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ON THE ESTIMATION OF A SUPPORT CURVE 

OF INDETERMINATE SHARPNESS 

Peter Hall112 , Michael Nussbaum113, Steven E. Stern114 

ABSTRACT. We propose nonparametric methods for estimating the support 

curve of a bivariate density, when the density decreases at a rate which might vary 

along the curve. Attention is focussed on cases where the rate of decrease is rela-

tively fast, this being the most difficult setting. It demands the use of a relatively 

large number of bivariate order statistics. By way of ·comparison, support curve 

estimation in the context of slow rates of decrease of the density may be addressed 

using methods that use only a relatively small number of order statistics at the 

extremities of the point cloud. In this paper we suggest a new type of estimator, 

based on projecting onto an axis those data values lying within a thin rectangular 

strip. Adaptive univariate methods are then applied to the problem of estimating 

an endpoint of the distribution on the axis. The new method is shown to have 

theoretically optimal performance in a range of settings. Its numerical properties 

are explored in a simulation study. 

KEYWORDS. Convergence rate, curve estimation, endpoint, order statistic, reg-

ular variation, support. 
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1. INTRODUCTION 

The problem of estimating the endpoint of a distribution has received consid-

erable attention, not least because of its roots in classical statistical inference. In 

estimation of the upper extremity of the Uniform distribution on (0, B), the largest 

order statistic is a sufficient statistic for B. It has an optimal convergence rate in 

a minimax sense, among distributions with densities that are bounded away from 

zero in a left-neighbourhood of B. However, if the density decreases to zero at B 

then, depending on the rate of decrease, faster convergence rates may be achieved 

by taking as the estimator an appropriate function of an increasingly large number 

of large order statistics. That function depends on at least first-order characteristics 

of the rate of decrease. These and related issues have been discussed in a paramet-

ric setting by Polfedt (1970), Woodroofe (1972, 1974) and Akahira an:d Takeuchi 

(1979), among others; and in a nonparametric context by Cooke (1979, 1980), Hall 

(1982), Smith (1987) and Csorg8 and Mason (1989), among others. 

In the case of a bivariate density, the role of an endpoint is played by the 

support curve, being the smallest contour within which the support of the density 

is contained. Alternatively, the support curve may be defined as the zero-probability 

contour of a density. Motivated partly by applications to pattern recognition and 

to boundary detection in image analysis, estimation of support curves and density 

contours has been considered by Devroye and Wise (1980), Mammen and Tsybakov 

(1992), Hardle, Park and Tsybakov (1993), Korostelev and Tsybakov (1993) and 

Tsybakov (1994). In that work it is typically assumed that as the support curve C is 

approached from within, the density decreases to zero at a constant, known rate. As 

in the univariate case, the performance of the curve estimator depends significantly 

on the rate at which the probability density decreases to zero as the boundary is 

approached. If that rate is sufficiently slow then optimal estimation may be based 

on a relatively small number of bivariate order statistics at the extremities of the 

data set. However, if the rate is unknown and fast then optimal estimation can 

be significantly more difficult, and may have to be based on an increasingly large 
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number of bivariate order statistics. 

Our paper addresses precisely this context. We assume that at a particular 

point P on C, the density decreases to zero at rate u a· as P is approached from a 

location distant u from P and inside C. (In this context, distance may be interpreted 

as perependicular displacement, although displacement in any direction that is not 

tangential to C results in the same exponent a, by virtue of the continuity assumed 

of that function.) The exponent a may be a function of the location of P, and should 

be estimated either implicitly or explicitly from data, as a prelude to estimating 

the locus of C. In the context of the previous paragraph, the case where a < 1 

corresponds to a "slow" rate of decrease of the density. We are interested in the 

"fast" rate case, where a > 1 and is an unknown function of location on the curve. 

Our approach to the problem is non parametric in character, in that we assume that 

unknowns such as the function a and the function describing the locus of C are 

known only up to smoothness conditions, not parametrically. 

Even in the one-dimensional case, of estimating the endpoint B of a distribu-

tion, the form of the estimator of () depends critically on the value of a. In the 

case of known a, Hall (1982) proposed a uniquely but implicitly defined estimator. 

Csorg8 and Mason (1989) suggested an explicitly defined estimator whose first-order 

performance was identical to that of Hall's approach. Hall extended his method to 

the case of unknown a, and Csorg8 and Mason proposed a plug-in estimator then~: 

first estimate a using methods such as those of Hill (1975), and then substitute the 

estimate for the true value of a in the formula for their estimator of (). This method 

is not entirely satisfactory, however, not least because application of the method of 

Hill to estimate a does require knowledge of the value of (). There are ways around 

this problem, but they involve the use of pilot estimators and, if one seeks optimal 

convergence rates, iteration of the plug-in procedure. 

The difficulties of following this two-stage route are even greater in the bivariate 

case, where the unknown a is a function. In the present paper we have chosen to 
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use a modified version of the method proposed by Hall (1982). It involves implicit 

rather than explicit estimation of a. The modification is based on sliding a thin 

rectangular window through the data. The window is centered on an axis through a 

point P at which the curve is to be estimated, and those points within the window 

are projected onto the axis. The estimate at P is then ob.tained by ~pplying adaptive 

univariate methods to the univariate distribution on the axis. We shall show that 

this approach produces consistency whenever a> 1, and optimal convergence rates 

in a range of settings when a > 2, although not when 1 < a ::::; 2. Alternative 

procedures will produce optimal rates in the latter range, and also in other settings. 

But in the case where a varies with location, which is the subject of this paper, 

they are awkward to implement and so are not addressed here. 

Hardle, Park and Tsybakov (1993) treated the case of fixed a 2:: 0, but employed 

estimators based on only a small number of extreme order statistics. Their definition 

of optimality is somewhat different from ours, being based on function classes that 

provide bounds only to first-order behaviour at the boundary. By way of contrast, 

our function classes are based on bounds to second-order behaviour. The different 

convergence rates of estimators that use differing numbers of extreme order statistics 

do not emerge from Hardle, Park and Tsybakov's (1993) approach to the problem. 

Section 2 will introduce our methods and describe their main theoretical and 

numerical properties. Optimal bounds for convergence rates will be presented and 

derived in Section 3, and shown to coincide in many instances with the rates achieved 

by the estimators suggested in Section 2. Section 4 will present technical arguments 

behind the main result in Section 2. 

2. MAIN PROPERTIES OF THE ESTIMATION PROCEDURE 

We now present our estimator and discuss some of its basic properties. Section 

2.1 discusses the basic methodology and describes in detail the actual estimation 

procedure. Section 2.2 then presents the main theoretical results regarding the 

asymptotic properties of the estimator. Finally, Section 2.3 contains two simulation 
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studies that examine the numerical properties of the estimator. 

2.1 METHODOLOGY. Let y = g(x) represent the locus of a curve in the plane, 

below which n independent random points (Xi, Yi) are generated according to a 

distribution with density f. The density is zero above the curve, and decreases to 

zero as the curve is approached from below. We wish to estimate g. 

We assume that the decrease in density is no more than algebraically fast, 

perhaps with a varying rate that depends on position. Specifically, we suppose that 

for univariate functions a, b, a and (3, and a bivariate function c, 

f(x, y) = a(x) {g(x) - y}+ a(:z:) + b(x) {g(x) - Y}+J3(:z:) 

+ c(x, y) {g(x) - Y}+J3C:z:>, for x EI, 

where I is a compact interval, 

a> 0, lbl > 0, a> 1, (3 >a; sup lc{x,g(x) - y}I~ 0 as y l O; 
:z:EI 

the derivatives a', g1 and a' exist and are Holder continuous 

with exponent t, where 0 ~ t ~ 1; and b, (3 are Holder continuous. 

We suppose too that 

the marginal density e of X is differentiable, and the 

derivative is Holder continuous with exponent t. 

