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Abstract

The paper is concerned with some aspects of stochastic modelling in kinetic
theory. First, an overview of the role of particle models with random interactions
is given. These models are important both in the context of foundations of ki-
netic theory and for the design of numerical algorithms in various engineering
applications. Then, the class of jump processes with a finite number of states is
considered. Two types of such processes are studied, where particles change
their states either independently of each other (mono-molecular processes), or
via binary interactions (bi-molecular processes). The relationship of these pro-
cesses with corresponding kinetic equations is discussed. Equations are derived
both for the average relative numbers of particles in a given state and for the fluc-
tuations of these numbers around their averages. The simplicity of the models
makes several aspects of the theory more transparent.

Contents

1 Introduction 2

2 Overview 3
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Direct simulation Monte Carlo . . . . . . . . . . . . . . . . 5
2.3 Further applications . . . . . . . . . . . . . . . . . . . . . . 6

3 Jump processes with a finite number of states 7
3.1 General properties . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Mono-molecular processes . . . . . . . . . . . . . . . . . . 14
3.3 Bi-molecular processes . . . . . . . . . . . . . . . . . . . . 16
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Initial states . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Ehrenfest model . . . . . . . . . . . . . . . . . . . . 23

Acknowledgements 25

References 26

0Invited paper submitted to the special issue of Physics of Fluids in memory of Carlo Cercignani
(1939-2010)

1



1 Introduction

Kinetic theory describes macroscopic features of gas flows (density, stream velocity,
temperature) on the basis of the microscopic behaviour of gas molecules. The start-
ing point for the mathematical treatment of the subject is a nonlinear partial integro-
differential equation - the Boltzmann equation [7]. This equation describes the time
evolution of a function f (t,x,v) that approximately represents the distribution (relative
number) of gas molecules with respect to position x and velocity v at time t . Macro-
scopic quantities are obtained by integration of appropriate functionals with respect to
f . The book “Ludwig Boltzmann. The Man who Trusted Atoms” by Carlo Cercignani
[8] provides a profound and enjoyable treatment of the history of kinetic theory.

Though the Boltzmann equation is a deterministic model, the interpretation of its
solution as a distribution of gas molecules needs the notion of stochasticity. A precise
meaning of this notion is obtained via stochastic models of the form

(

Xi(t),Vi(t)
)

i = 1, . . . ,N(t) t ≥ 0 (1.1)

representing systems of a finite number N(t) of particles with position Xi(t) and veloc-
ity Vi(t) at time t . When appropriately scaled, such particle systems approximate (in
the sense of histograms) the solution of the Boltzmann equation. Models (1.1) can be
divided into two classes dependent on how stochasticity is involved. In the first class,
the time evolution of the particles is deterministic (Hamiltonian dynamics), taking into
account the real size of the molecules and the intermolecular potential. Stochasticity
enters the model via the initial condition. Such models are the basis for molecular
dynamics simulations. In the second class, there is a random interaction mechanism
among particles so that stochasticity enters the model during the time evolution. Phys-
ical properties, like the intermolecular potential, are taken into account via intensity
functions that govern the random interaction mechanism. Such models are used in
the direct simulation Monte Carlo method. Models (1.1) provide a precise description
of the stochasticity involved in the Boltzmann equation. However, these models are of
importance independently of the deterministic (kinetic) equation, as stochastic models
of real gas flows. One advantage of the particle models is that they allow to represent
fluctuations in the macroscopic quantities. A particularly useful property of particle
models with random interactions is their robustness with respect to generalizations
like the inclusion of chemical reaction mechanisms, or coagulation and fragmentation
effects.

The original derivation of the Boltzmann equation assumes a deterministic dy-
namics of the gas molecules (hard spheres moving according to the billiard rules).
Systems of particles following the complete Hamiltonian dynamics (with a given in-
termolecular potential) are often considered to provide the most accurate description
of real gas flows, but even they are just idealized models. In my view it is quite nat-
ural to model collisions between gas molecules as random events. If you have ever
played billiard, or at least watched a snooker match on TV, you understand that there
is a lot of stochasticity in collisions of billiard balls. So why should it be different for
gas molecules? But this discussion leads to the question whether (and where) there

2



is stochasticity in the “real system”, which is left to philosophers. Relationships be-
tween the three types of models (kinetic equations, particle models with deterministic
dynamics, particle models with random interactions) can be studied mathematically,
without referring to the physical reality. Finally, the results obtained by various models
have to be compared with observations of real gas flows, that is, measurements of
macroscopic quantities (density, stream velocity, temperature) and their fluctuations.
Only this comparison does answer the question which of the models is more appro-
priate in a particular application area. The main topic of this paper are particle models
with random interactions, which provide quite reasonable results in many engineering
applications.

