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Abstract

Assume a time-harmonic electromagnetic wave is scattered by an infinitely long cylin-

drical conductor surrounded by an unknown piecewise homogenous medium remaining

invariant along the cylinder axis. We prove that, in TM mode, the far field patterns for all

observation directions at a fixed frequency uniquely determine the unknown surrounding

medium as well as the shape of the cylindrical conductor. A similar uniqueness result is

obtained for the scattering by multilayered penetrable periodic structures in a piecewise

homogenous medium. The periodic interfaces and refractive indices can be uniquely iden-

tified from the near field data measured only above (or below) the structure for all quasi-

periodic incident waves with a fixed phase-shift. The proofs are based on the singularity of

the Green function to a two dimensional elliptic equation with piecewise constant leading

coefficients.

1 Introduction

The reconstruction of an obstacle from its far field pattern is of great importance in inverse
scattering problems. In practical applications, the background might not be homogenous or
known and then can be modeled as an unknown layered medium. In this paper, we consider
the scattering of time-harmonic electromagnetic waves by a multilayered structure. Such a
structure is allowed to be either an infinitely long cylinder or a penetrable multilayered periodic
structure, which is stratified by an unknown piecewise homogeneous medium. All the media
under consideration are supposed to be isotropic and invariant in x3-direction. In TM mode
where the magnetic field is transversal to the (x1, x2)-plane, this problem can be reduced to two
dimensions and modeled by the Helmholtz equation with the TM transmission condition. The
transmission coefficient on an interface in this model only depends on the refractive indices
(or wave numbers) corresponding to the regions on both sides of the interface.

The first half of this paper investigates uniqueness in determining the shape of a cylindrical
conductor and the unknown piecewise homogenous background medium. There have been
few results on the inverse scattering of acoustic or electromagnetic waves by multilayered
scatterers. If the wave numbers for characterizing the piecewise homogenous medium and
the transmission coefficients on the interfaces are known, it was proved that the buried obsta-
cle and the interfaces of the background can be uniquely determined from the measurements
of far field for all incident directions at a fixed frequency; see [24, 29] for the scattering of acous-
tic waves and [25] for electromagnetic waves. If the background medium is unknown, Hähner
[13] proved that, in TE mode, the Cauchy data of the scattered waves for all incident waves
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and an interval of frequencies uniquely determine an impenetrable obstacle and its surround-
ing inhomogeneity. We do not know other papers for reconstructing an obstacle (penetrable
or impenetrable) buried in an unknown inhomogeneous medium. Note that an obstacle or a
penetrable inhomogeneous media can always be uniquely determined by the far field data at
a fixed frequency if the outside inhomogeneity is known in advance; see, e.g., [20, 23, 26].

One aim of this paper is to prove that, in the case of TM polarization and a piecewise homo-
geneous background, the far field data from all incident directions at a fixed frequency can
uniquely determine the cross-section of the cylindrical conductor and its layered surroundings.
Our proof is based on the Green function G(x; y) to the scattering problem by multilayered
obstacles (see [29]), which satisfies an elliptic equation with piecewise constant leading co-
efficients; see also [5] for using the fundamental solutions in inverse scattering problems. In
the 2D case, we will investigate the asymptotic behavior of G(x; y) as x, y → y0 when y0 is
located on an interface, analogously to the treatment by Ramm [1, 29] in R3. However, we deal
with the problem in a completely unknown background, without establishing the orthogonality
relation used in [1, 29, 33], and provide a rigorous mathematical analysis. Furthermore, we
significantly simplify the existing proofs by avoiding the mixed reciprocity relation used in [23]
and the a priori estimates of the solutions on the interfaces essentially required by [24] (see
also [21]). The idea of this paper dates back to Druskin [8] in 1982 who used point sources
to prove uniqueness in determining a piecewise constant conductivity for a three dimensional
electrical surveying problem; see also [16, Theorem 5.7.1.]. In Section 2.4 of this paper, we
will extend this idea to prove uniqueness under general transmission conditions with unknown
transmission coefficients.

In the second half of this paper, the previous argument is carried over to the inverse scattering
by a multilayered periodic structure. In the case of TE polarization and one periodic interface,
Elschner and Yamamoto [11] proved that measurements corresponding to a finite number of
refractive indices above or below the grating profile uniquely determine the periodic interface.
This extended the uniqueness result by Hettlich and Kirsch on Schiffer’s theorem [14] to the in-
verse transmission problem. For two periodic interfaces with an inhomogeneity between them,
it was proved in [31] that the interfaces and transmission coefficients can be uniquely identified
from the scattered waves for all quasi-periodic incident waves, and so can the refractive index
of the inhomogeneity if it only depends on x1 and the interfaces are parallel to the x2-axis.
Note that the measurements in [11, 31] must be taken both above and below the structure. In
this paper, we prove that the scattered fields in the TM mode measured only above (or below)
the structure for all incident quasi-periodic incident waves (with a fixed phase-shift) are enough
to uniquely identify a multilayered diffraction grating, including all the interfaces and refractive
indices.

For numerical aspects, we refer to [6, 32] and the references therein for reconstructing an
obstacle buried in a layered background medium, and [2, 22] for recovering a periodic interface
separating two homogenous materials in the TE mode via the optimization or factorization
method. Note that the uniqueness issue is always required in order to proceed an efficient
inversion algorithm.

The paper is organized as follows. In Section 2.1, mathematical formulations are presented
for the inverse scattering by infinitely long multilayered cylinders. In Section 2.2, the Green
function is introduced and its singularity is investigated. Our main uniqueness result under
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the TM transmission conditions for cylinders is proved in Section 2.3, and it is extended to
general transmission conditions in Section 2.4. Finally, Section 3 is devoted to the uniqueness
for multilayered periodic structures in a piecewise homogenous medium; see Section 3.1 for
the mathematical model and the uniqueness result, and Section 3.2 for the proof.

2 Inverse scattering by infinitely long multilayered cylind ers

Assume a time-harmonic electromagnetic wave (with time variation of the form exp(−iωt),
ω > 0) is incident on an infinitely long perfect cylindrical conductor surrounded by an unknown
piecewise homogenous medium. The cylinder axis is supposed to coincide with the x3-axis,
so that the cylinder can be represented as D × R with the cross-section D belonging to the
(x1, x2)-plane. For simplicity, and without loss of generality, we restrict ourselves to the case
of three layered structures by assuming D = D1 ∪ D2 ∪ D3 with two C2-smooth interfaces
Γ3 := ∂D3, Γ2 := D2 ∩ D3, where D3 denotes the cross-section of the interior impenetrable
perfect cylindrical conductor. Thus D can be also considered as a multilayered obstacle in R2

with the impenetrable core D3. Let Γ1 := ∂D be a C2-smooth boundary, and let D0 denote the
complement of D, that is, D0 := R2\D; see Figure 1.

Figure 1: A multilayered obstacle D = D1 ∪ D2 ∪ D3 with the impenetrable core D3.

