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Abstract

As the maximum principle does not hold true for nonlinear problems unless
global, restrictive and often nonphysical assumptions are imposed over the whole
domain, we introduce less restrictive, viable assumptions and show that the the-
ory of upper and lower solutions is an appropriate substitute for the maximum
principle in the case of singularly perturbed time-dependent semilinear reaction-
diffusion problems with Dirichlet boundary conditions. The upper and lower so-
lutions capture the boundary, interior and corner layers and the boundary condi-
tions.

Introduction

Natural phenomena in biomathematics [25, §14.7], materials science, electrochem-
istry are often described by singularly perturbed, nonlinear,
time-dependent reaction-diffusion problems [13, §2.3] Most of the analyses on time-
dependent singularly perturbed problems rely on a maximum or comparison principle
to establish existence of solutions and uniform stability, thus global, restrictive, even
unrealistic assumptions are often imposed for the maximum principle to hold true, at
the expense of the feasibility of the models. Reactiondiffusion
equations, frequently semilinear, describe population dynamics [17],
e.g., predator-pray interaction, where the inhomogeneous term reflects a local popula-
tion density and may be positive or negative, to model, say, death or birth, cell lysis by
toxicity [25], as well as dielectric properties of heterogeneous materials,
ground-water percolation, processes in inhomogeneous media [36],



homogenisation [27]. An asymptotic analysis of a singularly perturbed time-
dependent initial-value problem with Neumann boundary conditions is given in
[35, §3.2.3]; asymptotic analyses of singularly perturbed steady-state problems
feature in [28, 26]. Numerical methods for general singularly perturbed differ-
ential equations feature in [23, 31, 8]. Computing solutions of equations that
are singularly perturbed, i.e., characterized by singularities of boundary-layer
type induced by a small parameter multiplying their highest derivative, require
layer-adapted meshes, e.g., Bakhvalov (logarithmic) meshes [2, 3] or Shishkin
(piecewise) meshes [24, 9, 10, 11]. In the sequel we review the use of the maxi-
mum principle, the assumptions and results in a couple of papers on singularly
perturbed problems.

We refer to [18] for the numerical analysis of the time-dependent equation

0 0? 0

Y — e——y — — = <
pri €8x2u ag:[p(av)u] flxz,t), 0<z<l, 0<t<I1,

subject to initial and Dirichlet boundary conditions and to the assumption
p(x) > const > 0. If N is the number of mesh points in space, a boundary layer
of width C(N—21n® N) on a Shishkin mesh and C(N~2) on a Bakhvalov mesh
exists at © = 0. The difference schemes use a four-point upwind space difference
operator. The analysis technique does not involve maximum/comparison prin-
ciples. The main results are error estimates bounded by O(N~21n® N) 4 7 on
Shishkin mesh and O(N~2) + 7 on Bakhvalov mesh, where 7 is the mesh step
in time, and e—uniform convergence.
Linear time-dependent singularly perturbed reaction-diffusion Dirichlet bound-
ary value problems are treated in [32] for two space variables on an infinite strip
and on a rectangle. The main difficulty is that the differential operator contains
two positive parameters that multiply the time derivative and the second-order
space derivatives. The main method is layer-adapted meshes for each of the two
domains and the result is uniform convergence. Large domains with respect to
the space and time variables are considered by Shishkin in [33].
Time-dependent singularly perturbed reaction-diffusion is also the subject of
[22]. In [15] the following linear problem is considered on G = (0,1) x (0,7 :

Ju

t

623% (a(x,t)ZZ(x,ﬂ) — c(@, u(x, 1) = pla, t) 50 (@, 6) = f(@,0),  (2,1) € G,

u(z,t) = p(x,t), (z,t)eS=G\G.
The functions a, ¢, p, f, ¢ are sufficiently smooth and bounded,
0<a0§a($7t)a 0<P0 Sp(x,t), C(x»t) ZO) (:L’,t) GG

and ¢ € (0, 1]. When & — 0 the solution exhibits a boundary layer of width O(e).
It is assumed that at the corner points (0,0) and (0, 1) the following conditions
hold true

ak ako
@ga(m,t) = %go(x,t) =0, k+2ky<[a]+2n,
ak+k0
Wf(ﬂ?,t) :O, k+2]€0 < [O[} +2’I’L—2,



where [a] is the integer part of an arbitrary positive number a,n > 0 is an
integer and [a] 4+ 2n > 2. When a classical difference method is considered on
the tensor product of a Shishkin mesh with N intervals on [0, 1] and a uniform
mesh with K intervals on [0, T] (second-order differences in space and backward
differences in time), a maximum principle is used. A discrete method based
on defect correction is shown to yield e—uniform convergence with accuracy
O(N72In N2 + K~2) and O(N—21In N2 + K —3), result which is consistent with
[9]. Defect correction is also applied to singularly perturbed time-dependent
convection-diffusion problems in [14]. A system of time-dependent reaction-
diffusion problems in one space variable is studied in [12] and a time-dependent
singularly perturbed equation in two space dimensions is discussed in [7]. In
[4] a domain decomposition algorithm is considered for the singularly perturbed
semilinear reaction-diffusion problem

?u 0% ou
2 — —_— —_— — T =
e R )

(Pt) e O x (0,tp], Q={P:0<z<1,0<y<1},

where p is a positive parameter. The initial-boundary conditions are
u(Pt) = g(P,t), (Pit)€dQx (0,tr], u(P,0)=u’(P), PeqQ,

where 99 is the boundary of Q. The functions f(P,t,u), g(P,t) and u°(P)
are sufficiently smooth. For p < 1 the problem exhibits boundary layers
near 9 x (0,tp]. The comparison/maximum principle and classical difference
schemes on Shishkin meshes are used. Numerical experiments are performed
on Bakhvalov and Shishkin meshes and uniform convergence of order one is
achieved.

In [5] a #—time discretization, 0 < 6 < 1, is performed for the nonlinear singu-
larly perturbed reaction-diffusion problem

— 12 (U + Uyy) +ue + f2,y,t,u) =0,

(z,y,t) €EQ=wx (0,tp], w={0<z<1,0<y<1}

with initial and Dirichlet boundary conditions. Assumption 0 < f, < ¢, with
¢, constant, is taken over the whole domain. For ¥ = maxj<;<n,—1(Vz,i—1 +
Uzi), W =maxi<j<n,—1(Wy, j—1 +wy;), the mesh size in time 7 is required to
satisfy 7(1 — 6) < m, which yields existence of the discrete maximum
principle. For 6 = 1, there is no restriction on 7. For uniform meshes of step siges

hy and h,;, the condition is replaced by (v, +v,)(1—6) < 0.5,v, = %, vy = 1237.
The problem exhibits layers of widths O(u) at the boundary dw. Uniform con-
vergence of the weighted average scheme is achieved on piecewise uniform and
log-meshes. On the piecewise uniform mesh, the implicit scheme (6 = 1) is
first order convergent with respect to the time step, while the Crank—Nicolson
scheme (6 = 0.5) is second order convergent.

Most analyses of singularly perturbed linear equations use the maximum prin-
ciple, which cannot be applied to any nonlinear equation. There are very few
numerical analysis results where the general condition f, > 0 is not assumed

in order to have maximum principle [34, 21, 19]. We are not aware of such




results for nonlinear time-dependent problems apart from the singularly per-
turbed reaction-diffusion initial-boundary value problem from [20].