(2.1) 

(2.2) 

(2.3) 

Next we suggest an estimator of g. Without loss of generality, suppose we wish 

to calculate g(O), and that 0 is an interior point of I. Given h > 0, let (XI, Yi'), 
for 1 ~ i ~ N, denote those data pairs (Xi, Yi) such that Xi E (-h, h), indexed in 

random order. Write Y('i) ~ ... ~ Y('N) for the corresponding order statistics, and 

following Hall (1982), define 

Our estimator g( 0) is based on the r largest order statistics, Y('N -i) for 0 ~ i ~ r -1. 

It is defined to equal the largest solution, B, of the equation 

[~ log{l +~i(9)}]-l -{ ~ W) }-l = r-1 , (2.4) 
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or to equal Y(N) if no solution exists. One may show that as either e~ oo or 

() ~ Y(N), the left-hand side of {2.4) converges to a limit that is strictly less than 

r- 1 . Therefore, since the left-hand side is continuous, {2.4) must have an even 

number of solutions. 

2.2 THEORETICAL RESULTS. Our first theorem describes large-sample proper-

ties of g( 0). It provides an expansion of the difference g( 0) - g( 0) into bias and 

error-about-the-mean terms, and describes the sizes of the dominant contributions 

to each. As a prelude to stating the theorem, put A= 1/{a{O) + 1}, I= (3 - a, 

a = a(O) { a(O) - 1 }1/ 2 { a(O) + 1 }A-(i/2) { e(O)/ a(O)}A , 

c1 = -~ a(0)2 {a{O) - 2}-1 {a(O)+1}-A {a(O)/e(O)}A g'{0)2 , 

c2 = -a{O) {a{O) - l}{a{O) + l}A{-y(o)+i} (3(0)-1 {(3(0)+1}-2 

x 1(0)2 a(o)-A{.B(o)+2} b(O) e(O)Ah(O)+l}' 

c3 = -l a(0)4 { a(O) - 1} { a{O) + 1} -(A+i) { a(O)/e(O)}A g' {0)2 • 

Let Q1 denote a random variable with the Standard Normal distribution. In the 

case 1 < a(O) < 2, define 

oo ( i )-A 
Q2 = t; i-2

A ~ Z; ' 

where Z1 , Z2 , ••. are independent exponential random variables with unit mean, 

independent of Q1 . Recall that N is of size nh, indeed N /nh ~ c where c = 2e(O). 

We may replace N by cnh in the theorem below, without affecting its validity. 

Theorem 2.1. Assume that the bivariate density f and marginal density e satisfy 

conditions (2.1)-(2.3), and that e(O) > 0. Suppose too that for some 0 < E < 1/4 

and all sufficiently large n, 

{2.5) 

Then if a(O) > 2 and n ha.(o)+2 fr~ 0, 

g(O) - g(O) = (N/r)A h2 c1 + (r/N)A{-y(o)+i} c2 + (r/N)A r-1/ 2 a Q(l) 

+ Op(ht+1) + op{(N/r)A h2 + (r/N)A{-y(o)+i} + (r/N)A r-1 / 2 }; 
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if a(O) = 2, 

g(O) - g(O) = (N/r)A h2 logr c3 + (r/N)A{;(o)+i} c2 + (r/N)A r-1/ 2 u Q(l) 

+ Op(ht+1) + op{(N/r)A h2 logr + (r/N)A{;(O)+l} 

+ (r/N)A r-1/2}; 

and if 1 < a(O) < 2 and n ha(o)+2-+ oo, 

g(O) - g(O) = (r/N)A{;(o)+1} c2 + (r/N)A r-1/2 u Q(1) + r2A-1 NA h2 Q(2) c3 

+ Op(ht+1) + op{(r/N)A{;(o)+i} + (r/N)A r- 1 / 2 

where Q(l) is asymptotically distributed as Q1 and, when a(O) < 2, ( Q(l), Q(2)) is 

asymptotically distributed as ( Q1 , Q2 ). 

The remarks below describe the main implications of the theorem. If p(n), 

q( n) are sequences of positive numbers, the notation p( n) x q( n) indicates that 

p(n)/q(n) is bounded away from zero and infinity as n-+ oo. 

Remark 2.1: Sign of bias terms. Since the constants c1 , ... , c3 are all negative 

then the dominant contributions to the bias of g are also negative. In this sense, g 

tends to underestimate g. 

Remark 2.2: Optimal choice of hand r when a(O) > 2. In this range of a there are 

two deterministic bias terms, of sizes (N/r)A h2 and {r/N)A{"Y(o)+l} respectively, 

and one stochastic term describing the error about the mean, of size ( r / N)A r-1 / 2 . 

Recalling that N '"""' cnh we see that these three sources of error are of identical size 

when 

(2.6) 

If t 2:: / / ( / + 2) then, with this choice of h and r, the theorem implies that fJ - g = 

Op(6n) where 6n = n-2h+i)/(2a+5"Y+4), It also follows from the theorem that for this 

choice of hand r, and fort strictly greater than I/( I+ 2), the limiting distribution 
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of (g - g)/8n is Normal N(µ,r2 ), whereµ< 0 and T > O. Observe too that when r 

and h satisfy (2.6), the conditions (2.5) and n ha+2 fr-+ 0 (imposed in the theorem) 

are both satisfied. 

In the context a(O) > 2, at least one special case is of particular interest. 

For large/, where the model (2.1) is essentially f(x,y) = a(x) {g(x) - y}+ a(:z:), 

the optimal sizes of h and r are essentially n-1/5 and n 415 ~ N, respectively. 

This bandwidth formula may be recognised as the optimal one for estimation for a 

twice-differentiable curve. The root mean square convergence rate, of approximately 

n-2/ 5 when I is large, is also familiar from that setting. Note particularly that, 

since 1 ~ t ~ / /(! + 2), then t --+ 1 as /--+ oo, and so for large / we effectively 

require t + 1 == 2 derivatives of g. 

For values oft that do not exceed/ /(1 + 2), the optimal convergence rate is 

achieved not so much by balancing the terms in (N/r)Ah2 , (r/N)A{-y(o)+l} and 

(r/N)A r-1! 2 on the right-hand side of the expansion of fJ- g, but by balancing the 

terms in hH1, (r/N)Ah(O)+l} and (r/N)A r-1! 2 • Indeed, the theorem implies that 

when a(O) > 0 and we choose 

h == n-('y+1)/{(t+l)(a+2-y+1)+-y+1} and 
(2.7) 

then g - g == Op( bn), where 

(2.8) 

Remark 2.5 will address such results in detail. 

Remark 2.3: Optimal choice of h and r when a(O) == 2. This case is similar to 

that in the previous remark, with the optimal sizes of h and r differing only by a 

logarithmic factor from what they were there: 

h "'""' { -("Y+2) (l )-(a+2-y+l)}l/(2a+5-y+4) d "'""' ( 2/ l )2-y/(2a+5-y+4) ,...... n og n , an r ,...... n og n . 

If t > 1/(1+2) then for these choices of h and r, g - g == Op(bn) where bn = 
(n2 /logn)-h+l)/(2a+5-y+4). Indeed, the limiting distribution of (g-g)/8n is Normal 
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with negative mean and nonzero variance. If t < / /( / + 2) then, for h and r chosen 

according to (2. 7), result (2.8) holds. 

Remark 2.4: Optimal choice of h and r when 1 < a(O) < 2. The situation here is 

distinctly different from that when a(O) ~ 2, in that a new stochastic term with a 

non-Normal asymptotic distribution is introduced into the expansion of g - g. The 

optimal sizes of h and r are now 

h X n -(2a+s-y+2-a-y)/(2a2+aa-1+aa+9-y+4) and 

r x n4-y(a+l)/(2a2 +3a-y+6a+9-y+4). 

