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Abstract. It has been well-known for a long time that the mea-
sure states of the process in the title are absolutely continuous
at any fixed time provided that the dimension of space is small
enough. However, besides the very special case of one-dimensional
continuous super-Brownian motion, properties of the related den-
sity functions were not well understood. Only in 2003, Mytnik and
Perkins [21] revealed that in the Brownian motion case and if the
branching is discontinuous, there is a dichotomy for the densities:
Either there are continuous versions of them, or they are locally
unbounded. We recently showed, that the same type of fixed time
dichotomy holds also in the case of discontinuous motion. More-
over, the continuous versions are locally Hölder continuous, and we
determined the optimal index for them. Finally, we determine the
optimal index of Hölder continuity at given space points which is
strictly larger than the optimal index of local Hölder continuity.

1. Model: super-α-stable motion with branching of index 1 + β

The process in the title, sometimes also called (α, d, β)-superprocess, is a finite
measure-valued process X = {Xt : t ≥ 0} describing the evolution of populations of
infinitesimally small individuals/particles. The process can be constructed as a limit
of branching particle systems, where the particles move independently according to
symmetric α-stable motions in Euclidean space R

d, and additionally they branch
according to a branching mechanism in the domain of attraction of a stable law of
index 1 + β. Here α ∈ (0, 2] and 1 + β ∈ (1, 2]. Of course, for the very special case
of α = 2 and β = 1 we have the famous continuous super-Brownian motion in R

d.
A convenient description of X can be given via the log-Laplace transition func-

tional, which is determined by the log-Laplace equation

d

dt
ut = ∆αut + aut − bu1+β

t , t > 0, (1)

with fixed constants a ∈ R and b > 0. Here the fractional Laplacian ∆α :=
−(−∆)α/2 describes a symmetric stable motion in R

d of index α ∈ (0, 2], whereas
the two other terms reflect the continuous-state branching of index 1 + β ∈ (1, 2].
Note that the branching is critical if a = 0. To be more specific, the log-Laplace
transition functional of the homogeneous measure-valued Markov process X is de-
fined as,

logEµ exp 〈Xt ,−ϕ〉 =
〈
µ,−u

(
t, (·)

)〉
, t > 0. (2)

Here µ ∈ Mf (the set of finite measures on R
d), ϕ ≥ 0 is a test function, and the

non-negative function u =
{
u(s, x) : s > 0, x ∈ R

d
}

solves the log-Laplace integral
equation

u(s, x) =

∫

Rd

dy pα
s (y − x)ϕ(y) (3)

+

∫ s

0

dr

∫

Rd

dy pα
s−r(y − x)

[
au(r, y) − b

(
u(r, y)

)1+β
]

which is the mild form the log-Laplace equation (1) with initial condition u
(
0+, (·)

)

= ϕ. Also, pα describes the transition kernel of the particles’ α-stable motion.
This rather general model was introduced by Iscoe in his thesis 1980 at Carleton

University, published in [10, 11], and investigated later by many authors. From the
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beginning, one of the central issues was the question of the nature of the states of
the process X .

2. Dichotomy of states at fixed times

Since 1988 (see Fleischmann [4]) it is known that at any fixed time t > 0, with
probability one, the measure Xt = Xt(dx) is absolutely continuous with respect to
the Lebesgue measure, provided that the dimension d is sufficiently small: d < α

β .

To be more precise, in [4] it was assumed that a = 0, but a 6= 0 requires just
the obvious changes. On the other hand, in all higher dimensions d ≥ α/β, the
states are singular a.s. The singularity statement was proved in [4] only in the
critical dimension, and for the case of d > α/β it follows from Theorem 7.3.4 of
Dawson [1].

3. Absolutely continuous states

From now on assume d < α
β , that is, for any time t, the measure Xt(dx) has

a density function x 7→ Xt(x), which by a slight abuse of notation is denoted
by the same symbol Xt as the corresponding measure. How to characterize the
density and what are its properties? In the very special case of one-dimensional
continuous super-Brownian motion (α = 2, d = 1 = β) it is well-known that a
jointly continuous density field

{
Xt(x) : t > 0, x ∈ R

}
exists, and it satisfies a

stochastic partial differential equation (SPDE); see Konno and Shiga [17] as well
as Reimers [23]. However, it took a long time to make some progress in the case
of β < 1. For the Brownian case α = 2 (and a = 0, that is, critical branching), it
was proved in Mytnik [20] that a version of the density

{
Xt(x) : t > 0, x ∈ R

d
}

of
the measure Xt(dx)dt exists that satisfies – in a weak sense – the following SPDE

∂

∂t
Xt(x) = ∆Xt(x) +

(
Xt−(x)

)1/(1+β)
L̇(t, x), (4)

where L̇ is a (1+β)-stable noise without negative jumps. Of course, this is a coun-
terpart of the SPDE result for the continuous super-Brownian motion mentioned
above.

