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On the stability of solutions and absence 
of Arnol'd diffusion in a nonintegrable 
Hamiltonian system of a general form 

with three degrees of freedom 

L.D. Pustyl'nikov 

We consider the function 

H = H(x,y,q,p,rp) = .1+(q+ 2 )2 + (p- 2 )2 + D(x,y,rp) J fly flx -

and the Hamiltonian system with Hamiltonian H: 

dx 
dcp 

8H ~ 8H ~ 8H ~ 8H 
8q 'dcp - -8-p '-dcp = --8-x '-dcp = - 8y' 

where cp is an independent variable, n = canst > 0. 
It is assumed that the following conditions hold. 

(1) 

(2) 

I. J5 ( x, y, cp) is a smooth function with respect to all variables in the 
space -oo < x, y, cp < oo which vanishes outside of the rectangle 
fi = {(x, y): lxl ::; a, IYI ::; b} and has the period 27r with respect 
to cp. 

II. D(x,y,cp) = D(y,cp), if (x,y) E II C fi, where II= {(x,y): lxl::; 
a, IYI ::; b }, a and b are constsnts, a > 0, b > 0 and D(y, cp) is an 
analytic function with respect to y, cp. 

Theorem 1. It is assumed that the function D(y, cp) satisfies the fol-
lowing conditions. There exist an integer k > 0 and a real cp0 , such 
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that 0 ~ <.po < 27r, and if E ( r) = - ~~ ( r - <.po + b, r), then 

1) j E(r)dr = flk, 
tpo-2b 

n 1 - - < -(E(c.po) - E(c.po - 2b) = /3 < O; 7r 2 

2) n n (27rt) /3-/= --+-cos - , where t = 0,±1, ... ,±µ; µ = 1,2,3,4. 
27r 27r µ 

3) (
d2 E d2 E ) ao(/3) dr2 (<.po) - dr2 (<.po - 2b) + 

(
dE dE )

2 

+ ai (/3) dr (<.po) - dr (<.po - 2b) -/= 0, 

where a0 ( s), a 1 ( s) are some fixed functions, not depending on the form 
of the function D(y, c.p ), and a0 (/3) -/= 0. Then there exist a natural 
number n0 , a real number"'> 0 and a domain r = { x, y, q, p, cj; : !xi ~ 
"'' l'Y - bl ~ "'' jq + ~ - <.poOI ~ "'' l'P - 'Pol ~ "'' lv'1 + ( q + ~)2 +(ii - ~;; )2 - n0fll ~ x; }, such that the following as-
sertions are true for solutions of the system {2} with initial data x( cj;) = 
x, y( cj;) = y, q( cj;) = q, p( cj;) = p in the domain r for <.p ~ cj;: 

1. Every such solution intersects the domain TI an infinite number 
of times. 

2. lim vr-1 _+_(-q(_c.p_)_+_n_y..,.....J tp~) )_2 _+_(_p_( c.p_) ___ n_x-:-J tp..,.....) )-2 = 00, <.p -t 00. 

3. For any e > 0 there exists a nonempty open five-dimensional re-
gion Ue Cr such that if (x1(c.p), Y1(c.p), qi(c.p), P1(<p)) and (x2(<p), 
Y2 ( <p), q2 ( <p), P2 ( <.p)) are any two distinct solutions of the system 
{2} with initial data belonging to Ue for <p = cj;, then for all <.p ~ cj; 
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Let m be an integer, 6 a real number, 6 > 0, k and cp0 satisfy the 
condition of theorem 1. For any natural n we introduce the domains 

r n ={x, y, q,p, 'f': 1J1 + (q + ~y )2 + (p - ~:z:)2 - (m + nk)nj :5 5}, 

Kn={ x, y, q,p, cp: -oo < cp < oo, (x, y) E II, 
f2y - 2f2b - 6 + <pof2::::; q + 2 ::::; 6 + cpof2, 

. I ny nx 
( m + ( n - 1)) n - 6 ::::; v 1 + ( q + 2 )2 + (p - 2) 2 

::::; (m + nk)n + 6}, 
and for any smooth function G = G( x, y, q, p, cp) we introduce the 
norms 

hn(G) = sup IY'GI, an(G) = sup IY'GI, 
(x,y,q,p,rp)Er n (x,y,q,p,rp)EKn 

where V'G = (~~, ~~, ~~, ~~,) is the gradient of the function G with 
respect to the variables x, y, q,p and II is the domain introduced in 
con di ti on IL 

Theorem 2. We consider the function W = W(x,y,q,p,cp) = H+ 
e1 D1 ( x, y, cp) + G, where H is the function introduced in ( 1), for which 
the conditions of theorem 1 are satisfied, D1 ( x, y, cp) is a function that 
satisfies the conditions I and II for some function D1 (y, cp) instead of 
D(y, cp), e1 is a parameter, G = G(x, y, q,p, cp) is a smooth function that 
fulfils E an(G) < oo,hn(G) :::=; n2~P,p > O,p and Gare constants not 

m=l 
depending on n. Then if the quantity le1l f 0 and is sufficiently small, 
all assertions of theorem 1 are satisfied for solutions of the system 

dx aw dy aw dq aw dp aw 
dcp = aq ' dcp = ap ' dcp = - ax ' dcp - - ay . (3) 

Theorem 2 shows that there exists a stability tube of trajectories for 
Hamiltonian systems from some region in the functional space. For the 
systems (2) and (3) it is possible to introduce a small parameter v = 
(l+(q+~)2 +(p- 02x) 2t~ such that the difference between two distinct 
solutions of the system (2) or (3) is also a solution of some Hamiltonian 
system which is integrable in the limit v = 0. Therefore in the situation 
considered here there is no Arnol' d diffusion [1], that is also found for 
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five-dimensional system in which the Hamiltonian function depend on 
independent variable periodically, and thus the Arnol'd conjecture [2] 
on topological instability of Hamiltonian systems with more than two 
degrees of freedom is disproved. Proofs of theorems 1 and 2 are found 
by reducing the system (2) to the system that is investigated in [3], but 
with stronger restrictions to the function D(y, cp ). 

The main difficulties of proofs are overcome in [3]. 
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