If t is sufficiently far from 0 then for such h and r we have g - g = Op( 8n), where 

. Sn = n-2(a+l){"Y+l)/(2a
2
+ 3a-y+aa+9-y+4). The asymptotic distribution of (g - g )/ 8n 

is well-defined and representable as a mixture of the distributions of Q1 and Q2, 

together with a location constant. 

Remark 2.5: Optimal convergence rates. The "optimality" discussed in Remarks 

2.2-2.4 is of course with respect to choice of tuning parameters for the specific 

estimator g, and not necessarily with respect to performance of g among all possible 

approaches. It will turn out, however, that when a(O) > 2 the convergence rates 

derived in Remark 2.2 are optimal in the problem of estimating g when the derivative 

of that function satisfies a Lipschitz condition with exponent t ~ / /( / + 2). This 

and related results will be elucidated in the next section. 

Indeed, the techniques that we shall employ to derive Theorem 2.1 may be 

used to obtain the result below, which provides an upper bound to complement the 

lower bound that will be derived in Section 3. It describes convergence rates of 

the estimator g uniformly over a class of densities more general than those satisfy-

ing (2.1)-(2.3). (These stronger conditions are necessary to derive concise expres-

sions for bias and error-about-the-mean terms in Theorem 2.1. However, if only 

an order-of-magnitude version of that theorem is required then milder assumptions 

are adequate.) Let C > 1 denote a large positive constant, put :J = [-1/C, 1/C], 

and assume that for univariate functions a, a and (3, and a bivariate function b, the 



9 

following conditions hold: the density f of (X, Y) satisfies 

f ( x, y) = a( x) {g( x) - y} +a( x) + b( x, y) {g( x) - y} +,8( x) for x E :f , 

where 0-1 ::; a::; G, lbl ::; G, 2 + c-1 ::; a::; G, a+ c-1 ::; /3::; G; the derivatives 

a', g1 and a' exist and, denoted by l, satisfy ll(O)I::; G arid ll(u)-l(v)I::; Glu-vlt for 

u,v E :1, where 0 ~ t::; 1; l/3(u)-f3(v)I ~ Glu - vl 11° for u,v E :l; the marginal 

density e of X is differentiable, e(O) ~ c-1 , le'(O)I ::; G, and le'(u) - e'(v)I < 
Glu - vj 11° for u, v E J. Let F(t, C) denote the class of all such f's. 

Theorem 2.2. Let h and r be given by (2. 7), and define 8n by (2.8), in which 

formulae the functions a and / = /3 - a should be evaluated at the origin. Fix 

t E (0, 1). Then, for all G's which are so large that F(t, G) contains at least one 

element for which 1(0)/{1(0) + 2} ~ t, we have 

lim limsup sup P{l9(0) - g(O)I ~ .\8n} = 0. 
>.-co n-co f E:F(t,G): "'f(O)/{ "Y(0)+2}~t 

Remark 2.6: Alternative estimators of g. There are several estimators of g alter-

native to those treated here. In the case where a is known and fixed, estimation 

may be based on fitting, by maximum likelihood, local or piecewise polynomials to 

a and g in the fictitious model f ( x, y) = a( x) {g( x) - y} +a. This approach is feasi-

ble when the polynomials are linear, but is not as attractive from a computational 

viewpoint as the reduction-to-one-dimension method studied in the present paper. 

The case of second or higher degree polynomials is particularly cumbersome. When 

a is allowed to vary, a local or piecewise polynomial approximation to that function 

may be introduced, although this does make the methods very awkward. 

The performance of such methods under the more plausible model (2.1) may 

be described using arguments similar to those developed in Section 4. They attain 

optimal convergence rates in a wide range of settings, but at the price of significantly 

increased complexity. 

Remark 2. 7: Generalizations to Poisson point processes. It is straightforward to 

generalize Theorems 2.1 and 2.2, and also the results in the next section, to the case 
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where the data (Xi, Yi) originate from a bivariate Poisson processes with intensity 

Af, where A is a positive constant. The function f need not be a density, but the 

only change which that demands is that f need not integrate to 1. The role of n 

is now played by .X; in particular, the theorems are valid for high-intensity Poisson 

processes. In all other respects the conditions required for the theorems remain 

unchanged. The constants u, c1 , ... , c3 defined prior to Theorem 2.1 need to be 

adjusted, although the Ci 's remain negative. With these alterations, Theorems 2.1 

and 2.2 hold as before. 

2.3 NUMERICAL RESULTS. We present two numerical studies that examine the 

performance of our estimation procedure for relatively large samples ( n = 5000 

and n = 7500). The first study addresses the estimator's properties when the 

boundary is relatively non-linear. The second examines the estimator's capabilities 

in distinguishing between a constant boundary with changing exponent function a 

and a non-constant boundary with constant exponent a. In each case, we focus on 

the case where a( x) > 2. Data are generated such that the marginal distribution of 

the abscissa values is uniform between 0 and 1, and such that the function /3( x) is 

equal to twice a( x ). In this situation, 1 = a, so that Remark 2.2 following Theorem 

2.1 implies that the optimal sizes of the bandwidth and the number of order statistics 

included in the estimation procedure are h x n-(a+2)/(7a+4) and r x n 4a/(7a+4). 

Using the fact that N x nh, it is easily seen that r x N 2a/(3a+l), and therefore in 

each of the simuations we choose r(x) to be proportional to {N(x)}213 • 

Simulation Study I. Here we set the boundary curve to beg( x) = 2+4x-18x2 +16x3 

and the exponent function to be a(x) = 2 + 3x, for x E [O, l]. We chose a sample 

size of n = 5000 points and set r( x) = 4{ N( z )}213 • Figure 1 shows the results 

of the new estimation procedure for three different choices of the bandwidth, h = 
0.025, 0.05, 0.1. The three plots clearly demonstrate the trade-off in variance versus 

bias as the bandwidth increases. For comparison, each of the plots presents a 

boundary estimate based solely on the maximum order statistic. As can be seen, 
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particularly in Figure lb, the new estimate provides a noticeable improvement over 

the estimate based only the maximal order statistic, particularly in the range where 

the abscissa value is large, which corresponds to the region with very large exponent 

a. 

One obvious feature of the new estimation procedure is that it produces bound-

ary estimates which are quite "rough" and prone to "spikes". To alleviate this 

problem it may be useful to consider a variable bandwidth. Alternatively, we might 

smooth the boundary estimate. Figure 2a presents a LOWESS smooth of the 

boundary estimate shown in Figure lb, as well as boundary estimates using the 

same bandwidth, h, and number of order statistics, r, for four additional datasets 

each of size n = 5000. Again, for comparison, a LOWESS smooth of the boundary 

estimates based on the maximal order statistic is presented in Figure 2b. While the 

smoothed estimates in Figure 2b capture the basic shape of the boundary, they are 

significantly biased. The smoothed version of our new boundary estimate not only 

captures. the shape but also the location of the boundary. 
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Simulation Study II. Here we compare two situations. First, we set the boundary 

function to be constant, in fact g( x) = 2, and the exponent function to be quadratic, 

a(x) = 2 + 24x -24x2 for x E [O, l]. By way of contrast, in the second situation it is 

the boundary which is quadratic, g( x) = 2 - 4x + 4x2 , while the exponent function 

is constant at a( x) = 2. For samples of size n = 7500, each of these two situations 

produces data which have similar appearances at the upper extremity of the point 

clouds, despite the difference in boundary curves. This implies that the simple 

estimator which uses only the largest order statistic within the chosen bandwidth 

will not be able to easily distinguish between the two situations. However, our 

estimator, by virtue of its construction using the r largest order statistics, can 

make the distinction much more readily. Figure 3a presents a plot of the new 

estimator as well as the estimator based on the maximal order statistic, in the 

case of the constant boundary and quadratic exponent function a( x ). For this 

plot the bandwidth was h = 0.1, while the number of order statistics used was 

r(z) = 8{N(z)}2/ 3 • In contrast, Figure 3b presents the same estimation procedures 

in the case of an underlying quadratic boundary with a constant exponent function 

a. Again, the chosen bandwidth and number of order statistics used are h = 0.1 

and r( z) = 8{ N( z )}213 , respectively. As with the previous simulation study, the 

new estimation procedure provides quite "ragged" curves, though again this may 

be mitigated somewhat by the choice of a more flexible r( x) function or a variable 

bandwidth. In addition, smoothing may be employed as in the previous example. 