In this paper we are concerned with the problem in [20] from the perspective of
upper and lower solutions acting as substitutes for the maximum principle. We
adopt and further develop the theory of upper and lower (or super- and sub-)
solutions from the cited papers as a first step of a comparative study on how
to deal with the lack of the maximum principle for nonlinear singularly per-
turbed problems. Generalizing the steady-state analysis from [21], we provide
additional details on some results from [20] related to the exponential decay
with a precise rate of the layer functions. Upon formulating the problem and
the assumptions, in Section 2 we derive problems for the boundary, initial and
corner layer functions depending on local, stretched variables. In Section 3 we
perturb the asymptotic expansion of order one of the solution, from which we
derive the upper and lower solutions. The main result, formulated by Theorem
3.1, is that these solutions provide existence and tight control of the solution.

1 Problem and assumptions

We are concerned with the singularly perturbed semilinear time-dependent
reaction-diffusion equation

Fu=e?[ug — uge] + fz,t,u) =0 for (x,t) € (0,1) x (0,77, (1)

with the singular perturbation positive parameter ¢ < 1, subject to the initial
condition
u($7 0) = 90(:1")7 T € [07 1] (2)

and the Dirichlet boundary conditions

u(0,1) = go(t
{u(l,w —gy T ¥

where f, ¢, go, g1 are sufficiently smooth functions. We shall examine solutions
of this problem that exhibit boundary, initial and corner layers induced by the
small parameter £. Solutions of (1), (2) may also have interior transition layers,
as in the case of different values of the initial condition for different stable
reduced solutions. As mentioned, we drop the usual restrictive assumption
(23, 31] fu(z,t,u) > 0 for all (z,t,u) € [0,1] x [0,T] x R and consider the
problem (1), (2), (3) under weaker assumptions:

AQ. The reduced equation obtained by setting ¢ = 0 in (1):

flz, t,up(z,t)) =0 for (z,t) € (0,1) x (0,T) (4)

has a sufficiently smooth solution ug(z,t).

As an algebraic equation with f,, not necessarily positive, (4) may have multiple
solutions, each of whom does not necessarily satisfy the initial condition (2) or
the boundary condition (3).

In the steady-state case, equation (1) may have multiple solutions. For instance,
the problem from [16]

—%u" 4 (u? +u —0.75)(u® +u —3.75) =0, x <€ (0,1), u(0)=wu(l)=0
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Figure 1: Example showing that the solution of a steady-state singularly perturbed reaction-
diffusion problem is not unique

has a solution near the stable reduced solution —1.5 and another one near the
stable reduced solution 1.5, as shown in Figure 1. In contrast, provided f,
is continuous for all v € R, problem (1), (2), (3) has at most one solution
[29]. In general, uniqueness is not the case for equations of type (1). Take,
for instance, f(z,u) = u 4 (3sin®®z/2)u'/3, 0 < < 7, and the Dirichlet
boundary conditions u(¢,0) = u(t,7) = 0, t > 0[29, §1.6]. Each of the functions

u, = —t*2sinz, up = 0, ug = t*/%sinx is a solution; for any t; > 0, the
function
0 for0 <t <ty
u(x’ t) = 3 2 .
(t —t9)3/?sinz  fort > tg

is also a solution. In accord with [20], we further assume:
Al. The reduced solution ug (whose existence is provided be assumption A0)
is stable, i.e., there exists a constant v such that

Ju(@, t,ug(z,t)) > 4% >0 VY(x,t) €[0,1] x [0,T];

A2. Let (ay,as] denote (ay,as] when a; < ag, (az,a;] when a; > as and 0
when a; = as. Then

/ F(0,t,8)ds >0 Vwe (ug(0,t),g0(t)), te€0,7]
uo(O,t)

and "
/ f(L,t,s)ds >0 VYove€ (u(l,t),q ()], tel0,T].
ug(1,t)
AS8. The initial condition belongs to the domain of attraction of the reduced
solution, i.e.,

f(z,0,up(z,0) + s)
s

>0 Vse(0,¢o(x)—u(z,0)], xel0,1]. (5)

As shown in Figure 2, a solution of (1), (2), (3) exhibits boundary layers of
widths O(g) near z = 0 and = = 1, an initial layer of width O(e?) at t = 0 and
corner layers around (0,0) and (1,0). Thus we employ the stretched variables
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Figure 2: Solution of the initial-boundary value problem (1), (2), (3) with ¢ = 0.01, f =
(uw+2.5)(u+ 1.5)(u — 0.5)(u — 1.5), p(z) = 0.1, go = 0, g1 = 0.

E=uafe, 1=t/

to define functions which describe these layers. For simplicity we only consider
the boundary and corner layers in x = 0 and applying the boundary function
method from [35], we approximate the solution of (1), (2), (3) by its asymptotic
expansion of order one:

Uqs = UQ (:L'v t) + [vO (g’ t) +eur (53 t)] + wo (.’B, T) + [qO (fa T) +eq (53 T)]

In this asymptotic solution we have identified the smooth component by the so-
lution of the reduced problem ug; the term vo(&,t) + evq (€, t) characterizes the
boundary-layer of width O(e) at & = 0; wo(x, 7) is the initial-layer function and
qo(&,7) +eq1(&, 7) stands for the corner layer. We determine these functions by
formally introducing them in the original problem and matching the coefficients
multiplying the same powers of ¢.

Compatibility conditions
We impose the zero-order compatibility conditions at the corner

©(0) = 90(0),  #(1) = g1(0) (6)

and to ensure that problem (1), (2), (3) has a sufficiently smooth solution, we
impose compatibility condition of order one at the corners (0,0) and (1,0) by
formally setting z =0,¢t=0and z =1,t=01in (1):

e?[g1(0) = " (] + f(1,0,0(1)) =0 forl=0,1. (7)
Neglecting the O(g?) terms in (7), we obtain
f(,0,0(1)) =0 forl=0,1. (8)
Note that choosing s > 0 in A3, for x = 0 we obtain

£(0,0,u0(0,0) +s) >0, Vse(0,0(0)—up(0,0)]. (9)



Presuming that ¢(0) — u(0,0) > 0 and setting s := ¢(0) — uo(0,0) in (9), we
have
£(0,0,¢(0)) >0,

)
which contradicts (8). Therefore ¢(0) —uo(0,0) < 0. By (20), this yields ¢(0) =
u0(0,0). Applying a similar argument for Il =1, we see that

o(l) =uo(l,0), 1=0,1. (10)

Remark 1.1. Rigorously, the terms £2[g;(0) — ¢”(I)] = O(¢?) should remain in
(7). This would imply

uo(1,0) — (1) = O(e?), 1=0,1. (11)

Therefore, neglecting these terms will not change the first-order asymptotic
expansion.

