ 2.Proof. Similar to the proof of [HKM06, Proposition 1.2℄. For details, see [S10, Lemma 2.1.5℄.From the assumptions of Theorem 3.1(
) below, we will see that the interval for the indexof regular variation for κ is not a hard restri
tion in Phase 3.2.2 Variational FormulasThe following variational formulas will play a role in our results. Here, H1(Rd) is the Sobolevspa
e on R
d and M1(Z

d) is the spa
e of probability measures on Z
d. The inner produ
ton Z

d is denoted by (· , ·). All integrals are with respe
t to Lebesgue measure. We alwayshave ρ, θ > 0 and γ ≥ 0.
χ(B)

γ (ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 +
ρ

1 − γ

∫

Rd

(g2γ − g2)
}
, (2.4)

χ(AB)(ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 − ρ

∫

Rd

g2 log g2
}
, (2.5)

χ(DE)(ρ) = inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)
− ρ

(
p, log p

)}
, (2.6)

χ(DB)

γ (ρ) = inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)

+
ρ

1 − γ

(
pγ − p, 1

)}
, (2.7)

χ(RWRS)

H (θ) = inf
g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g|2 − θ

∫

Rd

H ◦ g2
}
. (2.8)If γ = 0, then we use the interpretation ∫

Rd g
2γ = |supp g| and (pγ , 1) = |supp p|. Wesometimes refer to the formulas that are de�ned in R

d (that is, χ(B)
γ , χ(AB) and χ(RWRS)

H ) asto `
ontinuous' formulas and to the others as to the `dis
rete' ones. Clearly, χ(B)
γ and χ(AB)are the 
ontinuous variants of χ(DB)

γ and χ(DE), respe
tively. Note that χ(B)
γ is degenerate inthe 
ase γ > 1 + 2/d (whi
h we do not 
onsider here).



4 The formulas χ(DE), χ(AB) and χ(B)
γ are already known from the study of the paraboli
Anderson model for 
onstant di�usion κ(t) ≡ 1 in three universality 
lasses, see the sum-mary in [HKM06℄. Our notation refers to the names of these 
lasses introdu
ed there: `DE'for `double-exponential', `AB' for `almost bounded', and `B' for `bounded'. Informally, thefun
tions g2 and p, respe
tively, in the formulas have the interpretation of the shape (up topossible res
aling and verti
al shifting) of those realisations of the solution u(t)(t, ·) that givethe overwhelming 
ontribution to the expe
ted total mass, 〈U(t)〉. If the total mass 
omesfrom an unboundedly growing island, then a res
aling is ne
essary, and a 
ontinuous formulaarises, otherwise a dis
rete one.In [S09℄ the existen
e, uniqueness (up to shift) and some 
hara
terisations of the minimiserof χ(B)

γ are shown for γ < 1, in [HKM06℄ it is shown that the only minimiser of χ(AB) isan expli
it Gaussian fun
tion, and in [GM98℄ and [GH99℄, the minimisers of χ(DE)(ρ) areanalysed, whi
h are unique (up to shifts) for any su�
iently large ρ. Formula χ(RWRS)

H is ares
aling of the Legendre transform of a variational formula whi
h appeared in the study oflarge deviations for the random walk in random s
enery in [GKS07℄, see (6.2). Its propertieshave not been analysed yet.However, formula χ(DB)
γ (`DB' refers to `dis
rete bounded') appears in the study of theparaboli
 Anderson model for the �rst time in the present paper. Here are some of itsproperties.Proposition 2.5. (a) For any ρ > 0 and any γ 6= 1 with 0 ≤ γ < max{1+1/d, 1+ρ/(2d)},there exists a minimiser for χ(DB)

γ (ρ).(b) Let p be a minimiser for χ(DB)
γ (ρ). Then supp p is �nite if and only if γ ≤ 1/2. In the
ase γ > 1/2 the support of p is the whole latti
e.Proof. See [S10, Prop. 2.1.8℄. This uses ideas from [GK09, Lemma 3.2℄ for the existen
e andfrom [GH99, p. 44℄ for the size of the support.Similarly to the 
ontinuous analogue in [HKM06, Proposition 1.16℄, it is possible to showthat limγ→1 χ

(DB)
γ (ρ) = χ(DE)(ρ), furthermore we have limρ→∞ χ(DB)

γ (ρ) = 2d.3 ResultsIn what follows, we will use the notation ft ≫ gt if limt→∞ ft/gt = ∞ and ft ≍ gt if
limt→∞ ft/gt exists in (0,∞). We will always work under the assumptions made in Se
-tion 2.1.3.1 Five PhasesDepending on the ratio between the speed κ(t) and the 
riti
al s
ales KH(t)/t and t2/d, wemake out up to �ve phases. In the following, we resume heuristi
ally our results for thesephases. Re
all the Feynman�Ka
 formula in (1.2).Phase 1. κ(t) ≪ KH(t)/t.The mass stays in the origin, where the potential takes on its highest value. The expe
tedtotal mass behaves therefore like 〈U(t)〉 ≈ 〈u(t)(t, 0)〉 ≈ exp(H(t) − 2dtκ(t)). This in
ludesthe single-peak 
ase of [GM98℄.Phase 2. κ(t) ≍ KH(t)/t.The radius of the intermittent island remains bounded in time, and 
onsequently the mo-ment asymptoti
s are given in terms of a dis
rete variational formula. Denoting κ∗ =
limt→∞ tκ(t)/KH(t),



5
lim

t→∞
1

tκ(t)
log〈U(t)e−H(t)〉 = −

{
χ(DE)(ρ/κ∗) if γ = 1,

χ(DB)
γ (ρ/κ∗) if γ 6= 1.

