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Abstract

This paper deals with a sharp interface limit of the isothermal Navier-Stokes-Korteweg sys-
tem. The sharp interface limit is performed by matched asymptotic expansions of the fields
in powers of the interface width ε. These expansions are considered in the interfacial re-
gion (inner expansions) and in the bulk (outer expansion) and are matched order by order.
Particularly we consider the first orders of the corresponding inner equations obtained by a
change of coordinates in an interfacial layer. For a specific scaling we establish solvability
criteria for these inner equations and recover the results within the general setting of jump
conditions for sharp interface models.

1 Introduction

Phase transitions in single substance flows are usually described by two kinds of models: the
sharp interface model and the diffuse phase field model. The conventional and physically more
intuitive approach is the sharp interface model. In the sharp interface approach, interfaces
separating the coexisting phases or structural domains are modeled as hypersurfaces at which
certain quantities such as the density or the pressure suffer jump conditions. Local quantities
at the interface are then determined from the boundary conditions or are calculated from the
driving force for interfacial motion. The structure of possible interfacial conditions is quite well-
founded from the view point of thermodynamics. However from the numerical point of view
the sharp interface approach involves the explicit tracking of the interface and becomes often
numerically impractical for complicated microstructures. Because of these disadvantages, the
phase field approach has emerged as a powerful method during the last twenty years. A phase
field model represents a microstructure, both the compositional domains and the interfaces, as
a whole. The interface between different phases is described by a small transition region, where
an order parameter, representing the phases, changes its state smoothly. The microstructural
evolution is modeled by a system of partial differential equations. The phase field model contains
the corresponding sharp interface description as a particular limit, i.e. if the interfacial thickness
tends to zero. An overview about a large class of phase field models and their sharp interface
limits can be found in [2]. For phase field models it is of overall interest to validate them, by
investigating the sharp interface limit in appropriate scaling regimes.

In this work we consider a sharp interface limit of the isothermal Navier-Stokes-Korteweg
phase field model for a particular scaling. The sharp interface limit is performed by matched
asymptotic expansions of the fields of these models in powers of the interface width ε. These
expansions are considered in the interfacial region (inner expansion) and in the bulk (outer
expansion), and are matched order by order. This results in partial differential equations for the
diffuse field and a series of boundary conditions at the interface from which we achieve jump
conditions in the sharp interface limit.

We consider the case where the Mach number is of order O(1) and viscosity and capillarity
are both of order O(ε2). Our particular scaling of the viscosity leads to a no-entropy-dissipation
kinetic relation in the leading order O(1). The resulting sharp interface model is the isothermal
Euler model. In the first order O(ε) we obtain a Young-Laplace law and a non-zero entropy
dissipation, which is determined by the viscosity. The fact that the surface tension is of order
O(ε) is in agreement with the results obtained in [19], [18], [9] for equilibria. A different kinetic
relation was considered in [5], there surface tension and entropy dissipation are of order O(1)
and O(ε) respectively. There are also other physically meaningful scalings, for instance the case
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where the viscosity is of order O(ε), which implies entropy dissipation already in the leading
order [14], [3], [21]. Another possibility is to look at a low Mach number limit linked to the
sharp interface limit, which can be found in [13], and in [15], [16], [20] for the one phase case.

The paper is organized as follows: We start with describing the Navier-Stokes-Korteweg
phase field model in Section 2. The corresponding sharp interface setting is introduced in
Section 3. By non-dimensionalization we introduce the smallness parameter ε with physical
interpretation, see Section 4. In Section 5 we introduce the asymptotic expansions and provide
formulas for the geometric properties of the interface in two dimensions. Then we state our
main results in Section 6, which are proven in Sections 7 and 8 respectively. In Section 9 we
investigate the kinetic relation comprised in the jump conditions derived in Section 6. We show
that the state on one side of the phase boundary already determines the interfacial velocity and
the state on the other side of the phase boundary. Furthermore this property does not follow
from the jump conditions for mass and momentum alone.

2 The Navier-Stokes-Korteweg phase field model

We consider an isothermal, compressible fluid with density ρ ∈ (0, b) and velocity u ∈ Rd, that
is capable to undergo phase transitions. We assume that the stress tensor can be additively
decomposed according to

σ = σNS + σK ,

where σNS denotes the classical Navier-Stokes stress and σK is called Korteweg stress that takes
care of possible phase transitions. The Navier-Stokes stress has the form

σNS := λ(divu)I + µ(∇u + (∇u)T ), (2.1)

where λ is the bulk viscosity and µ is the shear viscosity, which satisfy µ > 0, λ+ 2µ
d ≥ 0, where

d is the space dimension. The Korteweg tensor is given by

σK :=
(
ργ∆ρ+

1
2
γ |∇ρ|2

)
I − (γ∇ρ⊗∇ρ) , (2.2)

where γ is a constant which models capillarity effects. The evolution of the model is described
by the isothermal Navier-Stokes-Korteweg equations

ρt + div(ρu) =0,
(ρu)t + div(ρu⊗ u) +∇p(ρ) =divσNS + divσK ,

in Rd × (0,T ).
(2.3)
(2.4)

We assume that the local part of the pressure p = p(ρ) is a non-monotone function of the
density given by a van-der-Waals law. From the density the phase can be directly derived, see
Figure 1. The corresponding Helmholtz free energy density function W (ρ) is related to the
pressure by

p(ρ) = ρW ′(ρ)−W (ρ) (2.5)

and has the following properties:

• W ∈ C2((0, b), [0,∞)),

• ∃a1, a2 ∈ (0, b) : W ′′ > 0 in (0, a1) ∪ (a2, b),W ′′ < 0 in (a1, a2),
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Figure 1: Van-der-Waals pressure and free energy density function

• limρ→bW (ρ) =∞.

We will denote the Gibbs free energy by g, which is given by g(ρ) = W ′(ρ).
Smooth solutions of (2.3), (2.4) identically satisfy the entropy inequality, which is given by(

W (ρ) +
ρ

2
|u|2 +

γ

2
|∇ρ|2

)
t
+ div

((
W (ρ) +

ρ

2
|u|2 +

γ

2
|∇ρ|2

)
u
)

(2.6)

+div ((p(ρ)I − σNS − σK) u + γρ∇ρ(∇ · u))
= −σNS : (∇u) ≤ 0.

An alternative form of the inequality is derived in [1], [9]. The existence of classical solutions of
(2.3),(2.4) was studied in [12], [17], while weak solutions were investigated in [10], [7].

3 The Euler-Korteweg sharp interface model

Now we describe the phase transition by means of a sharp interface model. In this paper
we treat the case where the capillarity γ and the viscosities λ and µ are of the same small
order. The corresponding sharp interface model is described by the Euler-Korteweg system.
In this context the conservation laws of mass and momentum read in the bulk phases Ω−(t)
:= {x ∈ Rd : ρ(t,x) ∈ (0, a1)} and Ω+(t) :={x ∈ Rd : ρ(t,x) ∈ (a2, b)}:

ρt + div(ρu) = 0, (3.1)
(ρu)t + div(ρu⊗ u) +∇p = 0 . (3.2)

The interface between two adjacent phases Ω± is described by a moving hypersurface Γ(t), i.e. a
sharp interface of zero thickness. Across Γ(t) the bulk quantities may have discontinuities. We
are particularly interested in the case that the interface itself is equipped with mass, momentum,
energy and entropy. The jump conditions for these quantities rely on the conservation laws for
mass, momentum and energy and on the entropy inequality across the interface Γ. To state
these jump condition we will use the following notation for some quantity ψ having a jump at
the interface. By ψ± we denote the limit at the interface from Ω± and we abbreviate

[[ψ]] := ψ+ − ψ−, {ψ} :=
ψ+ + ψ−

2
.

For more details of the following equations we refer to [6].
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The general forms of conservation of mass and momentum read:

[[ρ(uν − wν)]] = −∂ρΓ

∂t
− (divΓ(wt)− κwν)ρΓ, (3.3)

[[ρ(uν − wν)(u−w) + pν]] = −ρΓ
∂w
∂t

+ divΓ(σΓ) . (3.4)

The newly introduced quantities are the normal component of the fluid velocity uν , the interfacial
mass density ρΓ, the interfacial velocity w which may be decomposed into normal- and tangential
speed, i.e. w = wtt + wνν and σΓ ∈ Rd×(d−1) is the surface stress tensor. Each surface point
is equipped with a tangential matrix t and a normal vector ν and κ denotes the sum of the
principal curvatures.

We consider exclusively isothermal processes at the temperature T0, and these are guaranteed
by corresponding heat fluxes q , qΓ in the bulk and on the interface. The conservation of energy
serves to eliminate the heat fluxes in the entropy inequality, which hereafter becomes the relevant
inequality for the isothermal Euler-Korteweg model.

The general form of conservation of energy across the interfaces reads:[[
ρ(uν − wν)(e+

1
2
|u|2) + q · ν + uνp

]]
=

−
∂ρΓ(eΓ + 1

2 |w|
2)

∂t
− (divΓ(wt)− κwν)ρΓ(eΓ +

1
2
|w|2)− divΓ(qΓ −wT σΓ) . (3.5)

The internal energy densities of bulk and interface are denoted by ρe and ρΓeΓ, respectively.
Finally we give the entropy inequality across the interface. In [1], [9] it is shown that the sharp
interface version of the Navier-Stokes-Korteweg phase field model has entropy fluxes in the bulk
and at the interface that are given by q/T0 and qΓ/T0, respectively. In this case the entropy
inequality across the interface reads[[

ρ(uν − wν)s+
q · ν
T0

]]
≥ −∂ρΓsΓ

∂t
− (divΓ(wt)− κwν)ρΓsΓ − divΓ(

qΓ

T0
) , (3.6)

where ρs is the entropy density of the bulk, and the entropy density of the interface is denoted
by ρΓsΓ.

Next we multiply the momentum balance (3.4) by w and subtract it from the energy law
(3.5). The result is simplified by means of the jump condition for the mass, leading to the general
form of the jump condition for the internal energy[[

ρ(uν − wν)
(
e+

p

ρ
+

1
2
|u−w|2

)
+ q · ν

]]
=

− ∂ρΓeΓ

∂t
− (divΓ(wt)− κwν)ρΓeΓ − divΓ(qΓ) +∇Γ(w) : σT

Γ . (3.7)

We are interested here in a special case where the constitutive law for the surface stress vector
σΓ has a simple structure:

σΓ = γΓ
t
|t|2

. (3.8)

The quantity γΓ is called surface tension. In this case the jump condition for the internal energy
assumes the special form[[

ρ(uν − wν)
(
e+

p

ρ
+

1
2
|u−w|2

)
+ q · ν

]]
= −∂ρΓeΓ

∂t
− (ρΓeΓ − γΓ)(divΓ(wt)− κwν) . (3.9)
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Finally we multiply the entropy inequality by T0 and subtract it from the jump condition for
the internal energy. There follows the interfacial inequality for the Helmholtz free energy WΓ =
ρΓeΓ − T0ρΓsΓ:

∂WΓ

∂t
− (γΓ −WΓ)(divΓ(wt)− κwν)

+ {ρ(uν − wν)}
[[
W ′(ρ) +

1
2
|u−w|2

]]
+ [[ρ(uν − wν)]]

{
W ′(ρ) +

1
2
|u−w|2

}
≤ 0. (3.10)

Among the objectives of this study is to deduce the Euler-Korteweg sharp interface model
from the Navier-Stokes-Korteweg phase field model. Note that the sharp interface model must
fit into the setting given here, i.e. we have to recover (3.3), (3.4) and (3.10).

