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Abstract

We consider the non-relativistic Hartree model in the gravitational case, i.e. with
attractive Coulomb-Newton interaction. For a given mass M > 0, we construct
stationary states with non-zero temperature T by minimizing the corresponding
free energy functional. It is proved that minimizers exist if and only if the temper-
ature of the system is below a certain threshold T ∗ > 0 (possibly infinite), which
itself depends on the specific choice of the entropy functional. We also investi-
gate whether the corresponding minimizers are mixed or pure quantum states
and characterize a critical temperature Tc ∈ (0,T ∗) above which mixed states
appear.

1 Introduction

In this paper we investigate the non-relativistic gravitational Hartree system with tem-
perature. This model can be seen as a mean-field description of a system of self-
gravitating quantum particles. It is used in astrophysics to describe so-called Boson
stars. In the present work, we are particularly interested in thermal effects, i.e. (quali-
tative) differences to the zero temperature case.

A physical state of the system will be represented by a density matrix operator ρ ∈
S1(L2(R3)), i.e. a positive self-adjoint trace class operator acting on L2(R3;C). Such
an operator ρ can be decomposed as

ρ = ∑
j∈N

λ j |ψ j〉〈ψ j| (1)

with an associated sequence of eigenvalues (λ j) j∈N ∈ `1, λ j ≥ 0, usually called oc-
cupation numbers, and a corresponding sequence of eigenfunction (ψ j) j∈N, forming
a complete orthonormal basis of L2(R3), cf. [33]. By evaluating the kernel ρ(x,y) on
its diagonal, we obtain the corresponding particle density

nρ(x) = ∑
j∈N

λ j |ψ j(x)|2 ∈ L1
+(R3) .

In the following we shall assume that∫
R3

nρ(x)dx = M , (2)

1



for a given total mass M > 0. We assume that the particles interact solely via gravita-
tional forces. The corresponding Hartree energy of the system is then given by

EH [ρ] := Ekin[ρ]−Epot[ρ] = tr(−∆ρ)− 1
2

tr(Vρ ρ) ,

where Vρ denotes the self-consistent potential

Vρ = nρ ∗
1
| · |

and ‘∗’ is the usual convolution w.r.t. x ∈ R3. Using the decomposition (1) for ρ , the
Hartree energy can be rewritten as

EH [ρ] = ∑
j∈N

λ j

∫
R3
|∇ψ j(x)|2 dx− 1

2

∫∫
R3×R3

nρ(x)nρ(y)
|x− y|

dxdy .

To take into account thermal effects, we consider the associated free energy func-
tional

FT [ρ] := EH [ρ]−T S [ρ] (3)

where T ≥ 0 denotes the temperature and S [ρ] is the entropy functional

S [ρ] :=− trβ (ρ) .

The entropy generating function β is assumed to be convex, of class C1 and will satisfy
some additional properties to be prescribed later on. The purpose of this paper is to
investigate the existence of minimizers for FT with fixed mass M > 0 and temperature
T ≥ 0 and study their qualitative properties. These minimizers, often called ground
states, can be interpreted as stationary states for the time-dependent system

i
d
dt

ρ(t) = [Hρ(t),ρ(t)] , ρ(0) = ρin . (4)

Here [A,B] = AB−BA denotes the usual commutator and Hρ is the mean-field Hamil-
tonian operator

Hρ :=−∆−nρ ∗
1
| · |

. (5)

Using again the decomposition (1), this can equivalently be rewritten as a system
of (at most) countably many Schrödinger equations coupled through the mean field
potential Vρ : {

i∂tψ j +∆ψ j +V (t,x)ψ j = 0 , j ∈ N ,

−∆Vρ = 4π ∑ j∈N λ j |ψ j(t,x)|2 .
(6)

This system is a generalization of the gravitational Hartree equation (also known as
the Schrödinger-Newton model, see [5]) to the case of mixed states. Notice that it
reduces to a finite system as soon as only a finite number of λ j are non-zero. In such
a case, ρ is a finite rank operator.
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Establishing the existence of stationary solutions to nonlinear Schrödinger models by
means of variational methods is a classical idea, cf. for instance [15]. A particular
advantage of such an approach is that in most cases one can directly deduce orbital
stability of the stationary solution w.r.t. the dynamics of (4) or, equivalently, (6). In the
case of repulsive self-consistent interactions, describing e.g. electrons, this has been
successfully carried out in [6, 7, 8, 24]. In addition, existence of stationary solutions in
the repulsive case has been obtained in [23, 25, 26, 27] using convexity properties of
the corresponding energy functional.

In sharp contrast to the repulsive case, the gravitational Hartree system of stellar dy-
namics, does not admit a convex energy and thus a more detailed study of minimizing
sequences is required. To this end, we first note that at zero temperature, i.e. T = 0,
the free energy FT [ρ] reduces to the gravitational Hartree energy EH [ρ]. For this
model, existence of the corresponding zero temperature ground states has been stud-
ied in [14, 17, 19] and, more recently, in [5]. Most of these works rely on the so-called
concentration-compactness method introduced by Lions in [18]. According to [14], it
is known that for T = 0 the minimum of the Hartree energy is uniquely achieved by an
appropriately normalized pure state, i.e. a rank one density matrix ρ0 = M |ψ0〉〈ψ0|.
The concentration-compactness method has later been adapted to the setting of den-
sity matrices, see for instance [13] for a recent paper written this framework, in which
the authors study a semi-relativistic model of Hartree-Fock type at zero temperature.

Remark 1.1. In the classical kinetic theory of self-gravitating systems, a variational ap-
proach based on the so-called Casimir functionals has been repeatedly used to prove
existence and orbital stability of stationary states of relativistic and non-relativistic
Vlasov-Poisson models: see for instance [34, 35, 36, 28, 29, 32, 9, 30, 31]. These
functionals can be regarded as the classical counterpart of FT [ρ] and such an anal-
ogy between classical and quantum mechanics has already been used in [24, 7, 8, 6].

In view of the quoted results, the purpose of this paper can be summarized as fol-
lows: First, we shall prove the existence of minimizers for FT , extending the results
of [14, 17, 19, 5] to the case of non-zero temperature. As we shall see, a threshold
in temperature arises due to the competition between the Hartree energy and the
entropy term and we find that minimizers of FT exist only below a certain maximal
temperature T ∗ > 0, which depends on the specific form of the entropy generating
function β . One should note that, by using the scaling properties of the system, the
notion of a maximal temperature for a given mass M can be rephrased into a cor-
responding threshold for the mass at a given, fixed temperature T . Such a critical
mass, however, has to be clearly distinguished from the well-known Chandrasekhar
mass threshold in semi-relativistic models, cf. [16, 11, 13]. Moreover, depending on
the choice of β , it could happen that T ∗ = +∞, in which case minimizers of FT would
exist even if the temperature is taken arbitrarily large. In a second step, we shall also
study the qualitative properties of the ground states with respect to the temperature
T ∈ [0,T ∗). In particular, we will prove that there exists a certain critical temperature
Tc > 0, above which minimizers correspond to mixed quantum states, i.e. density ma-
trix operators with rank higher than one. If T < Tc, minimizers are pure states, as in
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the zero temperature model.