(3.1)While the 
ase γ = 1 is qualitatively the same as the 
ase of the double-exponential dis-tribution analysed in [GM98℄, the 
ase γ 6= 1 shows a new e�e
t that was not present for
onstant di�usion speed κ(t) ≡ 1. The di�usion is de
elerated so strongly that the massmoves only by a bounded amount.Phase 3. KH(t)/t≪ κ(t) ≪ t2/d.The relation between a
-/de
eleration and thi
kness of potential tails is so strong that themass �ows an unbounded amount of order αt de�ned by (2.3). Sin
e the a

eleration is nottoo strong, the total mass 
omes from sites of extremely high potential values. Therefore,we get the 
ontinuous analogue to (3.1), but on s
ale tκ(t)/α2
t ,

lim
t→∞

α2
t

tκ(t)
log〈U(t) exp(−αd

tH(tα−d
t ))〉 = −

{
χ(AB)(ρ) if γ = 1,

χ(B)
γ (ρ) if γ 6= 1.

(3.2)Hen
e, for γ = 1 we are in the almost-bounded 
ase [HKM06℄ and for γ < 1 in the bounded
ase [BK01℄. Note that we 
an have γ ∈ [0, 1 + 2/d) here, whi
h has never been 
onsideredbefore in the paraboli
 Anderson model.Phase 4. KH(t)/t≪ κ(t) ≍ t2/d.As in Phase 3, the mass �ows an unbounded distan
e away from the origin. The a

elerationrea
hes the 
riti
al level, su
h that this distan
e is of order t1/d, whi
h is mu
h larger thanin Phase 3. Only so little mass rea
hes the sites in this large island that the potential is notextremely large here, but only by a bounded amount larger than the mean. Therefore, the
hara
teristi
 variational formula does not only depend on the tails of the distribution, buton all values of the logarithmi
 moment generating fun
tion H . This regime has strong 
on-ne
tions to the large deviation result for a random walk in random s
enery model des
ribedin [GKS07℄.Phase 5. κ(t) ≫ KH(t)/t and κ(t) ≫ t2/d.The speed is so high that, 
onje
turally, the values of the potential in�uen
e the expe
tedtotal mass only via their mean, and the di�usion behaves like free Brownian motion withsome di�usion 
onstant that depends on the potential distribution. We will not presentrigorous results for this phase in the present paper.Note that, be
ause of regular variation, KH(t) = tγ+o(1). Hen
e, Phases 3 and 4 
an onlyappear if we have γ ≤ 1 + 2/d. The four universality 
lasses for the 
onstant-di�usion 
ase
κ(t) ≡ 1 are found in Phases 1�3 depending on whether γ = 1 or γ 6= 1.3.2 Moment Asymptoti
sWe now formulate our results. Re
all the variational formulas de�ned in the Se
tion 2.2 andset

χd
γ =

{
χ(DE) if γ = 1,

χ(DB)
γ if γ 6= 1,

and χc
γ =

{
χ(AB) if γ = 1,

χ(B)
γ if γ 6= 1.Then we have the following result for the �rst three regimes of our model.Theorem 3.1 (Phase 1 � Phase 3). Assume ess sup ξ(0) ∈ {0,∞}.(a) If κ(t) ≪ KH(t)/t, then we have for t→ ∞

〈U(t)〉 = exp
(
H(t) − 2dtκ(t)(1 + o(1))

)
. (3.3)



6(b) If κ(t) ≍ KH(t)/t, then
〈U(t)〉 = exp

(
H(t) − tκ(t)χd

γ

( ρ

κ∗

)
(1 + o(1))

) (3.4)with κ∗ = limt→∞ tκ(t)/KH(t) ∈ (0,∞).(
) Let the assumption of Lemma 2.4 hold, in parti
ular we have KH(t)/t ≪ κ(t) ≪ t2/d.Furthermore suppose KH(t) ≫ log t and γ < 2. Then
〈U(t)〉 = exp

(
αd

tH
( t

αd
t

)
− tκ(t)

α2
t

χc
γ(ρ)(1 + o(1))

)
. (3.5)Note that the assumption ess sup ξ(0) ∈ {0,∞} is not restri
tive, sin
e a shift of the potentialwould only lead to an additive 
onstant in our results. The assumptions KH(t) ≫ log t and

γ < 2 in part (
) of the theorem are purely te
hni
al, the �rst one only needed in the
ase γ = 0. Sin
e γ < 1 + 2/d in the respe
tive phase (whi
h follows from the assumption ofLemma 2.4), γ < 2 is only a restri
tion in dimension 1.Now we 
ome to Phase 4, where we will meet the variational formula χ(RWRS)