From now on assume that β < 1. In other words, we restrict our discussion
to the case of a discontinuous branching mechanism and ask for properties of the
density function at fixed times.

3.1. Dichotomy of density function. The particular case of α = 2 was first
treated in [21], where regularity and irregularity properties of the density at fixed
times t had been revealed. More precisely, it was shown that

• these densities have continuous versions if d = 1,
• they are locally unbounded on open sets of positive Xt(dx)-measure in all

higher dimensions.

However the case of discontinuous motion (α < 2) was not considered in [21].
Here we take care of the general case of α ≤ 2, that is, we include also discon-

tinuous underlying motions. We show that the same type of fixed time dichotomy
still holds, and this is our first result, taken from Fleischmann et al. [5].

Theorem 1 (Fixed time dichotomy of density function). Recall that α ≤ 2,
β < 1, and d < α

β . Fix an initial state X0 = µ ∈ Mf and any time t > 0.
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(a) (Continuity): If d = 1 and 1 + β < α, then a.s. there exists a con-

tinuous version, say X̃t , of the density function of the measure Xt(dx).

(b) (Local unboundedness): If d > 1 or 1 + β ≥ α, then a.s., for all

open U ⊆ R
d,

‖Xt‖U := ess sup
x∈U

Xt(x) = ∞ whenever Xt(U) > 0. (5)

The proof of (b) is rather technical, heavily uses ideas of [21], and roughly goes as
follows. Let U be a fixed open ball. One first shows that on the event

{
Xt(U) > 0

}

there are always sufficiently “big” jumps of X that occur in U close to time t. Then
with the help of properties of solutions of the log-Laplace equation one is able to
show that the “big” jumps are large enough to ensure the unboundedness of the
density at time t in U . Loosely speaking, the density is getting unbounded in the
proximity of “big” jumps. Finally, the exceptional set concerning the a.s. statement
in (b) can be chosen uniformly in U since each U contains a non-empty ball with
rational center and radius.

As for (a), the continuity of the density is verified via the Kolmogorov criterion.
Note that besides the continuity, this criterion gives also some Hölder exponent of
continuity. This immediately raises the question of determining the optimal Hölder
index for the density and this question is addressed in the next subsection. Here
we just mention that in the case of one-dimensional continuous super-Brownian
motion (α = 2, d = 1 = β), the densities are locally Hölder continuous (in the
spatial variable) for any index η < 1

2 , and the bound 1
2 is moreover optimal.

3.2. Local Hölder continuity of continuous density functions. Here is our
next result, again taken from [5].

Theorem 2 (Local Hölder continuity). Fix X0 = µ ∈ Mf and t > 0. Suppose

d = 1 and 1 + β < α.

(a) (Local Hölder continuity): For each η < ηc := α
1+β − 1, with proba-

bility one, the continuous version X̃t of the density function Xt is locally

Hölder continuous of index η :

sup
x1,x2∈K, x1 6=x2

∣∣X̃t(x1) − X̃t(x2)
∣∣

|x1 − x2|η
< ∞, compact K ⊂ R. (6)

(b) (Optimality of ηc): With probability one, for any open U ⊆ R,

sup
x1,x2∈U, x1 6=x2

∣∣X̃t(x1) − X̃t(x2)
∣∣

|x1 − x2|ηc
= ∞ whenever Xt(U) > 0. (7)

However, how the optimal index ηc is related to the optimal index 1
2 in the

excluded boundary case of continuous super-Brownian motion?

3.3. Some transition curiosity. Suppose for the moment that α = 2, and let
β ↑ 1. Then

ηc =
2

1 + β
− 1 ↓ 0 6=

1

2
. (8)

That is, we have some surprising discontinuity while passing to the boundary case
of continuous super-Brownian motion. How to understand this phenomenon? An
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explanation can be given using the notion of Hölder continuity at a point. The
latter notion is recalled in the next subsection, and related results concerning our
process are given.