In order to make these statements mathematically precise, we introduce

H :=
{

ρ : L2(R3)→ L2(R3) : ρ ≥ 0 , ρ ∈S1 ,
√
−∆ρ

√
−∆ ∈S1

}
and consider the norm

‖ρ‖H := trρ + tr
(√

−∆ρ
√
−∆
)

.

The set H can be interpreted as the cone of nonnegative density matrix operators with
finite energy. Using the decomposition (1), if ρ ∈H, we obtain that ψ j ∈H1(R3) for all
j ∈ N such that λ j > 0. Taking into account the mass constraint (2) we define the set
of physical states by

HM := {ρ ∈ H : trρ = M} .

We denote the infimum of the free energy functional FT , defined in (3), by

iM,T = inf
ρ∈HM

FT [ρ] . (7)

The set of minimizers will be denoted by MM ⊂ HM. As we shall see in the next
section, iM,T < 0 if MM 6= /0. This however can be guaranteed only below a certain
maximal temperature T ∗ = T ∗(M) given by

T ∗(M) := sup{T > 0 : iM,T < 0} . (8)

This maximal temperature T ∗ will depend on the choice of the entropy generating
function β for which we impose the following assumptions:

(β1) β is strictly convex and of class C1 on [0,∞),

(β2) β ≥ 0 on [0,1] and β (0) = β ′(0) = 0,

(β3) supm∈(0,∞)
mβ ′(m)

β (m) ≤ 3.

A typical example for the function β reads

β (s) = sp , p ∈ (1,3] .

Such a power law nonlinearity is of common use in the classical kinetic theory of
self-gravitating systems known as polytropic gases. One of the main features of such
models is to give rise to orbitally stable stationary states with compact support, cf. [10,
29, 30, 34, 35, 36], clearly a desirable feature when modeling stars. We shall prove
in Section 6, that T ∗ is finite if p is not too large. The limiting case as p approaches 1
corresponds to β (s) = s lns but in that case the free energy functional is not bounded
from below, see [21] for a discussion in the Coulomb repulsive case, which can easily
be adapted to our setting.
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Up to now, we have made no distinction between pure states, corresponding density
matrix operators with rank one, and mixed states, corresponding to operators with fi-
nite or infinite rank. In [14] Lieb has proved that for T = 0 minimizers are pure states.
As we shall see, this is also the case when T is positive but small and as a conse-
quence we have: iM,T = iM,0 +T β (M). Let us define

Tc(M) := max
{

T > 0 : iM,T = iM,0 + τ β (M) ∀ τ ∈ (0,T ]
}

. (9)

With these definitions in hand, we are now in the position to state our main result.

Theorem 1.1. Let M > 0 and assume that (β1)–(β3) hold. Then, the maximal tem-
perature T ∗ defined in (8) is positive, possibly infinite, and the following properties
hold:

(i) For all T < T ∗, there exists a density operator ρ ∈ HM such that FT [ρ] = iM,T .
Moreover ρ solves the self-consistent equation

ρ = (β ′)−1((µ −Hρ)/T
)

where Hρ is the mean-field Hamiltonian defined in (5) and µ < 0 denotes the
Lagrange multiplier associated to the mass constraint.

(ii) The set of all minimizers MM ⊂HM is orbitally stable under the dynamics of (4).

(iii) The critical temperature Tc defined in (9) is finite and a minimizer ρ ∈ MM is a
pure state if and only if T ∈ [0,Tc].

(iv) If, in addition, β (s) = sp with p ∈ (1,7/5), then T ∗ < +∞.

The proof of this theorem will be a consequence of several more detailed results. We
shall mostly rely on the concentration-compactness method, adapted to the frame-
work of trace class operators. Our approach is therefore similar to the one of [6] and
[13], with differences due, respectively, to the sign of the interaction potential and to
non-zero temperature effects. Uniqueness of minimizers (up to translations and rota-
tions) is an open question for T > Tc. For T ∈ [0,Tc], the problem is reduced to the
pure state case, for which uniqueness has been proved in [14] (also see [12]).

This paper is organized as follows: In Section 2 we collect several basic properties
of the free energy. In particular we establish the existence of a maximal temperature
T ∗ > 0 and derive the self-consistent equation for ρ ∈ HM. In Section 3, we derive
an important a priori inequality for minimizers, the so-called binding inequality, which
is henceforth used in proving the existence of minimizers in Section 4. Having done
that, we shall prove in Section 5 that minimizers are mixed states for T > Tc, and
we shall also characterize Tc in terms of the eigenvalue problem associated to the
case T = 0. In Section 6, we shall prove that T ∗ is indeed finite in the polytropic
case, provided p < 7/5 and furthermore establish some qualitative properties of the
minimizers as T → T ∗ < +∞. Finally, Section 7 is devoted to some remarks on the
sign of the Lagrange multiplier associated to the mass constraint and related open
questions.
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2 Basic properties of the free energy

2.1 Boundedness from below and splitting property

As a preliminary step, we observe that the functional FT introduced in (3) is well
defined and iM,T >−∞.

Lemma 2.1. Assume that (β1)–(β2) hold. The free energy FT is well-defined on HM
and iM,T is bounded from below. If FT [ρ] is finite, then √nρ is bounded in H1(R3).

Proof. In order to establish a bound from below, we shall first show that the potential
energy Epot[ρ] can be bounded in terms of the kinetic energy. To this end, note that
for every ρ ∈ H we have

Epot[ρ]≤C‖nρ‖3/2
L1 ‖nρ‖1/2

L3

by the Hardy-Littlewood-Sobolev inequality. Next, by Sobolev’s embedding, we know
that ‖nρ‖L3 is controlled by ‖∇

√nρ‖2
L2 which, using the decomposition (1), is bounded

by tr(−∆ρ). Hence we can conclude that

Epot[ρ]≤C‖nρ‖3/2
L1 tr(−∆ρ)1/2 (10)

for some generic positive constant C. By conservation of mass, the free energy is
therefore bounded from below on HM according to

FT [ρ]≥ tr(−∆ρ)−C M3/2 tr(−∆ρ)1/2 ≥−1
4

C2 M3

uniformly w.r.t. ρ ∈ HM, thus establishing a lower bound on iM,T . For the entropy
term S [ρ] = − trβ (ρ) we observe that, since β is convex and β (0) = 0, it holds
0≤ β (ρ)≤ β (M)ρ for all ρ ∈H and β (ρ)∈S1, provided ρ ∈S1. Hence, all quantities
involved in the definition of FT are well-defined and bounded on HM.