2.1 Mathematical formulations in TM mode

We focus on the TM mode of the above scattering problem by assuming all fields are propa-
gating perpendicular to the x3-axis. Let u(x1, x2) be the third component of the magnetic field,
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i.e., H = (0, 0, u(x1, x2)). Then, we have

∆u + k2
ju = 0 in Dj , j = 0, 1, 2; (2.1)

u+ = u−,
1

k2
j−1

∂u+

∂n
=

1

k2
j

∂u−
∂n

on Γj , j = 1, 2; (2.2)

∂u

∂n
= 0 on Γ3. (2.3)

Here, k2
j = (εj + iσj/ω)µjω

2 are distinct wave numbers corresponding to the regions Dj

(j = 0, 1, 2) in terms of the space independent electric permittivity εj > 0, magnetic perme-
ability µj > 0 and electric conductivity σj ≥ 0; the homogenous medium in D0 has vanishing
conductivity, that is, σ0 = 0, implying that k0 > 0; n denotes the unit outward normal to the
boundary Γj; u+, ∂u+

∂n (resp. u−, ∂u−

∂n ) denote the limits of u on Γj from the exterior (resp. inte-
rior) of Dj. Note that the transmission conditions on Γj (j = 1, 2) in (2.2) and the Neumann
condition (2.3) on Γ3 are derived from the continuity of the tangential components of the elec-
tric and magnetic fields when getting across the interfaces in the case of TM polarization.

The total field u(x1, x2) can be decomposed as the sum of the incident plane wave ui and the
scattered wave us, i.e.,

u = ui + us in R
2\D3, (2.4)

where ui takes the form of ui = exp(ik0x · d) for some incident direction d = (cos θ, sin θ) with
the incident angle θ ∈ [0, 2π), and us is required to satisfy the Sommerfeld radiation condition

lim
r→∞

√
r(

∂us

∂r
− ik0u

s) = 0 with r = ||x||, (2.5)

uniformly in all directions x̂ := x/||x||. The radiation condition (2.5) gives rise to the following
asymptotic behavior of the scattered field

us(x; d) =
eik0||x||
√
||x||

{
u∞(x̂; d) + O(

1

||x||)
}

, as ||x|| → ∞, (2.6)

where the function u∞(x̂; d) defined on the unit sphere S := {x ∈ R2 : ||x|| = 1} is known as
the far field pattern for the observation direction x̂ ∈ S and the incident direction d ∈ S.

There always exists a unique solution u ∈ H1
loc(R

2\D3) to the above scattering problem (2.1)-
(2.5); see [1, 23, 24, 25] for the acoustic or electromagnetic scattering problem by a piecewise
homogenous medium with a penetrable or impenetrable core. For notational simplicity, we
write D = (Γ1, Γ2, Γ3, k1, k2) to indicate the dependence of the obstacle D on the outmost
boundary Γ1, the interior interfaces Γ2, Γ3 and the wave numbers k1, k2.

Now we formulate the inverse scattering problem as follows:

Inverse Problem (IP): Given the wave number k0 and the far field pattern data u∞(x̂; d) for
all observation directions x̂ ∈ S and all incident directions d ∈ S, determine the multilayered
obstacle D = (Γ1, Γ2, Γ3, k1, k2).

The main theorem of this section is
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Theorem 2.1. Assume D = (Γ1, Γ2, Γ3, k1, k2) and D̃ = (Γ̃1, Γ̃2, Γ̃3, k̃1, k̃2) are two multi-

layered obstacles, and u∞(x̂; d), ũ∞(x̂; d) are the far field patterns corresponding to D, D̃,

respectively. If

u∞(x̂; d) = ũ∞(x̂; d) for all x̂, d ∈ S, (2.7)

then D = D̃, that is, Γj = Γ̃j, j = 1, 2, 3, and ki = k̃i, i = 1, 2.

2.2 Green’s function of the scattering problem

Before proving the theorem, we notice that the equation (2.1) together with the transmission
conditions in (2.2) can be reformulated as follows:

Find a weak solution u ∈ H1
loc(R

2\D3) such that

Lu = L(u, ∂) := ∇ · (a∇u) + u = 0 in R
2\D3, (2.8)

u+ = u−, a+∂u+

∂n
= a−∂u−

∂n
on Γj , j = 1, 2, (2.9)

where

a(x) =
1

k2
j

, x ∈ Dj . (2.10)

This motivates us to introduce the Green function G(x; y) to the scattering problem (2.1)-(2.5),
which satisfies the radiation condition (2.5), the transmission conditions in (2.9) and

Lx G(x; y) = −δ(x − y), x, y ∈ R
2\D3, x 6= y, y /∈ Γ1 ∪ Γ2,

∂G(x; y)

∂n
= 0 on Γ3,

where Lx(·) := L(·, ∂x),
∂G(x;y)

∂n := n(x) · ∇xG(x; y) with n(x) being the unit normal on Γ3

pointing into D2. We assume that, for all y ∈ R2\D3, y /∈ Γ1 ∪ Γ2, the function

x 7→ (1 − χ(||x − y||ǫ−1))G(x; y)

belongs to H1
loc(R

2\D3)∩H2
loc(Dj) (j = 0, 1, 2) for each ǫ > 0. Here χ(t) is a smooth function

on [0, +∞) satisfying χ(t) = 1 for t ≤ 1/2 and χ(t) = 0 for t ≥ 1.

Lemma 2.2. For y ∈ R2\D3, y /∈ Γ1 ∪ Γ2, the Green function G(x; y) exists and is unique.

Proof. If G1(x; y) and G2(x; y) are two Green functions for a fixed y ∈ R2\D3, y /∈ Γ1 ∪ Γ2,
then G̃ = G1 − G2 is infinitely smooth in a small neighborhood of y and satisfies the radiation
condition (2.5), the transmission conditions in (2.9) and the Neumann condition on Γ3. It follows
from Green’s second theorem applied to each domain Dj (j = 0, 1, 2) and the Rellich identity
that G̃ = 0 in R2\D, whence one obtains G̃ = 0 R2\D3 as a consequence of Holmgren’s
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uniqueness theorem. To verify the existence of the Green function, we may assume y ∈ D0

without loss of generality, and make the ansatz

G(x; y) = H(x; y) + k2
0Ψ̃(x; y) with Ψ̃(x; y) :=

{
Ψ(x; y) for x ∈ D0\{y},
0 for x /∈ D0,

where Ψ(x; y) denotes the fundamental solution to the Helmholtz equation △u + k2
0u = 0 in

the whole two dimensional space given by

Ψ(x; y) :=
i

4
H

(1)
0 (k0|x − y|). (2.11)

Note that H
(1)
0 (t) is the Hankel function of the first kind of order zero. We observe that H(·; y)

satisfies the boundary value problem

△H + k2
jH = 0 in Dj , j = 0, 1, 2,

H+ − H− = k2
0Ψ(·; y),

∂H+

∂n
− k2

0

k2
1

∂H−
∂n

= k2
0

∂Ψ+(·; y)

∂n
on Γ1,

H+ − H− = 0,
∂H+

∂n
− k2

0

k2
1

∂H−
∂n

= 0 on Γ2,

∂H

∂n
= 0 on Γ3.

Since H(·; y) satisfies the radiation condition and Γj is C2-smooth, the above boundary value
problem for H(·; y) can be transformed into an equivalent boundary integral equation system,
and the existence of the solution in the Hölder space C2(Dj) ∩ C1,α(Dj) for j = 0, 1, 2 can
always be guaranteed by the Fredholm alternative and the uniqueness of G(·; y). We refer
to [24, Theorem 2.3] for a treatment in the case of one interface and [25] using the integral
equation method applied to the Maxwell equations with general inhomogeneous transmission
conditions for several interfaces. The existence and uniqueness of G(x; y) when y /∈ D0 can
be proved analogously. 2

We denote by G∞(x̂; y) the far field pattern of G(x; y) as ||x|| → +∞, and similarly by
G̃(x; y), G̃∞(x̂; y) the Green function and its far field pattern corresponding to another obstacle
D̃. Let u(y;−x̂) := exp(−ik0y · x̂) + us(y;−x̂) be the unique solution to the direct scattering
problem (2.1)-(2.5) for the incident wave with the direction −x̂. The far field pattern G∞(x̂; y)
is related to u(y;−x̂) via the following lemma.