4 Non-dimensionalization

We introduce the following reference quantities xr, tr, ur, ρr, pr, µr and γr such that

x = xrx∗, t = trt
∗, u = uru∗, ρ = ρrρ

∗, p = prp
∗, λ = λ∗µr, µ = µ∗µr, γ = γrγ

∗.

Then we may rewrite the Navier-Stokes-Korteweg equations (2.3), (2.4) as

xr
urtr

ρ∗t∗ + div∗(ρ∗u∗) = 0,

trur
xr

(ρ∗u∗)t∗ +
t2ru

2
r

x2
r

div∗(ρ∗u∗ ⊗ u∗) +
t2ru

2
r

x2
rM

2
∇∗p∗ =

t2ru
2
r

x2
rRe

div∗σ∗NS + Cγ∗div∗σ∗K ,

where M denotes the Mach number M= ur
√

ρr
pr

, Re= ρr
µr
urxr is the Reynolds number and

C = t2rρrγr
x4
r

the capillarity number.
There are several possibilities to non-dimensionalize the NSK-system. In the sequel we choose
ur = xr

tr
and consider for a small parameter ε > 0 the following scaling:

M = 1, 1
Re = ε2, C = ε2. (4.1)

This leads to

ρ∗t∗ + div∗(ρ∗u∗) = 0, (4.2)
(ρ∗u∗)t∗ + div∗(ρ∗u∗ ⊗ u∗) +∇∗p∗ = ε2div∗σ∗NS + ε2γ∗div∗σ∗K . (4.3)

We will call this scaling the capillarity regime. We remark that (4.2),(4.3) is equivalent to

ρ∗t∗ + div∗(ρ∗u∗) = 0, (4.4)

u∗t∗ + (u∗ · ∇∗)u∗ +∇∗g(ρ∗) = ε2 1
ρ∗

div∗σ∗NS + ε2∇∗∆∗ρ∗. (4.5)

There are further choices that lead to physically meaningful limits. More details can be
found in the introduction.

For simplification we omit the symbol ∗ in the forthcoming considerations. Letting the
parameter ε→ 0 leads to jump conditions of the corresponding sharp interface model, which we
will deduce in Section 7. Before that, we need some prerequisites for the asymptotic analysis.
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5 Inner and outer expansions; matching conditions

We consider the two dimensional case d=2. The position of the phase boundary in the sharp
interface limit is described by a function r(t, s), where s is some coordinate parametrising the
interface. We can calculate normal- and tangent vectors as well as the velocity of the interface
from r.

The tangent vector pointing in counterclockwise direction is given by

t(t, s) =
(
∂r1

∂s
(t, s),

∂r2

∂s
(t, s)

)T
,

were r1 and r2 denote the components of the vector r in Cartesian coordinates. The inner unit
normal to the interface is given by

ν(t, s) =
1

|t(t, s)|

(
−∂r

2

∂s
(t, s),

∂r1

∂s
(t, s)

)T
.

The mean curvature, which in two space dimensions coincides with the sum of the principal
curvatures, is defined by

κ :=
r1
sr

2
ss − r1

ssr
2
s

((r1
s)2 + (r2

s)2)
3
2

. (5.1)

Next we define the interface velocity and its decomposition into tangential and normal compo-
nents by

w :=
∂r
∂t

= wtt + wνν. (5.2)

We observe that (
tj

|t|

)
s

= κ|t|νj and (νj)s = −tjκ, (j = 1, 2) (5.3)

and

(νj)ξνj = 0,
(
tj

|t|

)
ξ

tj

|t|
= 0,

(
tj

|t|

)
ξ

νj = − t
j

|t|
(νj)ξ, (5.4)

where the index ξ in the expressions denotes the time or tangential derivative. Note that in
equation (5.4) and all subsequent calculations we sum over all indices occurring twice.

For some generic quantity ψ the surface divergence in one dimension is defined by

divΓ(ψ) =
1
|t|
∂(|t|ψ)
∂s

. (5.5)

5.1 Outer setting

We assume the existence of expansions in ε for the density and velocity in the bulk phases:

u(t, x1, x2; ε) =
∞∑
i=0

εiui(t, x1, x2), ρ(t, x1, x2; ε) =
∞∑
i=0

εiρi(t, x1, x2). (5.6)
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Inserting these expansions into the NSK equations leads to the following equations in the first
two orders: In the O(ε0) order:

ρ0,t + div(ρ0u0) = 0, (5.7)
(u0)t + (u0 · ∇)u0 +∇g(ρ0) = 0. (5.8)

In the O(ε1) order:

ρ1,t + div(ρ1u0 + ρ0u1) = 0, (5.9)
(u1)t + (u0 · ∇)u1 + (u1 · ∇)u0 +∇(g′(ρ0)ρ1) = 0. (5.10)

The conditions at the interface are obtained via matching.

5.2 Inner setting

We assume that the interface Γε defined as

Γε(t) = {(x1, x2) ∈ R2 : ρε(t, x1, x2) = ρ∗} (5.11)

is a C2−hypersurface. We like to mention that this has not to be the case in general for all times
t. The value ρ∗ is some point in the elliptic region. The interface Γε is explicitly described by rε,
the inner unit normal νε and the tangential vector tε respectively. A point in the neighborhood
of the interface is represented by(

x1

x2

)
(τ, s, z) = rε(τ, s) + εzνε(τ, s), (5.12)

where z denotes the distance from the interface in normal direction. The reader may note that
we could have used t instead of τ in (5.12), but it will become clear in the subsequent analysis
why we want rename the time variable in inner coordinates. The small parameter ε is introduced
to zoom in the interfacial region. The representation (5.12) can be used to change variables from
(x1, x2)↔ (s, z) and without changing the time variable.

Figure 2: Boundary layer region

We suppose a scalar or a Cartesian component of a vector ψ is defined in inner and outer co-
ordinates, i.e. ψ(t, x1, x2) = Ψ(τ, s, z). In the following we denote quantities in inner coordinates
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by capital letters in particular R is the density in inner coordinates. The partial derivatives
transform as follows:

 ∂ψ
∂x1

∂ψ
∂x2

∂ψ
∂t

 =

 (1 + εzκ) 1
|tε|2 t

1
ε ε−1ν1

ε 0
(1 + εzκ) 1

|tε|2 t
2
ε ε−1ν2

ε 0
−(1 + εzκ)((wt)ε − εz 1

|tε|2 t
i
ε(ν

i
ε)τ ) −ε−1(wν)ε 1


 ∂Ψ

∂s
∂Ψ
∂z
∂Ψ
∂τ

+O(ε2), (5.13)

where (wt)ε = wiε
tiε
|tε|2 and (wν)ε = wiεν

i
ε.

Accordingly to the outer expansion (5.6) we assume the existence of inner expansions in ε.
In particular we assume

U(τ, s, z; ε) =
∞∑
i=0

εiUi(τ, s, z), R(τ, s, z; ε) =
∞∑
i=0

εiRi(τ, s, z), (5.14)

where Ui, Ri do not depend on ε for all i ∈ N0. Furthermore we suppose expansions of the
geometric quantity

r(τ, s; ε) =
∞∑
i=0

εiri(τ, s), (5.15)

which induces ε−expansions of νε, tε and wε.
Particularly we get the following expansions, up to terms of order O(ε2):

(wν)ε = νi0w
i
0︸ ︷︷ ︸

=:wν0

+ε (νi1w
i
0 + νi0w

i
1)︸ ︷︷ ︸

=:wν1

+O(ε2), (5.16)

(Uν)ε = νi0U
i
0︸︷︷︸

=:Uν0

+ε (νi1U
i
0 + νi0U

i
1)︸ ︷︷ ︸

=:Uν1

+O(ε2), (5.17)

(Ut)ε =
ti0U

i
0

|t0|2︸ ︷︷ ︸
=:Ut0

+ε

(
ti1U

i
0

|t0|2
− 2

ti0U
i
0t
j
0t
j
1

|t0|4
+
ti0U

i
1

|t0|2

)
︸ ︷︷ ︸

=:Ut1

+O(ε2), (5.18)

(wt)ε =
ti0w

i
0

|t0|2︸ ︷︷ ︸
=:wt0

+ε

(
ti1w

i
0

|t0|2
− 2

ti0w
i
0t
j
0t
j
1

|t0|4
+
ti0w

i
1

|t0|2

)
︸ ︷︷ ︸

=:wt1

+O(ε2), (5.19)

Jε := Rε((Uν)ε − (wν)ε) (5.20)
= R0(Uν0 − wν0)︸ ︷︷ ︸

=:J0

+ε (R1(Uν0 − wν0) +R0(Uν1 − wν1))︸ ︷︷ ︸
=:J1

+O(ε2). (5.21)

With respect to the expansions of the geometric quantities we observe

1 = |νε|2 = νi0ν
i
0 + 2ενi0ν

i
1 +O(ε2),

which implies
νi0ν

i
0 = 1, νi0ν

i
1 = 0. (5.22)

Furthermore we have
0 = tiεν

i
ε = ti0ν

i
0 + ε(ti1ν

i
0 + ti0ν

i
1) +O(ε2),
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which implies
ti0ν

i
0 = 1, νi0t

i
1 + νi1t

i
0 = 0. (5.23)

Additionally an easy calculation shows

(νi0)s = −κ0t
i
0,

(
ti0
|t0|

)
s

= κ0|t0|νi0. (5.24)

Using (5.12), (5.14) and (5.15) we get the inner equations by comparing coefficients of different
powers of ε.

5.3 Matching conditions

Inner- and outer quantities are matched by the usual procedure, see [8] for details. For conve-
nience of the reader we sketch the arguments. Let ψ and Ψ be any function possessing expansions
like (5.6) and (5.14). Near the interfacial layer we formally equate the two expansions

Ψ(τ, s, z; ε) =
∞∑
i=0

εiΨi(τ, s, z) =
∞∑
i=0

εiψi(t, rε(τ, s) + εzνε(τ, s)) = ψ(t, x1, x2; ε). (5.25)

Then we expand the right-hand side in a Taylor series yielding
∞∑
i=0

εiΨi(τ, s, z) =
N∑
i=0

εiP±i (τ, s, z) + εN+1R±N+1, (5.26)

where

P±i =
1
i!
di

dεi
ψ(t, rε(τ, s) + εzνε(τ, s))

∣∣∣∣
ε=0

(5.27)

and R±N+1 is a Lagrange remainder evaluated at some small ε̂. We observe that P±i is a polyno-
mial of order i in z with coefficients depending on r and its derivatives and on (x1, x2)-derivatives
of ψ. We will assume that all the (x1, x2)-derivatives of ψ up to order N + 1 are bounded in a
neighborhood of the interface. The polynomials P+

i , P
−
i are valid for z > 0 and z < 0 respec-

tively. Now letting z → ±∞ with ε coupled to z such that εzN+1 → 0 but otherwise arbitrary.
Then the remainder term in (5.26) has higher order than all the preceding terms. This fact leads
to the identification of the inner quantities with the Taylor polynomials for z →∞, i.e.