Proof. We prove (11) for [ = 0. Assume that ¢(0) — uo(0,0) > 0. Let

f(s) == £(0,0,u0(0,0) +5), s € (0,(0) — ug(0,0)]

In a small vicinity of 0

s—0 S
From (4) f(0) =0, so }

f(s) o

.l—»O T N f (0)7
ie. Isp € (0,(0) — up(0,0)) such that
‘f() f(0)] < f;O) Vs € [0, so]-
Hence
f(s) > Cs, Vsel0,s0]

where

and we used Al.
Outside [0, so], let

m = min S
s€(s0,p(0)—up(0,0)] f( )

By A3, we have m > 0. Then

Therefore, choosing

—, min
2 " se(s0,0(0)—up(0,0)] S



yields
£(0,0,u0(0,0) +s) > Cs, V¥ se(0,0(x)—uo(z,0)]. (12)

From (7) we obtain

£(0,0,9(0)) = —£2[g5(0) — " (0)] = O(?). (13)
Relations (12) and (13) yield
O(e?) = £(0,0,(0)) = £(0,0,u0(0,0)+5)|s=p(0)—uo(0,0) = Clep(0)—uo(0,0)] > 0,

which implies (11) for [ = 0 and similarly for [ = 1.
Hence (10) should be replaced by a more general relation

(1) = g1(0) = uo(1,0) + O(£?).

Yet, for simplicity, we keep the assumption (10).

2 Layer functions

Boundary-layer function

The solution of (1), (2), (3) near the boundary {(z,t)] x = 0} is described
by a boundary-layer function depending on the stretched variable { = z/e.
The spatial boundary region satisfies us(z,t) = O(g?), which, upon formally
introducing u := ug(x,t) + vo(&,t) + ev1(§, 1) in (1), yields

£2[ug + vo + ev1]; = O(£?).
Due to ug being sufficiently smooth, £2ug .. = O(g?), giving
—(vo, ¢ + evi,ee) + flz, t,uo(z, t) + vo(&,t) + evi (€, ) + O(e%) = 0.
Defining the functionals
F(x,t,s) = f(z,t,uo(z,t) + s),

G(e) := F(g&,t,v9 + ev1), (14)

we have
f(xa t7 UQ(Z’, t) + ’1}0(57 t) + E’Ul(f, t)) = G(E)
Now expand G(e) as

G(e) = G(0) + £G'(0) + %G”(a*), (15)

with some * between 0 and e. Formally assuming £2|G”(¢*)| = O(¢?) and
setting € = 0, in (14) we obtain G(0) = F'(0,%,vo) and in (15)

G/(O) = U1FS(O,t,Uo) + me(O,t, Uo). (16)



By (2), we have
—(vo,ee +eviee) + fla,t,ug +vo +ev1) + 0(52) =

= —(vo,ee +ev1ee) + G(0) + eG'(0) + 0(52) =0.

Combining this equality with (16), we obtain that the coefficient of the term in
the right-hand side of (15) containing power zero of € is —v{ + F(0,t,vp). Thus
the zero-order term of the boundary-layer function vy(&,t) must be a solution
of

821}0
—ng + }’—‘(07 t,’UO) = 0, (17)
with £ > 0, subject to the boundary conditions
UO(OOa t) = 07 (18)
UO(Oa t) = gO(t) - UO(Oa t)v (19)
where we assume
gO(t) - ’lj,o(O,t) > Oa te [OaT] (20)

The coefficient of the term with power one of € in the right-hand side of (15) is

— T8 1 Fy(0,t,v0)v1 + EF4 (0,1, v0), yielding the problem for v; :

621)1
- 852 +’U1Fs(07t7v0) = _é—Fx(Oatu UO)
1(0.1) —0 (21)
v1 (00, 1) =0.

In the sequel we provide a more detailed proof for a result from [20] concerning
the existence and upper bounds of the zero-order term of the boundary-layer
function and its derivatives.

Lemma 1. Set
’y% = Igl>lél Su(0,t,u0(0,8)) > 72, (22)

where v is the constant from assumption Al.

i) There exists a solution vy of the problem (17), (18), (19).

1) For any arbitrarily small, but fixred § € (0,71,), there exists a positive constant
Cs depending on § such that for k = 0,3 and in the mazimum norm

< 056_(’“_5)5. (23)

8’“ Vo
ok

Proof. To prove existence and properties of the zero order term of the boundary-
layer function, we generalize the steady-state analysis from [21, Lemma 2.1]. i)
For any fixed ¢, writing (17) as the equivalent system

81}0 o

2 = V(£ t) (24)
0

% — FO.tw (25)
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Figure 3: Phase plane which illustrates existence of the zero order term of the boundary-layer
function

with the boundary conditions (19), (18) and
V(co,t) =0, (26)

we analyze the phase plane for (24) and (25) depicted in Figure 3. Assumption
A2 implies that (24) and (25) have a stationary point at (0,0). A solution v
exists provided a phase plane trajectory leaves the point (vo(0,t),V(0,t)) and
enters (0,0) as £ — co. The Jacobian matrix associated with the right-hand side

of (24), (25) is ( . ) )
FS(O,t,’Uo) 0

with the eigenvalues ++/F(0, ¢, vg). Assumption Al implies that these eigenval-
ues are real and of opposite sign at the stationary point (vg, V) = (0,0), hence
(0,0) is a saddle for (24), (25), (26), i.e., a critical point where the eigenvalues
of the associated matrix are real and of opposite sign [1]. By (24) and (25),

V—:I:\/Q/ F(0,t,s)ds + C, (27)
0

with C' a constant of integration. At vg =0, V = %—”50 = 0, giving C' = 0. By
(18), the trajectory that leaves (vo(0,t), V' (0,t)) and decays to (0,0) as £ — oo is
to be chosen in (27), while by (20), the boundary condition (19) is nonnegative,
prompting towards the negative choice in (27).

Making a variable change r = s — (0, t) and setting 0 = v —u((0, t), we obtain
an equivalent formulation of assumption A2 :

/U FO, £ 10(0, £)4+) dr = /U F0,t,5)ds > 0, ¥ € (0,go(t)—uo(0, )], £ € [0,T],
0 0

thus quo(t)fuo(o’t) F(0,t,s)ds > 0 while vy decays from v (0, t) = go(t) — uo(0, t)
to vg(co,t) = 0. Therefore, the separatrix V = —,/2 [ F(0,t,s)ds intersects

10



the line (19), providing a solution of (17), (18), (19).

ii) We have assumed in (4) that go(t) — uo(0,¢) > 0, which with (19) yields
vo(0,t) > 0. While vg(§,t) > 0, V(§,t) < 0, thus vg(§,t) is decreasing. The
inequality Fy(0,t,0) > 72 implies existence of a so(t) > 0 such that

(yp — 6)%s < F(0,t,s) for 0<s< rilfg(so(t).
If we had wvo(&,t) > so(t) for all £ > 0, there would exist a positive constant C'
such that vg ¢ < —C, ie., V < —C, yielding that lime_, o v9(&,t) = —o0, which

contradicts (18). Thus there exists &y such that vo(&g,t) < so(t), implying that
for all &€ > &, vo(€,t) < sp(t). Then for 0 < vy(&p,t), (27) yields

vo(&,t)
V(fat) S - 2\/0 (7L - 6)25d57

giving
V(1) < —(ve —Hwo(&t)  VE> &, (28)
ie.,
81)08(55,0
< —(yp-9 VE > &. 29
Ug({,t) = (’}/L ) 5 60 ( )
Integrating in (29) from & to &, with & < £ < oo, we obtain
vo(€, 1) < wo(€o, 1)e S0 (0, (30)

showing that
Elim vo(&,t) = 0.