Lemma 2.3. For all y ∈ D0, G∞(x̂; y) = ηk2
0u(y;−x̂), where η = eiπ/4

√
8πk0

.

Proof. For a fixed y ∈ D0, G(x; y) satisfies the equation

△xG(x; y) + k2
0G(x; y) = −k2

0δ(x − y) in R
2\D3, (2.12)

in a distributional sense. It follows from Green’s second theorem and the Sommerfeld radiation
condition that

us(y;−x̂) =
1

k2
0

∫

Γ1

us
+(z;−x̂)

∂G+(z; y)

∂n
− G+(z; y)

∂us
+(z;−x̂)

∂n
ds(z)

=
1

k2
0

∫

Γ1

u+(z;−x̂)
∂G+(z; y)

∂n
− G+(z; y)

∂u+(z;−x̂)

∂n
ds(z)

− 1

k2
0

∫

Γ1

e−ik0x̂·z ∂G+(z; y)

∂n
− G+(z; y)

∂e−ik0x̂·z

∂n
ds(z). (2.13)
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Applying Green’s second theorem to the region D and making use of the transmission condi-
tions for u(z;−x̂), G(z; y) on Γj (j = 1, 2) and the Neumann condition on Γ3, we obtain

∫

Γ1

u+(z;−x̂)
∂G+(z; y)

∂n
− G+(z; y)

∂u+(z;−x̂)

∂n
ds(z)

=
k2

0

k2
1

∫

Γ2

u+(z;−x̂)
∂G+(z; y)

∂n
− G+(z; y)

∂u+(z;−x̂)

∂n
ds(z)

=
k2

0

k2
2

∫

Γ3

u+(z;−x̂)
∂G+(z; y)

∂n
− G+(z; y)

∂u+(z;−x̂)

∂n
ds(z)

= 0,

which together with (2.13) leads to

k2
0u

s(y;−x̂) =

∫

Γ1

G+(z; y)
∂e−ik0x̂·z

∂n
− e−ik0x̂·z ∂G+(z; y)

∂n
ds(z). (2.14)

It is seen from (2.12) and Green’s second theorem applied to G(x; y) that

G(x; y) =

∫

Γ1

G+(z; y)
∂Ψ(x; z)

∂n
− ∂G+(z; y)

∂n
Ψ(x; z)ds(z) + k2

0Ψ(x, y), x ∈ D0

where Ψ(x; y), which is defined by (2.11), has the asymptotic behavior

Ψ(x; y) = η
eik0||x||
√
||x||

{
e−ik0x̂·y + O(

1

||x||)
}

as ||x|| → ∞. (2.15)

Inserting (2.15) into the above representation of G(x; y), we obtain the following asymptotic
behavior of G(x; y) as ||x|| → ∞:

η
eik0||x||
√

||x||

{∫

Γ1

G+(z; y)
∂e−ik0x̂·z

∂n
− e−ik0x̂·z ∂G+(z; y)

∂n
ds(z) + k2

0e
−ik0x̂·y + O(

1

||x||)
}

.

From (2.14) and the definition of the far field pattern in (2.6), we conclude that

G∞(x̂; y) = η

{∫

Γ1

G+(z; y)
∂e−ik0x̂·z

∂n
− e−ik0x̂·z ∂G+(z; y)

∂n
ds(z) + k2

0e
−ik0x̂·y

}

= ηk2
0u(y;−x̂).

The proof is thus complete. 2

Based on Lemma 2.3, we may establish a relation between the fundamental solutions G(x; y)
and G̃(x; y) for the two multilayered obstacles D and D̃.

Lemma 2.4. If u∞(x̂; d) = ũ∞(x̂; d) for all x̂, d ∈ S, then

G(x; y) = G̃(x; y) for all x 6= y, x, y ∈ Ω,

where Ω denotes the unbounded connected component of R2\D ∪ D̃.
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Proof. By Rellich’s lemma [4], the assumption u∞(x̂; d) = ũ∞(x̂; d) for all x̂, d ∈ S implies that
u(y;−x̂) = ũ(y;−x̂) for all y ∈ Ω, x̂ ∈ S. Recalling Lemma 2.3, we have G∞(x̂; y) = G̃∞(x̂; y)
for all y ∈ Ω, and thus applying Rellich’s lemma again gives the relation G(x; y) = G̃(x; y) for
all x 6= y, x, y ∈ Ω. 2

Given two functions f(x) and g(x), we say that f(x) ∼ g(x) as x → x0 if limx→x0
f(x)/g(x) =

1. Obviously, if f(x), g(x) → ∞ as x → x0 and f(x) − g(x) is bounded in a neighborhood of
x0, then f(x) ∼ g(x) as x → x0. Analogously, given two sequences fn and gn, we say that
fn ∼ gn as n → +∞ if limn→∞ fn/gn = 1.

Our idea of proving Theorem 2.1 is to analyze the singularity of G(x; y) as y → y0, x → y0

for some y0 ∈ R2\D3. If y0 ∈ Dj for some j ∈ {0, 1, 2}, it can be readily deduced from the
fundamental solution to the two dimensional Laplace equation that

G(x; y0) ∼ −
k2

j

2π
ln ||x − y0|| as x → y0,

only depending on the wave number kj corresponding to Dj . In the following we are going to
investigate the singularity of that when y0 ∈ Γj (j = 1, 2), which turns out to depend on both
kj and kj−1. Thus, with the help of Lemma 2.4, a contradiction can always be derived if two
different multilayered obstacles generate the same far field data for all incident directions. This
will be carried out in Section 2.3.

We need to pay attention to the Green function G(x; y), which exists if y does not belong to
the interfaces Γj (j = 1, 2). In the case of y0 ∈ Γj for some j ∈ {1, 2}, we define a sequence
yn by

yn = y0 +
1

n
n(y0), n = 1, 2, · · · . (2.16)

By the symmetry of G(x; y), we can define G(yn; y0) with some fixed n in the following way

G(yn; y0) := G(y0; yn) = lim
m→+∞

G(y0 +
1

m
n(y0); yn);

note that the limit exists because Γj is C2-smooth and the function G(·; yn) is continuous up
to Γj . The following lemma plays an important role in this paper.

Lemma 2.5. For a fixed y0 ∈ Γj with j ∈ {1, 2}, we have

G(yn; y0) ∼ −
k2

jk
2
j−1

π(k2
j−1 + k2

j )
ln ||yn − y0|| as n → +∞,

where the sequence yn is defined by (2.16).