Ψi(τ, s, z) = P±i (τ, s, z) + o(1) for z → ±∞. (5.28)

Applying this to the first two orders of the asymptotic expansions shows

Ψ0(τ, s, z)→ ψ±0 (τ, r0(τ, s)) z → ±∞, (5.29)

Ψ1(τ, s, z)→ ψ±1 (τ, r0(τ, s)) +
(
∂ψ0

∂xj

)±
(τ, r0(τ, s))(rj1(τ, s) + νj0(τ, s)z) z → ±∞. (5.30)

By differentiating both sides in (5.25) with respect to s, z or τ we can derive further matching
conditions:

Ψ0,τ →
(
∂ψ0

∂xj

)±
(τ, r0(τ, s))wj0(τ, s) +

(
∂ψ0

∂t

)±
(τ, r0(τ, s)) z → ±∞, (5.31)

Ψ0,s →
(
∂ψ0

∂xj

)±
(τ, r0(τ, s))tj0(τ, s) z → ±∞, (5.32)

Ψ0,z → 0 z → ±∞, (5.33)

Ψ1,z →
(
∂ψ0

∂xj

)±
(τ, r0(τ, s))νj0(τ, s) z → ±∞. (5.34)
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We will assume that all these limits are attained superlinearly fast.
When we define

ψ+
0 (s, τ) := lim

z>0,z→0
ψ0(τ, r0(s, τ) + zν0(s, τ)), (5.35)

ψ−0 (s, τ) := lim
z<0,z→0

ψ0(τ, r0(s, τ) + zν0(s, τ)), (5.36)

we can rewrite (5.31) and (5.32) as

Ψ0,τ → (ψ±0 )τ z → ±∞, (5.37)
Ψ0,s → (ψ±0 )s z → ±∞. (5.38)

6 Main results

In our considerations we assume that for all relevant quantities there exists an asymptotic
expansion in ε. In particular we consider solutions of the structure given below:

Definition 1 Let (ρε,uε) be a classical solution of (4.4),(4.5) existing in the time interval [0, T )
with inner and outer expansions as in (5.6) and (5.14).

In addition let

Ω−ε (t) := {(x1, x2) ∈ R2 : ρε(t, x1, x2) < ρ∗},
Ω+
ε (t) := {(x1, x2) ∈ R2 : ρε(t, x1, x2) > ρ∗},

Γε(t) := {(x1, x2) ∈ R2 : ρε(t, x1, x2) = ρ∗},

for t ∈ [0, T ).
When Γε is a C1([0, T ), C2(R2))-hypersurface with an asymptotic ε-expansion as in (5.15)

we call (ρ0,u0, ρ1,u1) an outer solution if

ρ0, ρ1 ∈ C1([0, T ), C0(Ω̄±0 (t))) ∩ C0([0, T ), C1(Ω̄±0 (t))), (6.1)
u0,u1 ∈ C1([0, T ), C0(Ω̄±0 (t))) ∩ C0([0, T ), C1(Ω̄±0 (t))) (6.2)

and (ρ0,u0, ρ1,u1) satisfies

ρ0,t + div(ρ0u0) = 0, (6.3)
(u0)t + (u0 · ∇)u0 +∇g(ρ0) = 0, (6.4)

ρ1,t + div(ρ1u0 + ρ0u1) = 0, (6.5)
(u1)t + (u0 · ∇)u1 + (u1 · ∇)u0 +∇(g′(ρ0)ρ1) = 0. (6.6)

When Γε is a C1([0, T ), C2(Ω))-hypersurface with an asymptotic ε-expansion as in (5.15) we
call (R0,U0, R1,U1) an inner solution if

R0, R1 ∈ C1(I × [0, T ), C3(R)), (6.7)
U0,U1 ∈ C1(I × [0, T ), C1(R)) (6.8)

(6.9)
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and (R0,U0, R1,U1) satisfies

−wν0R0,z + (Uν0R0)z = 0, (6.10)

−wν0(U j0 )z + Uν0(U j0 )z + νj0g(R0)z − νj0γR0,zzz = 0, (6.11)

−wν1R0,z − wν0R1,z − wt0R0,s +R0,τ +
ti0
|t0|2

(R0U
i
0)s + (R1Uν0 +R0Uν1)z = 0, (6.12)

−wν1(U j0 )z − wν0(U j1 )z + (U j0 )τ − wt0(U j0 )s + Uν1

(
U j0

)
z

+ Uν0

(
U j1

)
z

(6.13)

+Ut0(U j0 )s + g(R0)zν
j
1 + (g′(R0)R1)zν

j
0 + g(R0)s

tj0
|t0|2

− (λ+ 2µ) νj0
1
R0

(Uν0)zz

= µtj0
1
R0

(Ut0)zz + γνj0R1,zzz + γνj1R0,zzz − γκ0ν
j
0R0,zz + γ

tj0
|t0|2

R0,szz.

We call (ρ0,u0, ρ1,u1, R0,U0, R1,U1) a matching solution, when (ρ0,u0, ρ1,u1) is an
outer solution, (R0,U0, R1,U1) is an inner solution and both are linked by the matching condi-
tions (5.29)-(5.34). We call a matching solution admissible, if the mass flux ρ0(uν0−wν0) 6= 0.

Remark 6.1
Equations (6.3)-(6.6) were motivated in Section 5.1. To derive (6.10)-(6.13) we perform the
coordinate change (5.12) in (4.4) and (4.5), which changes the partial derivatives according to
(5.13). Then we insert the expansions (5.14) and compare coefficients of different powers of ε.

Remark 6.2
The admissibility condition ρ0(uν0 − wν0) 6= 0 is due to two reasons. We think that the case of
real phase transitions with non-zero mass flux over the interface is more interesting. Furthermore
the subsequent analysis does not cover the case ρ0(uν0 − wν0) = 0.

Now we are well-prepared to state our main results.

Theorem 6.3
If (ρ0,u0, ρ1,u1, R0,U0, R1,U1) is an admissible matching solution defined as in Definition 1,
then the following jump conditions up to order O(ε2) are fulfilled:

[[ρε((uν)ε − (wν)ε)]] = −ε∂ρΓ

∂τ
− ε(divΓ(wt0)− κ0wν0)ρΓ, (6.14)

[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]] = −ερΓ
∂w0

∂τ
+ εdivΓ(σΓ), (6.15)[[

1
2

(
jε
ρε

)2

+ g(ρε)

]]
= −ε

∫ ∞
0

νj0

(
U j0 − (uj0)+

)
τ
dz (6.16)

−ε
∫ 0

−∞
νj0

(
U j0 − (uj0)−

)
τ
dz

−ε(λ+ 2µ)j0
∫ ∞
−∞

((
1
R0

)
z

)2

dz +O(ε2),
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where

ρΓ :=
∫ ∞

0
(R0 − ρ+

0 ) dz −
∫ 0

−∞
(R0 − ρ−0 ) dz +O(ε), (6.17)

σΓ := σjΓ =
(∫ ∞

0

(( j2
0

R0
− j2

0

ρ+
0

+ γR2
0,z

))
dz +

∫ 0

−∞
. . . dz

)
tj0
|t0|2

+O(ε). (6.18)

Remark 6.4
We want to emphasize that (6.14) and (6.15) recover (3.3) and (3.4) respectively and we will
show in Theorem 6.6 that (6.14) - (6.16) are in agreement with (3.10).

Remark 6.5
The zeroth orders of (6.14) - (6.16) imply that the states ρ±0 are the Maxwell points of the free
energy density function

Wj0(ρ) := W (ρ)− j2
0

2ρ
.

Theorem 6.6
If (ρ0,u0, ρ1,u1, R0,U0, R1,U1) is an admissible matching solution defined as in Definition 1,
then for ε sufficiently small the jump conditions derived in Theorem 6.3 imply the inequality

0 ≥ −ε(λ+ 2µ)j2
0

∫ ∞
−∞

((
1
R0

)
z

)2

dz +O(ε2) (6.19)

= ε
∂WΓ

∂τ
− ε (γΓ −WΓ) (divΓ((wt)ε)− κε(wν)ε) + [[jε]]

{
W ′(ρε) +

|uε −wε|2

2

}
+{jε}

[[
W ′(ρε) +

|uε −wε|2

2

]]
.

Recall that the surface tension γΓ is related to the surface stress tensor by (3.8)2. The interface
mass density ρΓ and the surface stress tensor are as in (6.17), (6.18) and the Helmholtz surface
energy density WΓ is given by

WΓ =
∫ ∞

0

(
W (R0)−W (ρ+

0 ) +
1
2
j2
0

R0
− 1

2
j2
0

ρ+
0

+
γ

2
R2

0,z

)
dz (6.20)

+
∫ 0

−∞

(
W (R0)−W (ρ−0 ) +

1
2
j2
0

R0
− 1

2
j2
0

ρ−0
+
γ

2
R2

0,z

)
dz.

The inequality (6.19) is identical to the entropy inequality (3.10). Thus the jump conditions
derived in Theorem 6.3 are compatible to the second law of thermodynamics.

Remark 6.7
The inequality (6.19) can be obtained by straightforward but cumbersome calculations using
asymptotic analysis to the entropy inequality in the bulk (see (2.6)), which is derived in [9].
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7 Proof of Theorem 6.3

In the following lemma we will establish the zeroth order of (6.14), (6.15) and (6.16).

Lemma 7.1
If (ρ0,u0, ρ1,u1, R0,U0, R1,U1) is an admissible matching solution defined as in Definition 1,
then the following zeroth order jump conditions are satisfied:

[[ρε((uν)ε − (wν)ε)]]0 = 0, (7.1)
[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]0 = 0, (7.2)

[[(ut)ε]]0 = 0, (7.3)[[
1
2

(
jε
ρε

)2

+ g(ρε)

]]
0

= 0. (7.4)

Proof:
The mass flux over the interface is given by j := ρ(uν − wν). Hence equation (6.10) implies
J0,z = 0 and therefore we get the jump condition (7.1), i.e.

[[j]]0 = 0. (7.5)

Multiplying (6.11) with the zeroth order of the tangent vector t0 we obtain

J0

R0
(Ut0)z = 0. (7.6)

Hence, the leading order of the tangent velocity Ut0 is constant over the interface. Furthermore
to solve (6.10) and (6.11) it is sufficient to substitute Uν0 = J0

R0
− wν0 in (6.11) and to solve

(6.11) times ν0 which gives

J0

R0

(
J0

R0

)
z

+ g(R0)z = γR0,zzz. (7.7)

By Proposition 1.2 in the work of Benzoni-Gavage et. al. [4] there exist values ρ±0 satisfying
certain jump conditions which we will state in (7.9) and (7.12) below. Given these states ρ±0
there exists a solution R0 of (7.7) attaining ρ±0 as boundary values.

In the sequel we will show that (7.9) and (7.12) are necessary conditions for boundary values
of solutions of (7.7). From (7.7) we infer

1
2

(
J0

R0

)2

+ g(R0) = γR0,zz + c1 (7.8)

for some c1 ∈ R. Using the matching conditions (5.29) and (5.33) this implies

c1 =
1
2

(
j0

ρ−0

)2

+ g(ρ−0 ) =
1
2

(
j0

ρ+
0

)2

+ g(ρ+
0 ). (7.9)

Multiplying (7.7) by R0 we get

J0

(
J0

R0

)
z

+ p(R0)z = γR0R0,zzz, (7.10)
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which implies
J2

0

R0
+ p(R0) = γ

(
R0R0,zz −

1
2

(R0,z)2

)
+ c2 (7.11)

for some c2 in R. Applying (5.29) and (5.33) to (7.11) we find

c2 =
j2
0

ρ−0
+ p(ρ−0 ) =

j2
0

ρ+
0

+ p(ρ+
0 ). (7.12)

�

Remark 7.2
In Lemma 7.1 we have seen that the tangential velocity is constant over the interface and up to
now we have not chosen a specific parameterization of the interface. So we are free to impose

U i0 = wt0t
i
0 + Uν0ν

i
0, i.e. Ut0 = wt0. (7.13)

We want to point out that the admissibility condition from Definition 1 is crucial to establish
the equality of the tangent velocities of the fluid and the interface.