Taking Cs > vo(&p,t) in (30), for £ > &, we have
vo(€,1) < Cse~ (2 =9E, (31)

In case 0 < & < &, by so(t) < vo(&,t) < v(0,1), taking Cs = vo(O,t)e(’Y%—(s)io’
we, again, obtain
v < Cse~ =98 < Ose= (L=

Therefore, for a fixed &y, (31) holds true for all £ > 0, with

Cs = tfg{{max[vo(fmt), vo(O,t)e("Yi_g)&O]}. (32)

From (30) it follows that |V(£,t)| has the same upper bound as in (31), i.e.,
(23) is satisfied for k = 1. Writing (17) as

vo,ee = F(0,t,v0), (33)
for 99 between 0and vy, (4) yields
vo,e¢ = Vo F5(0,t,u0(0,t) + 0p)
with 99 bounded, thus
|vo,¢¢| < Clug| < Ce™0E9¢,

Differentiating (33) with respect to & and using the previous upper bounds for
|vo| and its derivatives, we obtain (23) for k = 3. O

11



Lemma 2. Set the non-negative functional

,UO,E(gv t) .
X(&,t) = v0.e(0,1) ¥ w(0:8) >0 (34)
e~ ¢V F:(0,4,0) if vo(0,t) = 0.

1) Then x defined by (34) is a solution of the homogeneous problem

82
_aig_‘_Fs(OatvUO)X(gvt) :O
lime 00 X(&, 1) =0 (35)
x(0,1) =1
and there exist the positive constants Cy and Cs such that
Crvo < [go(t) — uo(0,1)]x < Cavp. (36)
1) The solution of the problem
0%*d
78752 +F‘s(07t7v0)q)(§7t) = \Ij(gat)
(0, 1) —A (37)
D (00, t) =0

is given by

13 0o
26 = A6 TN [ il [ vm a3

iii) If, for some k > 0,
0| < Cx(¢" +1), (39)
then
@] < C(A+ 1+ )y (40)

Proof. i) The functional x is well defined in (34), as vo,¢(0,t) = 0 < v(0,t) =0
and substituting (34) in (35), if vy(0,t) > 0, we obtain

vo,eee (€, t) vo£(€,1)
——==== + F(0,t,v9) ——-—+ =0
v0.£(0, 1) ( O)vo,g(O,t)
t
limg e 2E(60) =0
£(0,1)
U0,5(07t) -1
1)0’5(0715) ’

The first equation above coincides with (17), or (33) differentiated by &. If,
for some ¢, go(t) — up(0,t) = 0, then vy(0,t) = 0 for all &, thus Fs(0,t,v9) =

F,(0,t,0) > 0 and so y = e~ V(0108 ig well defined. Furthermore,

_efmFS(O,t,O) + engs(Ovt’ 0) =0
limg_, o0 e~V (0.60) Y

e0 =1.

12



The inequality (28) implies ~
|’U0,§| > CQ’U(). (41)

Similarly,
[vo.¢] < Croo.

Taking Cy := C’flé’g and Cy := C’glé’l yields (36).
i1) Setting

®(§) = C1(§)x(§)
and introducing it in (37), from standard variation of parameters for second or-
der ordinary differential equations we have that the solution of a non-homogeneous
equation is

® = C1(&1(&) + Ca(§)w2(),

where y1,y2 are two linear independent solutions. We take y; = x, while ys is
generally an increasing function, because, by [6] the Wronskian is

=x'y2 — xvyb = C,

W | v
Yy Y2

SO , ,
yox —vex’ _ C

X2 X2
®)-
b% X2
c
v :X<A+/><2>'
C

From (36) we see that while y is exponentially decreasing, = is exponentially
increasing faster than y. Therefore the term C(€)ys in the solution ® of (37) is
increasing, while satisfying a zero boundary condition at infinity, which prompts
us to take C3(€) = 0. Thus we look for a solution in the form C;(€)x(€). Intro-
duced in (37), it gives

—(C1X)ee + Fs(0,t,00)C1x = ¥, (42)
where
—Chixee + F5(0,t,v9)Crx = 0.
Setting C; = €} in (42), we obtain
Cix+2C1y =0,

v
S xrtC

The integrating factor here is p := el 2% = x2 and C) = — yields

€,
Clz/ 01+A,
0

leading to (38).
Now we shall prove that (39) implies (40). Firstly, we estimate

oo

I=1(6) = /g " W()x(ndn < © [\t i

13



where by (36)

C B C vg
< (0o — o0, pyz o Do) = Coa— G )2 { 2 L‘

Using integration by parts, we obtain

~ (go(t) —uo(0,
< o TP {'”0(50)(50“ *‘/ ) Hd"‘}’

as vo = 0 at infinity. To estimate the second term above containing the integral,
by (41), we have

2 U%
v5(n) < Cugvg,y =C o>
n

and so
I =

o0
il = € g - [t 0
0

o

:/ Wi <o |

Continuing in this manner and substituting I_; in I}, we obtain

1< G @ e ) < C(gﬁ%+ : <é£ e
Using (43) in (38) yields
£ _v5(o)
xED ?@Xi(ii;fﬁo,io))z (& +1) < Cx(&) / “(ek + 1)ty -
5 §k+1
— i) (57 +¢).
which leads to (40). O

We now possess necessary information to derive upper estimates in the max-

imum norm of ‘%ﬁf‘ and existence and properties of v; and its derivatives,

as they satisfy linear differential equations containing the differential operator
featuring in (21).

Proposition 2.1. (i) Problem (21) has a solution v;.
(ii) For the solution vy of the problem (17), (18), (19), k = 0,3 and | = 0, 2,

ak a
| e |2

. oy . L
each of the maximum norm quantities ‘%

bound Cse~VE=9E with v defined by (22).

has the upper

14



Proof. (i)The existence of vy is provided by Lemma 2.
(ii) Differentiating (17), (18), (19) with respect to ¢, with

0
&F(Oa tv UO) = Ft(07 ta ’Uo) + FS(07 ta UO)UO,tv (44)

Vo, is given by the problem

2
_({“)752 + Fy(0,t,v0)| vo,; = —F3(0,t,v0)
45
v0,(0, 1) = 90.4(8) = u0,4(0, %) "
UO,t(Ooa t) =0

We apply Lemma 2 to (45), for ® = vg ¢, ¥ = —F;(0,1, vo) with | —F3(0,¢,vg)| <
Cvgand k=0:

[v0,1] < C(1go,e(t) — uo(0,8)| + 1+ &)x < Ce™ 7%,
Differentiating (44) with respect to ¢, we obtain

0? 0
@F(O,tvvo) = E[Ft(oi,vo) + Fs(0,t,v0)vo,) =

= Fy4(0,2,v0) 4 2F45(0, ¢, vo)vo,t + Fus(0,,v0)v5 , + Fs(0,,v0)vo4¢-

The problem for vg 4 is

[_% + Fs (07 t7 UO):| Uo,tt = _Ftt (07 t7 UO) - 2Fts (07 ta UO)UO,t - FSS (07 t7 ’UO)’U(2)’t
v0,¢(0, 1) = go.tt(t) — u0,:¢(0,1)
v0,4(00, t) =0,

so in Lemma 2 we take ® = v+, A = gou — U0+ and
\I, = _Ftt(oa Yy UO) - 2Ft5(0a Yy UO)UO,t - FSS(07 Yy UO)Uaﬁ

noting that
| — F1(0,t,v9)| < Cvy < Cl.