Before proving Lemma 2.5, we introduce the following auxiliary transmission problem in a
half-space for the Laplace equation

△xG(x; y) = −k2
j−1δ(x − y), x ∈ R

2
+ := {x2 > 0}, (2.17)

△xG(x; y) = −k2
j δ(x − y), x ∈ R

2
− := {x2 < 0}, (2.18)

G(x; y)+ = G(x; y)−,
1

k2
j−1

∂G(x; y)+

∂x2
=

1

k2
j

∂G(x; y)−
∂x2

on x2 = 0, (2.19)
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with the following condition at infinity

lim
||x||→+∞

G(x; y) = 0. (2.20)

Lemma 2.6. The unique solution G(x; y) to (2.17)-(2.20) with y = O = (0, 0) is given by

G(x; O) = − 1

π2

k2
j k

2
j−1

k2
j + k2

j−1

{∫

R

ln(|t|x2| + x1|)
1 + t2

dt + γπ

}
, x 6= O,

where γ denotes the Euler-Mascheroni constant. In particular,

G((0, x2); (0, 0)) = −1

π

k2
jk

2
j−1

k2
j + k2

j−1

(ln |x2| + γ).

Proof. Throughout the paper, we define the Fourier and inverse Fourier transformation of an
integrable function f(t) by

F [f ](ξ) = f̂(ξ) :=
1√
2π

∫

R

f(t)e−iξ·tdt, F−1[f̂ ](t) = f(t) :=
1√
2π

∫

R

f̂(ξ)eiξtdξ.

Denote by S the Schwartz space or space of rapidly decreasing functions on R and by S ′

its
dual space. The Fourier transform gives a homeomorphism of S onto itself. Given a tempered
distribution T ∈ S ′

, we define the Fourier transform of T by

T̂ (ϕ) = T (ϕ̂) for all ϕ ∈ S.

We refer to [18] for basic properties of the Fourier transformation of tempered distributions, and
[9, Appendices 2 and 3] for some elementary calculations related to the Fourier and inverse
Fourier transforms in the subsequent analysis.

Following Ramm’s approach in the three dimensional space (see [29]), we take the Fourier
transformation of (2.17) and (2.18) with respect to x1 to get

d2Ĝ(ξ, x2)

dx2
2

− |ξ|2Ĝ(ξ, x2) =





−k2

j−1√
2π

δ(x2 − y2) if x2 > 0,

− k2
j√
2π

δ(x2 − y2) if x2 < 0,
(2.21)

with the following boundary conditions on x2 = 0 and at x2 = ±∞:

lim
x2→0+

Ĝ(ξ, x2) = lim
x2→0−

Ĝ(ξ, x2), lim
x2→0+

1

k2
j−1

∂Ĝ(ξ, x2)

∂x2

= lim
x2→0−

1

k2
j

∂Ĝ(ξ, x2)

∂x2

, (2.22)

lim
|x2|→∞

Ĝ(ξ, x2) = 0. (2.23)

Note that in (2.21)-(2.23) we write Ĝ(ξ, x2) = Ĝ((ξ, x2); (0, y2)) for simplicity. Assume y2 > 0.
Then the generalized solution to (2.21) and (2.23) is given by

Ĝ(ξ, x2) = v(ξ, x2) + Ce−|ξ||x2| (2.24)
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with a constant C ∈ C and the distribution v(ξ, x2) satisfying

d2v(ξ, x2)

dx2
2

− |ξ|2v(ξ, x2) = −
k2

j−1√
2π

δ(x2 − y2), x2 ∈ R.

Taking the Fourier transformation of the above equation with respect to x2 yields

v̂(ξ, η) = F [v(ξ, x2)](η) =
k2

j−1

2π

eiηy2

η2 + ξ2
,

and then by the inverse Fourier transformation with respect to η, we have

v(ξ, x2) = F−1[v̂(ξ, η)](x2)

=
k2

j−1

2π
√

2π
F−1[eiηy2 ](x2) ∗ F−1[

1

η2 + ξ2
](x2)

=
k2

j−1

2π
√

2π

√
2πδ(x2 − y2) ∗

√
π

2

1

|ξ|e
−|ξ||x2|

=
k2

j−1

2
√

2π

1

|ξ|e
−|ξ||x2−y2|,

where ∗ denotes convolution. Inserting the above function v(ξ, x2) into (2.24), we deduce from
the transmission conditions (2.22) that

C =
k2

j−1

2
√

2π

k2
j − k2

j−1

k2
j + k2

j−1

e−|ξ|y2

|ξ| ,

and thus

Ĝ(ξ, x2) =
k2

j−1

2
√

2π

1

|ξ|(e
−|ξ||x2−y2| +

k2
j − k2

j−1

k2
j + k2

j−1

e−|ξ|(|x2|+y2)) for y2 > 0. (2.25)

Analogously, we obtain

Ĝ(ξ, x2) =
k2

j

2
√

2π

1

|ξ|(e
−|ξ||x2−y2| +

k2
j − k2

j−1

k2
j + k2

j−1

e−|ξ|(|x2|−y2)) for y2 < 0. (2.26)

Next we need to calculate G((x1, x2); (0, y2)) by taking the inverse Fourier transformations
of (2.25) and (2.26) with respect to ξ, and then to analyze the limit of G((x1, x2); (0, y2)) as
y2 → 0, x1 → 0.

By properties of the inverse Fourier transformation for tempered distributions, we first note
that, for τ ∈ R+,

J1(x1, τ) := F−1[
e−|ξ|τ

τ
](x1) =

1√
2π

F−1[
1

|ξ| ](x1) ∗ F−1[e−|ξ|τ ](x1)

=
1√
2π

−2(ln |x1| + γ)√
2π

∗
√

2

π

τ

|x1|2 + τ 2

=
−2τ

π
√

2π
(

∫

R

ln |t| + γ

τ 2 + |x1 − t|2 dt),
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where γ denotes the Euler-Mascheroni constant. Note that
∫

R

ln |t| + γ

τ 2 + |x1 − t|2 dt < +∞, for τ ∈ R
+, τ 6= 0, x1 ∈ R.

Then, taking the inverse transformation of (2.25) gives

lim
y2→0+

G((x1, x2); (0, y2))

= lim
y2→0+

F−1[G((ξ, x2); (0, y2))](x1)

= lim
y2→0+

k2
j−1

2
√

2π

{
J1(x1, |x2 − y2|) +

k2
j − k2

j−1

k2
j + k2

j−1

J1(x1, |x2| + y2)

}

=
k2

j−1

2
√

2π

{
J1(x1, |x2|) +

k2
j − k2

j−1

k2
j + k2

j−1

J1(x1, |x2|)
}

=
1√
2π

k2
jk

2
j−1

k2
j + k2

j−1

J1(x1, |x2|). (2.27)

The same result as in (2.27) remains true when y2 → 0− by taking the inverse transformation
of (2.26). Thus, employing some simple calculations we arrive at

G(x; O) = − 1

π2

k2
j k

2
j−1

k2
j + k2

j−1

{∫

R

ln(|t|x2| + x1|)
1 + t2

dt + γπ

}
. (2.28)

We end up the proof by calculating G((0, x2); (0, 0)). Clearly,
∫

R

ln(|t|x2| + x1|)
1 + t2

dt|x1=0 =

∫

R

ln(|tx2|)
1 + t2

dt

=

∫

R

ln |t|
1 + t2

dt + ln |x2|
∫

R

1

1 + t2
dt

= π ln |x2|,

which together with (2.28) yields the second assertion of Lemma 2.6 for G((0, x2); (0, 0)). 2

Now, we are in a position to prove Lemma 2.5.