Lemma 7.3
Let (ρ0,u0, ρ1,u1, R0,U0, R1,U1) be an admissible matching solution and let the operator

L : W 3,1(R)×W 1,1(R)×W 1,1(R)→ L1(R)× L1(R)× L1(R)

be given by

L

 A
B
C

 :=

 (A(Uν0 − wν0) +R0B)z
((Uν0 − wν0)B + g′(R0)A− γAzz)z

(Uν0 − wν0)Cz

 , (7.14)

then

L

 A
B
C

 =

 f1

f2

f3

 (7.15)

has a solution if and only if ∫ ∞
−∞

f1 dz = 0, (7.16)∫ ∞
−∞

f2 dz = 0, (7.17)∫ ∞
−∞

R0f3 dz = 0, (7.18)∫ ∞
−∞

j0
R0
f1 +R0f2 dz = 0, (7.19)

where f1, f2, f3 ∈ L1(R).
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Proof:
By the Fredholm alternative theorem the system (7.15) is solvable if and only if the right hand
side satisfies ∫ ∞

−∞
f · Ã+ g · B̃ + h · C̃ dz = 0

for every solution (Ã, B̃, C̃)T of the homogeneous problem for the adjoint operator. The adjoint
operator

L∗ : L∞(R)× L∞(R)× L∞(R)→W−3,1(R)×W−1,1(R)×W−1,1(R)

is given by

L∗

 Ã

B̃

C̃

 :=

 (Uν0 − wν0)Ãz + g′(R0)B̃z − γB̃zzz
R0Ãz + (Uν0 − wν0)B̃z(

(Uν0 − wν0)C̃
)
z

 . (7.20)

In order to determine solvability criteria for (7.15) we have to find all (Ã, B̃, C̃)T ∈ (L∞(R))3

satisfying
L∗(Ã, B̃, C̃) = 0. (7.21)

Considering the homogeneous problem (7.21) it is well known (cf. [11] for example) that all
distributional solutions are already classical solutions. There are five linearly independent solu-
tions of (7.21) in C3(R)× C1(R)× C1(R). We have to determine whether they are elements of
(L∞(R))3.

The homogeneous problem decouples into one problem for Ã and B̃ and one for C̃. The
latter immediately implies due to (5.20) that C̃ has to be some multiple of R0. The equations
for Ã and B̃ are more involved. They amount to

j0
R0
Ãz + g′(R0)B̃z − γB̃zzz = 0, (7.22)

R0Ãz + (Uν0 − wν0)B̃z = 0. (7.23)

We can solve (7.23) for Ãz, which yields

Ãz = − j0
R2

0

B̃z. (7.24)

Inserting (7.24) in (7.22) we obtain

− j
2
0

R3
0

B̃z + g′(R0)B̃z − γB̃zzz = 0. (7.25)

For simplification of notation we introduce a new energy density function and a corresponding
Gibbs free energy function

W̃ (R0) := W (R0)− 1
2
j2
0

R0
, g̃(R0) := W̃ ′(R0) = g(R0) +

1
2
j2
0

R2
0

. (7.26)

Then (7.25) becomes
g̃′(R0)B̃z − γB̃zzz = 0. (7.27)
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We observe that each constant function and B̃ = R0 are solutions of (7.27). So we only have to
find one more linearly independent solution of (7.27). When we define D̃ := B̃z and Ẽ = D̃z,
we get from (7.27) (

D̃

Ẽ

)
z

=
(

0 1
1
γ g̃
′(R0) 0

)(
D̃

Ẽ

)
. (7.28)

As B̃ = R0 is a solution of (7.27), (R0,z, R0,zz)T is a solution of (7.28). Due to the d’Alembert
reduction principle we make the following ansatz:

D̃(z) = ϕ(z)R0,z(z), (7.29)
Ẽ(z) = ϕ(z)R0,zz(z) + ψ(z), (7.30)

where the functions ϕ and ψ are to be determined. Inserting (7.29), (7.30) in (7.28) we get

ϕz(z)R0,z(z) + ϕ(z)R0,zz(z) = ϕ(z)R0,zz + ψ(z), (7.31)

ϕz(z)R0,zz(z) + ϕ(z)R0,zzz(z) + ψz(z) =
1
γ
g̃′(R0)ϕ(z)R0,z(z). (7.32)

We can solve (7.31) with respect to ϕz, which gives

ϕz =
ψ

R0,z
. (7.33)

Using (7.7) and (7.26) in (7.32) we obtain

ψz(z) = −ϕz(z)R0,zz(z)
(7.33)

= −ψ(z)
R0,zz(z)
R0,z(z)

. (7.34)

From this we find
ψ =

k

R0,z

for k ∈ R and hence by (7.33)

ϕz =
k

(R0,z)2
. (7.35)

We only need one solution F of (7.27) which is linearly independent of the constant and R0.
Thus we consider the special case

ϕ(z) =
∫ z

0

1
(R0,z(z̃))2

dz̃.

Then F is given as a primitive function of ϕR0,z. We will show F 6∈ L∞(R). To do so it is
sufficient to show

|ϕ(z)R0,z(z)| → ∞ for |z| → ∞, (7.36)

because it directly implies
|F (z)| → ∞ for |z| → ∞.

To verify (7.36) we rely on the fact

R0,z(z), R0,zz(z)→ 0 for |z| → ∞,
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which is prescribed by the matching conditions. Given ε > 0 there exists K > 0 such that

|R0,z(z)| < ε, |R0,zz(z)| < ε for |z| > K.

We consider some pair (z, z̄) with |z̄| > K + 1, |z| > K and zz̄ > 0. Then we have

|R0,z(z)−R0,z(z̄)| =
∣∣∣∣∫ z

z̄
R0,zz(z̃) dz̃

∣∣∣∣ ≤ |z − z̄|ε. (7.37)

Therefore
|R0,z(z)| ≤ 2|R0,z(z̄)| for all |z − z̄| ≤ |R0,z(z̄)|

ε
(< 1).

Next we define z∗ := z̄ − sgn(z̄) |R0,z(z̄)|
ε and find

|ϕ(z̄)| ≥

∣∣∣∣∣
∫ z̄

z∗

(
1

R0,z(z̃)

)2

dz̃

∣∣∣∣∣ = |z̄ − z∗|1
4

∣∣∣∣ 1
R0,z(z̄)

∣∣∣∣2 , (7.38)

which implies

|ϕ(z̄)R0,z(z̄)| ≥
1
4
|z̄ − z∗|

∣∣∣∣ 1
R0,z(z̄)

∣∣∣∣ =
1
4ε
. (7.39)

So for every ε > 0 we find some K > 0 such that

|ϕ(z̄)R0,z(z̄)| ≥
1
4ε

for all |z̄| > K + 1, (7.40)

which proves (7.36). Hence there are only two linearly independent solutions of (7.27) in L∞(R).
Using (7.24) the general solution of the homogeneous problem (7.21) in (L∞(R))3 has the

form

Ã = k1 + k2
j0
R0
,

B̃ = k3 + k2R0, (7.41)
C̃ = k4R0,

for coefficients k1, k2, k3, k4 ∈ R. This gives rise to the solvabilty criteria∫∞
−∞ f1 dz = 0,

∫ ∞
−∞

f2 dz = 0,

∫∞
−∞R0f3 dz = 0,

∫ ∞
−∞

j0
R0
f1 +R0f2 dz = 0.

�

Lemma 7.4
Let (ρ0,u0, ρ1,u1, R0,U0, R1,U1) be an admissible matching solution and let Φ,Ψν ,Ψt ∈ C∞(R)
satisfying

Φ(z) = ρ±1 +
(
∂ρ0

∂xk

)±
(rk1 + zνk0 ), (7.42)

Ψν(z) = (uj0)±νj1 + (uj1)±νj0 +

(
∂uj0
∂xk

)±
νj0(rk1 + zνk0 ), (7.43)

Ψt(z) = (uj1)±
tj0
|t0|2

+

(
∂uj0
∂xk

)±
tj0
|t0|2

(rk1 + zνk0 ) + (uj0)±
(

tj1
|t0|2

− 2
tj0t

i
0t
i
1

|t0|4

)
, (7.44)
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for z > 1 and z < −1 respectively. Then equation (6.12), (6.13) can be equivalently written as

L

 R̃1

Ũν1

Ũt1

 =

 f1[R0,U0,Φ,Ψ]
f2[R0,U0,Φ,Ψ]
f3[R0,U0,Φ,Ψ]

 , (7.45)

where L is the operator from Lemma 7.3, R̃1 = R1 − Φ, Ũν1 = R1 −Ψν , Ũt1 = Ut1 −Ψt and

f1[R0,U0,Φ,Ψ] := − 1
|t0|

(wt0|t0|R0)s −R0,τ + κ0R0Uν0 (7.46)

− (Φ(Uν0 − wν0) +R0(Ψν − wν1))z ,

f2[R0,U0,Φ,Ψ] := −νj0(U j0 )τ + (λ+ 2µ)
1
R0

(Uν0)zz − γκ0R0,zz (7.47)

−
(
(Uν0 − wν0)(Ψν − wν1) + g′(R0)Φ− γΦzz

)
z
,

and

f3[R0,U0,Φ,Ψ] := −

(
tj0
|t0|2

)
(U j0 )τ −

1
|t0|2

(g(R0)− γR0,zz)s − (Uν0 − wν0)(Ψt)z. (7.48)

Proof:
We will not consider (6.13) directly but separate it into a normal and a tangential part. The
normal part is given by (6.13) times νj0 plus (6.10) times νj1, i.e.

− wν1(Uν0)z − wν0(Uν1)z + νj0(U j0 )τ + Uν1(Uν0)z + Uν0(Uν1)z + (g′(R0)R1)z

=
1
R0

(λ+ 2µ)(Uν0)zz + γR1,zzz − κ0γR0,zz. (7.49)

Rearranging the terms in (7.49) gives(
(Uν0 − wν0)(Uν1 − wν1) + g′(R0)R1

)
z

= −νj0(U j0 )τ +
1
R0

(λ+ 2µ)(Uν0)zz + γR1,zzz − κ0γR0,zz. (7.50)

The tangential part of (6.13) is given by (6.13) times tj0
|t0|2 plus (6.10) times tj1

|t0|2 − 2 t
j
0t
i
0t
i
1

|t0|4 , i.e.

−wν1(Ut0)z − wν0

(
tj0U

j
1

|t0|2

)
z

+
tj0
|t0|2

(U j0 )τ + Uν1(Ut0)zUν0

(
tj0U

j
1

|t0|2

)
z

+
tj0ν

j
1

|t0|2
g(R0)z +

1
|t0|2

g(R0)s + (Uν0 − wν0)

(
tj1U

j
0

|t0|2
− 2

tj0U
j
0 t
i
0t
i
1

|t0|4

)
z

+
tj1ν

j
0

|t2
0

g(R0)z (7.51)

= µ
1
R0

(Ut0)zz + γ
νj1t

j
0

|t0|2
R0,zzz + γ

1
|t0|2

R0,szz + γ
tj1ν

i
0

|t0|2
R0,zzz.