From (38) and
(W[ = | = 2F5(0,t,v0)vo,e — Fis(0,t,v0)v5,,| < C(1+ &)y,
Lemma 2 with k& = 1 yields
[vo,ut] < Cl(go,41(t) = w0,1(0, 1)) + 1+ €]x < Cem 2708,
Now take v1 = @ in (37), where ¥ = —£F,(0,¢,vp). If v9(0,¢) > 0, (36) yields
(W[ = | = &Fa(0,8,v0)] < C&ug < Clgo(t) — uo(0,2)[x(§ + 1),
If vy(0,t) = 0, we also have |¥| < Cx(£ 4+ 1). We apply Lemma 2 with k=1 :

[o1] < C(1+€2)lgo(t) — uo(0,8)|x < Clgo(t) — uo(0,8)]e~ =%, (46)

15



The problem for vy ; is

—3%2201,15 +v1,:F5(0,t,v0) =
= —U1 [Fst (0, t, ’Uo) + FSS (O, t, UO)UO,t] — g[th (0, t, ’U()) + FIS(O, t, 'UO)'UO’t]
Ul,t (0, t) =0
Ul,t(ooat) =0,
(47)
where we use the previous estimates for |v1], |vg +| and that for positive arbitrary
constants C|

|Fy(z,t,8)| < Cls|, |Fs(z,t,s)] <Cls|, |Fi(z,t,s)| <Cls| (48)
The right-hand side of the equation in (47) satisfies
(W] < Jor| + C&(Jvol + [vollvoe]) < C(1 +&)x,

where we use (46) and the estimates for |vg| and |vg ¢|. Applying Lemma 2 with
k =1 yields

el < C(L+E2)x < Cem 278§ >0, ¢ =C(0).

Differentiating (47) with respect to ¢, we obtain an equation for v; 4 and the
boundary conditions

v1,4¢(0,2) = 0,

’Ul,tt(OO,t) = 0
We use (48), the estimates for |vi|, |v14|, |vol, |vo,t|, [vo,s¢| and apply Lemma 2
with k = 2.
Next, we derive upper bounds for the derivatives of v; with respect to £. For
k = 0 we have (46). Differentiating (21) with respect to &, we obtain the problem

52
—3ezV1e + Fs (0,2, vo)vre =
= —’UlFSS(O,t,’Uo)Uoé — Fm((),t, ’U()) — fos(O,t,’Uo)’Uof

(49)
’(}1’5(0, t) =0
’()1,5<C>O7 t) =0.
Using (48) and the estimates obtained for |vy|, |vgl, [vo,¢| for
|\II| = ‘ - 'UlFss(Oa t7 UO)”O,& - Fw(07 t7 UO) - éFws(Oa ta UO)U0,§ S CX(l + 51)’

we apply Lemma 2 with k& = 1. Differentiating (49) with respect to £ we obtain
the problem for vy ¢¢, with the boundary conditions vy ¢¢(0,¢) = 0, v1 ge(00,t) =
0, and apply Lemma 2 with k& = 2. Differentiating again with respect to £, we
obtain the problem for vy ¢¢¢ and apply Lemma 2 with k£ = 3. O

Noting that
[0 0% ] 0?

2
€ i (vo +ev1) = —8—8(1}0 +ev1) + O(e7),
we now prove the estimate from [20]:
2[00 0°] — O(2
5 5 o2 (vo + ev1) + F(x,t,v9 + ev1) = O(e7). (50)

16



. . . 8%v
Using the functional defined in (14), F'(¢€, t, vo+¢cv1) = G(g), where G(0) = 52

2 862
and G'(0) = §&, (50) is

—G(0) —eG'(0) + G(e) + O(*) = 0.
As by (15), G(e) = G(0) +G'(0) + %G”(s*) for some ¢, € (0,¢), it remains to

show that
G'(e.) <C, Ve, €(0,¢e). (51)

By (14),
G/({f*) = fo(’I,t,UO + 5*’[)1) + ’UlFS(JZ,t,’UO + E*’Ul).

Hence
G"(e4) = E2Fpa (2, t,v0 4 £,v1) + 2601 Fp (0, 1, v + €,01) + 02 Fog (2, t, vo + €,01).
The third term here is bounded, as |[vf| < |v1]. By (48),
| Foo (2, t,v0 4+ €.v1)| < Clug + €01,
which yields €2, (z,t, v + €.v1)| < CE%|vg + e4v1| < C, while
|26v1 Frs(x,t,vg + €xv1)| < C&lvr| < C.

This proves (51), therefore, (50), which gives that

Flug +vo +ev1) = O(£?). (52)

Initial-layer function

The behaviour of the solution of (1), (2), (3) in the layer {(x,t)| t = 0} is
described by a function wg(x,7) depending on the stretched variable 7 = t/&2
and given by the initial-value problem

% = —F(Jj, 07 ’U]O)
wo(x,0) = ¢(@) —uo(x,0) (53)
lim, oo wo(z,7) =0.

Hence, the initial value belongs to the domain of attraction of the rest point 0
and the solution is local. To illustrate the term ’domain of attraction’ from [35],
consider the problem

{—E2ut + f(u) =0, te€]0,1]
u(mv 0) = <p(a:)

where f(u) = (u+1)u(u—1)(u—2) is depicted in Figure 4. The reduced equation
has the roots up € {—1,0,1,2}. We evaluate the derivative f, = 4u® — 6u? —
2u—+2 in each root, to find out which ones are stable - if f,, > 0 - and which ones
are unstable - if f, < 0: fu,(—1) = -6, [f,(0)=2, f,(1)=-2, f.(2)=6.
Thus -1 is unstable, 0 is stable, 1 is unstable and 2 is stable. If the initial
condition ¢ is in the interval between —1 and 0, where f < 0, the solution
increases towards 0. If it is between 0 and 1, where f > 0, the solution decreases

17
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Figure 4: Example of a function f and its domains of attraction

towards the stable reduced solution 0. Thus, the domain of attraction of ug = 0
is (—1,1). If the initial condition ¢ is between —oo and —1, the solution goes to
—00. Similarly, the domain of attraction of ug = 2 is (1, 00).

Corner layer function
Zero-order term of the corner layer function

The compatibility conditions (10) yield
uo(0,0) = ¢(0) = go(0)

and when £ and 7 tend to infinity the corner layer functions gy and ¢; should
approach zero:

Ehm QO(fv 7-) = 07 lim QO(ga T) = 07 (54)
00 T—00
fhm q1 (fa 7_) = 07 lim q1 (53 T) =0. (55)

The corner layer along the time axis where £ is close to is characterized by
Uqs (l‘,t) = gO(t)a glVlng

u0(0,t) + vo(0,%) + €v1(0,%) + wo(0,7) + qo(0,7) +€¢1(0,7) = go(?),
where v(0,t) = go(t) — uo(0,t) and v1(0,¢) = 0. We obtain
wo(0,7) + ¢o(0,7) +€¢1(0,7) =0,

yielding a boundary condition for gq

q0(0,7) = —wo(0, 1) (56)
and a boundary condition for ¢;

¢1(0,7) =0. (57)

In the horizontal part of the corner layer along &, where 7 = 0, we have

UO(J},O) + ’UO(fv 0) + g1 (57 0) + w0(€7 O) + qo(ga O) + £q1 (ga 0) = QO(.’I}), (58)
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which yield the initial condition for ¢;

71(£,0) = —v1(£,0).