Figure 4 presents LOWESS smooths of the estimates presented in Figure 3. Figure 

4a shows that the new estimator distinguishes between the two cases to some degree, 

while Figure 4b shows that the estimator based solely on the maximal order statistic 

does not distinguish between the two cases at all. 



0 

C\I 

0 

0.0 

·· ... ......... 

0.0 

0.2 

15 

FIGURE 3 

True Boundary 
New Estimator 
Maximal Order Statistic 

0.4 0.6 0.8 

(a) Constant Boundary, Quadratic Exponent 

0.2 

True Boundary 
New Estimator 
Maximal Order Statistic 

0.4 0.6 0.8 

(b) Quadratic Boundary, Constant Exponent 

r---

1.0 

. ... ······ 

1.0 



C\I -

,..- -

0 -

C\I 

0 

16 

FIGURE 4 

············· True Boundaries 
Constant Boudary Estimate 

~----- Quadratic Boundary Estimate ______ _ 

··::.:=··.::--==------·······------·~···---------~·····=·~=: 

I 

0.0 

··... ........... .,,.,,..---:.·· 
········ ..... :::.-::::.::::-.:::::::::::::::.=:::::=.----do·~~::.-········· 

I I I I 

0.2 0.4 0.6 0.8 

(a) LOWESS Smooth of New Estimator in Two Cases 

True Boundaries 
Constant Boudary Estimate 
Quadratic Boundary Estimate 

I 

1.0 

.. :.::::::::.::···························································· ·········· ... ··································:::=:~2~: 

"""".~:.:::::::::::::::::::·:.:::.·=.·::::::::::::;;:;;::::;:;.:.;:::.·::.--?' 

0.0 0.2 0.4 0.6 0.8 1.0 

(b) LOWE SS Smooth of Maximal Order Statistic in Two Cases 



17 

3. BEST ATTAINABLE CONVERGENCE RATE 

In this section we will assume that the support curve g is of general smoothness 

T > 0. More specifically, let l T J be the largest nonnegative integer < T and assume 

that the derivative gLTJ exists and satisfies lgLTJ (u) - gLTJ (v)I ~ 0 lu - vlT-LTJ for 

u, v E :f. The class of such g's will be denoted by AT(O). For the lower risk bound, 

we will assume that the functions a, a and {3 are known. The assumptions consti-

tuting the class :F(t, 0) in section 2 will remain in force, with the exception that 

the lower bound for a is relaxed to 1+0-1 instead of 2 + 0-1 . The corresponding 

class of all f's when a, a and {3 are fixed will be denoted by :F' ( r, 0). We have to 

assume that this class is sufficiently rich: there exists O' < 0 such that :F'( r, O') is 

nonempty. 

Theorem 3.1. Define Sn as in (2.8) where t + 1 = T . Then for all T > 0 

lim liminf inf sup P{l9(0) - g(O)I 2:: .\Sn} > 0 
A-+0 n-+oo g(O) fE:F'( T,G) 

where the infi.mum is taken over all estimators g( 0) at sample size n . 

Introduce notation A = 1/{a + 1), B = Ai where a = a(O), / = 1(0) and 

define a rate exponent p by Sn = n - P. In this notation, 

p=r/(rD-1 +1), where D= A+B. 
2B+l 

To understand that lower bound result, consider the problem of endpoint estimation 

on the real line: suppose we have i. i. d. observations Yi, i = 1, ... , n with density 

I., where for some a, 0 > 0,, a> 1, {3 >a and some 8 

I.= l(B - y), l(y) = ay+ + b(y)1/+, lb(y)I ~ o. (3.1) 

Remark 3.1: For this problem of endpoint estimation it is known that n-~ is an 

attainable rate (Hall (1982b), Csorg8 and Mason (1989)), and we will see below that 

it is optimal. This problem with a nonparametric nuisance term b(y)y! in (3.1) is of 

functional estimation type, with a rate n-D similar to those occurring in smoothing. 
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The nuisance term defines "indeterminate sharpness" in our terminology. In the 

two dimensional case with a support curve g which is ;Holder smooth, we have an 

additional smoothing problem. The above optimal rate n-r/(rD-
1
+1) = n-P results 

from the superposition of these two nonparametric problems. Accordingly remark 

.2.2 describes this rate as the result of a balancing problem which involves three 

terms ( cp. (2. 7)), i. e. two bias terms and one variance term. 

Remark 3.2: The general form of the rate exponent p = r/(r/D + 1) is well 

known in edge estimation, see e. g. Korostelev and Tsybakov {1993a), {1993b ). 

The most prominent case there has been the case D = 1 which corresponds to a 

one dimensional endpoint estimation problem of a uniform density, where in (3.1) 

o: = 0. For such a sharp support curve, even an asymptotic minimax constant has 

been found; see Korostelev, Simar and Tsybakov (1992). To make the connection, 

we discuss two limiting cases in the endpoint problem (3.1): 

i) /3 ~ oo, i. e. B ~ oo where D ~ 1/2. In this case the term b(y)y!, /3 > o: 

becomes neglibible near 0, and an appropriate limiting problem for (3.1) is defined 

by 

l(y) = ay+ for IYI ~ K 

for some small K, i. e. a parametric problem. That would mean "determinate 

sharpness". The value of o: is critical here: for 0 ~ o: < 1 the parametric problem 

is nonregular, the rate n -A of the largest order statistic is optimal, and this is 

better than n -D. The previous superposition heuristic explains the rate exponent 

p = T / ( T A-1 + 1) for the corresponding support curve problem, e.g. for the uniform 

density on a domain (Korostelev and Tsybakov (1993aJ). For o: > 1 the endpoint 

problem turns regular and a parametric rate n-D = n-112 obtains. In theorem 3.1 

that corresponds to the limiting case I ~ oo. Thus for the support curve when 

o: > 1, B ~ oo we get a smoothing problem similar to those of local averaging 

type, and the optimal rate exponent is of the well known form p = r/(rn-1 +1) 

= r/(2r + 1). 
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ii) /3 l a, i. e. B ~ 0 where D ~ A. An appropriate limiting problem for 

(3.1) is one where l is restricted by 

for some small"'· Here n-l/(a+l) = n-A is the optimal rate for any a ~ 0, and it 

is again attained by the largest order statistic. (We abbreviate here; this reasoning 

can be justified by the results of Hardle, Park and Tsybakov (1993) or by our results 

for the endpoint problem below). We may conclude that the corresponding support 

curve problem should have rate exponent p = r/(rA-1 +1) for any a~ 0. Indeed 

this is the result of Hardle, Park and Tsybakov (1993) who impose a condition on 

the density f of (X, Y) similar to 

f(x,y) ~ a{g(x) -y}+ for 0::; {g(x)-y}::; "'' x E :r 

for some small "'· In our terminology, this again is a case of" determinate sharpness" 

with rate governed solely by a. 

Remark 3.3: We have seen in section 2 that the rate 8n is attainable when 

1 ::; T ::; 1 + 'Y /( 'Y + 2) and the function a satisfies a ~ 2 + c-1 • The limitation to 

that narrower range in comparison with theorem 3.1 is due to the specific form of 

our estimator, which is comparatively simple given the complex situation. 

Remark 3.4: For estimating an unknown exponent (or tail rate) a, Hall and 

Welsh (1984) established a best possible rate; attainability is shown e.g. by Csorg8, 

Deheuvels and Mason (1985). The tail rate functional is treated again by Donoho 

and Liu (1991) from the modulus of continuity viewpoint. We will apply that 

methodology to the endpoint functional and to the support curve problem. 