3.4. Hölder continuity at a given point. Recall that a function f is Hölder
continuous with index η ∈ (0, 1) at a point x0 if there exists a neighborhood U(x0)
such that ∣∣f(x) − f(x0)

∣∣ ≤ C |x − x0|
η, x ∈ U(x0). (9)

The optimal Hölder index, say H(x0), of f at the point x0 is defined as the supre-
mum over all such η. Of course, there exist functions f where H(x0) indeed depends
on x0 . Clearly, the optimal index of local Hölder continuity in a domain is deter-
mined by the infimum of H(x0) over points x0 in the domain.

This phenomenon of difference of optimal index of local Hölder continuity from
optimal Hölder index at some points can be observed in our case of the continuous
densities of superprocesses with discontinuous branching (β < 1). Here is our result,
presented in Fleischmann et al. [6].

Theorem 3 (Hölder continuity at a given point). Fix X0 = µ ∈ Mf and

t > 0 as well as x0 ∈ R. Suppose d = 1 and 1 + β < α.

(a) (Hölder continuity at a given point): For each η > 0 satisfying

η < η̄c := min
{1 + α

1 + β
− 1, 1

}
, (10)

with probability one the continuous version X̃t of the density is Hölder

continuous of order η at the point x0 . That is, for all neighborhoods U(x0)
of x0 ,

sup
x∈U(x0), x 6=x0

∣∣X̃t(x) − X̃t(x0)
∣∣

|x − x0|η
< ∞. (11)

(b) (Optimality of η̄c): If additionally β > (α − 1)/2, then η̄c is optimal.

That is, with probability one for all neighborhoods U(x0) of x0 ,

sup
x∈U(x0), x 6=x0

∣∣X̃t(x) − X̃t(x0)
∣∣

|x − x0|η̄c
= ∞ whenever Xt(x0) > 0. (12)

Note that, in fact,

η̄c > ηc . (13)

The above results imply that for the density X̃t the optimal Hölder index H
varies from point to point. The optimal local Hölder index ηc = α

1+β − 1 equals to

the infimum of H over an open domain. Therefore, there have to be (random) points
x0 in the domain with H(x0) arbitrary close or equal to ηc . On the other hand by
Theorem 3 there are also points x0 with the optimal Hölder index H(x0) = η̄c > ηc

and hence we can conclude that H varies from point to point.
Heuristically the reason to the fact that there exist points in an open domain

with different Hölder indexes is as follows. It can be seen from the proofs that
the Hölder index at a point is highly influenced by relatively “big” jumps of the
superprocess that occur close to time t in the proximity of the point. Therefore
when we choose any fixed point in space, the size of the “biggest” jump close to
it may be, and in fact is, much smaller than the “biggest” jump somewhere in an
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open domain which in turn influences the index of continuity at some exceptional
random point in the domain. This consequently implies that the local Hölder index
of continuity in an open domain is smaller than the modulus of continuity at a fixed
point.

Now note that, if α = 2, then as β ↑ 1,

η̄c =
( 3

1 + β
− 1

)
∧ 1 ↓

1

2
. (14)

That is, for Hölder continuity at fixed points we have continuity for the optimal
index η̄c while approaching the boundary case of β = 1, whereas earlier we observed
discontinuity of ηc . Heuristically this can be explained as follows. We conjecture
that the fact that the optimal Hölder index of continuity at fixed points equals to
η̄c implies that, with probability one, the optimal Hölder index H(x) of continuity
at Xt(dx)-a.e. point x equals to η̄c , and moreover the Lebesgue measure of the
points with optimal Hölder index of continuity ηc equals to 0. On the other hand
for continuous super-Brownian motion we have that almost surely H(x) = 1

2 for
all x, and so we see that the continuity at the boundary case β = 1 holds for the
optimal Hölder index η̄c that describes the modulus of continuity at a.e. point and
not just at exceptional points.

3.5. Some open problems. We would like to list here some open problems.
At the first sight, in Theorem 3(b) there is the additional assumption β > (α −

1)/2. But note that the opposite case β ≤ (α− 1)/2 implies that η̄c = 1. Therefore
the optimality of η̄c follows here automatically from the definition of H(x0). Our
first conjecture deals with the finer analysis of the case β < (α − 1)/2, and note
that we exclude here the boundary case of β = (α − 1)/2.