(59)

Due to the initial value wg(z,0) = ¢(z)—ug(z,0), (58) yields the initial condition

for qo

QO(& O) = —Vo (67 0)

(60)

Setting = ¢ = 0 in f and introducing ug(0,0) + vg(&,0) + we(0,7) + qo(&, T)

in (1), we obtain the equation for go(&, 7):

82
ar  oe2

32

6.0+ 5 un(0,7) + |

P } qo+

+f(01 07 u0(07 0) + 00(67 0) + U}O(Ov T) + qO) =0.
Using now the definition (76), (17) and (53), (61) becomes

o ]
or oz~

—F(0,0,v9(&,0) +wo(0,7) 4+ qo) + F(0,0,wp(0,7)) — F(0,0,v9(&,0)).

By 0 < wg(&,t) < Ct, we have
vo(§,0) =0
and 0 < wo(z,7) < Cr, yields
wp(0,7) =0
From (63), (64) and F(x,t,0) = 0 for all z,t, equation (62) becomes

[8 o?

87 - 852} do = —F(O,O,Q0)~

(65)

Therefore, the zero-order term of the corner layer function ¢q is defined by (65),
with the initial condition (60) and the boundary conditions (56), (54) becoming

homogeneous. A solution of (62), (60), (56), (54) is go(&,7) =0 .
Term of order one of the corner layer function

We obtain ¢ (£, 7) by formally introducing
Uqs = g (e€,€°T) + vo(€,€7) + ev1(§,€*7) + wo(e€, 7) +eqr (€, 7)

in the original equation (1):

t  da?

2
£2 ( 5 ) [uo(e€,€T) + vo (€, €27) + evi (€, €°7) + wo(e€, 7) +eq1 (€, 7)]+

+F(5£a 527’, Vo (57 627.) + evqy (57 527—) + Wo (557 T) + £q1 (67 T)) = 0.

o 0
2( 2 ¥ _ 2
c (8t ax2>“‘) OE)-
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We use the estimates (50) and

g2 [gt 88 2} wo + F(z,t,wp) = O(e?), (66)

yielding
e(qrr — quee) — F(e€, %1, wo (€€, 7)) — F(e€, %7, v0(€,€77) + w1 (€, 677))+
+F(e€,e21,v0(&,€%T) + wo (e, 7) + ev1(&,627) + equ(€,7)) + O(e?) =
Using the notation
<[ i=cb) =sla), <, =s(e) —s(b) —s(a), (67)

this can be written

2 |[Po(6,e3T) +ewr (€ Hwo (e€.7)
o1 = qee) T F(6 877 )¢ car)senn (€.c2m)]swoleer) T

2 vo(€,677)+ev1(£,6°T)+wo (e,7)+eqr (§,7) 2
F(S&& 7 )|vg(£ e27)tev1 (€,e27)4wo (e€,7) 0(5 ) (68)

By Lemma 5, we have

vo + evy||wo| < Ce2re~ (1697, (69)
We obtain
F(e8, e o6 o it ) =
= O(|[vo(&,€7) + ev1 (€, €21)Jwo (€, 7)]) = O(?).
Let
Pt e e e e 7 =6E@. ()
Then

2 2
G/(é‘) — ng(€§7€27_ .)|UO(§’5 T)+evi(§,e°T)+wo(e€,7)+eqr(€,7)

vo(€,627)+evr (£,627) +wo (e€,7) +

vo (€,627)+evy (€,62T)Fwo (e€,7)+equ (€,7)

vo(€,627)+evr (£,627) +wo (c€,7) +

+2e7Fy(e€, %7, |
+[257—v0,t(§a 527-) + 2527—@1,t(§7 527—) + v (57 527—) + ng,E (55, T) + q1 (ga 7_)]
Fs (855 527-; ’1}0(67 527—) + EV1 (ga 527—) + ’LUo(Ef, T) + €q1 (57 T))_
—[2eTv0,4(€,€27) + 26211 4 (€, 7)) + 01 (€,€2T) + Ewp ¢ (€€, T)]-
EG (553 527_3 Vo (67 527—) +evr (Ev 527_) + w0(€£, 7_)) (71)

A Taylor expansion gives

where £ is between 0 and ¢ and

G(0) = F(0,0,v0(&,0) + wo(0,7)) = 0.

20



Formally assuming that
e?|G" (&) = O(e?),

we obtain

G(e) = G(0) + G'(0) + O(?),
where from (71)

G/(O) = Q1(§7T)Fs(03071}0(£70) +w0(037—))' (72)
From ¢|v| < Ct, yielding
U1 (53 O) =0
and (63) and (64), we obtain
G'(0) = q1(&,7)F5(0,0,0). (73)

Using (70) and (73), we match the terms in (68) containing power one of ¢ :

q1,r (ga T) — q1,¢¢ (57 T) + q1 (gv T)Es (Oa 07 O) =0. (74>

Setting £ = 0 here and knowing that vo(£,0) = v1(£,0) = we(0,7) = 0, the
equation for ¢; becomes

Q- — qQ1ee + Fs(0,0,0)q1 = 0. (75)

A solution of the problem (75), with the initial condition (59) and the boundary
conditions (57) and (55) becoming homogeneous is ¢; = 0.

3 Super-solutions and sub-solutions

3.1 Perturbation of the asymptotic expansion

We introduce a perturbation of the functional F' by a sufficiently small param-
eter p: ~

F(m,t,s) :f($,t,U0($,t)+3)_p8. (76)
Genererally, for a sufficiently smooth function ¢, under the notations (67), for
any a and b, there is a 6 with || < |a| + |b| such that

s(a+b) —c(a) —<(b) +<(0) = abs”(0)

and if ¢(0) =0, ¢ Z,:b = O(|ab|), so by F(m,t, 0) = 0, we have
~ a+b
F(I7t7 ) ab = O(|ab|) (77)

In order to set a super-solution and a sub-solution of the problem (1), (2),
(3), we define the perturbation 0y(&,¢;p) of vo(&,t) with vg(&,t) = (€, ¢;0) as
solution of

—%+F(Otl~))—0 £>0 (78)
852 ybLUo) — Yy )
subject to the boundary conditions
170(07 tvp) = gO(t) - U’O(Ov t)7 (79)
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(00, ;p) = 0. (80)

Regarding the existence and properties of the perturbed boundary-layer function
0o = Do(&,t; p), given by the problem (78), (79), (80) we have the following result
from [21, 20].

Lemma 3. i) Let vy, be defined by (22). There exists po € (0,v5) such that
Y |p| < po, an analogue of assumption Al in the form

Fy(z,t,0) > 4% >0, Y (z,t) €[0,1] x [0, 7]

is satisfied.

1) Problem (78),(79),(80) has a solution 0y whose initial value belongs to the
domain of attraction of its rest point.

iii) There exists a positive constant Cs depending on an arbitrary, but fized § €

(0, \/fu(O,t,uo(O,t)) —p), such that

0
0< 6%0 < Osexp(— (7. — 6)€), 0 < € < oo. (81)
For any arbitrarily small but fized 5 € (0,7 — /Do), there exists a positive
constant Cs such that for £,t > 0,k = 0,3 and | = 0,2, %—fg) > 0 and each

ey [elony
oek atl

of the quantities
Céef(’YL*\/piO*‘s)ﬁ.

and | | 18 upper bounded in the mazximum norm by

For any fixed z, let the function wy(x, 7;p) with wo(x, 7;0) := wo(z, T) be a
solution of the initial-value problem perturbed by the small parameter p:
Oy ~ . .
W = _F(xvoaw(];p) T> 07 wo(an;P) = (p(x) - Uo((E,O), (82)

where F is defined by (76). Since g (z,7;p) describes a correction to ug(z,t)
for small values of ¢, we search for a solution of (82) that satisfies the condition

lim wg(x,7;p) = 0. (83)
Setting
72 = min f,(z,0,up(x,0)) >~ (84)
z€[0,1]

where v is from assumption Al, we prove in the following an analogue of as-
sumption A2 for the perturbed function.