The paper is organized as follows. Section 2 gives an overview of the subject.
First, the history is briefly reviewed. Then, some numerical algorithms based on parti-
cle models with random interactions are discussed. Finally, comments are given con-
cerning other areas (beside rarefied gas dynamics), where similar stochastic models
are being applied. Section 3 contains the main part of the paper. The class of jump
processes with a finite number of states is considered. Two types of such processes
are studied, where particles change their states either independently of each other
(mono-molecular processes), or via binary interactions (bi-molecular processes). The
relationship of these processes with corresponding kinetic equations is discussed.
Equations are derived both for the average relative numbers of particles in a given
state and for the fluctuations of these numbers around their averages. The simplicity
of the models makes several aspects of the theory more transparent.

2 Overview

In this section we address some general aspects of particle models (1.1) with random
interactions and their relationship with kinetic equations. This provides the background
for the more detailed (and technical) studies in Section 3.

2.1 History

Here we sketch some stochastic particle models of the form (1.1) that have been used
in the context of foundations of kinetic theory. More details can be found, e.g., in [16,
Section 2.3.3].

Ehrenfest model

In [9] a particle system x1(t), . . .,xN(t) is considered, where each particle has the
state 1 or 2 . The state is interpreted as the number of the box, where the particle is
located. The random evolution is defined by choosing (with equal probability) one of
the particles and moving it to the other box. This model is used to illustrate statements
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from kinetic theory about averaged quantities and fluctuations. More details will be
given in Section 3.4.2.

Leontovich model

In [13] a particle model (1.1) (with N(t) = N(0) = N) is introduced, which leads to the
Boltzmann equation in the limit N → ∞ . The connection is given by the formula

f (t,x,v) = lim
N→∞

p(N)
1 (t,x,v) , (2.1)

where p(N)
k (k = 1,2, . . .) denotes the k-particle marginal density of the N-particle dis-

tribution function. Particles move along straight lines according to their velocities (in
the absence of an external field). The random interactions (collisions) consist in the
change of velocities of a pair of particles. The corresponding transition probabilities
depend on the positions of the particles and are different from zero only if their dis-
tance does not exceed a certain quantity.

Leontovich provided the description of a model with random spatial interaction,
which is a conceptual breakthrough. Particles can be considered either as points
interacting at random distances, or as spheres that interact randomly while inter-
penetrating each other. Leontovich did not prove property (2.1), but he made the
asymptotic connection with the Boltzmann equation very clear. In particular, the fac-
torization property

lim
N→∞

p(N)
2 (t,x1,v1,x2,v2) = lim

N→∞
p(N)

1 (t,x1,v1)× lim
N→∞

p(N)
1 (t,x2,v2) (2.2)

was pointed out as a key element in the proof of (2.1). Moreover, a motivation for the
introduction of the stochastic particle system was modelling the fluctuations that are
actually observed in real gas flows.

Kac model

In [12] a particle system V1(t), . . . ,VN(t) is studied. Spatial dependence is skipped and
random interactions consist in choosing pairs of particles and changing their veloci-
ties. A theorem is formulated claiming the “propagation” of the factorization property

lim
N→∞

p(N)
k (t,v1, . . . ,vk) =

k

∏
i=1

lim
N→∞

p(N)
1 (t,vi) . (2.3)

Namely, if (2.3) holds for t = 0 , then it holds for any t > 0 . As a consequence, the

function f (t,v) = limN→∞ p(N)
1 (t,v) (cf. (2.1)) is shown to solve the spatially homoge-

neous Boltzmann equation. Property (2.3) means asymptotic independence of par-
ticles, which is sometimes called “chaos”. Kac proved “propagation of chaos” for a
simplified model in the case of two-dimensional velocities. A very instructive account
of results related to the Kac model is given in [4].
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The clear formulation of the “propagation” property is a major achievement. This
property has to be proved for the stochastic particle system in order to make the con-
nection with the Boltzmann equation rigorous. It should be noted that the “assumption
of molecular chaos” concerns real gas flows, being related to the observation that ve-
locities of colliding particles are uncorrelated. Its approximate validity, which has to be
established by experiments, indicates that the Boltzmann equation correctly describes
the real gas flow. As far as the stochastic particle model is concerned, the property
“propagation of chaos” has to be proved. Assuming “molecular chaos” in the sense of
(2.3) makes the transition to the Boltzmann equation almost trivial.