Conjecture 4 (Lipschitz). Let β < (α− 1)/2. Then at any given point x0 , with

probability one, the density function X̃t is Lipschitz continuous at x0 . 3

Next we turn to the topic of so-called multifractal spectrum.

Conjecture 5 (Multifractal spectrum). Fix X0 = µ ∈ Mf and t > 0. Let
d = 1 and 1 + β < α.

(a) (Full Spectrum): We conjecture that for any η ∈
(
ηc, η̄c

)
with proba-

bility one there are (random) points x0 ∈ R such that the optimal Hölder

index H(x0) of X̃t at x0 is exactly η.
(b) (Hausdorff dimension): For η ∈

(
ηc, η̄c

)
, let D(η) denote the Haus-

dorff dimension of the (random) set
{
x0 : H(x0) = η

}
. We conjecture

that
lim
η↓ηc

D(η) = 0 and lim
η↑η̄c

D(η) = 1 a.s. 3

The function η 7→ D(η) reveals the so-called multifractal spectrum concerning
the optimal Hölder index H for the densities of superprocesses with branching of
index 1 + β < α and it is definitely worth studying.

We would like to mention that the multifractal spectrum of random functions
and measures has attracted attention already for a while and has been studied for
example by the following authors: Dembo et al. [2], Durand [3], Hu and Taylor [9],
Klenke and Mörters [16], Le Gall and Perkins [18], Mörters and Shieh [19] and
Perkins and Taylor [22]. The multifractal spectrum of singularities that describe
the Hausdorff dimension of sets of different Hölder exponents of functions was
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investigated for deterministic and random functions in Jaffard [12]-[14] as well as
in Jaffard and Meyer [15].

We would also like to mention here that we got ideas to study regularity prop-
erties of the densities of (α, d, β)-superprocesses when we had been dealing with
super-α-stable motions, say X0, with Neveu’s branching mechanism. This process
is defined via the log-Laplace equation

d

dt
ut = ∆αut + aut − ut log ut, t > 0, (15)

0 < α ≤ 2, and consequently formally corresponds to the earlier excluded bound-
ary case of β = 0. By the way, this equation (15) is interesting in itself since
the non-linear term has a local non-Lipschitz property. Despite the fact that the
branching mechanism has infinite expectation here, that process X0 exists and was
constructed in Fleischmann and Sturm [7]. It was also shown there, that the process
is immortal and propagates mass instantaneously everywhere in space, opposed, for
instance, to supercritical super-Brownian motions with finite expectation; see [7,
Proposition 16]. The large-scale behavior of X0 is also not at all typical for su-
percritical spatial branching processes. In fact, in Fleischmann and Wachtel [8,
Theorem 1] it was shown, that X0

t normalized by its total masses X0
t (Rd), with

time t speeded up by a factor k, and contracted in space by k1/α, converges as
k ↑ ∞ towards a measure-valued process describing a single atom of mass one
which fluctuates in macroscopic time according to an α-stable process.

What else can be expected concerning the nature of states of X0? Here we have
the following conjectures about fixed time state properties.

Conjecture 6 (Superprocess with Neveu’s branching mechanism).Fix X0
0

= µ ∈ Mf and t > 0.

(a) (Absolute continuity): In all dimensions, with probability one, the
measure X0

t (dx) is absolutely continuous.

(b) (Dichotomy of density functions): If d = 1 and α > 1, with proba-

bility one there exists a continuous version, say X̃0
t , of the density function

X0
t of the measures X0

t (dx). On the other hand, if d > 1 or α ≤ 1, we
have local unboundedness of X0

t .

For the remaining statements, suppose d = 1 and α > 1.

(c) (Optimal local Hölder continuity): Write η0
c := α − 1. Then the

continuous density X̃0
t is locally Hölder continuous of every index η < η0

c .
Moreover, η0

c is optimal.

(d) (Lipschitz continuity at a given point): Fix x0 ∈ R. Then a.s. X̃0
t

is Lipschitz continuous at x0 . 3

Note that all these conjectures are based on our results above together with
Conjecture 4, by letting formally β ↓ 0.