Throughout this work, we shall use smooth cut-off functions defined as follows. Let
χ be a fixed smooth function on R3 with values in [0,1] such that, for any x ∈ R3,
χ(x) = 1 if |x|< 1 and χ(x) = 0 if |x| ≥ 2. For any R > 0, we define χR and ξR by

χR(x) = χ(x/R) and ξR(x) =
√

1−χ(x/R)2 ∀ x ∈ R3 . (11)

The motivation for introducing such cut-off functions is that, for any u ∈ H1(R3) and
any potential V , we have the identities∫

R3
|u|2 dx =

∫
R3
|χR u|2 dx+

∫
R3
|ξR u|2 dx

and
∫

R3
V |u|2 dx =

∫
R3

V |χR u|2 dx+
∫

R3
V |ξR u|2 dx ,
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and the IMS truncation identity∫
R3
|∇(χR u)|2 dx+

∫
R3
|∇(ξR u)|2 dx =

∫
R3
|∇u|2 dx−

∫
R3
|u|2 ∇ · (∇χR +∇ξR)︸ ︷︷ ︸

=O(R−2) as R→∞

dx . (12)

A first application of this truncation method is given by the following splitting lemma.

Lemma 2.2. For ρ ∈ HM, we define ρ
(1)
R = χR ρ χR and ρ

(2)
R = ξR ρ ξR. Then it holds:

S [ρ(1)
R ]+S [ρ(2)

R ]≥S [ρ] and Ekin[ρ
(1)
R ]+Ekin[ρ

(2)
R ]≤ Ekin[ρ]+O(R−2)

as R →+∞.

Proof. The assertion for Ekin[ρ] is a straightforward consequence of (12), namely

tr(−∆ρ
(1)
R )+ tr(−∆ρ

(2)
R ) = tr(−∆ρ)+O(R−2) as R →+∞ .

For the entropy term, we can use the Brown-Kosaki inequality (cf. [2]) as in [6, Lemma
3.4] to obtain

trβ (ρ(1)
R )+ trβ (ρ(2)

R )≤ trβ (ρ) .

2.2 Sub-additivity and maximal temperature

In order to proceed further, we need to study the dependence of iM,T with respect
to M and T and prove that the maximal temperature T ∗ as defined in (8) is in fact
positive. To this end, we rely on the translation invariance of the model. For a given
y ∈ R3, denote by τy : L2(R3)→ L2(R3) the translation operator given by

(τy f ) = f (·− y) ∀ f ∈ L2(R3) .

Proposition 2.3. Let iM,T be given by (7) and assume that (β1)–(β2) hold. Then the
following properties hold:

(i) As a function of M, iM,T is non-positive and sub-additive: for any M > 0, m ∈
(0,M) and T > 0, we have

iM,T ≤ iM−m,T + im,T ≤ 0 .

(ii) The function iM,T is a non-increasing function of M and a non-decreasing func-
tion of T . For any T > 0, we have iM,T < 0 if and only if T < T ∗.
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(iii) For any M > 0, T ∗(M) > 0 is positive, possibly infinite. As a function of M it is
increasing and satisfies

T ∗(M)≥ max
0≤m≤M

m3

β (m)
|i1,0| .

As a consequence, T ∗ > 0 and T ∗(M) = +∞ for any M > 0 if lims→0+ β (s)/s3 =
0.

Proof. We start with the proof of the sub-additivity inequality. Consider two states
ρ ∈HM−m and σ ∈Hm, such that FT [ρ]≤ iM−m,T +ε and FT [σ ]≤ im,T +ε . By density
of finite rank operators in H and of smooth compactly supported functions in L2, we
can assume that

ρ =
J

∑
j=1

λ j |ψ j〉〈ψ j| ,

with smooth eigenfunctions (ψ j)J
j=1 having compact support in a ball B(0,R)⊂R3, for

some J ∈ N. After approximating σ analogously, we define σRe := τ∗3Re σ τ3Re, where
e ∈ S2 ⊂R3 is a fixed unit vector and τ is the translation operator defined above. Note
that we have ρ σRe = σRe ρ = 0, hence ρ + σRe ∈ HM and trβ (ρ + σRe) = trβ (ρ) +
trβ (σRe). Thus we have

iM,T ≤FT [ρ +σRe] = FT [ρ]+FT [σ ]+O(1/R)≤ iM−m,T + im,T +2ε ,

where the O(1/R) term has in fact negative sign so that we can simply drop it. Taking
the limit ε → 0 yields the desired inequality.

Next, consider a minimizer ρ of EH subject to trρ = M. It is given by an appropriate
rescaling of the pure state obtained in [14]. For an arbitrary λ ∈ (0,∞), let (Uλ f )(x) :=
λ 3/2 f (λ x) and observe that ρλ := U∗

λ
ρ Uλ ∈ HM. As a function of λ , the Hartree

energy EH [ρλ ] = λ 2 Ekin[ρ]− λ Epot[ρ] has a minimum for some λ > 0. Computing
d

dλ
EH [ρλ ] = 0, we infer that λ = Epot[ρ]/(2Ekin[ρ]) and moreover

iM,0 ≡ EH [ρ] =−1
4

(Epot[ρ])2

Ekin[ρ]
.

As a consequence, we have iM,0 = M3 i1,0 and

FT [ρ] = iM,0 +T β (M) = β (M)
(

T − M3

β (M)
|i1,0|

)
≥ iM,T , (13)

thus proving that iM,T < 0 for T small enough.

Since β is non-negative function on [0,∞), the map T 7→FT [ρ] is increasing. By taking
the infimum over all admissible ρ ∈HM, we infer that T 7→ iM,T is non-decreasing. The
function M 7→ iM,T is non-increasing as a consequence of the sub-additivity property.
As a consequence, T ∗(M) is a non-decreasing function of M, such that

T ∗(M)≥ lim
M→0+

T ∗(M) .
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By the sub-additivity inequality and (13), we obtain

iM,T ≤ n iM/n,T ≤ nβ
(M

n

)
T − M3

n2 |i1,0|= nβ
(M

n

)(
T − M3

n3 β
(M

n

) |i1,0|

)

for any n ∈ N∗. Since lims→0+ β (s)/s = 0, we find that iM,T ≤ 0 by passing to the limit
as n → ∞. In the particular case lims→0+ β (s)/s3 = 0, we conclude that T ∗(M) = +∞

for any M > 0. Similarly, using again the sub-additivity inequality and (13), we infer

iM,T ≤ im,T ≤ β (m)
(

T − m3

β (m)
|i1,0|

)
∀ m ∈ (0,M] ,

which provides the lower bound on T ∗(M) in assertion (iii). By definition of T ∗(M), we
also know that iM,T is negative for any T < T ∗(M). From the monotonicity of T 7→ iM,T ,
we obtain that iM,T = 0 if T > T ∗ and T ∗ < ∞. Because of the estimate iM,T ≤ iM,T0 +
(T −T0)β (M) for any T > T0, we also find that iM,T ∗ = 0 if T ∗ < ∞.