Lemma 4. For F defined by (76) and |p| < po with po sufficiently small,

F(z,0,s)

S

holds true provided (5) is satisfied.

>0 Vse (0,0(x)—ug(z,0)) (85)

Proof. By Al, f(x,0,ug(z,0)) = 0. A Taylor expansion up to the power two
gives
f(z,0,up(z,0) + s) =

= f(x,0,uo(x,0)) 4+ fu(x,0,uo(x,0))s + cos® = fu(x,0,uo(z,0))s + cos
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for some constant ¢g = ¢o(x) which bounds the second order derivative of f
with respect to u, V s € (0,p(x) — ug(x,0)]’. From f,(z,0,uo(x,0)) > v and
p < po we have

F(@,0,u9(x,0) + ) = ps > (45 — po)s — cos” Vs € (0,0(x) — ug(,0)]'. (86)
If

2
0<s< 7—07
200
then
%
—CpS > —?,
yielding
2
Y5 — CoS > ?O. (87)
Choosing
%
Po S 3; (88)
(87) becomes
Y% — co > po,

yielding
78 — po — cos > 0,
so the right-hand side of (86) is positive and (85) holds true.
2

2
In case 5 > g2, we take Smax = (2) — ug(z,0) > 72 and

f(x,0,up(x,0) +5) 4§

Po := min ) min '3
S Co
22 <5 < () — uo(x,0)
x € [0,1]

which gives

ps < po(gﬁ(l') - uO(xa 0)) < xlen[(l)nl] f(CC,OMLO(CU,O) + S) < f(xv 0, UO(xv 0) + S),

yielding positivity of the right-hand side of (86), hence (85). O
Existence and properties of the perturbed initial-layer function are derived
in [20]:
Lemma 5. 1. There exists pg € (0,73) such that for all p with |p| < po,
problem (82) has a solution wo(x, T;p).
2. For wg and Wy we have
Oy

0 < wp(z,7) < Cu, 6—]320, Vzel0,1],7>0 (89)

and for an arbitrarily small but fized 5 € (0,73 —po), there exists a constant
Cs such that for all x € [0,1], 7 > 0, the mazimum norm quantities

’% 35;’2 and with k = 0,3,1 = 0,2 have the upper bound

Cse~ (0 =1P1=07 where ~o is given by (84).

’

Owg
1]
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We construct sub-solutions and super-solutions by adding the term Cyp with
Cy a positive constant and p the perturbation parameter with |p| sufficiently
small to the perturbed the asymptotic expansion containing perturbed boundary
and initial layer functions vy and wy :

B(x,7;p) = uo(x, t) + [0o(&, t;p) + ev1 (&, t)] + wWo(z, 75p) + Cop,

or
B = tas +V + W + Cop, (90)
where _
V(& tp) i=v—vo = pavo(gl’)t;m
(not to be confused with V' from (24)) and

Owo(z, 73 p)

W= W(J?,T;p):w0<$,T;p)—w0(l‘,T):p ap ’

with p € (0,p) and C,Cy positive constants. By the estimates for 8%170 and
agpﬁ)()a
(1+9|V|<Cp, (A+7)|W|<Chp. (91)

Lemma 6. If p; < po, then the super-solution satisfies B(x,t,p1) < B(z,t,p2),
which is

op
—_— >
dp — 0
Proof. From (81) and % > 0 we have V(&,t;p1) < V(& t;p2) and from (89)
p
we have W(&aﬂPl) < W(£7t7p2) O

Lemma 7. For the function 8 given by (90), we have
B = tas + O(p). (92)
For all (z,t) € [0,1] x [0,T]
Bz, t; —[pl) < tas — Cop < uas + Cop < B(z, £; |pl). (93)

Proof. Assertion (92) follows from (90) and (91). Noting that wu.s(z,t) =

B(z,t;0) and using the bounds %—5; >0 and 85‘;0 > 0 yields the second assertion

(93). O

Therefore, we set the upper solution §(z,t;|p|) and the lower solution as
B(x,t; —|pl), with [p| small.

3.2 Existence of solution between sub-solution and super-
solution

The role of the sub-solutions and the super-solutions (or lower and upper solu-
tions) is to provide tight control of the solution of problem (1), (2), (3).
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Definition 3.1. Let a(x,t), f(z,t) be functions continuously mapping [0, 1] x
[0,T] into R, twice continuously differentiable in x and continuously differen-
tiable in ¢ for (x,t) € D. Then a(x,t), B(x,t) are called sub- and super- solutions

of (1), (2), (3) if:

a(z,t) < B(x.t), (z,t) €[0,1] x [0,T]; (94)
Fa<0<FB,  (a,t)€[0,1] x [0,T]; (95)

a(0,1) < go(t) < B(0,8), a(l,t) <gi(t) < B(1,1), tel0,T]; (96)
a(z,0) < p(z) < f(z,0),  wel0,1]. (97)

The function f,(z,t,u) is continuous, so when wu is in the sector [«, 3], this
function is bounded by a function

K(x,t) = max uwl(T,tu
( ) u€la(z,t),B(z,t)] |f ( )|
and
—(ur —u)K(z,t) < flz.tou) = flztoug), a<uy<uy <B. (98)

The function K(z,t) being continuous, the function
B(z,t,u) = K(x,t)u — f(x,t,u) (99)
is also continuous in [0,1] x [0,T] X [«, 5] and monotone nondecreasing in u €
[ev, ] :
B(z,t,u1) — B(x,t,us) >0, [>u; >us > a. (100)

Theorem 3.1. Existence of lower and upper solutions provides existence of a

solution u(x,t) of (1), (2), (3), with
a(z,t) <wu(z,t) < B(x,t). (101)
Proof. We adapt the proof from [29, p.59] by defining an operator
L[u] = e®[us — Ugs] + K (2, t)u (102)
and consider the differential equation that is equivalent to (1)
Llu] = B(x,t,u) (103)
with the initial and boundary conditions
Wl t) =), 1=0,1;  u(0,2) = p(a), (104)

where B is given by (99). Then Definition 3.1 for (1), (2), (3) is equivalent to
the Definition for the problem (103), (104), with F replaced by L in (95) .
We construct the sequences {a(®)} defined by

Lla®™] = B(z,t,a®* ), o® =q (105)
and {3} by
L[B(k)] — B(l‘,t,ﬁ(k_l)), ﬁ(o) =7, (106)
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with
a®(0,t) = go(t), a®(1,t) = g1(2), k=1,2,..

a®(0,2) = ¢(x), (107)
5(k)(07t) :gO(t)v ﬁ(k)(l,t) :gl(t)a
B8(0,2) = p(), (108)

and refer to them as lower and upper sequences. We start by proving the
following statement.