By the way, as in the earlier case of (α, d, β)-superprocesses with β > 0, the
verification of existence of density functions should be done along the lines of prov-
ing existence of mild fundamental solutions to the log-Laplace equation (15). Such
solutions should exist despite the non-local Lipschitz property in the branching
mechanism.
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4. Main tools to get the Hölder statements

Clearly, a standard procedure to get an optimal Hölder index of continuity is via
Kolmogorov’s criterion by using “high” moments. This, for instance, can be done in
the case of one-dimensional continuous super-Brownian motion (α = 2, d = 1 = β)
to show local Hölder continuity in the space variable of any index smaller than 1

2 ,
see the estimates in the proof of Corollary 3.4 in Walsh [24]. But in our β < 1 case,
“high” moments do not exist, and it turns out that we cannot use this method for
all possible range of parameters α, β. Hence we have to go deeply into the jump
structure of the superprocess to obtain the needed estimates.

Actually, the starting point for all of our Hölder proofs is the well-known martin-
gale decomposition of the (α, d, β)-superprocess X, valid for any α, d, β; see, e.g., [5,
Lemma 1.6]:

For all sufficiently smooth bounded test functions ϕ ≥ 0 on R
d and t ≥ 0,

〈Xt, ϕ〉 = 〈µ, ϕ〉 +

∫ t

0

ds 〈Xs, ∆αϕ〉 + Mt(ϕ) + a It(ϕ) (16)

with discontinuous martingale

t 7→ Mt(ϕ) :=

∫

(0,t]×Rd×R+

Ñ
(
d(s, x, r)

)
r ϕ(x) (17)

and increasing process

t 7→ It(ϕ) :=

∫ t

0

ds 〈Xs, ϕ〉. (18)

Here Ñ := N −N̂ , where N
(
d(s, x, r)

)
is a random measure on (0,∞)×R

d×(0,∞)
describing all the jumps rδx of X at times s at sites x of size r, which are the
only discontinuities of the process X. Moreover,

N̂
(
d(s, x, r)

)
= ̺ ds Xs(dx) r−2−βdr (19)

is the compensator of N, where ̺ := b (1 + β)β/Γ(1 − β) with Γ denoting the
Gamma function.

Recall that under our assumption d < α
β , for fixed t > 0, the random measure

Xt(dx) is absolutely continuous a.s. From the Green function representation re-
lated to (16), see, e.g., [5, (1.9)] we obtain the following representation of a version
of the density function of Xt(dx) (see, e.g., [5, (1.12)]):

Xt(x) = µ∗pα
t (x) +

∫

(0,t]×Rd

M
(
d(s, y)

)
pα

t−s(x − y)

+ a

∫

(0,t]×Rd

I
(
d(s, y)

)
pα

t−s(x − y) =: Z1
t (x) + Z2

t (x) + Z3
t (x), x ∈ R

d,

(20)

with notation in the obvious correspondence. Here M
(
d(s, y)

)
is the martingale

measure related to (17) and I
(
d(s, y)

)
the random measure related to (18).

It is easy to see that the deterministic function Z1
t is locally Lipschitz continuous.

It is also not difficult to show that Z3
t is a.s. locally Lipschitz, and hence we fix our

attention on the main term Z2
t involving the martingale measure M . Note that Z2

t

is the most difficult term to analyze. Here the starting point is, that the random
increment Z2

t (x1) − Z2
t (x2) can be represented as the difference of the values of

two spectrally positive (1 + β)-stable processes L1, L2 at some random times T+ ,
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T− , respectively. Recall that per definition L is a spectrally positive (1 + β)-stable
process, if it is an R-valued time-homogeneous process with independent increments
and with Laplace transform given by

E e−λL(t) = etλ1+β

, λ, t ≥ 0. (21)

Consequently, there is a representation

Z2
t (x1) − Z2

t (x2) = L1(T+) − L2(T−). (22)

Here the random times T± are given by

T± :=

∫ t

0

ds

∫

R

Xs(dy)
(
pα

t−s(x1 − y) − pα
t−s(x2 − y)

)1+β

±
(23)

with ± referring to the positive and negative parts.
It follows from (22), that the Hölder continuity can be destroyed by “big” values

of the processes L1 and L2. Now, it is known from the standard theory of spectrally
positive stable processes that “big” values are due to “big” positive jumps. Thus,
to prove the Hölder continuity, one needs to control all the jumps of the processes
L1, L2 by time T± . More precisely, we show in the proof that there are no jumps,
which can destroy the Hölder continuity of order η smaller than the critical index
ηc or η̄c .

The more complicated parts are the optimality proofs for the indexes. To prove
the optimality of ηc we are going to show that there exists a sequence of “big”
jumps of X that occur close to time t in the considered domain U in Theorem 2(b),
and these jumps indeed destroy the local Hölder continuity of index ηc . But the
existence of such a sequence is not sufficient for the proof of optimality. We need
additionally to show that the influence of “big” jumps of one of the stable processes
L1, L2 cannot be compensated by “big” jumps of the other one.