Using (7.13) and (5.23) this is equivalent to

(Uν0 − wν0)(Ut1)z +
tj0
|t0|2

(U j0 )τ +
1
|t0|2

g(R0)s = γ
1
|t0|2

R0,szz. (7.52)
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By the matching conditions, R1, Uν1, Ut1 must have the following asymptotic behavior for z →
±∞ :

R1(z) → ρ±1 +
(
∂ρ0

∂xk

)±
(rk1 + zνk0 ), (7.53)

Uν1(z) → (uj0)±νj1 + (uj1)±νj0 +

(
∂uj0
∂xk

)±
νj0(rk1 + zνk0 ), (7.54)

Ut1(z) → (uj1)±
tj0
|t0|2

+

(
∂uj0
∂xk

)±
tj0
|t0|2

(rk1 + zνk0 ) + (uj0)±
(

tj1
|t0|2

− 2
tj0t

i
0t
i
1

|t0|4

)
. (7.55)

Hence, solving (6.12),(6.13) is equivalent to solving(
R̃1(Uν0 − wν0) +R0Ũν1

)
z

= − 1
|t0|

(wt0|t0|R0)s −R0,τ + κ0R0Uν0

− (Φ(Uν0 − wν0) +R0(Ψν − wν1))z ,

(
(Uν0 − wν0)Ũν1 + g′(R0)R̃1 − γR̃1,zz

)
z

= −νj0(U j0 )τ + (λ+ 2µ)
1
R0

(Uν0)zz − γκR0,zz

−
(
(Uν0 − wν0)(Ψν − wν1) + g′(R0)Φ− γΦzz

)
z

and

(Uν0 − wν0)(Ũt1)z = −

(
tj0
|t0|2

)
(U j0 )τ −

1
|t0|2

(g(R0)− γR0,zz)s − (Uν0 − wν0)(Ψt)z,

with the new boundary conditions

R̃1(z), Ũν1(z), Ũt1(z)→ 0 for z →∞. (7.56)

�

In the following we deduce the first order jump conditions in Theorem 6.3 by exploiting the
solvabilty conditions from Lemma 7.3.

7.1 O(1) -order terms

7.1.1 Mass balance

Relying on Lemma 7.3 and Lemma 7.4 we can determine the first order of the jump of the mass
flux over the interface.

Lemma 7.5
Let (ρ0,u0, ρ1,u1, R0,U0, R1,U1) be an admissible matching solution then

[[ρε((uν)ε − (wν)ε)]]1 = −∂ρΓ

∂τ
− (divΓ(wt0)− κ0wν0)ρΓ, (7.57)

where

ρΓ =
∫ ∞

0
(R0 − ρ+

0 ) dz −
∫ 0

−∞
(R0 − ρ−0 ) dz +O(ε). (7.58)
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Proof:
From Lemma 7.3 and Lemma 7.4 we know∫ ∞

−∞
f1[R0,U0,Φ,Ψ] dz = 0,

where

f1[R0,U0,Φ,Ψ] = − 1
|t0|

(wt0|t0|R0)s −R0,τ + κ0R0Uν0

− (Φ(Uν0 − wν0) +R0(Ψν − wν1))z ,

when f1 ∈ L1(R). We start with showing that f1 ∈ L1(R).
We observe that

(ρ0,t)± +
ti0
|t0|2

(
∂(ρ0u

i
0)

∂xj

)±
tj0 + νi0

(
∂(ρ0u

i
0)

∂xj

)±
νj0 = 0, (7.59)

because ρ0,u0 satisfy the mass conservation equation in the bulk. Utilizing wν0ν
i
0 +wt0t

i
0 = wi0

equation (7.59) is equivalent to

−wν0

(
∂ρ0

∂xi

)±
νi0 − wt0

(
∂ρ0

∂xi

)±
ti0 + (ρ0,t)±

+
(
∂ρ0

∂xi

)±
wi0 +

ti0
|t0|2

(
∂(ρ0u

i
0)

∂xj

)±
tj0 + νi0

(
∂(ρ0u

i
0)

∂xj

)±
νj0 = 0. (7.60)

Using the different forms of the matching conditions implies

−wν0

(
∂ρ0

∂xi

)±
νi0 − wt0

(
ρ±0
)
s

+ (ρ±0 )τ +
ti0
|t0|

(ρ±0 (ui0)±)s + νi0

(
∂(ρ0u

i
0)

∂xj

)±
νj0 = 0. (7.61)

Due to (5.24) and (7.13) we obtain

(u±ν0 − wν0)
(
∂ρ0

∂xi

)±
νi0 + ρ±0

(
∂ui0
∂xj

)±
νi0ν

j
0 +

1
|t0|

(wt0|t0|)sρ±0 + (ρ±0 )τ − κ0ρ
±
0 u
±
ν0 = 0. (7.62)

Keeping in mind the definition of f1[R0,U0,Φ,Ψ] (see (7.46)), equation (7.62) implies due to
(5.31), (5.32) and (5.34)

f1[R0(z),U0(z),Φ(z),Ψ(z)]→ 0 for |z| → ∞ (7.63)

superlinearly and hence f1[R0,U0,Φ,Ψ] ∈ L1(R).
Thus we can write (7.16) as

0 = lim
a→∞

[(∂ρ0

∂xj

)+

(νj0a+ rj1)
(
u+
ν0 − wν0

)
−
(
∂ρ0

∂xj

)−
(rj1 − ν

j
0a)
(
u−ν0 − wν0

)
+ρ+

1 (u+
ν0 − wν0)− ρ−1 (u−ν0 − wν0) + ρ+

0

(
∂ui0
∂xj

)+

νi0(νj0a+ rj1)− ρ−0
(
∂ui0
∂xj

)−
νi0(rj1 − ν

ja)

−wν1ρ
+
0 + wν1ρ

−
0 + ρ+

0 (uj0)+νj1 + ρ+
0 (uj1)+νj0 − ρ

−
0 (uj0)−νj1 − ρ

−
0 (uj1)−νj0

−
∫ a

−a

(
− 1
|t0|

(wt0|t0|)sR0 −R0,τ + κ0R0Uν0

)
dz
]
.
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Now we would like to decompose the limit into several parts, which have to converge. This can
be achieved by subtracting a times (7.62)± before letting a→∞, i.e.

0 = lim
a→∞

[(∂ρ0

∂xj

)+

rj1
(
u+
ν0 − wν0

)
−
(
∂ρ0

∂xj

)−
rj1
(
u−ν0 − wν0

)
+ρ+

1 (u+
ν0 − wν0)− ρ−1 (u−ν0 − wν0) + ρ+

0

(
∂ui0
∂xj

)+

νi0r
j
1 − ρ

−
0

(
∂ui0
∂xj

)−
νi0r

j
1

−wν1ρ
+
0 + wν1ρ

−
0 + ρ+

0 (uj0)+νj1 + ρ+
0 (uj1)+νj0 − ρ

−
0 (uj0)−νj1 − ρ

−
0 (uj1)−νj0

−
∫ a

0
− 1
|t0|

(
wt0|t0|)s(R0 − ρ+

0 )− (R0 − ρ+
0 )τ + κ0(R0Uν0 − ρ+

0 u
+
ν0

)
dz −

∫ 0

−a
. . . dz

]
.

Inserting (10.2) in (7.64) and using

R0Uν0 − ρ+
0 u

+
ν0 = R0wν0 − ρ+

0 wν0,

we obtain

[[ρε((uν)ε − (wν)ε)]]1 (7.64)

=
∫ ∞

0

(
−R0,τ + (ρ+

0 )τ
)
dz +

∫ 0

−∞
. . .

+
∫ ∞

0

(
− 1
|t0|

(|t0|wt0)sR0 +
1
|t0|

(|t0|wt0)s ρ
+
0 + κ0R0wν0 − κ0ρ

+
0 wν0

)
dz +

∫ 0

−∞
. . . .

In view of (3.3) we can identify the surface mass density as

ρΓ :=
∫ ∞

0
(R0 − ρ+

0 ) dz +
∫ 0

−∞
(R0 − ρ−0 ) dz +O(ε2), (7.65)

which finishes the proof. �

7.1.2 Gibbs free energy

We deduce the first order of the jump of the Gibbs free energy over the interface. The proof is
based on Lemma 7.3 and Lemma 7.4.

Lemma 7.6
Let (ρ0,u0, ρ1,u1, R0,U0, R1,U1) be an admissible matching solution. Then[[

1
2

(
jε
ρε

)2

+ g(ρε)

]]
1

= −
∫ ∞

0
νj0

(
U j0 − (uj0)+

)
τ
dz (7.66)

−
∫ 0

−∞
νj0

(
U j0 − (uj0)−

)
τ
dz

−(λ+ 2µ)j0
∫ ∞
−∞

((
1
R0

)
z

)2

dz. (7.67)
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Proof:
From Lemma 7.3 and Lemma 7.4 we know∫ ∞

−∞
f2[R0,U0,Φ,Ψ] dz = 0,

where

f2[R0,U0,Φ,Ψ] = −νj0(U j0 )τ + (λ+ 2µ)
1
R0

(Uν0)zz − γκ0R0,zz

−
(
(Uν0 − wν0)(Ψν − wν1) + g′(R0)Φ− γΦzz

)
z
,

when f2 ∈ L1(R). We start with showing that f2 ∈ L1(R).
As the outer quantities ρ0, u0 satisfy (4.5), we have

νj0(uj0,t)
± + (uk0)±

(
∂uj0
∂xk

)±
νj0 + g′(ρ±0 )

(
∂ρ0

∂xj

)±
νj0 = 0. (7.68)

Due to the matching conditions (5.33), (5.34), (5.37) and the assumptions (7.42), (7.43) and
(7.44) on Φ,Ψν and Ψt we get

f2[R0(z),U0(z),Φ(z),Ψ(z)]→ −(u±ν0 − wν0)

(
∂uj0
∂xk

)±
νj0ν

k
0 − g′(ρ±0 )

(
∂ρ0

∂xk

)±
νk0 (7.69)

−νj0

(
∂uj0
∂xk

)±
wk0 − ν

j
0(uj0,t)

±.

Inserting (7.68) in (7.69) we get

f2[R0(z),U0(z),Φ(z),Ψ(z)]→
(
−uν0ν

k
0 + (uk0)± + wν0ν

k
0 − wk0

)(∂uj0
∂xk

)±
νk0 = 0 for |z| → ∞,

(7.70)
where the convergence is obtained superlinear, whence f2[R0,U0,Φ,Ψ] ∈ L1(R).