Proof of Lemma 2.5. Let y0 ∈ Γj for some j ∈ {1, 2} be fixed. Since the Helmholtz equation
remains invariant under coordinate translations and rotations, we may suppose that the origin
is located at y0 and the x2-axis is tangent to Γj at y0. Furthermore, without loss of generality,
the unit normal n(y0) to Γj at y0 is supposed to coincide with e2 := (0, 1) so that the sequence
yn defined by (2.16) can be written as yn = (0, 1/n). To prove Lemma 2.5, we only need to
show that

G((0, y2); (0, 0)) ∼ −
k2

j k
2
j−1

π(k2
j−1 + k2

j )
ln |y2|, as |y2| → 0. (2.29)

From the assumption on the regularity of Γj, it follows that the curve Bδ(y0) ∩ Γj for some
sufficiently small δ > 0 can be represented as a C2-smooth function x2 = f(x1), x1 ∈ (−a, a)
for some small a > 0, satisfying f(0) = 0, f

′

(0) = 0. We next prove the lemma by flattening
the curve in a neighborhood of O.
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Set V (y1, y2) := G(y1, y2 + f(y1); O),where G(x1, x2; O) is the fundamental solution of the
scattering problem (2.8)-(2.9) in the new coordinate system with the origin centered at y0 ∈ Γj

for some j ∈ {1, 2}. After some calculations, we see that V (y) fulfills

L̃V (y) = −k2δ(y), in D̃ = D̃+ ∪ D̃−, D̃+ = Ba(O) ∩ {y2 > 0}, D̃− = Ba(O) ∩ {y2 < 0},
V (y) satisfies the transmission conditions in (2.9) for y ∈ (Ba(O) ∩ {y2 = 0})\{O},

where

L̃V = L̃(V, ∂y) :=
∂2V

∂y2
1

+
∂2V

∂y2
2

(1 + f
′

(y1)
2) − 2f

′

(y1)
∂2V

∂y1∂y2

− f
′′

(y1)
∂V

∂y2

+ k2V,

with k = kj−1 in D̃+ and k = kj in D̃−. Let U(x1, x2) := U(x; O) be the unique solution to
(2.17)-(2.20) obtained in Lemma 2.6, and set W (y) = V (y) − U(y). Then, we see that

L̃W = g, in D̃ = D̃+ ∪ D̃−,

W (y) satisfies the transmission conditions in (2.9) for y ∈ (Ba(O) ∩ {y2 = 0})\{O},

where

g(y) = −f
′

(y1)
2∂2U

∂y2
2

+ 2f
′

(y1)
∂2U

∂y1∂y2
+ f

′′

(y1)
∂U

∂y2
− k2U,

Since U(y1, y2) is an analytic function in D̃+ ∪ D̃−, making use of the explicit form of U as
shown in Lemma 2.6, by direct computations one may check that

|∂
2U

∂y2
2

|, | ∂2U

∂y1∂y2
| ≤ C

r2
, |∂U

∂y2
| ≤ C

r
, |k2U | ≤ C ln

1

r
, in Ba(O),

for some C > 0, with r = (y2
1 + y2

2)
1/2. On the other hand, there exists some positive constant

M(a) > 0 such that

f
′′

(y1) ≤ M, f
′

(y1) ≤ Mr, for |y1| < a.

Combining the previous estimates, one obtains |g(y)| ≤ C
′ 1
r

for some C
′

> 0, leading to
g(y) ∈ H−ǫ(D̃+) ∩ H−ǫ(D̃−) for some ǫ > 0. Since the differential operator L̃ is uniformly
elliptic in Ba(O) for sufficiently small a > 0, the standard elliptic regularity implies that W (y) ∈
H2−ǫ(D̃+) ∩ H2−ǫ(D̃−) (see [12]). Applying the Sobolev imbedding theorem and recalling the
transmission conditions for U and V on {y2 = 0} ∩ Ba(O) yield that W (y) ∈ C(Ba(O)),
i.e., W (y) is continuous across the interface {y2 = 0} ∩ Ba(O). This implies that V (y) ∼
U(y) as ||y|| → 0, and in particular V (0, y2) ∼ U(0, y2) as y2 → 0. Noting that V (0, y2) =
G((0, y2); (0, 0)) , we have proved (2.29) as a consequence of the second assertion of Lemma
2.6. The proof is thus complete.

2

2.3 Proof of Theorem 2.1

Relying on the asymptotic behavior of G(x; y) as x → y, we next prove Theorem 2.1 by the
following steps.
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Step 1: Proof of Γ1 = Γ̃1.

Assume Γ1 6= Γ̃1. Let Ω be the unbounded connected component of R2\(D ∪ D̃). Without loss
of generality, we may assume that there exists y0 ∈ Γ̃1 ∩ (R2\D)∩ ∂Ω. Let yn be defined as in
(2.16) and define two functions F (x), F̃ (x) by

F (x) := − 2πG(x; y0)

ln ||x− y0||
, F̃ (x) := − 2πG̃(x; y0)

ln ||x− y0||
, (2.30)

where G(x; y) and G̃(x; y) are the Green functions corresponding to D = (Γ1, Γ2, Γ3, k1, k2)
and D̃ = (Γ̃1, Γ̃2, Γ̃3, k̃1, k̃2), respectively. Since yn is contained in D0 ∩ Ω for sufficiently large
n, it follows from Lemma 2.5 that

lim
n→+∞

F (yn) = k2
0, lim

n→+∞
F̃ (yn) =

2k2
0k̃

2
1

k2
0 + k̃2

1

,

leading to

lim
n→+∞

[F (yn) − F̃ (yn)] =
k2

0(k
2
0 − k̃2

1)

k2
0 + k̃2

1

. (2.31)

However, by Lemma 2.4 we have

F̃ (yn) = F (yn) for all sufficiently large n,

which contradicts (2.31) because k0 6= ±k̃1. Hence Γ1 = Γ̃1.

Step 2: Proof of k1 = k̃1.

Choose y0 ∈ Γ1 = Γ̃1, and define yn, F (x), F̃ (x) in the same way as in (2.16) and (2.30).
Combining Lemma 2.4 and Lemma 2.5 gives the identity

0 = lim
n→+∞

[F (yn) − F̃ (yn)] =
2k2

0k
2
1

k2
0 + k2

1

− 2k2
0k̃

2
1

k2
0 + k̃2

1

=
2k4

0(k
2
1 − k̃2

1)

(k2
0 + k2

1)(k
2
0 + k̃2

1)
,

from which k1 = k̃1 follows.

Step 3: Proof of Γ2 = Γ̃2, k2 = k̃2.

Recall that Γ1 = Γ̃1 and k1 = k̃1. It follows from Holmgren’s uniqueness theorem and Lemma
2.4 that G(x; y) = G̃(x; y) for all x 6= y, y ∈ D0 = D̃0 and x ∈ Ω0, where Ω0 denotes the

unbounded connected component of R2\((D2 ∪ D3) ∪ (D̃2 ∪ D̃3)). Making use of symmetries
of G(x; y) and G̃(x; y), which can be readily proved by applying Green’s formula, we arrive at
G(x; y) = G̃(x; y) for all x 6= y, x, y ∈ Ω. Thus, analogously to Steps 1 and 2, one can prove
Γ2 = Γ̃2 and k2 = k̃2 using Lemma 2.5.

Step 4: Proof of Γ3 = Γ̃3.