H (θ) de�nedin (2.8). Sin
e the result will no longer depend on the upper tails of the potential distribution,it will make sense to have an assumption for the expe
tation of ξ(0) instead of its essentialsupremum. Again, this is no loss of generality.Theorem 3.2 (Phase 4). Assume 〈ξ(0)〉 = 0 and KH(t)/t ≪ κ(t) ≍ t2/d. Let γ ∈ [0, 1 +
2/d), γ < 2. Then we have for t→ ∞

〈U(t)〉 = exp
(
−tκ∗χ(RWRS)

H

( 1

κ∗

)
(1 + o(1))

) (3.6)with κ∗ = limt→∞ κ(t)/t2/d ∈ (0,∞).3.3 Variational Convergen
eWe now state a result whi
h is both important in the proof of Theorem 3.1(
) and ofindependent interest as a 
onne
tion between the dis
rete variational formula χd
γ(ρ) and its
ontinuous analogue χc

γ(ρ). In the 
ase γ = 1, this fa
t is stated in [HKM06℄ and is derivedwithout di�
ulties from an expli
it representation of χ(AB)(ρ). The proof for the 
ase γ 6= 1is mu
h more involved and uses te
hniques from the theory of �nite elements.Proposition 3.3. Let ρ > 0. As κ→ ∞, we have
κχ(DE)

(ρ
κ

)
= χ(AB)(ρ) + ρ

d

2
log κ+ o(1) (3.7)and for γ ∈ [0, 1 + 2/d) \ {1}

κ1−dνχ(DB)

γ

(ρ
κ

)
= χ(B)

γ (ρ) + ρ
1 − κ−dν

1 − γ
+ o(1) (3.8)with ν = 1−γ

2+d(1−γ) .Note that (3.7) and (3.8) are 
onsistent, as (3.7) is a 
ontinuous 
ontinuation of (3.8)to γ = 1. Proposition 3.3 shows that Phases 2 and 3 
an be 
ontinuously transformed intoea
h other, i.e., the transition between them is a
tually no phase transition in the sense ofstatisti
al me
hani
s.



74 Proof of Variational Convergen
e (Proposition 3.3)The asymptoti
s (3.7) follows from the arguments in [HKM06, p. 313℄. To show (3.8), weremark �rst that the summand ρ
1−γ drops out in both (2.4) and (2.7). Therefore (3.8) isequivalent to

lim
κ→∞

κ1−dν inf
p∈M1(Zd)

{
−

(
∆
√
p,
√
p
)

+
ρ

κ(1 − γ)

∑

z∈Zd

p(z)γ
}

= χ̂γ(ρ), (4.1)where
χ̂γ(ρ) = inf

g∈H1(Rd)
‖g‖2=1

{ ∫

Rd

|∇g|2 +
ρ

1 − γ

∫

Rd

g2γ
}
.The proof of the upper bound of (4.1) is standard and we will here only give the idea.To an approximate minimiser g for the in�mum in χ̂γ(ρ) and for small ε > 0, we de�ne aprobability measure pε by

pε(z) =

∫

εz+[0,ε)d

g(x)2 dx, z ∈ Z
d.Assuming that g is smooth and 
ompa
tly supported, we 
an make use of Taylor expansionsto see that, as ε ↓ 0,

−ε−2
(
∆
√
pε,

√
pε

)
→

∫

Rd

|∇g|2 and εd(1−γ)
∑

z∈Zd

pε(z)
γ →

∫

Rd

g2γ .Re
all γ < 1 + 2/d. Putting ε = κ−(1−dν)/2 = κ−1/(2+d(1−γ)) ↓ 0 as κ → ∞, this shows theupper bound.Let us now turn to the lower bound. This proof is pretty involved and 
omes in severalsteps. The prin
ipal idea and main arguments are taken from [HKM06, Proof of (5.3)℄.However, we 
ould not �nd an argument for the L2-normalisation of the limit fun
tion in theirapproximation approa
h, sin
e this involves inter
hanging integral and limit, whi
h seemsto be hard to justify. Hen
e, we use a di�erent 
onstru
tion. Furthermore, our 
onsiderationof γ > 1 
auses some additional di�
ulties.We will only treat the 
ase γ > 1. The stru
ture for γ < 1 is similar, for details we referto the proofs of [S10, Prop. 3.4.7 and Prop. 5.2.1℄. We denote S(p) = −
(
∆
√
p,
√
p
).Step 1. We 
hoose minimising sequen
es κn → ∞ and (pn)n from M1(Z

d) for the lefthand side of (4.1). Put an = κ
(1−dν)/2
n . We now argue that we 
an assume, without loss ofgenerality, that

sup
n∈N

a2
nS(pn) <∞. (4.2)For this, we need the following dis
rete Sobolev inequality:Lemma 4.1. Let γ > 1 with γ(d− 2) < d. There exists a 
onstant c = cd,γ su
h that for all

p ∈ M1(Z
d) ∑

z∈Zd

p(z)γ ≤ cS(p)d(γ−1)/2.Proof. See [S10, Lemma 3.2.10℄.Now suppose that (4.2) does not hold. Then, by Lemma 4.1 and be
ause of d(γ − 1)/2 < 1,



8
lim

n→∞
a2

n

{
S(pn) +

ρ

a
2+d(1−γ)
n (1 − γ)