Due to the matching conditions and (7.42), (7.43) the solvability condition (7.17) is equivalent
to

0 = lim
a→∞

[
(u+
ν0 − wν0)wν1 − (u−ν0 − wν0)wν1 (7.71)

−(u+
ν0 − wν0)

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0(rk1 + νk0a)

)

+(u−ν0 − wν0)

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0(rk1 − νk0a)

)

−g′(ρ+
0 )ρ+

1 − g
′(ρ+

0 )
(
∂ρ0

∂xk

)+

(rk1 + νk0a) + g′(ρ−0 )ρ−1

+g′(ρ−0 )
(
∂ρ0

∂xk

)−
(rk1 − νk0a)−

∫ a

−a
νj0(U j0 )τ dz + (λ+ 2µ)

∫ a

−a

1
R0

(Uν0)zz dz
]
.
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Now we subtract a times (7.68)+ and a times (7.68)− before letting a→∞ and obtain

0 = lim
a→∞

[
(u+
ν0 − wν0)wν1 − (u−ν0 − wν0)wν1 (7.72)

−(u+
ν0 − wν0)

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0r
k
1

)

+(u−ν0 − wν0)

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0r

k
1

)

−g′(ρ+
0 )ρ+

1 − g
′(ρ+

0 )
(
∂ρ0

∂xk

)+

rk1 + g′(ρ−0 )ρ−1 + g′(ρ−0 )
(
∂ρ0

∂xk

)−
rk1

−
∫ a

0
νj0(U j0 − (uj0)+)τ dz −

∫ 0

−a
. . . dz + (λ+ 2µ)

∫ a

−a

1
R0

(Uν0)zz dz
]
.

Using (10.5) equation (7.72) means[[
1
2

((uν)ε − (wν)ε)2 + g(ρε)
]]

1

= −
∫ ∞

0
νj0

(
(U j0 )τ (z)− ((uj0)+)τ

)
dz (7.73)

−
∫ 0

−∞
νj0

(
(U j0 )τ (z)− ((uj0)−)τ

)
dz

+
∫ ∞
−∞

(λ+ 2µ)
1

R0(z)
(Uν0)zz(z) dz.

Inserting Uν0 = J0
R0

+ wν in (7.73) yields[[
1
2

((uν)ε − (wν)ε)2 + g(ρε)
]]

1

= −
∫ ∞

0
νj0

(
U j0 (z)− (uj0)+

)
τ
dz (7.74)

−
∫ 0

−∞
νj0

(
U j0 (z)− (uj0)−

)
τ
dz

−
∫ ∞
−∞

(λ+ 2µ) J0

((
1
R0

)
z

)2

dz.

�

7.1.3 Momentum balance

Using the last two solvability conditions from Lemma 7.3 together with Lemma 7.4, we will
determine the first order of the pressure jump over the interface.

Lemma 7.7
Let (ρ0,u0, ρ1,u1, R0,U0, R1,U1) be an admissible matching solution. Then

[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]1 = −ρΓ
∂w0

∂τ
+ divΓ(σΓ), (7.75)
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where

ρΓ =
∫ ∞

0
(R0 − ρ+

0 ) dz −
∫ 0

−∞
(R0 − ρ−0 ) dz +O(ε), (7.76)

σjΓ =
(∫ ∞

0

(
p(ρ+

0 )− p(R0)− γ

2
(R0,z)2

)
dz +

∫ 0

−∞
. . .

)
tj0
|t0|2

+O(ε). (7.77)

Proof:
From Lemma 7.3 and Lemma 7.4 we have the solvabilty criteria∫ ∞

−∞
R0f3 dz = 0,

∫ ∞
−∞

j0
R0
f1 +R0f2 dz = 0,

where

f1[R0,U0,Φ,Ψ] = − 1
|t0|

(wt0|t0|R0)s −R0,τ + κ0R0Uν0

− (Φ(Uν0 − wν0) +R0(Ψν − wν1))z ,

f2[R0,U0,Φ,Ψ] = −νj0(U j0 )τ + (λ+ 2µ)
1
R0

(Uν0)zz − γκ0R0,zz

−
(
(Uν0 − wν0)(Ψν − wν1) + g′(R0)Φ− γΦzz

)
z
,

f3[R0,U0,Φ,Ψ] = −

(
tj0
|t0|2

)
(U j0 )τ −

1
|t0|2

(g(R0)− γR0,zz)s − (Uν0 − wν0)(Ψt)z,

when f1, f2, f3 ∈ L1(R). From the proofs of Lemma 7.5 and Lemma 7.6 we already know that
f1, f2 ∈ L1(R). It remains to show that f3 ∈ L1(R).

By the matching conditions and (7.44) we get

f3 → −
tj0
|t0|2

(
∂uj0
∂xk

)±
wk0 −

tj0
|t0|2

(
∂uj0
∂t

)±
− tk0
|t0|2

(
∂g(ρ0)
∂xk

)±
− (u±ν0−wν0)− tj0

|t0|2

(
∂uj0
∂xk

)±
νk0 .

(7.78)
On the other hand, ρ0,u0 satisfy (4.5) in the bulk, such that

tj0
|t0|2

((
∂uj0
∂t

)±
+ (uk0)±

(
∂uj0
∂xk

)±
+
(
∂g(ρ0)
∂xj

)±)
= 0. (7.79)

Inserting (7.79) in (7.78) we get

f3 → −
tj0
|t0|2

(
(uk0)± − wk0 − (u±ν0 − wν0)νk0

)(∂uj0
∂xk

)±
= 0. (7.80)

To obtain a solvability criterion, which has the form of the Young Laplace law, we will deal with
the solvabilty criteria (7.18) and (7.19) simultaneously. As ν0 and t0 are linearly independent
equations (7.18) and (7.19) are equivalent to∫ ∞

−∞
R0f3[R0,U0,Φ,Ψ]ti0 +

j0
R0
f1[R0,U0,Φ,Ψ]νi0 +R0f2[R0,U0,Φ,Ψ]νi0 dz = 0. (7.81)
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As f1, f2, f3 go to zero superlinearly for |z| → ∞, we have

lim
z→±∞

R0f3[R0,U0,Φ,Ψ]ti +
j0
R0
f1[R0,U0,Φ,Ψ]νi +R0f2[R0,U0,Φ,Ψ]νi = 0. (7.82)

Inserting (7.46) - (7.48) in (7.81) yields

0 =
∫ ∞
−∞

[ J0

R0
νi0

(
− 1
|t0|

(wt0|t0|)sR0 −R0,τ + κ0R0Uν0 −
(

Φ
J0

R0
+R0(Ψν − wν1)

)
z

)
(7.83)

+R0ν
i
0

(
−νj0(U j0 )τ + (λ+ 2µ)

1
R0

(Uν0)zz − γκ0R0,zz

)
−R0ν

i
0

(
J0

R0
(Ψν − wν1) + g′(R0)Φ− γΦzz

)
z

−R0t
i
0

(
tj0
|t0|2

(U j0 )τ +
1
|t0|2

(g(R0)− γR0,zz)s +
J0

R0
(Ψt)z

)]
dz.

The terms containing wν1 cancel out and using integration by parts, (7.83) becomes

0 =
∫ ∞
−∞

[
− J0ν

i
0

1
|t0|

(wt0|t0|)s −
J0

R0
νi0R0,τ + κ0ν

i
0J0Uν0 (7.84)

−νi0
(
J0Ψν +

J2
0

R2
0

Φ + J0Ψν + p′(R0)Φ− γ(ΦzzR0 − ΦzR0,z + ΦR0,zz)
)
z

+
J0

R0

(
J0

R0

)
z

νi0Φ +
(
J0

R0

)
z

νi0R0Ψν −R0(U i0)τ + (λ+ 2µ)(Uν0)zzνi0

−γκ0ν
i
0R0R0,zz + νi0R0,z

J0

R0
Ψν + g(R0)zΦνi0 − γR0,zzzΦνi0

− ti0
|t0|2

p(R0)s + γ
ti0
|t0|2

R0R0,szz − J0t
i
0(Ψt)z

]
dz.

We observe that (6.10) and (7.13) imply

J0

R0
νi0R0,τ +R0(U i0)τ = (J0ν

i
0)τ +R0(wi0)τ and

(
J0

R0

)
z

R0 +
(
J0

R0

)
R0,z = 0.

Using this (7.84) yields

0 =
∫ ∞
−∞

[
− J0ν

i
0

1
|t0|

(wt0|t0|)s − (J0ν
i
0)τ −R0(wi0)τ + κ0ν

i
0J0Uν0 (7.85)

−νi0
(

2J0Ψν +
J2

0

R2
0

Φ + p′(R0)Φ− γ(ΦzzR0 − ΦzR0,z + ΦR0,zz)
)
z

+(λ+ 2µ)(Uν0)zzνi0 − γκ0ν
i
0R0R0,zz −

ti0
|t0|2

p(R0)s + γ
ti0
|t0|2

R0R0,szz − J0t
i
0(Ψt)z

+Φνi0

(
J0

R0

(
J0

R0

)
z

+ g(R0)z − γR0,zzz

)]
dz.

We remark that the last line of (7.85) vanishes due to (6.11).
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Now we will consider some of the terms from (7.85) separately. We start with multiplying
(6.11) with R0 and subtracting (6.10) times wj0. We obtain

(
R0Uν0(U j0 − w

j
0)
)
z
−
(
R0wν0(U j0 − w

j
0)
)
z︸ ︷︷ ︸

=0

= −νj0p(R0)z + νj0γR0R0,zzz. (7.86)

So there exists Di
1 independent of z such that

νi0j0Uν0 = −νi0p(R0) + γνi0R0R0,zz − γνi0
1
2

(R0,z)2 +Di
1. (7.87)

With (5.3) we compute

p(R0)s
tj0
|t0|2

=
1
|t0|

(
p(R0)

tj0
|t0|

)
s

− p(R0)
1
|t0|

(
tj0
|t0|

)
s

(7.88)

=
1
|t0|

(
tj0
|t0|

p(R0)

)
s

− νj0κ0p(R0).

Additionally we observe that due to (6.10)

Dj
2 := (R0(U j0 − w

j
0))τ = (j0ν

j
0)τ (7.89)

and

Dj
3 :=

1
|t0|

(|t0|wt0)sR0(U j0 − w
j
0) =

1
|t0|

(|t0|wt0)sj0ν
j
0 (7.90)

are independent of z. Now we insert (7.87) and (7.88) in (7.85) and we end up with

0 =
∫ ∞
−∞

[
−Di

3 −Di
2 −R0(wi0)τ − κ0γν

i
0

1
2

(R0,z)2 + κ0D
i
1 (7.91)

−
(

2J0Ψνν
i
0 + J0Ψtt

i
0 + νi0

J2
0

R2
0

Φ + p′(R0)Φνi0 − γνi0 (Φ1,zzR0 − Φ1,zR0,z + Φ1R0,zz))
)
z

+(λ+ 2µ)(Uν0)zzνi0 −
1
|t|0

(
ti0
|t0|

p(R0)
)
s

+ γ
ti0
|t0|2

R0R0,szz

]
dz.

By (7.82) the integrand in (7.91) goes to zero for |z| → ∞, i.e.