2.3 Euler-Lagrange equations and Lagrange multipliers

As in [8, 6], we obtain the following characterization of ρ ∈MM.

Proposition 2.4. Let M > 0, T ∈ (0,T ∗(M)] and assume that (β1)–(β2) hold. Con-
sider a density matrix operator ρ ∈ HM which minimizes FT . Then ρ is such that

tr(Vρ ρ) = 4tr(−∆ρ) (14)

and satisfies the self-consistent equation

ρ = (β ′)−1((µ −Hρ)/T
)
, (15)

where Hρ is the mean-field Hamiltonian defined in (5) and µ ≤ 0 denotes the Lagrange
multiplier associated to the mass constraint trρ = M. Explicitly, µ is given by

µ =
1
M

tr
(
(Hρ +T β

′(ρ))ρ
)

. (16)

Proof. Let ρ ∈MM be a minimizer of FT . Consider the decomposition given by (1). If
we denote by ρλ the density operator in HM given by

ρλ = λ
3
∑
j∈N

λ j |ψ j(λ ·)〉〈ψ j(λ ·)| ,

then, as in the proof of Proposition 2.3, we find that EH [ρλ ] = λ 2 Ekin[ρ]− λ Epot[ρ]
while S [ρλ ] = S [ρ] for any λ > 0. Hence the condition d

dλ
EH [ρλ ]|λ=1 = 0 exactly

amounts to Epot[ρ] = 2Ekin[ρ]. Next, let σ ∈ HM. Then (1− t)ρ + t σ ∈ HM and

t 7→FT [(1− t)ρ + t σ ]

9



has a minimum at t = 0. Computing its derivative at t = 0 and arguing by contradiction
implies that ρ also solves the linearized problem

inf
σ∈HM

tr
(
(Hρ +T β

′(ρ))(σ −ρ)
)

.

Computing the corresponding Euler-Lagrange equations shows that the minimizer of
this problem is ρ = (β ′)−1((µ −Hρ)/T

)
where µ denotes the Lagrange multiplier

associated to the constraint trρ = M. Since the essential spectrum of Hρ is [0,∞), we
also get that µ ≤ 0 since ρ is trace class and (β ′)−1 > 0 on (0,∞).

Using the decomposition (1) we can rewrite the stationary Hartree model in terms of
(at most) countably many eigenvalue problems coupled through a nonlinear Poisson
equation {

∆ψ j +Vρ ψ j + µ j ψ j = 0 , j ∈ N ,

−∆Vρ = 4π ∑ j∈N λ j |ψ j|2 ,

where (µ j) j∈N ∈ R denotes the sequence of the eigenvalues of Hρ and 〈ψ j,ψk〉L2 =
δ j,k. The self-consistent equation (15) consequently implies the following relation be-
tween the occupation numbers (λ j) j∈N and the eigenvalues (µ j) j∈N:

λ j = (β ′)−1 ((µ −µ j)/T
)
+ , (17)

where s+ = (s + |s|)/2 denotes the positive part of s. Upon reverting the relation (17)
we obtain µ j = µ −T β ′(λ j) for any µ j ≤ µ .

The Lagrange multiplier µ is usually referred to as the chemical potential. In the ex-
istence proof given below, it will be essential, that µ < 0. In order to show that this is
indeed the case, let p(M) := supm∈(0,M]

mβ ′(m)
β (m) . If ρ ∈ HM, then

tr(β ′(ρ)ρ)≤ p(M) trβ (ρ) .

Notice that if (β3) holds, then p(M)≤ 3.

Lemma 2.5. Let M > 0 and T < T ∗(M). Assume that ρ ∈HM is a minimizer of FT and
let µ be the corresponding Lagrange multiplier. With the above notations, if p(M)≤ 3,
then M µ ≤ p(M) iM,T < 0.

Proof. By definition of iM,T and according to (16), we know that

iM,T = tr
(
−∆ρ − 1

2 Vρ ρ +T β (ρ)
)

,

M µ = tr
(
−∆ρ −Vρ ρ +T β

′(ρ)ρ
)

.

Using (14), we end up with the identity

p(M) iM,T −M µ = (3− p(M)) tr(−∆ρ)+T tr
(

p(M)β (ρ)−β
′(ρ)ρ

)
≥ 0 ,

which concludes the proof.
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The negativity of the Lagrange multiplier µ , is straightforward in the zero temperature
case. In our situation it holds under Assumption (β3), but has not been established
for instance for β (s) = sp with p > 3. In fact, it might even be false in some cases, see
Section 7 for more details.

Corollary 2.6. Let T > 0. Then M 7→ iM,T is monotone decreasing as long as T <
T ∗(M) and p(M)≤ 3.

Proof. Let ρ ∈HM be such that FT [ρ]≤ iM,T +ε , for some ε > 0 to be chosen. With no
restriction, we can assume that Epot[ρ] = 2Ekin[ρ] and define µ[ρ] := d

dλ
FT [λ ρ]|λ=1.

The same computation as in the proof of Lemma 2.5 shows that

p(M)(iM,T + ε)−M µ ≥ (3− p(M)) tr(−∆ρ)+T tr
(

p(M)β (ρ)−β
′(ρ)ρ

)
≥ 0 ,

since, by assumption, p(M) ≤ 3. This proves that M µ[ρ] < iM,T /2 < 0 for any ε ∈
(0, |iM,T |/2), if p(M) ≤ 3. This bound being uniform with respect to ρ , monotonicity
easily follows.

Remark 2.7. Under the assumptions of Lemma 2.5, we observe that

d
dλ

FT [λ ρ]|λ=1 = µ M < 0,

provided p(M) ≤ 3 and ρ ∈ HM, which proves the strict monotonicity of M 7→ iM,T .
However, at this stage, the existence of a minimizer is not granted and we thus had to
argue differently.

3 The binding inequality

In this section we shall strengthen the result of Proposition 2.3 (i) and infer a strict sub-
additivity property of iM,T , which is usually called the binding inequality ; see e.g. [13].
This will appear as a consequence of the following a priori estimate for the spatial
density of the minimizers.

Proposition 3.1. Let ρ ∈HM be a minimizer of FT . There exists a positive constant C
such that, for all R > 0 sufficiently large,∫

|x|>R
nρ(x) dx ≤ C

R2 .