Cercignani model

In [6] a particle model (1.1) similar to the Leontovich model is studied, namely a sys-
tem of “soft spheres”. These spheres can inter-penetrate each other and have a cer-
tain probability density of scattering each other for each value of the distance between
their centers. In the limiting case when the probability is concentrated on a single dis-
tance (the particle diameter) the traditional hard sphere gas is re-obtained.

Carlo Cercignani proved a limit theorem for this system, obtaining the factorization
(2.2) and the characterization (2.1) for the solution of a spatially smoothed (mollified)
Boltzmann equation. This seems to be the first rigorous result concerning the transi-
tion from a stochastic particle system to the corresponding nonlinear kinetic equation
in the spatially inhomogeneous case. An earlier attempt to connect the space inho-
mogeneous master equation and the Boltzmann equation was made in [5].

2.2 Direct simulation Monte Carlo

Stochastic particle models (1.1) turned out to be very fruitful for applications of kinetic
theory. Here we sketch some aspects related to numerical simulations of real gas
flows. More details can be found, e.g., in [16, Section 3.5].

Bird’s DSMC

Starting from [2], stochastic models (1.1) have been developed in an engineering
context for the purpose of numerical calculations (cf. [3]). The independent motion of
the particles and their interactions via collisions are decoupled over a sufficiently small
time step. The position space is divided into sufficiently small cells. Particles belonging
to the same cell perform collisions according to an appropriate random mechanism. It
is very easy to incorporate more general interactions (beside elastic collisions), which
is important in real applications. The concept and the intention of these algorithms is
to perform a “direct simulation of gas flows”, thus the name “direct simulation Monte
Carlo (DSMC) method”.

Carlo Cercignani was aware of the great potential of the DSMC method to support
theoretical investigations, beside its engineering applications. Over at least a decade
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he was involved in corresponding studies concerned with instabilities and turbulence
phenomena in rarefied gas flows (cf. [17], [18], [19]).

deviational particles

Many improvements have been incorporated into the original DSMC method in order
to make it faster, more accurate and applicable to more complex gas flows. Recently,
a new approach has been introduced that goes beyond the idea of “direct simulation”.
The deviational particle approach developed by Hadjiconstantinou and co-workers (cf.
[1], [11]) is based on an appropriately modified kinetic equation that governs the time
evolution of the deviation of the actual distribution from a Maxwellian. Stochastic par-
ticle systems are designed that approximate the solution of the modified equation.
These systems have the form (1.1) but carry in addition a sign ±1 , since the deviation
can be positive or negative. The goal is to reduce the fluctuations of the algorithm in
order to detect small signals more accurately, which is important for low Mach num-
ber flows. The new algorithms have been successfully applied to several simple flow
configurations. This approach is related to the “control variates” variance reduction
technique known in Monte Carlo theory, but in the kinetic context it is applied to a
nonlinear equation.

relation to kinetic equations

DSMC is primarily intended to simulate real gas flows, and not to solve a kinetic equa-
tion numerically. Nevertheless, a rigorous proof of convergence (with respect to the
number of particles) was given in [20]. Moreover, the approximation order with respect
to the splitting time step and the cell size was studied (see, e.g., [14] and references
therein). The deviational particle approach was put into the context of Markov jump
processes in [21]. On the one hand, this setup provides the background for proving
convergence. On the other hand, the tools from Markov process theory helped to
generalize the method from hard spheres to the variable hard sphere case, which
is often preferred by engineers (see [15] concerning numerical tests). This illustrates
that the study of the convergence behaviour of stochastic particle schemes and their
relationship with kinetic equations, beside its theoretical interest, can be useful also
for practical applications.