0 = −Di
2 −Di

3 + κ0D
i
1 − ρ±0 (wi0)τ − 2j0

(
∂uj0
∂xk

)±
νi0ν

j
0ν

k
0 − j0

(
∂uj0
∂xk

)±
ti0t

j
0

|t0|2
νk0 (7.92)

− j2
0

(ρ±0 )2
νi0

(
∂ρ0

∂xk

)±
νk0 − p′(ρ±0 )νi0

(
∂ρ0

∂xk

)±
νk0 −

1
|t0|

(
p(ρ±0 )

ti0
|t0|

)
s

.
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Using the matching conditions and (7.42)-(7.44) equation (7.91) is equivalent to

0 = lim
a→∞

[
− 2aDi

2 − 2aDi
3 + 2aκ0D

i
1 −

∫ a

−a
R0(wi0)τ +

γ

2
κ0ν

i
0(R0,z)2 dz (7.93)

−2j0νi0

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0(rk1 + aνk0 )

)

+2j0νi0

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0(rk1 − aνk0 )

)

−j0ti0

(
(uj1)+ tj0

|t0|2
+

(
∂uj0
∂xk

)+
tj0
|t0|2

(rk1 + aνk0 ) + (uk0)+

(
tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

+j0ti0

(
(uj1)−

tj0
|t0|2

+

(
∂uj0
∂xk

)−
tj0
|t0|2

(rk1 − aνk0 ) + (uk0)−
(

tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

−νi0
(

j2
0

(ρ+
0 )2

+ p′(ρ+
0 )
)(

ρ+
1 +

(
∂ρ0

∂xk

)+

(rk1 + aνk0 )

)

+νi0

(
j2
0

(ρ−0 )2
+ p′(ρ−0 )

)(
ρ−1 +

(
∂ρ0

∂xk

)−
(rk1 − aνk0 )

)

−
∫ a

−a

1
|t0|

(
p(R0)

ti0
|t0|

)
s

− γ ti0
|t0|2

R0R0,szz dz
]
.

We subtract a times (7.92)+ and a times (7.92)− before letting a→∞ which yields:

0 = −
∫ ∞

0
(R0 − ρ+

0 )(wi0)τ +
γ

2
κ0ν

i
0(R0,z)2 dz −

∫ 0

−∞
. . . dz (7.94)

−2j0νi0

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0r
k
1

)

+2j0νi0

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0r

k
1

)

−j0ti0

(
(uj1)+ tj0

|t0|2
+

(
∂uj0
∂xk

)+
tj0
|t0|2

rk1 + (uk0)+

(
tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

+j0ti0

(
(uj1)−

tj0
|t0|2

+

(
∂uj0
∂xk

)−
tj0
|t0|2

rk1 + (uk0)−
(

tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

−νi0
(

j2
0

(ρ+
0 )2

+ p′(ρ+
0 )
)(

ρ+
1 +

(
∂ρ0

∂xk

)+

rk1

)

+νi0

(
j2
0

(ρ−0 )2
+ p′(ρ−0 )

)(
ρ−1 +

(
∂ρ0

∂xk

)−
rk1

)

−
∫ ∞

0

1
|t0|

(
(p(R0)− p(ρ+

0 ))
ti0
|t0|

)
s

− γ ti0
|t0|2

R0R0,szz dz −
∫ 0

−∞
. . . dz.
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As explained in the appendix, (7.94) can be written as

[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]1 (7.95)

= −(wj0)τ
∫ ∞

0
(R0 − ρ+

0 ) dz −
∫ 0

−∞
. . . dz

−
∫ ∞

0

[
1
|t0|

(
p(R0)

tj0
|t0|

)
s

− 1
|t0|

(
p(ρ+

0 )
tj0
|t0|

)
s

]
dz −

∫ 0

−∞
. . . dz

−κ0γ
1
2
νj0

∫ ∞
−∞

(R0,z)2 dz − γ 1
2
tj0
|t0|2

∫ ∞
−∞

((R0,z)2)s dz

or by (5.3) equivalently

[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]1 (7.96)

= −(wj0)τ
∫ ∞

0
(R0 − ρ+

0 ) dz −
∫ 0

−∞
. . . dz

−
∫ ∞

0

[
1
|t0|

(
p(R0)

tj0
|t0|

)
s

− 1
|t0|

(
p(ρ±0 )

tj0
|t0|

)
s

]
dz −

∫ 0

−∞
. . . dz

−γ 1
2

1
|t0|

∫ ∞
−∞

(
tj0
|t0|

(R0,z)2

)
s

dz.

Because of (7.11) we have

j2
0

R0
− j2

0

ρ±0
− γR0R0,zz = p(ρ±0 )− p(R0)− γ

2
R2

0,z.

Inserting this into (7.96) we can, in view of (3.4), identify the surface stress vector σΓ as

σΓ = σjΓ =
(∫ ∞

0

(( j2
0

R0
− j2

0

ρ+
0

+ γR2
0,z

))
dz +

∫ 0

−∞
. . . dz

)
tj0
|t0|2

+O(ε). (7.97)

�

8 Proof of Theorem 6.6

Now we will establish Theorem 6.6.

Proof:
To prove the theorem we will compute the first non-vanishing order of

[[jε]]
{
W ′(ρε) +

|uε −wε|2

2

}
+ {jε}

[[
W ′(ρε) +

|uε −wε|2

2

]]
(8.1)

by the jump conditions in Theorem 6.3.
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As we see from (6.14) and (6.15) there are no O(1) contributions in the jump terms in (8.1),
so the leading order terms are of O(ε). They are given as products of the order O(ε)-terms in
the jumps and the order O(1)-terms in the mean values, i.e. the leading order of (8.1) is given
by

[[ρε((uν)ε − (wν)ε)]]1

{
W ′(ρ0) +

|u0 −w0|2

2

}
+{ρ0(uν0−wν0)}

[[
W ′(ρε) +

|uε −wε|2

2

]]
1

. (8.2)

By (7.13) we have ut0 = wt0 such that uj0 − w
j
0 = (uν0 − wν0)νj0, whence

|u0 −w0|2 = (uν0 − wν0)2 and (uj0 − w
j
0)uj1 = (uν0 − wν0)uν1. (8.3)

Hence, (8.2) equals

[[ρε((uν)ε − (wν)ε)]]1

{
W ′(ρ0) +

|u0 −w0|2

2

}
+ {ρ0(uν0 − wν0)}

[[
W ′(ρε) +

|(uν)ε − (wν)ε|2

2

]]
1

.

(8.4)
Now we use (6.14) and (6.15) to get an equality

[[ρε((uν)ε − (wν)ε)]]1

{
W ′(ρ0) +

|u0 −w0|2

2

}
(8.5)

+{ρ0(uν0 − wν0)}
[[
W ′(ρε) +

|uε −wε|2

2

]]
1

= −j0
(∫ ∞

0
νj0

(
U j0 − (uj0)+

)
τ
dz +

∫ 0

−∞
νj0

(
U j0 − (uj0)+

)
τ
dz

)
−
(
g(ρ+

0 ) +
j2
0

2(ρ+
0 )2

)∫ ∞
0

(R0 − ρ+
0 )τ dz −

(
g(ρ−0 ) +

j2
0

2(ρ−0 )2

)∫ 0

−∞
(R0 − ρ−0 )τ dz

−
(

1
|t0|

(|t0|wt0)s − κ0wν0

)(
g(ρ+

0 ) +
j2
0

2(ρ+
0 )2

)∫ ∞
0

(R0 − ρ+
0 ) dz

−
(

1
|t0|

(|t0|wt0)s − κ0wν0

)(
g(ρ−0 ) +

j2
0

2(ρ−0 )2

)∫ 0

−∞
(R0 − ρ−0 ) dz

−(λ+ 2µ)j2
0

∫ ∞
−∞

((
1
R0

)
z

)2

dz.

To simplify the notation we define

A± := ∓j0
∫ ±∞

0
νj0

(
U j0 − (uj0)±

)
τ
dz ∓

(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)∫ ±∞
0

(
R0 − ρ±0

)
τ
dz, (8.6)

B± := ∓
(

1
|t0|

(|t0|wt0)s − κ0wν0

)(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)∫ ±∞
0

(R0 − ρ±0 ) dz. (8.7)

We will first deal with A±. Due to (5.4) there exists c ∈ R, which is independent of z as ν0 and
t0 are independent of z, such that

(νj0)τ = ctj0.
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Therefore we get∫ ±∞
0
νj0

(
U j0 − (uj0)±

)
τ
dz =

∫ ±∞
0

(
Uν0 − (uν0)±

)
τ
dz −

∫ ±∞
0

(νj0)τ
(
U j0 − (uj0)±

)
dz (8.8)

=
∫ ±∞

0

(
Uν0 − (uν0)±

)
τ
dz − c

∫ ±∞
0

(
tj0U

j
0 − t

j
0(uj0)±

)
dz

(7.6)
=
∫ ±∞

0

(
(Uν0 − wν0)τ −

(
u±ν0 − wν0

)
τ

)
dz.

Using (7.9) yields(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)∫ ±∞
0

(
R0 − ρ±0

)
τ
dz (8.9)

=
∫ ±∞

0

(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)(
R0 − ρ±0

)
τ
dz

=
∫ ±∞

0

(
g(R0) +

j2
0

2R2
0

− γR0,zz

)
R0,τ −

(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)
(ρ±0 )τ dz.

Inserting (8.8) and (8.9) in (8.6) implies

A± = ∓
∫ ±∞

0

(
j0

(
j0
R0

)
τ

− j0
(
j0

ρ±0

)
τ

)
dz (8.10)

∓
∫ ±∞

0

(
g(R0) +

j2
0

2R2
0

− γR0,zz

)
R0,τ −

(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)
(ρ±0 )τ dz

= ∓
∫ ±∞

0

(
W (R0)−W (ρ±0 ) +

j2
0

2R0
− j2

0

2ρ±0

)
τ

dz ± γ
∫ ±∞

0
R0,zzR0,τ dz.

We observe ∫ ∞
−∞

R0,zzR0,τ = −
∫ ∞
−∞

(
1
2

(R0,z)
2

)
τ

dz,

whence (8.10) implies

A+ +A− = −
∫ ∞

0

(
W (R0)−W (ρ+

0 ) +
j2
0

2R0
− j2

0

2ρ+
0

+
γ

2
R2

0,z

)
τ

dz (8.11)

−
∫ 0

−∞

(
W (R0)−W (ρ−0 ) +

j2
0

2R0
− j2

0

2ρ−0
+
γ

2
R2

0,z

)
τ

dz.

This finishes our calculations for A± and we turn to B±.
First we observe that due to (7.9)(

g(ρ±0 ) +
j2
0

2(ρ±0 )2

)∫ ±∞
0

(
R0 − ρ±0

)
dz, (8.12)

=
∫ ±∞

0

(
g(R0) +

j2
0

2R2
0

− γR0,zz

)
R0 −

(
g(ρ±0 ) +

j2
0

2(ρ±0 )2

)
ρ±0 dz

=
∫ ±∞

0

(
p(R0) +W (R0) +

j2
0

2R0
− γR0R0,zz − p(ρ±0 )−W (ρ±0 )− j2

0

2ρ±0

)
dz.
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From (7.11) and (7.12) we already know

p(R0)− p(ρ±0 )− γR0R0,zz = − j
2
0

R0
+
j2
0

ρ±0
− γ

2
R2

0,z. (8.13)

Inserting (8.12) and (8.13) in (8.7) we find

B+ + B− (8.14)

= −
(

1
|t0|

(|t0|wt0)s − κ0wν0

)∫ ∞
0

(
W (R0)−W (ρ+

0 )− j2
0

2R0
+

j2
0

2ρ+
0

− γ

2
R2

0,z

)
dz

−
(

1
|t0|

(|t0|wt0)s − κ0wν0

)∫ 0

−∞

(
W (R0)−W (ρ−0 )− j2

0

2R0
+

j2
0

2ρ−0
− γ

2
R2

0,z

)
dz.