∑

z∈Zd

pn(z)γ

}

≥ lim sup
n→∞

{
a2

nS(pn) − cρ

γ − 1

(
a2

nS(pn)
)d(γ−1)/2

}
= ∞.Sin
e (pn)n is a minimising sequen
e, the lower bound would now be trivially satis�ed.Hen
e, we 
an assume (4.2).Step 2. We 
ompa
tify on a box BRan

= [−Ran, Ran]d ∩ Z
d for R > 0. Consider theperiodised probability measures

pR
n (z) =

∑

k∈(2Ran+1)Zd

pn(z + k), z ∈ BRan
.In [GM98, Lemma 1.10℄, it was shown that Sπ,R(pR

n ) ≤ S(pn) in the one-dimensional 
ase,where Sπ,R is the Diri
hlet form with periodi
 boundary 
ondition. This holds as well inhigher dimensions, besides we have 1
1−γ

∑
z∈BRan

pR
n (z)γ ≤ 1

1−γ

∑
z∈Zd pn(z)γ by subaddi-tivity. Therefore it will be su�
ient to prove that

lim inf
R→∞

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}
≥ χ̂γ(ρ). (4.3)Sin
e Sπ,R(pR

n ) ≤ S(pn), (4.2) implies
sup
n∈N

a2
nS

π,R(pR
n ) <∞. (4.4)Step 3. Our goal is to 
onstru
t potential minimisers for χ̂γ(ρ) that interpolate the valuesof the res
aled step fun
tions hn(x) =

√
ad

np
R
n (⌊anx⌋) on the latti
e {x = z/an : z ∈

BRan
}. In the present step, we de�ne pie
ewise linear interpolations gn ∈ H1(Q(n)

R ) with
Q(n)

R = [−R,R+a−1
n )d, whi
h we will slightly modify in Step 4 in order to obtain normalised

H1(Rd)-fun
tions.We borrow a te
hnique from �nite elements theory, see e.g. [B07℄. Consider the triangu-lation
Q(n)

R =
⋃

z∈BRan

⋃

σ∈Sd

Tσ(z),where Sd is the set of permutations of 1, . . . , d and Tσ(z) is the d-dimensional tetrahedronde�ned as the 
onvex hull of the points z, z+ eσ(1), . . . , z+ eσ(1) + · · ·+ eσ(d), where ei is the
i-th unit ve
tor in R

d. Note that the tetrahedra are disjoint up to the boundary. On ea
htetrahedron Tσ(z), we de�ne a fun
tion
gn,z,σ(x) = b(0)n,z,σ +

d∑

k=1

b(k)

n,z,σ(anxσ(k) − zσ(k)), x = (x1, . . . , xd) ∈ Tσ(z),where the 
oe�
ients are given by
b(0)n,z,σ =

√
ad

np
R
n (z) = hn

( z

an

)
,

b(k)

n,z,σ =
√
ad

np
R
n (z + eσ(1) + · · · + eσ(k)) −

√
ad

np
R
n (z + eσ(1) + · · · + eσ(k−1))for k = 1, . . . , d, where pR

n is 
ontinued periodi
ally outside BRan
. Then gn,z,σ satis�es

gn,z,σ(z̃/an) = hn(z̃/an) for all z̃ ∈ Tσ(z) ∩ Z
d.



9The values of all fun
tions gn,z,σ on the 
ommon borders of their respe
tive tetrahedra
oin
ide; see [BK10, Proof of Lemma 2.1℄ for a detailed argument. Hen
e, the fun
tion
gn : Q(n)

R → R given by
gn(x) = gn,z,σ(x) if x ∈ Tσ(z)is well-de�ned and 
ontinuous, and gn ∈ H1(Q(n)

R ).A dire
t 
al
ulation for the gradient gives ∂xσ(k)
gn(x) = anb

(k)
n,z,σ and thus

∫

Q
(n)
R

|∇gn|2 = a2
nS

π,R(pR
n ). (4.5)Note that by (4.4) this is bounded in n. Now 
onsider the L2-norm of g. Be
ause of |anxσ(k)−

zσ(k)| ≤ 1 and b(k)
n,z,σ = a−1

n ∂xσ(k)gn(x) we obtain
‖(gn − hn)1l

Q
(n)
R

‖2
2 ≤ a−2

n

∫

Q
(n)
R

( d∑

i=1

∂

∂xi
gn(x)

)2

dx.By Jensen's inequality, (∑d
i=1 ci)

2 ≤ d
∑d

i=1 c
2
i . Sin
e ‖hn1l

Q
(n)
R

‖2 = 1, the triangle inequalitygives
|‖gn1l

Q
(n)
R

‖2 − 1|2 ≤ da−2
n

∫

Q
(n)
R

|∇gn|2, (4.6)whi
h tends to zero as n→ ∞ by (4.5) and (4.4).A similar 
al
ulation for the L2γ-norm results in
‖(gn − hn)1l

Q
(n)
R

‖2γ
2γ ≤ dγa−2γ

n

∫

Q
(n)
R

|∇gn|2γ .Be
ause of pR
n (z) ∈ [0, 1], we have |b(k)

n,z,σ| ≤ a
d/2
n and therefore |∇gn|2 ≤ dad+2

n . For γ > 1,this yields
|∇gn(x)|2γ = dγa(d+2)γ

n

( |∇gn(x)|2
dad+2

n

)γ

≤ dγ−1a2γ
n a−2−d(1−γ)

n |∇gn(x)|2.Now use triangle inequality to get
ad(γ−1)

n

∑

z∈BRan

(
pR

n (z)
)γ

= ‖hn1l
Q

(n)
R

‖2γ
2γ ≤

(
‖gn1l

Q
(n)
R

‖2γ + cna
−2−d(1−γ)