2.3 Further applications

Here we consider finite particle systems of the form

zi(t) i = 1, . . . ,N(t) t ≥ 0 . (2.4)

These models are more general than (1.1) in the sense that the state of each par-
ticle is characterized by rather arbitrary properties. In addition to position and veloc-
ity, these properties can be mass, size or volume, chemical composition, electrical

6



charge, and others. There are random interaction mechanisms that change the prop-
erties of a certain number of particles. Examples are coagulation, when two parti-
cles merge and their sizes are added, or fragmentation, when one particle splits into
pieces. In the case of elastic collisions, two particles change their velocities under the
restriction of conservation of momentum and energy.

Models (2.4) are often used as “direct simulation” algorithms in applications (e.g.,
chemical engineering, or semiconductor physics). However, generalized kinetic equa-
tions can be derived in analogy with the Boltzmann equation. These equations de-
scribe the time evolution of a function f (t,z) that approximately represents the distri-
bution (relative number) of particles with respect to their properties z at time t . More
precisely, let N = N(0) be the parameter governing the approximation. Then

∫

A
f (t,z)dz = lim

N→∞

1
N

nA(t) , (2.5)

where nA(t) represents the number of particles with states in the subset A at time t .
In the case of one-dimensional properties, (2.5) implies convergence of histograms,
when choosing A as intervals.

Note that the quantity at the right-hand side of (2.5) is random and convergence
is in probability. In a more abstract setting, the statement is about convergence of the
empirical measures of the system (2.4),

µ(N)(t,A) =
1
N

N(t)

∑
i=1

δzi(t)(A) , (2.6)

where δz(A) = 1 , if z ∈ A , and δz(A) = 0 , otherwise. It turns out that convergence of
the empirical measures (2.6) to a deterministic limit is equivalent to the factorization
property (2.3), where the deterministic limit provides a solution of the corresponding
kinetic equation. When studying systems with a variable number of particles, it is more
convenient to work with empirical measures and prove the propagation of their conver-
gence. Moreover, the approach via empirical measures does not need any symmetry
assumption (invariance of the system with respect to permutations). Further details
and references can be found, e.g., in [10] and [16, Chapter 2].

3 Jump processes with a finite number of states

In this section we reproduce some of the results obtained by Leontovich in [13], dis-
cuss the assumptions and provide illustrations using the Ehrenfest model [9]. First the
results are formulated, while derivations will be given in subsequent subsections.

Consider a system
(

x1(t), . . . ,xN(t)
)

t ≥ 0 , (3.1)

where N denotes the number of particles and each particle has one of a finite number
of states 1, . . . ,L . The corresponding “particle number process” is

(

n1(t), . . . ,nL(t)
)

t ≥ 0 , (3.2)
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where the components

nv(t) =
N

∑
i=1

δv,xi(t) v = 1, . . . ,L

count the numbers of particles in state v at time t (using the notation δv,w = 1 , if
v = w , and δv,w = 0 , otherwise). The state spaces of the processes (3.1) and (3.2) are
{1, . . . ,L}N and {(n1, . . . ,nL) ≥ 0 : n1 + . . .+nL = N} , respectively.

Two types of systems (3.1) will be considered, where particles change their states
either independently of each other (mono-molecular processes), or via binary inter-
actions (bi-molecular processes). We will study the asymptotic behaviour (as N → ∞)
of

� the vector of the average relative numbers of particles in a given state,

fN(t,v) = E
nv(t)

N
, (3.3)

� the covariance matrix of the vector of relative numbers of particles,

gN(t,v,w) = E

(

nv(t)
N

nw(t)
N

)

−E
nv(t)

N
E

nw(t)
N

(3.4)

� and the matrix

γN(t,v,w) = N gN(t,v,w)−δv,w fN(t,v) (3.5)

that is used to characterize the level of fluctuations of the relative numbers of
particles around their average values.