Combining Steps 1-3 and Holmgren’s uniqueness theorem, we see that G(x; y) = G̃(x; y) for

all x 6= y, x, y ∈ Ω1, where Ω1 denotes the unbounded connected component of R
2\(D3 ∪ D̃3).
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Assume Γ3 6= Γ̃3. Without loss of generality, we may assume that there exists y0 ∈ Γ̃3 ∩
(R2\D3) ∩ ∂Ω1. Define a sequence yn by

yn := y0 +
1

n
n(y0), n = 1, 2, · · · , (2.32)

where n(y0) is the outward unit normal to Γ̃3 at y0, and define two functions F1(y), F̃1(y) by

F̃1(y) = n(y0) · ∇xG̃(x; y)|x=y0
, F1(y) = n(y0) · ∇xG(x; y)|x=y0

.

It follows from the Neumann boundary condition for G̃(x; y) on Γ̃3 that

F̃1(yn) = 0 for all sufficiently large n ∈ N,

and from Lemma 2.5 that

|F1(yn)| → +∞ as n → +∞.

This contradiction implies that Γ3 = Γ̃3. The proof is complete. 2

2.4 Uniqueness under general transmission conditions

In acoustic scattering problems, one needs to consider a problem modeled by (2.1) and (2.4)
with the following conditions

u+ = u−,
∂u+

∂n
= λj

∂u−
∂n

on Γj , j = 1, 2; (2.33)

B(u) = 0 on Γ3; (2.34)

lim
r→∞

r
N−1

2 (
∂us

∂r
− ik0u

s) = 0. (2.35)

Here, the transmission coefficient λj denotes the ratio of mass densities in Dj and Dj+1 satis-
fying λj 6= 1 and λj > 0; N represents the dimension of the space (N = 2 or N = 3); and the
boundary condition on Γ3 may take one of the following forms:

B(u) :=






u if the pressure vanishes on Γ3 (D3 is a sound-soft obstacle),
∂u
∂n if the normal velocity vanishes on Γ3 (D3 is a sound-hard obstacle),
∂u
∂n + iηu if the normal velocity is proportional to the pressure on Γ3,

where η > 0 is a constant. In this section, we extend the argument in Sections 2.1-2.3 to
prove uniqueness under the general transmission conditions (2.33). Note that the results in
this section are not limited to two dimensions.

The Green function G(x; y) in this case is defined as follows:

Lx G(x; y) = ∇ · (a(x)∇G(x; y)) + b(x)G(x; y) = −δ(x − y), x ∈ R
N\D3, y /∈ Γj,(2.36)

G+ = G−, a+∂G+

∂n
= a−∂G−

∂n
on Γj, j = 1, 2, (2.37)

G(x; y) satisfies the boundary condition on Γ3 and the radiation condition, (2.38)
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where

a(x) =






1, x ∈ D0,
λ1, x ∈ D1,
λ1λ2, x ∈ D2;

b(x) =






k2
0, x ∈ D0,

λ1k
2
1, x ∈ D1,

λ1λ2k
2
2, x ∈ D2.

If N = 2, it follows from Lemma 2.5 that

G(x; y0) ∼ − ln ||x − y0||
2πa(y0)

as x → y0, if y0 ∈ Dj, j = 0, 1, 2,

G(yn; y0) ∼ − ln ||yn − y0||
π[a+(y0) + a−(y0)]

as n → +∞, if y0 ∈ Γj, j = 1, 2;

if N = 3, using an argument similar to Lemma 2.5 one obtains that (see also [29])

G(x; y0) ∼
1

4πa(y0)||x − y0||
as x → y0, if y0 ∈ Dj, j = 0, 1, 2,

G(yn; y0) ∼
1

2π[a+(y0) + a−(y0)]||x − y0||
as n → +∞, if y0 ∈ Γj, j = 1, 2;

where yn is a sequence defined as in (2.16), and

a+(y0) = lim
j→+∞

a(y0 +
1

j
n(y0)), a−(y0) = lim

j→+∞
a(y0 −

1

j
n(y0)).

Recall that n(y0) stands for the unit outward normal at y0 ∈ Γj . Our inverse problem corre-
sponding to (2.1), (2.4), (2.33)-(2.35) is:

(IP’) Given the wave numbers kj (j = 0, 1, 2) and the far field pattern u∞(x̂; d) for all x̂, d ∈ S,
determine the interfaces Γj (j = 1, 2, 3), the transmission coefficients λj (j = 1, 2) and the
boundary condition on Γ3.

Note that the boundary condition on Γ3 tells us the physical property of the impenetrable core
D3. Let D = (Γ1, Γ2, Γ3, λ1, λ2, B) and D̃ = (Γ̃1, Γ̃2, Γ̃3, λ̃1, λ̃2, B̃) denote two multilayered
obstacles with the boundary conditions B, B̃ on Γ3, Γ̃3, respectively. Following the approach
in Sections 2.2 and 2.3, we establish the uniqueness to (IP’) under the general transmission
conditions (2.33).

Corollary 2.7. Assume N = 2 or N = 3, and λj , λ̃j 6= 1 for j = 1, 2. Suppose u∞(x̂; d),

ũ∞(x̂; d) are the far field patterns corresponding to D, D̃, respectively. If

u∞(x̂; d) = ũ∞(x̂; d) for all x̂, d ∈ S,

then D = D̃, that is, Γj = Γ̃j (j = 1, 2, 3), λi = λ̃i (i = 1, 2) and B = B̃.

Proof. From Rellich’s lemma, we see that Lemma 2.4 remains valid under the general trans-
mission condition (2.33). Then, using the assumptions that λj 6= 1, λ̃j 6= 1 and repeating Step
1 of the proof of Theorem 2.1, we have Γ1 = Γ̃1 and λ1 = λ̃1. Since the wave numbers k1

and k2 are given, we may proceed to justify that Γ2 = Γ̃2 and λ2 = λ̃2. This implies that the
surrounding media around D3 and D̃3 can be uniquely identified. To prove Γ3 = Γ̃3, we may
define F2(yn) := B(G(x; yn))|x=y0

and F̃2(yn) := B̃(G̃(x; yn))|x=y0
with yn, y0 defined in the

same way as (2.32). Then, we obtain Γ3 = Γ̃3 by an argument analogous to Step 4 of the proof
of Theorem 2.1 and B = B̃ as a consequence of Holmgren’s uniqueness theorem. 2
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Remark 2.8. In the case of the TM mode, Theorem 3.2 improves the uniqueness results in [23,

33] which both require a known piecewise homogenous background, while in three dimensions

Corollary 2.7 improves those in [1, 24, 33] which suppose that the transmission coefficients λj

are known. In addition, for recovering the interfaces, the orthogonality relation used in [1, 33]

and the a priori estimates of solutions on the interface essentially required by [24] are both

avoided. If the background refractive indices and the transmission coefficients are not available

in advance, we do not know how to prove uniqueness from the knowledge of the far field at

a fixed frequency. We refer to Isakov [15, 17] and Kirsch & Kress [21] for uniqueness on the

inverse scattering by a penetrable obstacle in a known homogeneous background medium.

3 Inverse scattering by multilayered periodic structures

In this section, we assume that a time-harmonic electromagnetic wave is scattered by a multi-
layered diffraction grating in a piecewise homogeneous isotropic medium. Suppose further that
the grating is periodic in x1-direction and constant in x3-direction. We still restrict ourselves to
the TM mode (transverse magnetic polarization), which means that the time-harmonic Maxwell
equation can be reduced to a two dimensional scalar Helmholtz equation (△+k2)u = 0 where
u = u(x1, x2) is the third component of the magnetic field.