2γ
n

)2γ

, (4.7)where cn = (d2γ−1
∫

Q
(n)
R

|∇gn|2)1/(2γ) is bounded in n.Step 4. In order to adapt our fun
tion gn to zero boundary 
onditions, we introdu
e a 
ut o�fun
tion ΨR(x) =
∏d

i=1 ψR(xi), x = (x1, . . . , xd) ∈ R
d, where ψR = 1 on [−R+

√
R,R−

√
R],

ψR = 0 on R \ [−R,R] and it interpolates linearly in-between. Then 0 ≤ ψR ≤ 1 and
|ψ′

R| ≤ 1/
√
R. Let us estimate the relevant terms for the H1(Rd)-fun
tion gnΨR (whi
h iszero outside QR = [−R,R]d). As for the gradient,

∫

Rd

( ∂

∂xi
(gnΨR)(x)

)2

dx ≤
∫

QR

( ∂

∂xi
gn(x)

)2

dx+
1

R

∫

QR

gn(x)2 dx

+
2√
R

√∫

QR

( ∂

∂xi
gn(x)

)2

dx

√∫

QR

gn(x)2 dx,where we used the properties of ψR and the Cau
hy�S
hwarz-inequality. Sin
e all integralsare bounded (re
all (4.5), (4.6) and (4.4)), we �nd a 
onstant c > 0 su
h that for all n andall R
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∫

Rd

|∇(gnΨR)(x)|2 dx ≤
∫

QR

|∇gn(x)|2 dx+
c√
R
. (4.8)Our basi
 tool for estimating the L2- and L2γ-norm of gnΨR is a variation of the shiftlemma [DV75, Lemma 3.4℄. Indeed, using the shift-invarian
e of the variational problembe
ause of periodi
 boundary 
onditions, the mass of a nonnegative fun
tion on the boundary

QR \ QR−
√

R 
an, after suitable shifting, be estimated by its total mass on QR times thequotient of the volumes. Applying this to g2
n + g2γ

n , we may assume that
∫

QR\QR−
√

R

(
g2

n + g2γ
n

)
≤ d√

R

∫

QR

(
g2

n + g2γ
n

)
.Skipping the details, this leads to

‖gnΨR‖2γ
2γ ≥

(
1 − d√

R

)
‖gn1l

Q
(n)
R

‖2γ
2γ − c√

R
(4.9)and, with use of (4.6),

|‖gnΨR‖2
2 − 1| ≤ c√

R
(4.10)for a suitable 
onstant, not depending on n or R, whi
h we also denote c > 0.Step 5. Now we put everything together to show (4.3). We use (4.5) and (4.7) and notethat 1 < γ < 1 + 2/d to get

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}

≥ lim sup
n→∞

( ∫

Q
(n)
R

|∇gn|2 −
ρ

γ − 1
‖gn1l

Q
(n)
R

‖2γ
2γ

)
.Next, we plug in (4.8) and (4.9) obtaining

lim inf
R→∞

lim inf
n→∞

a2
n

{
Sπ,Ran

(
pR

n

)
+

ρ

1 − γ
a−2−d(1−γ)

n

∑

z∈BRan

(
pR

n (z)
)γ

}

≥ lim sup
R→∞

lim sup
n→∞

(∫

Rd

|∇(gnΨR)|2 − ρ

γ − 1
‖gnΨR‖2γ

2γ

)
.With the help of (4.10), we 
an repla
e gnΨR by its normalised version gnΨR/‖gnΨR‖2,whi
h is a 
andidate for the in�mum in χ̂γ(ρ). This yields the assertion.5 Proof for Phases 1�3 (Theorem 3.1)The proof of (a) and (b) is analogous to the proof of [GM98, Theorem 1.2℄ (see [S10℄ fordetails), therefore we only sket
h the idea here and omit all details, like 
ompa
ti�
ation,
utting, or error terms.Denote by ℓt(z) =

∫ t

0 1l{Xs=z} ds the lo
al time of the random walk path (Xs)s∈[0,t] withgenerator 2dκ(t)∆ in the point z ∈ Z
d. Starting from the Feynman�Ka
 formula (1.2), weapply the asymptoti
s (2.1) to the normalised lo
al times ℓt/t. Heuristi
ally, this gives

〈U(t)〉e−H(t) ≈ E
(t)

0

[
exp

(
KH(t)

∑

z∈Zd

ρĤ
( ℓt(z)

t

)
(1 + o(1))

)]
, t→ ∞.