This result is the analog of [13, Lemma 5.2]. For completeness, we shall give the
details of the proof, which requires µ < 0, in the appendix. The following elementary
estimate will be useful in the sequel.

Lemma 3.2. There exists a positive constant C such that, for any ρ ∈ HM,∫
R3

nρ(x)
|x|

dx ≤C M3/2 (tr(−∆ρ))1/2 .

11



Proof. Up to a translation, we have to estimate
∫
R3 |x|−1 nρ(x)dx and it is convenient

to split the integral into two integrals corresponding to |x| ≤ R and |x|> R. By Hölder’s
inequality, we know that, for any p > 3/2,∫

BR

nρ(x)
|x|

dx ≤
(

4π
p−1

2p−3

)(p−1)/p
‖nρ‖Lp R

2p−3
p−1 ,

where BR denotes the centered ball of radius R. Similarly, for any p < 3/2,∫
Bc

R

nρ(x)
|x|

dx ≤
(

4π
p−1

3−2p

)(p−1)/p
‖nρ‖Lp R−

2p−3
p−1 .

Applying these two estimates with, for instance, p = 3 and p = 6/5 and optimizing
w.r.t. R > 0, we obtain a limiting case for the Hardy-Littlewood-Sobolev inequalities af-
ter using again Hölder’s inequality to estimate ‖nρ‖L6/5 in terms of ‖nρ‖L1 and ‖nρ‖L3 :∫

R3

nρ(x)
|x|

dx ≤C‖nρ‖3/2
L1 ‖nρ‖1/2

L3 .

We conclude as in (10) using Sobolev’s inequality to control ‖nρ‖L3 by tr(−∆ρ).

As a consequence of Proposition 3.1 and Lemma 3.2, we obtain the following result.

Corollary 3.3 (Binding inequality). Let M(1) > 0 and M(2) > 0. If there are minimizers
for iM(1),T and iM(2),T , then

iM(1)+M(2),T < iM(1),T + iM(2),T .

Proof. Consider two minimizers ρ(1) and ρ(2) for iM(1),T and iM(2),T respectively and
let χR be the cut-off function given in (11). By Lemma 2.2 we have

tr(−∆(χR ρ
(`)

χR))≤ tr(−∆ρ
(`))+O(R−2) and trβ (χR ρ

(`)
χR)≤ trβ (ρ(`)) .

To handle the potential energies, we observe that

∣∣∣ Epot[χR ρ
(`)

χR]−Epot[ρ(`)]
∣∣∣≤ ∫∫

R3×R3

(1−χ2
R(x)χ2

R(y))n
ρ(`)(x)n

ρ(`)(y)

|x− y|
dxdy

≤
∫∫

{|x|≥R}×{|y|≥R}

n
ρ(`)(x)n

ρ(`)(y)

|x− y|
dxdy .

Using Lemma 3.1 and Lemma 3.2, we obtain∣∣∣ Epot[χR ρ
(`)

χR]−Epot[ρ(`)]
∣∣∣≤C

[
tr(−∆ρ

(`))
]1/2 ∫

|x|≥R
n

ρ(`)(x) dx ≤ O(R−2)

for R > 0 large enough. This shows that, for any R > 0 sufficiently large

FT [χR ρ
(`)

χR]≤ iM(`),T +O(R−2) for ` = 1,2.

12



Consider now the test state

ρR := χR ρ
(1)

χR + τ
∗
5Re χR ρ

(2)
χR τ5Re

for some unit vector e ∈ S2. Since ‖nρR‖L1 ≤M(1) +M(2), by monotonicity of M 7→ iM,T
(see Proposition 2.3 (ii)), we get

iM(1)+M(2),T ≤FT [ρR]≤FT [χR ρ
(1)

χR]+FT [χR ρ
(2)

χR]− M(1)M(2)

9R

≤ iM(1),T + iM(2),T +
C
R2 −

M(1)M(2)

9R

for some positive constant C, which yields the desired result for R sufficiently large.

4 Existence of minimizers below T ∗

By a classical result, see e.g. [13, Corollary 4.1], conservation of mass along a weakly
convergent minimizing sequence implies that the sequence strongly converges. More
precisely, we have the following statement.

Lemma 4.1. Let (ρk)k∈N ∈ HM be a minimizing sequence for FT , such that ρk ⇀ ρ

weak−∗ in H and nρk → nρ almost everywhere as k → ∞. Then ρk → ρ strongly in H

if and only if trρ = M.

Proof. The proof relies on a characterization of the compactness due to Brezis and
Lieb (see [1] and [15, Theorem 1.9]) from which it follows that

lim
k→∞

(∫
R3

nρk dx−
∫

R3
|nρ −nρk | dx

)
=
∫

R3
nρ dx

and lim
k→∞

(
tr(−∆ρ)− tr

(
−∆(ρ −ρk)

))
= tr(−∆ρ) .

By semi-continuity of FT , monotonicity of M 7→ iM,T according to Proposition 2.3 (ii)
and compactness of the quadratic term in EH , we conclude that limk→∞ tr(−∆(ρ −
ρk)) = 0 if and only if trρ = M.

With the results of Section 2 in hand, we can now state an existence result for mini-
mizers of FT . To this end, consider a minimizing sequence (ρn)n∈N for FT and recall
that (ρn)n∈N is said to be relatively compact up to translations if there is a sequence
(an)n∈N of points in R3 such that τ∗an

ρn τan strongly converges as n → ∞, up to the
extraction of subsequences.

Clearly, the sub-additivity inequality given in Lemma 2.3 (i) is not sufficient to prove
the compactness up to translations for (ρn)n∈N. More precisely, if equality holds, then,
as in the proof of Lemma 2.3, one can construct a minimizing sequence that is not
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relatively compact in H up to translations. This obstruction is usually referred to as
dichotomy, cf. [18]. To overcome this difficulty, we shall rely on the strict sub-additivity
of Corollary 3.3, which, however, only holds for minimizers. This is the main difference
with previous works on Hartree-Fock models. As we shall see, the main issue will
therefore be to prove the convergence of two subsequences towards minimizers of
mass smaller than M.

Proposition 4.2. Assume that (β1)–(β3) hold. Let M > 0 and consider T ∗ = T ∗(M)
defined by (8). For all T < T ∗, there exists an operator ρ in HM such that FT [ρ] = iM,T .
Moreover, every minimizing sequence (ρn)n∈N for iM,T is relatively compact in H up to
translations.

Proof. The proof is based on the concentration-compactness method as in [13]. Com-
pared to previous results (see for instance [20, 21, 22, 13]), the main difficulty arises
in the splitting case, as we shall see below.