3.1 Mathematical formulations

Without loss of generality, we assume the cross-sections of the grating profiles in the (x1, x2)-
plane are given by two C2-smooth disjoint graphs Γj := {x2 = fj(x1), x1 ∈ R}, j = 1, 2, which
are 2π-periodic with respect to x1. Denote the region above Γ1 by D0, the one below Γ2 by
D2, and that between Γ1 and Γ2 by D1; see Figure 2. The three distinct constant refractive

Figure 2: Multilayered periodic structures
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indices corresponding to Di are denoted by ki (i = 0, 1, 2), respectively, satisfying k0, k2 > 0,
Rek1 > 0 and Imk1 ≥ 0. Let

Γ+
1 := max

x1∈R

{f1(x1)}, Γ−
2 := min

x1∈R

{f2(x1)}.

Suppose that a plane wave in the (x1, x2)-plane given by

ui = exp(i(αx1 − βx2)),

with (α, β) = k0(sin θ,− cos θ) for some θ ∈ (−π
2
, π

2
), is incident upon the grating from the top.

Then, the total field u = u(x1, x2) satisfies

∆u + k2
ju = 0 in Dj , j = 0, 1, 2, (3.39)

u+ = u−,
1

k2
j−1

∂u+

∂n
=

1

k2
j

∂u−
∂n

on Γj , j = 1, 2, (3.40)

u = ui + us in D0, (3.41)

with the following two radiation conditions as x2 → ±∞:

us =
∑

n∈Z

A+
n exp(iαnx1 + iβ+

n x2), for x2 > Γ+
1 , (3.42)

u =
∑

n∈Z

A−
n exp(iαnx1 − iβ−

n x2), for x2 < Γ−
2 , (3.43)

where αn = n + α and

β+
n :=

{
(k2

0 − α2
n)

1

2 if |αn| ≤ k0,

i(α2
n − k2

0)
1

2 if |αn| > k0;
β−

n :=

{
(k2

2 − α2
n)

1

2 if |αn| ≤ k2,

i(α2
n − k2

2)
1

2 if |αn| > k2,

with i =
√
−1. Here n denotes the unit normal to Γj with a non-negative x2-component; the

expansions in (3.42) and (3.43) are the well-known Rayleigh expansions; A±
n ∈ C (n ∈ Z)

are called the Rayleigh coefficients. Obviously, in x2 > Γ+
1 resp. x2 < Γ−

2 , the scattered field
us resp. u can be split into a finite sum of outgoing plane waves propagating into the far field
and an infinite sum of exponentially decreasing functions as x2 → +∞ resp. x2 → −∞
which are called surface or evanescent waves. Thus, the inverse diffraction grating problem
always requires near-field measurement in order to reconstruct the grating profile. Note that
the series in (3.42) resp. (3.43) and each derivative of it are uniformly convergent on the half
space {x2 ≥ c} for all c > Γ+

1 resp. {x2 ≤ c} for all c < Γ−
2 . The periodic structure together

with the form of incident waves motivates us to seek α-quasiperiodic solutions satisfying

u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2). (3.44)

For a fixed θ ∈ (−π
2
, π

2
), let the admissible class of incident waves with the phase-shift α be

given by

I := {ui
n = exp [i(αnx1 − β+

n x2)] : n ∈ Z},

which consists of a finite number of incoming plane waves and infinitely many surface waves.

We recall the following existence and uniqueness result for two periodic interfaces.
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Lemma 3.1. Suppose Γj (j = 1, 2) are given by periodic graphs and k0, k2 > 0, Re k1 > 0,

Im k1 ≥ 0 satisfy one the following conditions

(i) Im k1 > 0; (ii) Im k1 = 0, k0 > k1 > k2; (iii) Im k1 = 0, k0 < k1 < k2.

Then, for each incident wave ui
n ∈ I, there always exists a unique solution u ∈ H1

α((0, 2π) ×
(−c, c)) for all c > max{|Γ+

1 |, |Γ−
2 |}. Here H1

α(K) denotes the quasi-periodic Sobolev space

with phase-shift α defined by

H1
α(K) := {u(x) : exp(−iαx1)u(x1, x2) ∈ H1(K)}, K = (0, 2π) × (−c, c).

To prove Lemma 3.1, one can first establish a variational formulation in a bounded truncated
periodic cell in R2 by enforcing the TM transmission conditions and the Rayleigh expansions,
and then prove that the sesquilinear form generated by the variational form is strongly elliptic.
If Im k1 > 0, the uniqueness follows using a simple integration by parts. If all the refractive
indices are real, the uniqueness is obtained by applying a periodic version of the Rellich identity
(see [3, 10]), the monotonicity condition (ii) or (iii) imposed on the refractive indices and the
fact that the x2-component of the normal n does not change sign on Γj. Since this can be
easily achieved in a piecewise homogenous medium, we omit the proof, referring to [3, 10,
30, 31] for a detailed presentation. Note that the above lemma is a special case of [30, 31]
for two periodic interfaces and can be easily extended to multilayered diffraction gratings with
piecewise refractive indices (see e.g. [10]).

Suppose the assumptions in Lemma 3.1 are fulfilled, and denote by u(x1, x2; n) (n = 1, 2 · · · )
the unique solution to the scattering problem (3.39)-(3.44) corresponding to the incident wave
ui

n ∈ I. We assume k0 is given, so that the multilayered diffraction grating can be written as
D = (Γ1, Γ2, k1, k2). Now we formulate the inverse problem as follows:

(IP”) Let b > Γ+
1 be a fixed constant. Given a fixed wave number k0 > 0, determine the

periodic interfaces Γj (j = 1, 2) and the refractive indices kj (j = 1, 2) from the knowledge
of the near field data u(x1, b; n) (n = 1, 2 · · · ) for all x1 ∈ (0, 2π) corresponding to all incident
plane waves ui

n from I.

Assuming D̃ := (Γ̃1, Γ̃2, k̃1, k̃2) is another multilayered grating, we denote analogously by
ũ(x1, b; n) the unique total field corresponding to ui

n ∈ I and D̃. The main result of this section
is

Theorem 3.2. Let b > max{Γ+
1 , Γ̃+

1 }, and assume β+
n 6= 0 for all n ∈ Z. If the identity

u(x1, b; n) = ũ(x1, b; n) for all x1 ∈ (0, 2π) (3.45)

holds for all incident waves ui
n ∈ I, then Γj = Γ̃j and kj = k̃j for j = 1, 2.
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3.2 Proof of Theorem 3.2

To prove the theorem, we need the free-space α-quasi-periodic Green function Φ(x; y) defined
by

Φ(x; y) =
∑

n∈Z

i

4πβ+
n

ei[αn(x1−y1)+β+
n |x2−y2|] (3.46)

for x, y ∈ R2 with x 6= y, noting that β+
n 6= 0 by assumption. It is known that Φ(x; y) is weakly

singular at x = y and satisfies the Helmholtz equation △Φ + k2
0Φ = 0 in R2 when x 6= y.

In addition, Φ has the same singularity as the fundamental solution Ψ of the two dimensional
Helmholtz equation and the difference Ψ − Φ is even analytic in [(0, 2π) × R] × [(0, 2π) × R];
see [27].