11Denote by P
(t)

0 the probability measure related to E
(t)

0 . Under P
(t)

0 , the pro
ess (ℓt/t)t satis�esa large deviation prin
iple on s
ale tκ(t) with rate fun
tion p 7→ −
(
∆
√
p,
√
p
). In part (a),the s
ale KH(t) is asymptoti
ally smaller than tκ(t), therefore the main 
ontribution 
omesfrom the event that the pro
ess (Xs)s∈[0,t] stays in the origin, whi
h leads to formula (3.3).In part (b), be
ause of KH(t) ≍ tκ(t), an appli
ation of Varadhan's lemma gives (3.4).The proof of (
) follows mainly the arguments of [HKM06℄ (who 
onsider only γ = 1),adapting them to the new s
ale tκ(t)/α2

t . The 
ase γ < 1 was treated in a similar way in[BK01℄, whereas the 
ase γ > 1 did not appear originally in Phase 3. For 
onvenien
e, wegive a universal derivation for all values γ ∈ [0, 1 + 2/d).By an adaption of [HKM06, Prop. 3.4℄, the res
aled and normalised lo
al times
Lt(y) =

αd
t

t
ℓt(⌊αty⌋), y ∈ R

d, (5.1)with αt de�ned by (2.3), satisfy under P
(t)

0 ( · 1l{suppLt⊆QR}) a large deviation prin
iple in theweak topology indu
ed by test integrals against 
ontinuous fun
tions, where we re
all that
QR = [−R,R]d. The s
ale of the prin
iple is tκ(t)/α2

t and the rate fun
tion is g2 7→
∫

Rd |∇g|2for g ∈ H1(Rd) with supp g ⊆ QR and ‖g‖2 = 1.For a lower bound, we start again with (1.2) and insert the indi
ator on the event
{suppLt ⊆ QR}, using the notation E

(t)

0,R[ · ]. After transforming
〈U(t)〉 ≥ E

(t)

0,R

[
exp

( ∑

z∈Zd

H(ℓt(z))
)]

= E
(t)

0,R

[
exp

(
αd

t

∫

QR

H
( t

αd
t

Lt(y)
)

dy
)]

= e
αd

t H( t

αd
t

)
E

(t)

0,R

[
exp

( tκ(t)
α2

t

∫

QR

H
(

t
αd

t
Lt(y)

)
− Lt(y)H

(
t

αd
t

)

KH

(
t

αd
t

) dy
)]
, (5.2)we restri
t the integral to the part where Lt(y) ≤ M for some M > 1, noting that theintegrand on the set {Lt(y) > M} is nonnegative be
ause of the 
onvexity of H . Then weapply the lo
ally uniform asymptoti
s (2.1). Next, to get rid of the indi
ator on {Lt(y) ≤M},we introdu
e a Hölder parameter η ∈ (0, 1) to separate the expe
tations over the wholeintegral and over the di�eren
e set {Lt(y) > M}. The expe
tation over the rest term 
anbe shown to be negligible on the exponential s
ale tκ(t)/α2

t (see [S10, pp. 86f℄; here weuse Lemma 2.2(a) and the assumption that γ < 2). Finally, we apply the large deviationprin
iple for Lt and Varadhan's lemma; the lower semi-
ontinuity of g2 7→
∫

QR
Ĥ ◦ g2 wasproved in [HKM06, Lemma 3.5℄ for γ = 1 and 
an be shown similarly for all positive γ.Summarizing, we obtain for γ > 0

lim inf
t→∞

α2
t

tκ(t)
log

(
〈U(t)〉e−αd

t H(tα−d
t )

)

≥ lim inf
M→∞

lim inf
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

( tκ(t)
α2

t

∫

QR

ρĤ(Lt(y))1l{Lt(y)≤M} dy
)]

≥ lim inf
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

(
(1 − η)

tκ(t)

α2
t

∫

QR

ρĤ(Lt(y)) dy
)]

≥ − inf
g∈H1(Rd)
supp g⊆QR

‖g‖2=1

{ ∫

QR

|∇g|2 − ρ(1 − η)

∫

QR

Ĥ ◦ g2
}
.A standard argument shows that the 
ompa
ti�ed variational formula 
onverges to χc

γ(ρ) as
R → ∞ and η ↓ 0. For the 
ase γ = 0, we refer to [S10, pp. 85f℄.



12 Now we prove the upper bound of (3.5). For te
hni
al reasons, we will not work with thelarge deviation prin
iple, but use a method derived in [BHK07℄. First, we 
ompa
tify withthe help of an eigenvalue expansion des
ribed in [BK01℄ and applied in [HKM06℄. Repla
ing
arefully t by tκ(t) in their proofs, we �nd for R > 0

α2
t

tκ(t)
log〈U(t)〉 ≤ C

R2
+

α2
t

tκ(t)
log〈U4Rαt

(t)〉 + o(1), t→ ∞, (5.3)with some 
onstant C > 0, where URαt
(t) = E

(t)

0,R[e
∫

t
0

ξ(Xs) ds]. Similarly to (5.2), we 
anwrite
〈URαt

(t)〉 = e
αd

t H( t

αd
t

)
E

(t)

0,R

[
exp

( tκ(t)
α2

t

∑

z∈BRαt

H(ℓt(z)) − t
αd

t
ℓt(z)H

(
t

αd
t

)

KH

(
t

αd
t

)
)]
,where we re
all that BR = [−R,R]∩Z

d. We split the sum into the part where ℓt(z) ≤Mtα−d
tand the rest where ℓt(z) > Mtα−d

t for some M > 1, separating the respe
tive expe
ta-tions with Hölder's inequality. The rest term 
an again be negle
ted on the exponentials
ale tκ(t)/α2
t , while an appli
ation of (2.1) in the main term leads to

lim sup
t→∞

α2
t

tκ(t)
log

(
〈URαt

(t)〉 e
−αd

t H( t

αd
t

)
)