Step 1: Non-vanishing. We split

Epot[ρn] =
∫∫

R6

nρn(x)nρn(y)
|x− y|

dxdy

into three integrals I1, I2 and I3 corresponding respectively to the domains |x− y| <
1/R, 1/R < |x− y| < R and |x− y| > R, for some R > 1 to be fixed later. Since nρn

is bounded in L1(R3)∩ L3 ⊂ L7/5(R3) by Lemma 2.1, by Young’s inequality we can
estimate I1 by

I1 ≤ ‖nρn‖2
L7/5 ‖| · |−1‖L7/4(B1/R) ≤

C
R5/7 ,

and directly get bounds on I2 and I3 by computing

I2 ≤ R
∫∫

|x−y|<R
nρn(x)nρn(y) dxdy ≤ RM sup

y∈R3

∫
y+BR

nρn(x) dx ,

I3 ≤
1
R

∫∫
R6

nρn(x)nρn(y) dxdy ≤ M2

R
.

Keeping in mind that iM,T < 0, we have

FT [ρn]≥ iM,T >−I1− I2− I3

for any n large enough, which proves the non-vanishing property:

lim
n→∞

∫
an+BR

nρn(x) dx ≥ 1
RM

(
− iM,T −

M2

R
− C

R5/7

)
> 0

for R big enough and for some sequence (an)n∈N of points in R3. Replacing ρn by
τ∗an

ρn τan and denoting by ρ(1) the weak limit of (ρn)n∈N (up to the extraction of a
subsequence), we have proved that M(1) =

∫
R3 n

ρ(1) dx > 0.
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Step 2: Dichotomy. Either M(1) = M and ρn strongly converges to ρ in H by Lemma
4.1, or M(1) ∈ (0,M). Let us choose Rn such that

∫
R3 n

ρ
(1)
n

dx = M(1) +(M−M(1))/n

where ρ
(1)
n := χRn ρn χRn . Let ρ

(2)
n := ξRn ρn ξRn . By definition of Rn, limn→∞ Rn = ∞. By

Step 1, we know that ρ
(1)
n strongly converges to ρ(1). By Identity (12) and Lemma 2.2,

we find that

FT [ρn]≥FT [ρ(1)
n ]+FT [ρ(2)

n ]+O(R−2
n )−

∫∫
R3×R3

n
ρ

(1)
n

(x)n
ρ

(2)
n

(y)

|x− y|
dxdy ,

thus showing that

iM,T = lim
n→∞

FT [ρn]≥FT [ρ(1)]+ lim
n→∞

FT [ρ(2)
n ] .

By step 1, limn→∞

∫
R3 n

ρ
(2)
n

dx = M−M(1). By sub-additivity, according to Lemma 2.3

(i), ρ(1) is a minimizer for iM(1),T , (ρ(2)
n )n∈N is a minimizing sequence for iM−M(1),T and

iM,T = iM(1),T + iM−M(1),T .

Either iM−M(1),T = 0 and then iM,T = iM−M(1),T , which contradicts Corollary 2.6, and
the assumption T < T ∗, or iM−M(1),T < 0. In this case, we can reapply the previous

analysis to (ρ(2)
n )n∈N and get that for some M(2) > 0, (ρ(2)

n )n∈N converges up to a
translation to a minimizer ρ(2) for iM(2),T and

iM,T = iM(1),T + iM(2),T + iM−M(1)−M(2),T .

From Corollary 3.3 and 2.3 (i), we get respectively iM(1)+M(2),T < iM(1),T + iM(2),T and
iM(1)+M(2),T + iM−M(1)−M(2),T ≤ iM,T , a contradiction.

As a direct consequence of the variational approach, the set of minimizers MM is
orbitally stable under the dynamics of (4). To quantify this stability, define

distMM(σ) := inf
ρ∈MM

‖ρ −σ‖H .

Corollary 4.3. Assume that (β1)–(β3) hold. For any given M > 0, let T ∈ (0,T ∗(M)).
For any ε > 0, there exists δ > 0 such that, for all ρin ∈ HM with distMM(ρin)≤ δ ,

sup
t∈R+

distMM(ρ(t))≤ ε

where ρ(t) is the solution of (4) with initial data ρin ∈ HM.

Similar results have been established in many earlier papers like, for instance in [24]
in the case of repulsive Coulomb interactions. As in [4, 24], the result is a direct conse-
quence of the conservation of the free energy along the flow and the compactness of
all minimizing sequences. According to [14], for T ∈ (0,Tc], the minimizer correspond-
ing to iM,T is unique up to translations (see next Section). A much stronger stability
result can easily be achieved. Details are left to the reader.
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5 Critical Temperature for mixed states

In this subsection, we shall deduce the existence a critical temperature Tc ∈ (0,T ∗),
above which minimizers ρ ∈MM become true mixed states, i.e. density matrix oper-
ators with rank higher than one.

Lemma 5.1. For all M > 0, the map T 7→ iM,T is concave.

Proof. Fix some T0 > 0 and write

FT [ρ] = FT0[ρ]+ (T −T0) |S [ρ]| .

Denoting by ρT0 the minimizer for FT0 , we obtain

iM,T ≤ iM,T0 +(T −T0) |S [ρT0]|

which means that |S [ρT0]| lies in the cone tangent to T 7→ iM,T and iM,T lies below it,
i.e. T 7→ iM,T is concave.

Consider Tc defined by (9), i.e. the largest possible Tc such that iM,T = iM,0 +T β (M)
for T ∈ [0,Tc] and recall some results concerning the zero temperature case. Lieb
in [14] proved that FT=0 = EH has a unique radial minimizer ρ0 = M |ψ0〉〈ψ0|. The
corresponding Hamiltonian operator

H0 :=−∆−|ψ0|2 ∗ | · |−1 = Hρ0 (18)

admits countably many negative eigenvalues (µ0
j ) j∈N, which accumulate at zero. We

shall use these eigenvalues to characterize the critical temperature Tc. To this end we
need the following lemma.

Lemma 5.2. Assume that (β1)–(β3) hold. With Tc defined by (9), Tc(M) is positive for
any M > 0.

Proof. Consider a sequence (Tn)n∈N ∈ R+ such that lim→∞ Tn = 0. Let ρ(n) ∈ MM

denote the associated sequence of minimizers with occupation numbers (λ (n)
j ) j∈N.