Let Ωb := {x ∈ R2 : x2 > b}, and let y = (y1, y2) ∈ Ωb be fixed with 0 < y1 < 2π. Define the
incident wave ui(x; y) := Φ(x; y), x ∈ R2, due to a point source at y. By (3.46), ui(x; y) can
be written as

ui(x; y) =
∑

n∈Z

Bnui
n with Bn =

i

4πβ+
n

ei(−αny1+β+
n y2) for x2 < b, (3.47)

which propagates downward from D0. Let us(x; y), u(x; y) resp. ũs(x; y), ũ(x; y) denote the
scattered and total fields corresponding to D = (Γ1, Γ2, k1, k2) resp. D̃ = (Γ̃1, Γ̃2, k̃1, k̃2). We
conclude from (3.47) and the assumption (3.45) that

u(x1, b; y) = ũ(x1, b; y) for all x1 ∈ (0, 2π), y ∈ Ωb.

From the uniqueness of the exterior Dirichlet problem (see, e.g., [19]) and the unique continu-
ation of solutions to the Helmholtz equation, it follows that

u(x; y) = ũ(x; y) for all x ∈ Ω := D0 ∩ D̃0, y ∈ Ωb. (3.48)

Let the (−α)-quasiperiodic Green solution G(x; y) to the scattering problem (3.39)-(3.44) be
defined by

LxG(x; y) = ∇ · (a∇G(x; y)) + G(x; y) = −δ(x − y),

G+ = G−, a+ ∂G+

∂n = a− ∂G−

∂n , on Γj , j = 1, 2,
G(x; y) satisfies the (−α)-quasiperiodic Rayleigh expansions (3.42), (3.43)
and the (−α)-quasiperiodic condition (3.44),





(3.49)

where a(x) = 1/k2
j for x ∈ Dj , j = 0, 1, 2. Denote by G̃(x; y) the (−α)-quasiperiodic Green

function corresponding to D̃. To reduce the argument to one periodic cell, we need the follow-
ing notations

Ω∗ := {x ∈ Ω : 0 < x1 < 2π}, Ω∗
b := {x ∈ Ωb : 0 < x1 < 2π},

Γ∗
j := {x ∈ Γj : 0 < x1 < 2π}, Σb := {x : 0 < x1 < 2π, f1(x1) < x2 < b}.

Analogously to Lemma 2.4, we are going to prove the following lemma:
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Lemma 3.3. Under the assumptions of Theorem 3.2, we have

G(x; y) = G̃(x; y) for all x, y ∈ Ω∗, x 6= y.

Proof. For x, y ∈ Ω∗, it follows from Green’s second theorem applied to the periodic cell Σb for
some b > Γ+

1 and the Rayleigh expansions for us(x; y) and G(x; y) in x2 > Γ+
1 that

k2
0u

s(x; y) =

∫

Γ∗

1

us
+(z; y)

∂G+(z; x)

∂n
− G+(z; x)

∂us
+(z; y)

∂n
ds(z) (3.50)

=

∫

Γ∗

1

u+(z; y)
∂G+(z; x)

∂n
− G+(z; x)

∂u+(z; y)

∂n
ds(z)

−
∫

Γ∗

1

Φ(z; y)
∂G+(z; x)

∂n
− G+(z; x)

∂Φ(z; y)

∂n
ds(z). (3.51)

Note that in obtaining (3.50), we have used the identity
∫

Γ∗

b

us
+(z; y)

∂G+(z; x)

∂n
− G+(z; x)

∂us
+(z; y)

∂n
ds(z) = 0, (3.52)

and the fact that the integrals over the vertical lines of ∂Σb cancel because of the periodicity.
The relation (3.52) follows from the α-quasiperiodic Rayleigh expansions for us

+(z; y) and the
(−α)-quasiperiodic Rayleigh expansions for G+(z; y) in z2 > Γ+

1 . Similarly,

G(y; x) =

∫

Γ∗

1

G+(z; x)
∂Φ(z; y)

∂n
− ∂G+(z; x)

∂n
Φ(z; y)ds(z) + k2

0Φ(x; y). (3.53)

Using the transmission conditions for G(z; x) and u(z; y) on Γj (j = 1, 2) and their Rayleigh
expansions in z2 < Γ+

2 , we obtain analogously by Green’s second theorem that
∫

Γ∗

1

u+(z; y)
∂G+(z; x)

∂n
− G+(z; x)

∂u+(z; y)

∂n
ds(z)

=
k2

0

k2
3

∫

Γ∗

3

u−(z; y)
∂G−(z; x)

∂n
− G−(z; x)

∂u−(z; y)

∂n
ds(z)

= 0. (3.54)

Combining (3.51)-(3.54) yields the relation G(y; x) = k2
0u(x; y) for all x, y ∈ Ω∗, x 6= y. Sim-

ilarly, there holds G̃(y; x) = k2
0ũ(x; y) for all x, y ∈ Ω∗, x 6= y. In view of (3.48), we conclude

that

G(y; x) = G̃(y; x) for all x ∈ Ω∗, y ∈ Ω∗
b , x 6= y.

As functions of y, both G(y; x) and G̃(y; x) satisfy the Helmholtz equation (∆ + k2
0)u = 0 in

Ω∗\{x}. Recalling the unique continuation of solutions to the Helmholtz equation and the fact
that Ω∗

b ⊂ Ω∗, we obtain G(y; x) = G̃(y; x) for all x, y ∈ Ω∗, x 6= y. 2

For a fixed y0 ∈ Ω∗\(Γ∗
1 ∪ Γ∗

2), the Green function G(x; y0) defined in (3.49) satisfies

(△x + k2
j )G(x; y0) = −k2

j δ(x − y0) in Dj.
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By the singularity of the free-space quasi-periodic Green function Φ(x; y), as mentioned at the
beginning of Section 3.2, we know that

Φ(x; y0) ∼ − 1

2π
ln ||x − y0|| as x → y0,

implying that

G(x; y0) ∼ −
k2

j

2π
ln ||x − y0|| as x → y0,

since the difference k2
j Φ(x; y0) − G(x; y0) is smooth in a neighborhood of y0. By arguing as in

Lemma 2.5, one can further obtain that

G(yn; y0) ∼ −
k2

jk
2
j−1

π(k2
j−1 + k2

j )
ln ||yn − y0|| if y0 ∈ Γ∗

j , j = 1, 2,

as n → +∞, where yn := y0 + 1
n
n(y0). Thus, relying on Lemma 3.3 and the above asymptotic

properties of G(x; y) as y → y0, x → y0, we can carry over the arguments from Section 2.3 to
the periodic case to complete the proof of Theorem 3.2. 2

Remark 3.4. (i) From Theorem 3.2, we see that the near field measurements only above the

grating are enough to determine the periodic interfaces as well as the piecewise constant

refractive indices. This remains true if the measurements are taken only below the grating.

(ii) Under the general transmission conditions (2.33), a uniqueness result similar to Corollary

2.7 can be obtained on identifying the interfaces and transmission coefficients if the waves

numbers ki (i = 0, 1, 2) are known.

(iii) Using point sources as incident waves, the argument in this section can be extended

to prove uniqueness for inverse scattering by general non-periodic C2-smooth profiles which

are given by graphs. Note that we require the regularity of the profile in order to tackle the

singularity of the Green function in the half space.
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