Plugging (8.11) and (8.14) in (8.5) we get

[[ρε((uν)ε − (wν)ε)]]1

{
W ′(ρ0) +

|u0 −w0|2

2

}
(8.15)

+{ρ0((uν0 − wν0)}
[[
W ′(ρε) +

|uε −wε|2

2

]]
1

= −
∫ ∞

0

(
W (R0)−W (ρ+

0 ) +
j2
0

2R0
− j2

0

2ρ+
0

+
γ

2
R2

0,z

)
τ

dz

−
∫ 0

−∞

(
W (R0)−W (ρ−0 ) +

j2
0

2R0
− j2

0

2ρ+
0

+
γ

2
R2

0,z

)
τ

dz

−
(

1
|t0|

(|t0|wt0)s − κ0wν0

)∫ ∞
0

(
W (R0)−W (ρ+

0 )− j2
0

2R0
+

j2
0

2ρ+
0

− γ

2
R2

0,z

)
dz

−
(

1
|t0|

(|t0|wt0)s − κ0wν0

)∫ 0

−∞

(
W (R0)−W (ρ−0 )− j2

0

2R0
+

j2
0

2ρ−0
− γ

2
R2

0,z

)
dz

−(λ+ 2µ)j2
0

∫ ∞
−∞

((
1
R0

)
z

)2

dz.

Recalling equation (3.10) and definitions (6.17), (6.18) we can identify WΓ as

WΓ =
∫ ∞

0

(
W (R0)−W (ρ+

0 ) +
1
2
j2
0

R0
− 1

2
j2
0

ρ+
0

+
γ

2
R2

0,z

)
dz

+
∫ 0

−∞

(
W (R0)−W (ρ−0 ) +

1
2
j2
0

R0
− 1

2
j2
0

ρ−0
+
γ

2
R2

0,z

)
dz.

and obtain the assertion of Theorem 6.6. �

9 Kinetic relation

We will show that the leading order jump conditions stated in Theorem 6.3 consist of the two
conservation laws for mass and momentum and in addition of a kinetic relation. In particular,
when the direction of the mass flux is given, the normal velocity of the interface is determined
by the state on one side of the interface.
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Lemma 9.1
Let ρ+

0 , ρ
−
0 , u

+
ν0, u

−
ν0, u

+
t0, u

−
t0, wν0 satisfy the jump conditions from Lemma 7.1, such that ρ−0 6∈

[α, β], where α, β are the Maxwell points of W , and the equal area construction

0 = −
∫ 1

ρ+0

1

ρ−0

p(ρ0) d
(

1
ρ0

)
+ {p(ρ0)}

[[
1
ρ0

]]
(9.1)

is possible. If ρ−0 , u
−
ν0, u

−
t0 and the sign of j0 are specified, then ρ+

0 , u
+
ν0, u

+
t0, wν0 are determined.

Proof:
Due to (7.3) we know u+

t0 equals u−t0. Using (7.2) we get the following expression for the mass
flux

j2
0 = − [[p(ρ0)]][[

1
ρ0

]] . (9.2)

Inserting (9.2) in (7.4) we find

[[g(ρ0)]] = −1
2
j2
0

[[(
1
ρ0

)2
]]

=
1
2

[[p(ρ0)]]

(
1
ρ+0

)2
−
(

1
ρ−0

)2

1
ρ+0
− 1

ρ−0

= [[p(ρ0)]]
{

1
ρ0

}
. (9.3)

This is equivalent to

0 =
[[
g(ρ0)− p(ρ0)

ρ0

]]
+ {p(ρ0)}

[[
1
ρ0

]]
. (9.4)

From equation (2.5) we conclude

d

d 1
ρ0

(
g(ρ0)− p(ρ0)

ρ0

)
= −p(ρ0). (9.5)

Inserting (9.5) in (9.4) we obtain

0 = −
∫ 1

ρ+0

1

ρ−0

p(ρ0) d
(

1
ρ0

)
+ {p(ρ0)}

[[
1
ρ0

]]
. (9.6)

Note that (9.6) is an equal area rule which determines ρ+
0 . Then (9.2) prescribes j0 which we

can, in turn, use to obtain wν0 and u+
ν0 from (7.1). �

As shown in [5] the kinetic relation derived in Lemma 9.1 guarantees the solvabilty of the
free boundary value problem for ρ0,u0. Hence, when we want to determine ρ+

1 , u
+
ν1, u

+
t1 and wν1

from ρ−1 , u
−
ν1 and u−t1, we can assume that we can, at least numerically, calculate ρ0, u0 and w0.

Furthermore R0 and U0 are traveling wave solutions of the non-viscous problem. Their phase
portraits can be found in [4].

For the following lemma we assume that we have solved, at least numerically, the inner and
outer problem of zeroth order. Hence, we know the right hand side of the first order jump
conditions in Theorem 6.3.

Lemma 9.2
Let ρ+

1 , ρ
−
1 , u

+
ν1, u

−
ν1, u

+
t1, u

−
t1, wν1 satisfy the first order of the jump conditions in Theorem 6.3.

If ρ−1 , u
−
ν1, u

−
t1 are given and j0 6= 0, then ρ+

1 , u
+
ν1, u

+
t1, wν1 are determined.
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Proof:
We start by determining u+

t1. We multiply (7.75) by t0 and obtain

j0u
+
t1 = h1, (9.7)

where h1 comprises terms depending only on ρ−1 , u
−
ν1, u

−
t1 and terms of zeroth order and their

derivatives. As j0 6= 0 equation (9.7) prescribes the value of u+
t1. To determine ρ+

1 , u
+
ν1, wν1

we consider (7.57), (7.66) and (7.75) times ν0. We obtain a system of linear equations for
ρ+

1 , u
+
ν1, wν1 which reads

j0
ρ+0

ρ+
0 −ρ+

0 + ρ−0

g′(ρ+
0 ) j0

ρ+0
− j0
ρ+0

+ j0
ρ−0(

j0
ρ+0

)2
+ p′(ρ+

0 ) 2j0 0


︸ ︷︷ ︸

=:A

 ρ+
1

u+
ν1

wν1

 =

 h2

h3

h4

 , (9.8)

where h2, . . . , h4 only contain terms depending on ρ−1 , u
−
ν1, u

−
t1, terms of zeroth order and their

derivatives and r1. An easy calculation shows

detA =
j0

ρ−0
(ρ+

0 − ρ
−
0 )2

(
g′(ρ+

0 )− j2
0

(ρ+
0 )3

)
=

j0

ρ−0 (ρ+
0 )3

(ρ+
0 − ρ

−
0 )2

− ∂p

∂
(

1
ρ0

)(ρ+
0 ) +

[[p(ρ0)]][[
1
ρ0

]]
 .

The last expression vanishes if and only if the tangent at ρ+
0 and the secant connecting ρ+

0 to
ρ−0 coincide. However this is not possible due to the equal area rule (9.1).

Thus we have a relation wν1(r1) such that we end up with an ODE to determine the interface
position up to the first order. �

Acknowledgements

JG and CR would like to thank the German Research Foundation (DFG) for financial support
of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the
University of Stuttgart.
CK and WD would like to thank the German Research Foundation (DFG) for financial support
of the project ”Modeling and sharp interface limits of local and non-local generalized Navier-
Stokes-Korteweg Systems”.

10 Appendix: List of the ε-expansions of the jump brackets

In this section we provide identities for the first two orders of the jump brackets of mass, Gibbs
free energy and pressure.
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10.1 Mass flux

[[ρε((uν)ε − (wν)ε)]]0 = [[ρ0(uν0 − wν0)]] (10.1)

[[ρε((uν)ε − (wν)ε)]]1 =

(
ρ+

1 +
(
∂ρ0

∂xk

)+

rk1

)(
νi0(ui0)+ − νi0wi0

)
(10.2)

+ρ+
0

(
νi1(ui0)+ + νi0(ui1)+ + νi0

(
∂ui0
∂xk

)+

rk1 − νi1wi0 − νi0wi1

)

−

(
ρ−1 +

(
∂ρ0

∂xk

)−
rk1

)(
νi0(ui0)− − νi0wi0

)
−ρ−0

(
νi1(ui0)− + νi0(ui1)− + νi0

(
∂ui0
∂xk

)−
rk1 − νi1wi0 − νi0wi1

)

10.1.1 Explanation of (10.1) and (10.2)

We have

[[ρε((uν)ε − (wν)ε)]] (10.3)
= lim

z→0,z>0
ρε(rε + zνε)

(
νiεu

i
ε(rε + zνε)− νiεwiε

)
− lim
z→0,z<0

ρε(rε + zνε)
(
νiεu

i
ε(rε + zνε)− νiεwiε

)
.

To determine the first orders of the jump we will look at the ε−expansion

ρε(rε + zνε)
(
νiεu

i
ε(rε + zνε)− νiεwiε

)
= ρ0(r0 + zν0)

(
νi0u

i
ε(r0 + zν0)− νi0wi0

)
+ε
[(

ρ1(r0 + zν0) +
(
∂ρ0

∂xk

)
(r0 + zν0)(rk1 + zνk1 )

)(
νi0u

i
0(r0 + zν0)− νi0wi0

)
+ρ0(r0 + zν0)

(
νi1u

i
0(r0 + zν0) + νi0u

i
1(r0 + zνi0) + νi0

(
∂ui0
∂xk

)
(r0 + zν0)(rk1 + zνk1 )

−νi1wi0 − νi0wi1
)]

+O(ε2)

which shows (10.1) and (10.2).
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10.2 Balance of Gibbs free energy[[
1
2

((uν)ε − (wν)ε)2 + g(ρε)
]]

0

=
[[

1
2

(uν0 − wν0)2 + g(ρ0)
]]

(10.4)[[
1
2

((uν)ε − (wν)ε)2 + g(ρε)
]]

1

= −(u+
ν0 − wν0)wν1 + (u−ν0 − wν0)wν1 (10.5)

+(u+
ν0 − wν0)

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0r
k
1

)

−(u−ν0 − wν0)

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0r

k
1

)

+g′(ρ+
0 )ρ+

1 + g′(ρ+
0 )
(
∂ρ0

∂xk

)+

rk1

−g′(ρ−0 )ρ−1 − g
′(ρ−0 )

(
∂ρ0

∂xk

)−
rk1

The derivation of (10.4) and (10.5) is analogous to the derivation of (10.1) and (10.2).

10.3 Momentum balance

[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]0 = [[ρ0(uν0)− wν0)(u0 −w0) + p(ρ0)ν0]] (10.6)
[[ρε((uν)ε − (wν)ε)(uε −wε) + p(ρε)νε]]1 (10.7)

= 2j0νi0

(
(uj0)+νj1 + (uj1)+νj0 +

(
∂uj0
∂xk

)+

νj0r
k
1

)

−2j0νi0

(
(uj0)−νj1 + (uj1)−νj0 +

(
∂uj0
∂xk

)−
νj0r

k
1

)

+j0ti0

(
(uj1)+ tj0

|t0|2
+

(
∂uj0
∂xk

)+
tj0
|t0|2

rk1 + (uk0)+

(
tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

−j0ti0

(
(uj1)−

tj0
|t0|2

+

(
∂uj0
∂xk

)−
tj0
|t0|2

rk1 + (uk0)−
(

tk1
|t0|2

− 2
tk0t

j
0t
j
1

|t0|4

))

+νi0

(
j2
0

(ρ+
0 )2

+ p′(ρ+
0 )
)(

ρ+
1 +

(
∂ρ0

∂xk

)+

rk1

)

−νi0
(

j2
0

(ρ−0 )2
+ p′(ρ−0 )

)(
ρ−1 +

(
∂ρ0

∂xk

)−
rk1

)
The derivation of (10.6) and (10.7) is analogous to the derivation of (10.1) and (10.2).
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