Remark 3.5: Both estimation problems (endpoint and tail rate) are closely re-

lated to statistical issues in extreme value theory; in particular the nonparametric 

term b(y)y! in (3.1) ("indeterminate sharpness") constitutes a neighborhood of a 

generalized Pareto distribution (see Falk, Hiisler, Reiss (1994), chap. 2.2, Marohn 

(1991), Janssen and Marohn (1994) and the literature cited therein). 
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To derive Theorem 3.1 we shall follow Donoho and Liu (1991) and consider 

the value 9(0) as a functional on the set of densities f. It is then sufficient to 

estimate its Hellinger modulus of continuity, i. e. to exhibit a sequence of pairs fo, 

Ji E F'(r, C) such that for the corresponding support curves 90,91 we have 

H(fo, Ji) ~ n-1/ 2 and l9o(O) - 91 (O)I t n-P (3.2) 

where H(·, ·) is Hellinger distance. In the sequel the notation ni ~ n2 for two 

sequences means that ni = 0( n2 ), ni t n2 means that n2 = 0( ni ), and nl x n2 

means that both n 1 ~ n 2 and n 1 t n 2 • We shall use notation"' (or K) for positive 

constants, small or large respectively. The constant C is held fixed at its value in 

the class F'( r, C). 

Consider again the endpoint problem (3.1) where a > 1 and call Fo(C) the 

class of densities l in (3.1) when B varies in R. We will exhibit a sequence of pairs 

lo, l 1 E :F0 ( C) such that for the corresponding endpoints 80 , 81 

(3.3) 

Indeed this will follow from lemma 3.2 below by putting B x n -D. For proving 

(3.3), we will construct for two given functional values 0 and B a pair of densities 

in :Fo ( C) which are at a minimal Hellinger distance. Consider a function 

lo(Y) = aya for 0 ~ y ~ "'· 

Assume"' is small enough so that i.0(y) can be continued to a density outside [O, "']· 

For any B > 0 define 

l1(y, B) = a(y - B)+ + C(y - B)! for 0 ~ y ~ Yo(B) 

= aya for Yo(B) < y ~"' 

where the "cutoff point" Yo ( B) is selected such that 

(3.4). 
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Provided that is possible, put l.1(Y, 8) = l.o(y) for y > "'· In view of (3.4) £1 (·, B) 

then is also density. The next technical lemma makes this precise. 

Lemma 3.1. For sufflciently small 8 > 0 , unique solutions y = y( B) and y = y0 ( B) 

of 

and of (3.4) respectively, exist and satisfy 

y(B) rv Kl()A/(A+B), Yo(B) rv K2()A/(A+B) as () ~ 0, where 

Kl= ((A-1 - l)ac-1)Af(A+B), K2 = ((B + l)A-1ac-1)Af(A+B)_ 

Proof. Consider the function of y 

a(y - Byx - aycx + C(y - B)f3. 

For y ~ () it becomes negative, while at y = "' it is positive for sufficiently small 

8. Hence a solution exists for sufficiently small 8. Note that a == 1/ A - 1, {3 == 

(B + 1)/A -1, so any solution y solves 

a(y _ B)1f A-1 _ aylfA-1 + C(y _ B)(B+l)/A-1 = O. 

Put y = u8; then u > 1 since y > B, and we obtain 

a((u - l)B)11A-l - a(uB)1fA-l + C((u - l)B)(B+l)/A-l = 0 (3.5) 

or 

1 - (1 - lju)1fA-l = Ca-1(1 -1/u)lfA-l(u - l)BfA8B/A. (3.6) 

Suppose that u stays bounded as e ~ O; then 1 - (1 - l/u)1/A-l is bounded away 

from 0 while the right hand side tends to 0, a contradiction. Hence u ~ oo. To 

prove uniqueness, consider the sign of the derivative of (3.5) at u. This derivative 

divided by B1/A-1-u1/A-2 is 

a(A-1 -1)((1- l/u)1/A-2 -1) + C((B + l)A-1 -1)(1-1/u)1fA-2(u- l)BfAeB/A. 
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Since ii -)- oo, and B > 0, the above tends to oo and the sign is eventually positive. 

Hence the solution y =ii.Bis unique for sufficiently small B. We now expand the lhs 

in (3.6) and obtain 

(A-1 _ l)ii.-1 rv Ca-lii,B/ABB/A 

which yields ii rv ((A-1 - l)ac-1 )A/(A+B)B-B/(A+B) and the asymptotics of ii as 

claimed. 

For y0 (B), it sufficies to consider (3.4) with an integration domain (0, y0 (B)], or 

equivalently 

aA(y - B)1IA - aAy1IA + (B + 1)-1 AC(y ~ B)(B+l)/A = 0. 

The argument is now analogous to the previous one, where only the constants and 

the exponents are changed. 

Now we are ready for the basic estimate of the Hellinger modulus in the end-

point problem. 

Lemma 3.2 .. As B -)- 0, 

where Ka = aA + K4 + Ks, 

K 4 = (A-1 -1)2 (A-1 - 2)-1a(2Ki)1/A-2 , K 5·= KiAa(2K2 ) 11A, 

K6 = ca-1(2K2)B/A. 

Proof. Define 

Consider first the integral from 0 to z. Note that D = ttfi < A+ B; hence 

z = o(Y) and in this domain we have £1(y, B) < £0(y). Consequently 

lz {l~/2 -£~12(., 8)}2 ~ lz lo= aAz1/A = aA81/D. (3.7) 
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Consider the domain [z, y]. Since A/ D == 2-!!tA < 1 i~ view of A < 1/2, we have 

y I e ~ 00 uniformly in this domain. Define for y E [ z, y] 

T == I. 1 ( y, e) I lo ( y) == 

== { (y - 8)1/A-1 + ca-l(y - B)(B+l)/A-1} yl-1/A. 

Putting y == ue we obtain 

T = (1 - l/u)1IA-l + ca-1(1 - l/u)1IA-1(u - l)BfAeB/A. (3.8) 

By the definition of y we have T :::; 1 here; since the second term on the rhs of (3.8) 

is positive, we have 

ll - TI :::; 1 - (1 - l/u)1IA-l. (3.9) 

Since y 2:: z, we know that 1/u = o(l) uniformly over y .2:: z. We may hence expand 

the rhs in (3.9) and obtain 

ll -TI :::; u-1(A-1 - 1) sup(l - l/u)1IA- 2 :::; (A-1 - 1)8/y. 
t.1.~l 

Here we used again that 1 /A - 2 > 0. Evaluating now the integral over this domain, 

we get 

[' {R.~/2 - £i/2( -, 11)}2 = iii lo(l - T1f2)2 

~ (A-1 -1)2 iii lo(y)(l1/y)2 dy = 112 (A-1 - 1)2a iii y1fA- 3dy 

:::; (A-1 - l)2(A-1 _ 2)-1aB2y1fA-2 

(note that A< 1/2 entails integrability here). Using lemma 3.1 we obtain 

iii {£~/2 - £i/2(·, 11)}2 ~ K41129(1-2A)/(A+B) = K4111/D 

where 

(3.10) 

The third integral over [Y, y0 ] will be evaluated as follows. Defining T as in (3. 7), 

we get from the definition of y that T 2:: 1. Then, since the first term on the rhs in 

(3.8) is < 1, 
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For this we get 

< 82B/(A+B)K2 l < K2 AaB2B/(A+B)y1/A < K 81/D 1Yo 

- 6 o_ 6 o - s , 
y 

The lemma follows from this result, (3.7) and (3.8). 

In the two dimensional support curve problem, let fo be an element of the class 

:F'(T, C') for a O' < C and let g0 be the corresponding support curve in the Holder 

class AT( C'). Suppose that 

fo(x,y) = a(x){go(x) -y}~(:z:) + b(x,y){go(x) -y}!(:z:) for · x E :J (3.11) 

where lb(x, y)I ~ C'. 