(i) Each 8®) is a super-solution and each a*) is a sub-solution; the lower and
upper sequences possess the monotone property in [0, 1] x [0,7] :

a < a® < o+ < g+ < gk) < g, (109)

Let w = 80 — g = 3 — B, Setting the operator F in (95) of Definition 3.1
as L, gives
L{w] = L8] - B(x,t,5%) > 0

From (106) and (108) we have
w(0,8) = B0, 1) = A1(0,4) 2 0

By the maximum principle [30, Chapter 3] , w(z, ) > 0,s0 () < (), Similarly,
a) > a0 Let w® = 3 — o), Then by (105) to (108) and by the monotone
property of B in (100),
Liw®M] = B(x,t,8) - B(z,t,a(”) >0

wM(0,t) =0

wM (z,0) = 0.
From the maximum principle it follows that w(!) > 0 in [0, 1] x [0, T]. Hence

a® <ol <M <@ in0,1] x [0, 7).
Next, assume by induction that
aF =D (g ¢ ga(’“)xt < F) (g, ¢ < F=D(z.#) in0,1] x [0,T].
) ) /8 ) ﬂ ) ) )

Then (105) to (108) and the monotone property of B in (100) imply that w®) =
BH) — g+ gatisfies

Lu® = B(x,t, V) - B(x,t,6%) > 0

and the boundary and initial conditions as for w® . Hence w*) > 0 and ﬁ(kH) <
B*) . Similarly,

A+ > o0 apd gD > kD).

By the principle of induction, the first part of assertion (i) is established for all
k.
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To prove that each element of the lower sequence is a sub-solution, using (105)
and (107), we write

52[a§k> — W] = K(z,)(@* D — a®) - f(z,t, kD)

= K(z,0)(a*Y —a®) 4 [f(z,t,a) = f(z,t,a*)] = f(z,t,0"),
which, by (98) and (109), yields

Fal® = (o — all)] + f(,t,a®) <.

Hence (95) is satisfied. From the boundary and initial conditions (107) we have
that (96) and (97) are also satisfied by a(*).
From (106) and (108)

S5 — B = K, ) (3" — 50) — f(a.t, 54)

= K(x’t)(ﬂ(kil) - ﬁ(k)) + [f(xatzﬁ(k)) - f(g%taﬂ(kil))] - f(xatvﬁ(k))a
so by (98) and (109)

FB® =5 — ]+ f(a,t,8) > 0.

From the boundary and initial conditions (108), we have that (96) and (97) are
also satisfied by 3*) and from (109) we have a(¥) < 3(®)_ Therefore, according
to Definition 3.1, a®) is a sub-solution and 3 is a super-solution of (1), (2),

(3).
We shall prove two further statements:
(ii) The pointwise limits

lim 8% (z,t) and lim o (z,1) (110)

k—o0 k—o0
exist and in [0, 1] x [0, T satisfy

afz,t) < a®(z,t) < o (2, 1) < lim o (z,t) <

k—oo
< Jim 30 (1) < BTV (1) < BN (2, 1) < B(x, 1), (111)

Indeed, since by (i), the sequence {3*)} is monotone nonincreasing and bounded
from below and the sequence {a®)} is monotone nondecreasing and bounded
from above, the pointwise limits of these sequences exist and by (109), satisfy
(111).
(iii) If the limits (110) are solutions of (1), (2), (3), then
klirn BR) (x,t) = klim o) (z,1)

and this common limit in [«, 5] is the solution of (1), (2), (3).
Indeed, let d = limy,_, oo (%) (z,t) — limg_ o0 ﬂ(k)(x, t) < 0. Then d satisfies

EQ[dt - dwa;] - _f(xatv Oé) + f(mvtaﬁ) Z

> —K(z,t) lim 30 (1) - lim o™ (z,1)] = K(x,t)d
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and the boundary and initial conditions
d(0,t)=0, te€][0,T]; d(xz,0) =0, z€][0,1].
By the maximum principle, d > 0 in [0, 1] x [0, 7], which provides

lim %) (z,t) = klim a®) (1)

koo
O
According to [20], we have
Lemma 8. For all (x,t) € (0,1) x (0,7
FB = Copfulm,t,uo) + p(1 + Cov)(vo +wo) + O(e* +p?), (112

where A = Xz, t) = fuu(x,t,ug + FHvo + wp)) and 9 = IHx,t) € (0,1).

Corollary 3.2. There exist the constants Cy > 0 and C1 > 0 such that for all
Ip| < po
FB = Copy? — Ci(e® +p%), if p>0,
FB < —Colply* + C1(e* +p*), if p<O0.

Proof. Recalling A1, vy > 0, wy > 0 and (89), choose 0 < Cy < |A(z,t)|~! for
all z and ¢, such that 1 + CyA > 0. O

At this point, we have the necessary information to establish existence and
uniqueness of solution for (1), (2), (3) in a neighbourhood of the asymptotic
expansion gs.

Theorem 3.3. There exists a sufficiently small g > 0 such that for all e < g,
a solution of the problem (1), (2), (8) exists and is unique. Furthermore, this
solution satisfies

[u(2,t) — uas(w,t)| < Ce?  forall (z,t) € [0,1] x [0,T].

Proof. From
Uas(z,0) = o(x)
we have
ugs(x,0) = u(x,0).
Also,
Uqs(0,) = go(t)
and

Uas(1,t) = g1(t) + O(e?). (113)

Set p = Coe?, where Cy > 2C1/(CyA?) so that Copy? > 2C1e%. By Corollary
3.2 with € < 1/Cy, we obtain p < e so C; (g% + p?) < 2012, Hence

FB(z,t;—p) <0< FB(x,t;p). (114)
In view of (93),
B(x,0; —p) < ¢(x) < B(x,0;p) (115)
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and
B(0,t;—p) < go(t) < B(0,4;p). (116)

Choosing C5 sufficiently large, so that Cop = CoC2e? dominates the term O(g?)
in (113), (93) yields
B(L,t;—p) < g1(t) < B(L, ;D). (117)
By (93), we also have
Bz, t;—p) < B(z,t;p). (118)

Comparing (114), (115), (116), (117), (118) with (1), we see that 3(x,t; —p) and
B(z,t;p) are ordered lower and upper solutions, respectively, for problem (1),
(2), (3). Applying [29, Theorem 5.1] yields existence of a solution u between

B(x,t; —p) and B(z,t;p) :
B, t;—p) < u(x,t) < Bx,t;p).

By Theorem 5.1 of Pao in [29, p.23], if f, is continuous, the problem (1), (2),
(3) has at most one solution. Since by Lemma 7,

B(x,t;£p) = tas + O(P) = ugs + O(?),

we have [u — u,,| < Ce?. O

4 Conclusion

The maximum principle is a necessary and sought feature for the existence of
exact and computed solutions of partial differential equations. An assumption
often used for singularly perturbed problems in order to have maximum principle
is that f, > 0 for all z,¢ and u. Instead, we assumed that the reduced equation
obtained by taking e = 01in (1), f(x,t,u) = 0, has a sufficiently smooth solution
up = ug(z,t) in which this assumption is satisfied: f,(z,t,ug) > % > 0 for all =
and t. The latter assumption, providing a stable reduced solution, is justified by
dynamical systems theory and it has the advantage of localness over the former.
We constructed the upper and lower solutions as sums of a perturbed asymptotic
expansion of order one of the solution and an additional term related to the
nature of the boundary conditions. Therefore, the theory of sub-solutions and
super-solutions (or lower and upper solutions) works satisfactory for singularly
perturbed time-dependent semilinear reaction-diffusion problems as a substitute
for the maximum principle, by providing existence and tight control of solutions
for semilinear singularly perturbed time-dependent reaction-diffusion problems.
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