≤ lim sup
t→∞

α2
t

tκ(t)
log E

(t)

0,R

[
exp

(
ρ̃
tκ(t)

αd+2
t

∑

z∈BRαt

Ĥ
(αd

t

t
ℓt(z)

)
1l{ℓt(z)≤M t

αd
t

}

)]
, (5.4)where ρ̃ = ρ(1 + η) with the Hölder parameter η ∈ (0, 1). Next, we 
an omit the indi
atoron the event {ℓt(z) ≤Mtα−d

t } noting that the fun
tion Ĥ is nonnegative on [1,∞).We now need the mentioned tool from [BHK07℄, namely an expli
it des
ription of thelo
al times density, whi
h provides an upper bound on exponential fun
tionals like in (5.4)in the form of a variational formula: De�ne
Gt(p) = α

−(d+2)
t

∑

z∈Zd

Ĥ(αd
t p(z))for p ∈ M1(Z

d). Then, noting that our lo
al times are related to a random walk withgenerator 2dκ(t)∆, a respe
tive adaption in the formulation of [HKM06, Prop. 3.3℄ gives
E

(t)

0,R

[
exp

(
tκ(t)ρ̃ Gt

(ℓt
t

))]

≤ exp
(
tκ(t) sup

p∈M1(Z
d)

supp p⊆BRαt

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)})

(2dtκ(t))|BRαt ||BRαt
|

≤ exp
(
− tκ(t)

α2
t

χt(ρ̃)
)

eo(tκ(t)/α2
t ),where we put

χt(ρ̃) = −α2
t sup

p∈M1(Zd)

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)}
.In the last step, we also used the properties of the s
ale fun
tion αt mentioned in Lemma 2.4and the assumption KH(t) ≫ log t.Now a dire
t 
al
ulation shows that
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χt(ρ̃) =






α2
tχ

(DE)

( ρ̃

α2
t

)
+ ρ̃

d

2
logα2

t for γ = 1,

α2
tχ

(DB)
γ

( ρ̃

α
2+d(1−γ)
t

)
+ ρ̃

1 − α
−d(1−γ)
t

1 − γ
for γ 6= 1.In both 
ases, we 
an apply Prop. 3.3 with κ = α

2+d(1−γ)
t → ∞ for t→ ∞, sin
e γ < 1+2/d.Hen
e, χt(ρ̃) 
onverges to χ(AB)(ρ̃) in the 
ase γ = 1 and to χ(B)

γ (ρ̃) in the 
ase γ 6= 1,i.e. to χc
γ(ρ̃) in both 
ases. In summary, (5.4) be
omes

lim sup
t→∞

α2
t

tκ(t)
log

(
〈URαt

(t)〉 e
−αd

t H( t

αd
t

)
)
≤ lim sup

t→∞
(−χt(ρ̃)) ≤ −χc

γ(ρ̃).By a s
aling argument, one 
an see that χc
γ(ρ̃) = χc

γ(ρ(1 + η)) 
onverges to χc
γ(ρ) for

η ↓ 0. Together with (5.3), the assertion (3.5) is thus shown, whi
h �nishes the proof ofTheorem 3.1.6 Proof for Phase 4 (Theorem 3.2)Phase 4 is 
hara
terised by the fa
t that the spa
e�time s
ale ratio is 
onstant: αt = t1/d,i.e. t/αd
t = 1. We res
ale both lo
al times and potential,

Lt(y) = ℓt(⌊αty⌋) and ξ̄t(y) = ξ(⌊αty⌋), y ∈ R
d.Note that be
ause of κ(t) = κ∗t2/d(1 + o(1)), the de�nition of the res
aled (and nor-malised) lo
al times is asymptoti
ally equivalent to (5.1), hen
e we have again an LDPunder P

(t)

0 ( · 1l{supp Lt⊆QR}) on s
ale tκ(t)/α2
t ≍ t with rate fun
tion g2 7→

∫
Rd |∇g|2 for

g ∈ H1(Rd) satisfying supp g ⊆ QR and ‖g‖2 = 1.We will frequently make use of arguments from [GKS07℄, in parti
ular their main result onlarge deviations for the s
alar produ
t (
Lt, ξ̄t

). The time parameter t in [GKS07℄ is repla
edby tκ(t) and our s
ale fun
tion αt = t1/d 
orresponds to the [GKS07℄-s
ale at time tκ(t),multiplied by (κ∗)−1/(d+2). Thus, [GKS07, Thm. 1.3℄ reads
lim

t→∞
1

t
log P

(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
= −(κ∗)d/(d+2)χ

[GKS07]
H (u) (6.1)for u > 0 su
h that u ∈ (supp ξ(0))◦, where Prob is the probability with respe
t to thepotential and

χ
[GKS07]
H (u) = inf

g∈H1(Rd)
‖g‖2=1

{∫

Rd

|∇g(y)|2 dy + sup
β>0

[
βu−

∫

Rd

H(βg2(y)) dy
]}
.By res
aling and duality, it turns out that the variational problem χ

(RWRS)
H that we wish to�nd in this proof is essentially the negative Legendre transform of χ[GKS07]
H :

sup
u>0

{
βu− χ

[GKS07]
H (u)

}
= −β−2/dχ

(RWRS)
H

(
β1+2/d

)
, β > 0. (6.2)Let us 
ome to the lower bound of (3.6). A transformation of the Feynman�Ka
 for-mula (1.2) gives

〈U(t)〉 = 〈E(t)

0

[
exp

(
t
(
Lt, ξ̄t

))]
〉 =

∫

R

teut
P

(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
du.