Lemma 3.3. The term b(x, y) in (3.11) can be modified such that for some 

small "' 

b(x, y) = 0 for 0 ~ go(x) - y ~ "' and lxl ~ Kt, (3.12) 

lb(x, Y)I ~ C for x E :!, (3.13) 

and the resulting left-hand side in (3.11) is a density in :F'(T, C) . 

Proof. First fix x and start with a one dimensional construction. Suppose 

that a function is of form 

fo(Y) = aya + b(y)yf3, y 2:: 0 

where lb(y)I ~ C'. Define for y 2:: 0 

fo(Y) = fo(Y) - b(y)yf3X[o,~J(Y) + A(C - C')yf3x(~,K](Y) (3.14) 
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where K = ( 0~0, )A/(B+l)~ and.\ E [-1, 1] is chosen such that 

j fo(y)dy = j fo(y)dy. (3.15) 

Such a choice of .\ is possible, since 

whereas 

Furthermore, it can be seen that lo (y) has a representation 

lo(Y) = aya + b(y)yf3, y?. 0 (3.16) 

where lb(y)I ~C. Indeed, b(y) = 0 on [O, ~], and on(~, K] we have 

lb(y)I == lb(y) + .\(C - C')I ~ C' + l.\l(C - C') ~C. 

Then (3.16) implies that lo is positive for sufficiently small ~. Thus, if / 0 is a 

density with lb(y)I ~ C' then lo is a density with lb(y)I ~C. 

Consider now the representation (3.11) of fo. For fixed x with lxl ~ ~ apply 

the modification according to (3.14) with an argument g0 (x) -yin place of y. Call 

this modified function lo(x, y). Then (3.12) holds and (3.15) implies for each x E :! 

j fo(z, y)dy = j fo(z, y)dy. (3.17) 

Integrating over x E :J we see that / 0 ( x, y) integrates to one, and since it is nonneg-

ative it is a density. Then (3.17) implies that the marginal density of X is the same 

as that for fo. Moreover, lo(x, y) has a representation (3.11) in which lb(x, y)I ~ C 

(as a consequence of (3.16)). Hence /o(x, y) is an element of the class F'(r, C), and 

the lemma is proved. 

We assume now that the density fo fulfills (3.11) - (3.13); thus it is in F'( r, C) 

but the support curve g0 is in the Holder class Ar(C'). To construct the alternative 
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/ 1 , let <p be an infinitely differentiable function with support in [-1, 1] such that 

0 ~ cp(z) ~ 1 and cp(O) = 1. Let "'> 0 and define a function 

where m > 1. Define a perturbed support curve g1 by 

91(z) = go(z) - B(z), z E :r~ 

This function is in Ar( C) for sufficiently large m if "' is chosen sufficiently small. 

We shall let m be dependent upon n in the sequel. Specifically, we put 

(3.18) 

Lemma 3.4. There is a density Ji E :F'(r, C) which has support curve 91 such 

that H 2 (/1, fo) ~ n-1 . 

Proof. Indicate the dependence of £0 and £1 on B, a, a,{3, C by l 0 (y; a, a,{3) and 

l1(y; B, a, a,{3, C). Relations (3.11) and (3.12) imply that fo can be represented 

fo(z,y) = lo(go(z)-y);a(z),a(z),{3(z)) for 0 ~ go(z)-y ~"' and lxl ~ "'· 

Accordingly define 

f1(x,y) = l1(9o(z)-y;B(x),a(x),a(z),{3(x), C) for 0 ~ go(x) -y ~"'and lxl ~"' 

and put Ji = fo outside that domain. It follows from (3.4) that for each x E J 

j f1(z,y)dy = j fo(z,y)dy 

so that Ji is a density which has the same marginal X -density as / 0 • By construction 

of l1 the density Ji fulfills 

where lb(z, y)I ~C. We conclude that Ji E :F'(r, C). 
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To estimate the Hellinger distance of Ji and /o, we argue from lemma 3.2 and 

observe that the constants there now depend on x. At this point we need an 

extension of lemma 3.2 with uniformity in a, a, (3 over the range c-1 ::; a ::; C, 

1 + c-1 ::; a ::; C, a + c-1 ::; (3 ::; C. Such a uniform version can easily be 

established, on the basis of a uniform version of lemma 3.1. With obvious notation, 

we conclude that K 3 ( x) is uniformly bounded, while 1/ D( x) fulfills a Lipschitz 

condition: 

(3.19) 

We obtain 

H 2(/1,fo) = j j {fi 12(z,y) - J~ 12 (z,y)}2 dydz 

:::; j Ka(z)ll(z)1fD(z)dz:::; K j {m-rcp(mz)}1/D(z) dz 

Now (3.19) implies that 1n-1(x)-D-1 (0)I::; Km-11° so that the term in exp( ... ) 

tends to 0 uniformly in x E [-~/m, -~fm]. Hence 

H 2(/1, fo) ::0 K ["'/m { m-r cp(mz)} l/D(o) dz 
1-K./m 

X m-r/D(0)-1 j cp(z)l/D(O)dz X n-1 

in view of our selection (3.18) of m, which completes the proof. 

The respective values of the target functional on Ji and f o are 9o ( 0) and 9o ( 0 )-

~ m-rcp(O), so that their distance is of order m-r = n-r/(r/D+l). In view oflemma 

3.4 this establishes (3.2). 

4. PROOF OF THEOREM 2.1. 

Observe that for rJ =a or (3, 

f00 

{ 9(x)-Y}+ 17 (:r:) dy = {rJ(x) + 1}-1 {9(x)-9(0) + u}+(:r:)+l. (4.1) 
}g(O)-u 
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If the function ( is differentiable and (.' satisfies a Lipschitz condition with exponent 

tin a neighbourhood of the origin, then 

u((:z:) = u((o) {1 + x('(O) logu + O(x2 llogul 2 + lxlt+1 llogul)}, (4.2) 

uniformly in pairs ( x, u) such that Ix log ul is bounded. Put ( = 77 + 1, let 7J satisfy 

the conditions imposed on a in the theorem, and let ,\ == .\( h) denote a sequence of 

positive numbers diverging to infinity arbitrarily slowly. Since g1 enjoys a Lipschitz 

condition with exponent t, we have uniformly in u E (.\ h, 1) and lxl :::; h, 

{g(x) - g(O) + u}((:z:) = { u + x g'(O) + O(lxlt+l)} ((x) 

= u (( :z;) [ 1 + u -l x ' ( x) g' ( 0) 

+ ! u-2 x2 ((x) {((x) -1} g'(0)2 + O(u-1 ht+1 + u-a ha)] 

== u((o) [1 + u-1 x ((0) g'(O) + x ('(O) log u 

+ ! u-2 x2 ((0) {((O) -1} g'(0)2 + O(u-1 ht+1 + u-a ha)]. (4.3) 

Therefore, combining ( 4.1)-(4.3), 

(2h)-1 lh. dx l 00 

a(x) {g(x) -y}+ 17(x) dy } _h. Jg(0)-11. 

= ((0)-1 a(O)u((o) '[1 + lu-2 h2 ((0) {((O) -1} g'(0)2 

+ O(u-1 ht+1 + u-a h3)]. (4.4) 

Similarly, if 77 satisfies the conditions imposed on /3 in the theorem then 

(2h)-1 lh. dx l 00 

b(x) {g(x) -y}+ 77(:z:) dy 1-h. Jg(0)-11. 