According to (17), we know that

λ
(n)
j = (β ′)−1

(
(µ

(n)−µ
(n)
j )/Tn

)
∀ j ∈ N ,

where, for any n ∈ N,
(
µ

(n)
j
)

j∈N denotes the sequence of eigenvalues of H
ρ(n) and

µ(n) ≤ 0 is the associated chemical potential. Since ρ(n) is a minimizing sequence for
FT=0, we know that

lim
n→∞

µ
(n)
j = µ

0
j ≤ 0

where (µ0
j ) j∈N are the eigenvalues of H0. Arguing by contradiction, we assume that

liminf
n→∞

λ
(n)
1 = ε > 0 .
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By (17) and the fact that β ′ is increasing, this implies: µ(n) > µ
(n)
1 → µ0

1 as n → ∞.
Then

M = λ
0
0 ≥ lim

→∞
λ

(n)
0 = lim

→∞
(β ′)−1

(
µ(n)−µ

(n)
0

Tn

)
≥ lim

→∞
(β ′)−1

(
µ0

1−µ
(n)
0

Tn

)
= +∞ .

This proves that there exists an interval [0,Tc) with Tc > 0 such that, for any Tn ∈
[0,Tc), it holds µ(n) < µ

(n)
1 , and, as a consequence, ρ(n) is of rank one. Hence, for

any T ∈ [0,Tc), the minimizer of FT in HM is also a minimizer of EH + T β (M). From
[14], we know that it is unique and given by ρ0, in which case iM,T = iM,0−T S [ρ0] =
iM,0 +T β [M].

As an immediate consequence of Lemmata 5.1 and 5.2 we obtain the following corol-
lary.

Corollary 5.3. Assume that (β1)–(β3) hold. There is a pure state minimizer of mass
M if and only if T ∈ [0,Tc].

Proof. A pure state satisfies iM,T = iM,0 + T β (M) and from the concavity property
stated in Lemma 5.1 we conclude iM,T < iM,0 +T β (M) for all T > Tc.

We finally give a characterization of Tc.

Proposition 5.4. Assume that (β1)–(β3) hold. For any M > 0, the critical temperature
satisfies

Tc(M) =
µ0

1 −µ0
0

β ′(M)
,

where µ0
0 and µ0

1 are the two lowest eigenvalues of H0 defined in (18).

Proof. For T ≤ Tc, there exists a unique pure state minimizer ρ0. For such a pure
state, the Lagrange multiplier associated to the mass constraint trρ0 = M is given by
µ = µ(T ). According to 16, it is given by T β ′(M)+ µ0

0 −µ(T ) = 0 for any T < Tc (as
long as the minimizer is of rank one). This uniquely determines µ(T ). On the other
hand we know that 0 6= λ1 = (β ′)−1 ((µ0

1 −µ(T ))/T
)

if T > (µ0
1 − µ0

0 )/β ′(M), thus
proving that Tc ≤ (µ0

1 −µ0
0 )/β ′(M).

It remains to prove equality: By using Lemmas 5.1 and 5.2, we know that iM,Tc =
iM,0 + Tc β (M). Let ρ be a minimizer for T = Tc. The two inequalities, iM,0 ≤ EH [ρ]
and β (M) ≤ trβ (ρ) hold as equalities if and only if, in both cases, ρ is of rank one.
Consider a sequence (T (n))n∈N such that limn→∞ T (n) = Tc, T (n) > Tc for any n∈N and,
if (ρ(n))n∈N denotes a sequence of associated minimizers with

(
µ

(n)
j
)

j∈N and µ(n) ≤ 0

as in the proof of Lemma 5.2, we have µ(n) > µ
(n)
1 so that λ

(n)
1 > 0 for any n ∈ N. The

sequence (ρ(n))n∈N is minimizing for iM,Tc , thus proving that limn→∞ λ
(n)
1 = 0, so that

limn→∞ µ(n) = µ0
1 . Passing to the limit in

M µ
(n) = ∑

j∈N
λ

(n)
j

(
µ

(n)
j +T (n)

β
′(λ (n)

j )
)
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completes the proof.

6 Estimates on the maximal temperature

All above results require T < T ∗, the maximal temperature. In some situations, we can
prove that T ∗ is finite.

Proposition 6.1. Let β (s) = sp with p ∈ (1,7/5). Then, for any M > 0, the maximal
temperature T ∗ = T ∗(M) is finite.

Proof. Let V be a given non-negative potential. From [7], we know that

2T trβ (ρ)+ tr(−∆ρ)− tr(V ρ)≥−(2T )−
1

p−1 (p−1) p−
p

p−1 ∑
j
|µ j(V )|γ

where γ = p
p−1 and µ j(V ) denotes the negative eigenvalues of −∆−V . The sum is

extended to all such eigenvalues. By the Lieb-Thirring inequality, we have the estimate

∑
j
|µ j(V )|γ ≤CLT(γ)

∫
R3
|V |q dx

with q = γ + 3
2 . In summary, this amounts to

2T trβ (ρ)+ tr(−∆ρ)− tr(V ρ)≥−(2T )−
1

p−1 (p−1) p−
p

p−1 CLT(γ)
∫

R3
|V |q dx .

Applying the above inequality to V = Vρ = nρ ∗ | · |−1, we find that

FT [ρ] =
1
2

tr(−∆ρ)+
1
2

[
(2T ) trβ (ρ)+ tr(−∆ρ)− tr(Vρ ρ)

]
≥ 1

2
tr(−∆ρ)−T− 1

p−1 (2 p)−
p

p−1 CLT(γ)
∫

R3
|Vρ |q dx .

Next, we invoke the Hardy-Littlewood-Sobolev inequality∫
R3
|Vρ |q dx ≤CHLS ‖nρ‖q

Lr(R3)

for some r > 1 such that 1
r = 2

3 + 1
q . Notice that r > 1 means q > 3 and hence p < 3.

Hölder’s inequality allows to estimate the right hand side by

‖nρ‖Lr(R3) ≤ ‖nρ‖θ

L1(R3) ‖nρ‖1−θ

L3(R3)

with θ = 3
2

(1
r −

1
3

)
. Since ‖nρ‖L3(R3) is controlled by ‖∇

√nρ‖2
L2 using Sobolev’s em-

bedding, which is itself bounded by tr(−∆ρ), we conclude that∫
R3
|Vρ |q dx ≤ cMqθ (tr(−∆ρ))q(1−θ)
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for some positive constant c and, as a consequence,

FT [ρ]≥ 1
2

tr(−∆ρ)−T− 1
p−1 K tr(−∆ρ)q(1−θ), (19)

for some K > 0. Moreover we find that

q(1−θ) = 1+η with η =
7−5 p

4(p−1)
,

so that η is positive if p ∈ (1,7/5).

Assume that iM,T < 0 and consider an admissible ρ ∈ HM such that FT [ρ] = iM,T .
Since trβ (ρ) is positive, as in the proof of (10), we know that for some positive con-
stant C, which is independent of T > 0,

0 > FT [ρ] > EH [ρ]≥ tr(−∆ρ)−C M3/2 tr(−∆ρ)
1
2 ,

and, as a consequence,
tr(−∆ρ)≤C2 M3 .