14With the help of (6.1), we 
an 
on
lude for �xed u > 0 and ε > 0 that
〈U(t)〉 ≥ εte(u−ε)t

P
(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)

= exp
(
t
[
u− ε− (κ∗)d/(d+2)χ

[GKS07]
H (u)

]
(1 + o(1))

)as t→ ∞. Now let ε ↓ 0, take the supremum over all u > 0 and use (6.2) for β = (κ∗)−d/(d+2)to �nish the proof of the lower bound.For the upper bound, we 
an �rst derive an analogue formula to (5.3) to restri
t thesupport of the lo
al times on a 
ompa
t box (see [S10, Prop. 4.4.3℄ for details). Therefore,it su�
es to 
onsider URαt
(t) = E

(t)

0,R[exp(t(Lt, ξ̄t))] for some large R > 0 instead of U(t).We will use a similar strategy as in the proof of the upper bound in [GKS07, Thm. 1.3℄:In order to be able to apply the LDP for the lo
al times, we need to smooth the s
enery,whi
h we 
an only do after 
utting it. For M > 0, introdu
e ξ̄(≤M)

t = (ξ̄t ∧ M) ∨ (−M)and ξ̄(>M)

t = (ξ̄t −M)+. Then ξ̄t ≤ ξ̄(≤M)

t + ξ̄(>M)

t . We want to work with the 
onvolution
ξ̄(≤M)

t ⋆ jδ with jδ = δ−dj(·/δ), where j ≥ 0 is a smooth, rotational invariant, L1-normalisedfun
tion supported in Q1. For brevity, we will not explain in detail how to deal with theremainder terms E
(t)

0,R[exp(t(Lt, ξ̄
(>M)

t ))] and E
(t)

0,R[exp(t(Lt, ξ̄
(≤M)

t − ξ̄(≤M)

t ⋆ jδ))] (whi
h 
anbe separated from the main term by Hölder's inequality). For the smoothing, one 
an apply[GKS07, Lemma 3.5℄, while the 
utting is te
hni
ally involved and follows the proof of [GK09,(2.12)℄ (here we need Lemma 2.2(b) and γ < 2). Let us in the following take for grantedthat it is enough to show
lim sup
M→∞

lim sup
δ↓0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
exp

(
t
(
Lt, ξ̄

(≤M)

t ⋆ jδ
))]

〉

≤ −χ(RWRS)
H

( 1

κ∗

)
. (6.3)Denote ℓ(δ)

t (z) =
∫

z+[0,1)d Lt ⋆ jδ(y/αt) dy, then by rotational invarian
e of j, we have
t(Lt, ξ̄

(≤M)

t ⋆ jδ) =
∑

z∈Zd ℓ
(δ)

t (z)ξ(≤M)(z), and ξ(≤M)(z) = (ξ ∧M) ∨ (−M) ≤ ξ(z) ∨ (−M).Furthermore,
〈E(t)

0,R

[
e
∑

z∈Zd ℓ
(δ)
t (z)ξ(z)∨(−M)

]
〉 ≤ 〈E(t)

0,R

[
e
∑

z∈Zd ℓ
(δ)
t (z)ξ(z)

]
1l{ξ(z)>−M}〉

+ 〈E(t)

0,R

[
e−M

∑
z∈Zd ℓ

(δ)
t (z)

]
1l{ξ(z)≤−M}〉.The se
ond summand is negligible on exponential s
ale t for t → ∞ and M → ∞ be
auseof ∑

z∈Zd ℓ
(δ)

t (z) = t. In the �rst summand, the de�nition of H and Jensen's inequality (forthe probability measure 1l{z+[0,1)d} dy) yield
〈
exp

( ∑

z∈Zd

ℓ(δ)

t (z)ξ(z)
)〉

≤ exp
(
t

∫

Rd

H(Lt ⋆ jδ(y)) dy
)
.Now we are ready to apply Varadhan's lemma to derive for any M > 0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
et

∫
Rd H(Lt⋆jδ(y)) dy

]
1l{ξ(z)>−M}〉

≤ − inf
g∈H1(Rd)
supp g⊆QR

‖g‖2=1

{∫

Rd

|∇g|2 − 1

κ∗

∫

Rd

H
(
g2 ⋆ jδ(y)

)
dy

}
.Again Jensen's inequality for the probability measure jδ and Fubini's theorem show thatwe re
eive an upper bound when omitting the 
onvolution with jδ. Thus, we have arrivedat a 
ompa
ti�ed version of our variational problem χ

(RWRS)
H (1/κ∗), whi
h we 
an estimateagainst the whole-spa
e problem. This shows (6.3) and 
ompletes the proof of the theorem.
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