= ((0)-1 b(O) uC(o) ( 1 + 0{ (hju )6 } J , (4.5) 

where 8 > 0 depends on the exponents of Holder continuity of b and /3. Both ( 4.4) 

and (4.5) hold uniformly in u E (h1-E,l). Furthermore, P(IXI:::; h) == 2h{e(O) + 
O(ht+1 ) }. Combining this result with (4.4) and (4.5) we deduce that if Uhas the 

distribution of g(O) - Y given that IXI ::=;; h then, uniformly in the same range of 



29 

values of u, 

G(u) = P(U ~ u) 

= {h dx f. 00 

J(x, y) dy/P(IXI s h) 1-h g(O)-v. 

= e(o)-1 ( {a:(O) + 1}-1 a(O) ua(o)+l 

x [1 + t u-2 h2 a:(O) {a:(O) + 1} g'(0)2] + {,B(O) + 1}-1 b(O)u.BC0H 1) 

+ O{ ua(o)+1 (u-1 ht+l + u-3 ha) + u.B(o)+i-o ho} 

where / = ,B - a:, al = e(o)-1 { a:(O) + 1 }-1 a(O), a2 = t a:(O) { a:(O) + 1} g'(0)2, 

a3 = b(O) {a:(O) + 1}/[a(O) {,8(0) + 1}]. 

Inverting this expansion we deduce that 

where 

a-1 ( V) = bl Vl/{a(O)+l} { 1 _ b2 V-2/{a(O)+l} h2 _ b3 V-y(O)/{a(O)+l} 

+ 0( v-1/{a(O)+l} ht+l + v-3/{a(O)+l} h3 

+ v-r(o)/{a(o)+1}-o ho)}, 

b1 = [e(O) {a:(O) + l}/a(0)]1/{a(o)+l}, 

b2 = i a(O) [a(O)/ e(O) { a:(O) + 1 }]2/{a(o)+i} g'(0)2 , 

( 4.6) 

b3 = a(O)-{,B(O)+l}/{a(O)+l} b(O) [ { a(O) + 1} e(O)pCo)/{a(o)+i} {,8(0) + 1} -l , 

Since g(O) is a location parameter, we may assu~e without loss of generality 

that g(O) = 0. In the work below we condition on the value of N, denoting the 

number of original data pairs (Xi, Yi) in the interval of width 2h centred on the 

abscissa value x = 0. Let U1, U2, . .. , UN be independent and identically distributed 

random variables with the distribution of u, and let U(1) s U(2) ~ ... ~ u(N) denote 

the corresponding order statistics. In this notation, the sequence {ei(B), 1 ~ i 5 N} 
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has the same distribution as {(U(r) - U(i))/(U(i) - B), 1 ~ i ~ N}. Without loss of 

generality, <i(B) = (U(r) - U(i))/(U(i) - B). 

Let Z1 , ... , ZN denote independent random variables with a common exponen-

tial distribution, and define 

i i 

Si= L Z;/(N - j + 1), Ti = i-1 L ( Z; - 1 ). 
j=l j=l 

Noting Renyi's representation for order statistics we see that we may write 

(4.7) 

For any real number w, Si= -log(l - i N-1 ) + (i/N){Ti + Op(i112 N-1 )} and 

uniformly in 1 .~ i ~ r. 

In the remainder of our proof we treat separately the cases a(O) > 2, a(O) = 2 

and 1 < a(O) < 2. Recall that A= { a(O) + 1}-1 . 

Case I: a(O) > 2. Given a positive sequence 8(n)~ 0, let i 1 ~ 1 denote the 

smallest positive integer such that (nh/i1)A h ~ 8(n). The assumption E(n) = 
n ha(o)+2 /r~ 0, in that part of the theorem dealing with the case a(O) > 2, implies 

that 

By ( 4.6)-( 4.8) we have, uniformly in i 1 ~ i ~ r, 

b11 U(i) = (i/N)A (1 +A Ti 

- { 1 + Op ( 1)} { b2 (NI i) 2 A h 2 + b3 ( i IN) A -y( 0 ) } 

+Op [(N/i)A ht+1 + i-1 + i 112 N-1 

+ { (N /i)2A h2 + (i/ N)A-y(O)} i-1/2] ). 

(4.9) 

(4.10) 
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Given a random variable B satisfying NA B-4 0 in probability, define Bi = (N/i)A B. 
Put 

W1 = r-1 t (Z; - 1) { 1 - (1 -A)rA ~ i-(A+l) }, 

W2 = r-1 t(z; -1) (1- t i-1
), Wa = (l -A)W1 -W2, 

]=l i=] . 

dn = (1 - 2A)-1 b11
, di2 = 2 (1 - 3A)-1 b2, 

di3 = -1(0) [1 + A(O) { 1(0) - 1 }t1 b3, 

d21 = (1 - A)-1 b11
, d22 = 2(1 - 2A)-1 b2, 

d23 = -1(0) {A1(0) + 1}-1 b3, d31 = A2 {(1 - A) (1 - 2A)}-1 b11
, 

d32 = 4A2 (1 - 2A)-1 (1 - 3A)-1 b2, 

d33=1(0)2 A2 ({1 + A1(0)} [1 + A{1(0) - l}])-1 
b3. 

(Note that, since a(O) > 2, 3A < 1. Also, d3i = (1 - A) dii - d2i·) In this notation 

we may prove successively from ( 4.10) that the following results hold, the first two 

uniformly in ii ~ i ~ r: 

1 + ei(B) = (Ucr) - B)/(Uci) - B) 

= (r/i)A [1 + A(Tr -Ti)+ b11 {(N/i)A - (N/r)A} B 

+ b2 {(N/i)2A - (N/r)2A} h2 + b3 {(i/N)A-y(o) - (r/N)A-y(o)} 

+Op [(N/i)A ht+1 + i-1 + i112 N- 1 

+ { (N /i)2A h2 +(if N)A-y(O)} i-1/2] 

+ op{i-1/2 + IBil + (Nfi)2A h2 + (r/N)A-y(o)}]' (4.11) 

log{l + ei( B)} 

= A(logr -logi) + A(Tr -Ti)+ b}1 {(N/i)A - (Nfr)A} B 

+ b2 { (N /i)2A - (N fr )2A} h2 + b3 { ( i/ N)A-y(o) - ( r f N)A-y(o)} 

+Op [(N/i)A ht+1 + i-1 + i112 N- 1 

+ {(N/i)2A h2 + (ifN)A-y(o)}i-1/2] 

+ op{i-1!2 + IBil + (N/i)2A h2 + (r/N)A-y(o)}], (4.12) 
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r-1 

r- 1 (1 - A) A-1 L ei(e) 
i=l 

= 1 + W1 +du (N/r)A B + di2 (N/r) 2 A h2 + d13 (r/N)A-y(o) 

+ Op{(N/r)A ht+l + r1/2 N-1 + (ii/r)l-A} 

+ op{r-1! 2 + (N/r)A IBI + (N/r)2A h2 + (r/N)A-y(o)}, (4.13) 
r-1 

7'-l A-1 L log{l + ei( B)} 
i=l 

= 1 + W2 + d21 (N/r)A B + d22 (N/r) 2A h2·+ d23 (r/N)A-y(O) 

+ Op{(N/r)A ht+1 + r112 N-1 + r-1 logr} 

+ op{r-1!2 + (N/r)A IBI + (N/r) 2 A h2 + (r/N)A-y(o)}. (4.14) 

[The terms of orders ( ii/r )1-A and r-1 log r on the right-hand sides of ( 4.13) and 

( 4.15), respectively, derive from extending the sums on the left-hand sides from 

i 1 ::; i ::; r (which is their natural range, given the values of i for which (4.11) 

and ( 4.12) have been established) to 1 ::; i ::; r. For example, in the case of ( 4.13) 

observe that lei(B)I = Op{(r/i)A} uniformly in 1::; i::; i 1 . Hence, the contribution 

to the left-hand side of ( 4.13) from such i's is of the same order as the sum of 

r-1 (r/i)A over those i's. That is, it is of order (ii/r)1-A.] 