On the other hand, by (19), we know that FT [ρ] < 0 means that

tr(−∆ρ) >

(
T

1
p−1

2K

) 1
η

.

The compatibility of these two conditions amounts to

T
1

p−1 ≤ 2KC2η M3η ,

which provides an upper bound for T ∗(M).

Finally, we infer the following asymptotic property for the infimum of FT [ρ].

Lemma 6.2. Assume that (β1)–(β2) hold. If T ∗ < +∞, then limT→T ∗
− iM,T = 0.

Proof. The proof follows from the concavity of T 7→ iM,T (see Lemma 5.1). Let ρT0

denote the minimizer at T0 < T ∗, with FT0[ρT0] =−δ for some δ > 0. Then we observe

iM,T ≤ (T −T0) ∑
j∈N

β (λ j)+FT0[ρT0]≤ (T −T0)β (M)−δ < 0 ,

for all T such that: T −T0 ≤ δ/β (M), which is in contradiction with the definition of T ∗

given in (8) if liminfT→T ∗
− iM,T < 0.
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7 Concluding remarks

Assumption (β3) is needed for Corollary 2.6, which is used itself in the proof of Propo-
sition 4.2 (compactness of minimizing sequences). When β (s) = sp, this means that
we have to introduce the restriction p ≤ 3. If look at the details of the proof, what is
really needed is that µ = ∂ iM,T

∂M takes negative values. To further clarify the role of the
threshold p = 3, we can state the following result.

Proposition 7.1. Assume that β (s) = sp for some p > 1. Then we have

M
∂ iM,T

∂M
+(3− p)T

∂ iM,T

∂T
≤ 3 iM,T (20)

and, as a consequence:

(i) if p ≤ 3, then iM,T ≤ ( M
M0

)3 iM,T0 for any M > M0 > 0 and T > 0.

(ii) if p ≥ 3, then iM,T ≤ ( T
T0

)3/(3−p) iM,T0 for any M > 0 and T > T0 > 0.

Proof. Let ρ ∈ HM and, using the representation (1), define

ρλ := λ
4
∑
j∈N

λ j |ψ j(λ ·)〉〈ψ j(λ ·)|.

With M[ρ] := trρ =
∫
R3 nρ dx, we find that

M[ρλ ] = λ M[ρ] = λ M

and
Fλ 3−p T [ρλ ] = λ

3 FT [ρ] .

As a consequence, we have

iλM,λ 3−p T ≤ λ
3 iM,T ,

which proves (20) by differentiating at λ = 1. In case (i), since T 7→ iM,T is non-
decreasing, we have

iλM0,T ≤ iλM0,λ 3−p T ≤ λ
3 iM0,T ∀ λ > 1

and the conclusion holds with λ = M/M0. In case (ii), since M 7→ iM,T is non-increasing,
we have

iM,λ 3−p T0
≤ iλM,λ 3−p T0

≤ λ
3 iM,T0 ∀ λ ∈ (0,1)

and the conclusion holds with λ = (T/T0)1/(3−p).
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Assume that β (s) = sp for any s ∈R+. We observe that for T < T ∗(M), ∂ iM,T
∂M ≤ 3

M iM,T
if p ≤ 3, but we have no such estimate if p > 3. In Proposition 2.3 (iii), the sufficient
condition for showing that T ∗(M) = ∞ is precisely p > 3. Hence, at this stage, we do
not have an example of a function β satisfying Assumptions (β1) and (β2) for which
existence of a minimizer of iM,T in HM is granted for any M > 0 and any T > 0. In other
words, with T ∗ can be infinite for a well chosen function β , for instance β (s) = sp,
s ∈ R+, for p > 3. However, in such a case we do not know if the Lagrange multiplier
µ(T ) is negative for any T > 0 and as a consequence, the existence of a minimizer
corresponding to iM,T is an open question for large values of T .

A Proof of Proposition 3.1

Consider the minimizer ρ of Proposition 3.1 and let µ < 0 be the Lagrange multiplier
corresponding to the mass constraint trρ = M. Define

G µ

T [ρ] := FT [ρ]−µ tr(ρ) .

The density operator ρ is a minimizer of the unconstrained minimization problem
infρ∈H G µ

T [ρ]. By the same argument as in the proof of Proposition 2.4 we know that
ρ also solves the linearized minimization problem infσ∈H L µ [σ ] where

L µ [σ ] := tr
[(

Hρ −µ +T β
′(ρ)

)
σ
]
.

Consider the cut-off functions χR and ξR defined in (11) and let ρR := χR ρ χR. By
Lemma 2.2, we know that, as R → ∞,

tr(−∆ρ)≥ tr(−∆ρR)+ tr(−∆(ξR ρ ξR))− C
R2

for some positive constant C. Next we rewrite the potential energy as

Epot[ρ] =
∫∫

R3×R3

nρ(x)χ2
R(y)nρ(y)

|x− y|
dxdy+

∫∫
R3×R3

χ2
R/4(x)nρ(x)ξ 2

R(y)nρ(y)

|x− y|
dxdy

+
∫∫

R3×R3

ξ 2
R/4 (x)nρ(x)ξ 2

R(y)nρ(y)

|x− y|
dxdy .

In the second integral we use the fact that |x−y| ≥ R/2, whereas the third integral can
be estimated by Lemma 3.2. Using the fact that

ε(R) := tr(−∆(ξR ρ ξR))

= ∑
j∈N

λ j

∫
R3
|∇(ξR ψ j)|2 dx ≤ 2

M
R2 ‖∇ξ‖2

L∞ +2 ∑
j∈N

λ j

∫
R3

ξ
2
R |∇ψ j|2 dx
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converges to 0 as R → ∞, we obtain that ‖ξ 2
R/4 nρ ∗ | · |−1‖L∞ ≤ C

√
ε(R/4) → 0 and

can estimate the third integral by

∫∫
R3×R3

ξ 2
R/4 (x)nρ(x)ξ 2

R(y)nρ(y)

|x− y|
dxdy ≤C

√
ε(R/4)

∫
R3

ξ
2
R(y)nρ(y) dx .

In summary this yields

Epot[ρ]≤ tr(Vρ ρR)+o(1)
∫

R3
ξ

2
R nρ dx .

Collecting all estimates, we have proved that

L µ [ρR]≤L µ [ρ]− ε(R)+(µ +o(1))
∫

R3
ξ

2
R nρ dx+

C
R2

as R → ∞. Recall that ε(R) is non-negative, µ is negative (by Lemma 2.5) and ρ is a
minimizer of L µ so that L µ [ρ]≤L µ [ρR]. As a consequence,

(µ +o(1))
∫

R3
ξ

2
R nρ dx+

C
R2 ≥ 0

for R large enough, which completes the proof of Proposition 3.1.
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