To prove the optimality of η̄c , additionally the “big” jumps have to be found in
the vicinity of the fixed x0 . Moreover, values of “big” jumps in Theorem 3(b) are
of a smaller order than those in Theorem 2(b), because it is more likely to have
“big” jumps in a domain than in a vicinity of a fixed point. This creates additional
technical difficulties in the proof of Theorem 3(b).

Now, we would like to explain a bit the occurrence of the critical value ηc =
α

1+β − 1 for local Hölder continuity in Theorem 2 and we will skip the discussion

on η̄c which goes along similar lines.
Our first observation is that, up to an probability error of ε ∈ (0, 1

1+β ), all the

jumps ∆M(s, y) of the martingale measure M
(
d(s, y)

)
at times s < t are bounded

by (t − s)
1

1+β
−ε, that is

P

(
∆M(s, y) ≤ c (t − s)

1
1+β

−ε for all s < t and y ∈ R

)
≥ 1 − ε, (24)

see [5, Lemma 2.14]. However, it follows from (20) and (22) that the jumps ∆L1 and
∆L2 of L1 and L2, respectively, generated by the jumps ∆M(s, y) do not exceed

∆M(s, y) sup
y∈R

∣∣pα
t−s(x1 − y) − pα

t−s(x2 − y)
∣∣. (25)
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Hence, from (24) and an estimate for α-stable kernels (see [5, Lemma 2.1]) we
obtain the following bound

c (t − s)
1

1+β
−ε sup

y∈R

∣∣pα
t−s(x1 − y) − pα

t−s(x2 − y)
∣∣ (26)

≤ c (t − s)
1

1+β
−ε |x1 − x2|

δ

(t − s)δ/α+1/α
, 0 < δ ≤ 1,

for the jumps ∆L1 and ∆L2. If now δ = α
1+β − 1 − αε = ηc − αε (for sufficiently

small ε), then

∆L1, ∆L2 ≤ c |x1 − x2|
ηc−αε. (27)

But if the jumps of a spectrally positive stable process are not “big”, then the process
values cannot be “big” as well. Consequently,

P

(
L1, L2 ≤ c |x1 − x2|

ηc−αε
)

≥ 1 − ε. (28)

In view of (22), the latter implies

P

(∣∣Z2
t (x1) − Z2

t (x2)
∣∣ ≤ c |x1 − x2|

ηc−αε ∀x1, x2 ∈ K
)

≥ 1 − ε (29)

(with K a compact), which gives the Hölder continuity of Z2
t of any exponent

smaller than ηc .
To show the optimality of ηc we first prove that there exists a sequence (sn, yn, rn)

such that

sn ↑ t, yn ∈ (−1, 1), ∆M(sn, yn) = rn ≥ (t − sn)
1

1+β log
1

t − sn
. (30)

Using again a representation as in (22), with corresponding spectrally positive stable
processes and random times indexed by n, we have

Z2
t (yn) − Z2

t

(
yn + (t − sn)1/α

)
= L1

n(Tn,+) − L2
n(Tn,−). (31)

One can see, that the jump of L1
n generated by ∆M(sn, yn) is bounded from below

by

rn

(
pα

t−sn
(0) − pα

t−sn

(
(t − sn)1/α

))
≥

(
pa
1(0) − pa

1(1)
)
(t − sn)

1
1+β

− 1
α log

1

t − sn
.

Now “big” jumps of a spectrally positive stable process lead to “big” values of the
process, that is

L1
n(Tn,+) ≥ c (t − sn)

1
1+β

− 1
α log

1

t − sn
. (32)

Since the probability of having another “big” jump is small, one has

L2
n(Tn,−) ≤ c (t − sn)

1
1+β

− 1
α . (33)

As a result we have

Z2
t (yn) − Z2

t

(
yn + (t − sn)1/α

)
(
(t − sn)1/α

)ηc
=

L1
n(Tn,+) − L2

n(Tn,−)(
(t − sn)1/α

)ηc

≥ c
(t − sn)

1
1+β

− 1
α log 1

t−sn

(t − sn)
1

1+β
− 1

α

= c log
1

t − sn
−→
n↑∞

∞. (34)

In other words, Z2
t is not Hölder continuous of index ηc .
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