Therefore, 

Ar([~ rog{i+wnr-{~ wf1 -r-1
) 

= Wa + da1 (N/r)A B + da2 (N/r) 2A h2 + d33 (r/N)A-r(o) 

+ Op{(N/r)A ht+l + r1/2 N-1 + (ii/r)l-A} 

+ op{r-1! 2 + (N/r) 2 A h2 + (r/N)A-y(o) + (N/r)A IBI}. (4.15) 

It follows from ( 4.15) that if Bis a solution of equation (2.4) then 

-B = d31
1 (r/N)A Wa + d3/ da2 (N/r)A h2 

+ d3l daa (r/N)A{'Y(o)+i} 

+ Op[ht+l + (r/N)A {r1/2 N-1 + (i1/r)1-A}] 

+ op{(r/N)A r-1!2 + IBI + (N/r)A h2 + (r/N)A{'Y(o)+i}}. (4.16) 
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Next we show that the term r = Op[(r/N)A {ri/2 N-i + (ii/r)i-A}], on the 

right-hand side of ( 4.16), may be dropped. Since r / N---> 0 then ( r / N)A ri/2 N-i = 
o{(r/N)A r-i/2 }, and this term is addressed by the op(· .. ) contribution to the 

right-hand side of (4.16). By definition of ii, (i1 /N)A = O{h8(n)-i }, and so 

(iifr)i-A = O{(N/r)A h8(n)-i }(i-A)/A. ( 4.17) 

In view of (4.9) we may choose 8(n) to converge to zero so slowly that the right-

hand side of ( 4.17) equals o{(N /r )2 A h2 }, which is again subsumed into the op( ... ) 

contribution to the right-hand side of ( 4.16). 

Standard methods may be used to prove that W3 is asymptotically Normally 

distributed with zero mean and variance A2 {r (1 - 2A)}-i. Therefore, defining 

u = d-;/ A(l ~ 2A)-if2 , ci = -da2/dai and c2 = -daa/dai, we see that from (4.16) 

(dropping the term corresponding to r) that 

B = (r/N)A r-i/2 u W4 + (N/r)A h2 c1 + (r/N)A{;(O)+l} c2 

+ Op(ht+i) + op{(r/N)A r-i/2 + (N/r)A h2 + (r/N)A{;(o)+i}}, (4.18) 

where W~ is asymptotically Normal N(0,1 ). This is equivalent to the claimed ex-

pansion in Theorem 2.1. Arguing as in Hall (1982, pp. 566-567) the expansions 

above may be retraced to show that with probability tending to 1, a solution to 

(2.4) exists; and that the largest solution B of (2.4) satisp.es NAB-> 0 in probability. 

These remarks also apply to the next two cases. 

Gase II: a( 0) = 2. Let ii be as in Case I, and as before, let 8 denote a random 

variable equal to op(N-A). Once again, (4.11) and (4.12) hold uniformly in ii ~ 

i ~ r, and (4.14) is true. In place of (4.13), 

r-i 

r-i (1 - A) A-i 2: ei(B) 
i=i 

= 1 + Wi +du (N/r)A B + (1 - A) A-i b2 (N/r) 2 A h2 logr 

+ d13 (r/N)A -y(o) +Op{ (N /r )A ht+i + ri/2 N-i + (iif r )i-A} 

+ op{r-i/2 + (N/r)A IBI + (N/r) 2 A h2 logn + (r/N)A-y(o)}. 
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Therefore, ( 4.15) holds as before but with the term d32 (N /r )2A h2 replaced by 

A-1 (1 - A)2 b2 (N /r )2 A h2 log r. The analogous change should be made to the 

right-hand side of ( 4.16), giving: 

-B = d3l (r/N)A Wa + d31
1 A-1 (1 -A)2 b2 (N/r)A h2 logr 

+ d-;/ daa (r/N)A{-y(o)+i} 

+ Op[ht+1 + (r/N)A {r1/2 N-1 + (i1/r)1-A}] 

+ op{(r/N)A r-1! 2 + IBI + (N/r)A h2 logn + (r/N)A{"Y(O)+l}}. 

In view of ( 4.17), and provided that 8( n) converges to zero so slowly that 

8(n)(log n)1 l2 ~ oo, 

the term Op[(r/N)A {r112 N-1 + (ii/r)1-A }] on the right-hand side may be sub-

sumed into the op( ... ) term. Therefore, in place of ( 4.18), 

B = (r/N)A r-1! 2 a W4 + (N/r)A h2 logr ea+ (r/N)A{"Y(O)+l} c2 

+ Op(ht+l) + op{(r/N)A r-1!2 + (N/r)A h2 logr + (r/N)A{"Y(o)+l}}, 

where ea = -A-1 (1 - A)2 b2 / d31 . This is equivalent to the claimed expansion in 

Theorem 2.1. 

Case III: 1 < o:(O) < 2. Here it is necessary to develop a refined version of formula 

(4.11). Our starting point is a more concise form of (4.8) in the special case w = 1, · 

which follows via the discussion immediately preceding that result: 

Hence, 

{1 - exp(-Si)}w = (i/N)w {1 + Ti(w) + Op(i1 / 2 N-1)}, ( 4.19) 

where Ti(w) = (1 + Ti)w - 1_ = w Ti + Op(i-1 ). Using ( 4.19) in place of ( 4.8) we 

obtain, instead of ( 4.10), and uniformly in i 1 :::; i :::; r, 

b11 u(i) = (i/N)A [1 + ATi - {1 + Op(l)} ba (i/N)A-y(O) 

- { ( 1 + Ti( A)) ( 1 + Ti( - 2A)) + Op ( 1)} b2 (NI i)2 A h 2 

+Op{ (N /i)A ht+l + i-1 + il/2 N-1 + (i/N)A-y(O) i-1/2}]; 
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and in place of (4.11) and (4.13), 

1 + ei(B) = (Ucr) - B)/(Uci) - B) 

= (r/i)A [1 + A(Tr -Ti)+ b11 {(N/i)A - (N/r)A} B 

+ b2 (1 + Ti(A)) (1 + Ti(- 2A)) (N /i)2A h2 

+ ba {(i/N)A"Y(o) - (r/N)A"Y(o)} + Op{(N/r)2 A h2 

+ (Nji)A ht+l + i-1 + il/2 N-1 + (i/N)A"Y(o) i-1/2} 

+op{ i-1/2 + IBil + (N/i)2A h2 + (r /N)A"Y(o)}] ' 
r-1 

r- 1 (1 - A) A-1 L ei( B) 
i=l 

= 1 + W1 +du (Njr)A B + d13 (r/N)A"Y(o) 
r-1 

+ b2 A-1 (1 - A) rA-1 N2A h2 L (1 + Ti(A)) (1 + Ti(-2A)) i-aA 
i=l 

+ Op{(N/r)2A h2 + (N/r)A ht+l + rA-1 + r1/2 N-1} 

+ op{r-1/2 + (N/r)A IBI + rA-1 N2A h2 + (r/N)A"Y(o)}. 

In view of the assumption n ha(o)+2~ oo, made in that part of the theorem address-

ing the case 1 < a(O) < 2, the term Op(rA-1) is of smaller order than rA-l N 2A h2, 

and so may be incorporated into the remainder op(rA-l N 2A h2 ). Similarly, the 

Op(r112 N-1) term is subsumed by the remainder op(r-1!2 ). Results ( 4.12) and 

( 4.14) hold as before. Therefore, instead of ( 4.18), 

where 

B = (r/N)A r-1/2 u W4 + r2A-1 NA h2 Ws + (r/N)A{"Y(o)+1} c2 

+ Op(ht+l) + op{(r/N)A r-1/2 + r2A-.1 NA h2 

+ (r/N)A{"Y(o)+i}}, (4.20) 

00 

Ws =ea L (1 + Ti(A)) (1 + Ti(-2A)) i-3A, 

i-1 

and c3 is defined as in the previous case. Result ( 4.20) is equivalent to the claimed 

expansion in Theorem 2.1. 
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