In the case of a finite number of states, property (2.5) takes the form

f (t,v) = lim
N→∞

nv(t)
N

v = 1, . . . ,L . (3.6)

Convergence in probability of uniformly bounded random variables to a deterministic
quantity (as in (3.6)) is equivalent to the convergence of the expected values ( fN → f )
and the convergence of the variances to zero (gN → 0). Note that convergence of γN

implies even gN ∼ 1
N .

mono-molecular processes

The time evolution of the process (3.1) is defined as follows:

1. The system waits (remains unchanged) a random amount of time that is expo-
nentially distributed with parameter

N

∑
i=1

λ1(xi) , (3.7)

for some non-negative vector λ1 .
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2. An index i = 1, . . . ,N is chosen according to the probabilities

λ1(xi)

∑N
j=1 λ1(x j)

. (3.8)

3. A new state v = 1, . . . ,L is chosen according to probabilities p1(xi,v) .

4. The particle with index i “jumps” into the state v . Go to 1.

Define the quantities

α1(v,w) = λ1(v) p1(v,w) if w 6= v (3.9)

and

α1(v,v) = −λ1(v) ∑
w 6=v

p1(v,w) . (3.10)

Theorem 3.1 The quantities (3.3) and (3.5) satisfy

d
dt

fN(t,w) =
L

∑
v=1

fN(t,v)α1(v,w) (3.11)

and

d
dt

γN(t,m,w) =
L

∑
v=1

γN(t,w,v)α1(v,m)+
L

∑
v=1

γN(t,m,v)α1(v,w) . (3.12)

It follows from (3.11) that the unique solution

fN(t,v) = exp(t α ′
1) fN(0,v) (3.13)

converges provided that the initial value fN(0) converges. Here α ′
1 denotes the trans-

posed matrix. According to (3.12), convergence of γN(t) follows from the convergence
of γN(0) .

bi-molecular processes

The time evolution of the process (3.1) is defined as follows:

1. The system waits (remains unchanged) a random amount of time that is expo-
nentially distributed with parameter

1
2N ∑

1≤i 6= j≤N

λ2(xi,x j) , (3.14)

for some non-negative matrix λ2 .
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2. A pair of indices i, j is chosen according to the probabilities

λ2(xi,x j)

∑1≤k 6=l≤N λ2(xk,xl)
, 1 ≤ i 6= j ≤ N . (3.15)

3. Two new states v,w = 1, . . . ,L are chosen according to probabilities p2(xi,x j,v,w) .

4. The particles with indices i, j “jump” into the states v and w , respectively. Go to
1.

Define the quantities

α2(v,w,m,z) = λ2(v,w) p2(v,w,m,z) if (m,z) 6= (v,w) (3.16)

and

α2(v,w,v,w) = −λ2(v,w) ∑
(m,z)6=(v,w)

p2(v,w,m,z) . (3.17)

Theorem 3.2 The function (cf. (3.3))

f (t,z) = lim
N→∞

fN(t,z) (3.18)

satisfies the equation

d
dt

f (t,z) =
1
2

L

∑
v,w=1

f (t,v) f (t,w)
L

∑
l=1

[

α2(v,w, l,z)+α2(v,w,z, l)
]

. (3.19)

The function (cf. (3.5))

γ(t,w,v) = lim
N→∞

γN(t,w,v) (3.20)

satisfies the equation

d
dt

γ(t,y,z) = (3.21)

1
2

L

∑
v,w=1

(

γ(t,z,v) f (t,w)+ f (t,v)γ(t,z,w)
) L

∑
l=1

[

α2(v,w, l,y)+α2(v,w,y, l)
]

+

1
2

L

∑
v,w=1

(

γ(t,y,v) f (t,w)+ f (t,v)γ(t,y,w)
) L

∑
l=1

[

α2(v,w, l,z)+α2(v,w,z, l)
]

+

1
2

L

∑
v,w=1

f (t,v) f (t,w)
[

α2(v,w,y,z)+α2(v,w,z,y)
]

.
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weak equations

Equivalent weak forms of equations (3.11) and (3.19) are obtained via the transfor-
mations

d
dt

L

∑
w=1

ϕ(w) f (t,w) =

=
L

∑
w=1

ϕ(w)
L

∑
v=1

fN(t,v)α1(v,w) =
L

∑
v=1

fN(t,v)
L

∑
w=1

ϕ(w)α1(v,w)

=
L

∑
v=1

fN(t,v)

[

∑
w 6=v

ϕ(w)α1(v,w)+ϕ(v)α1(v,v)

]

=
L

∑
v=1

fN(t,v) ∑
w 6=v

[

ϕ(w)−ϕ(v)
]

α1(v,w) =
L

∑
v=1

fN(t,v)
L

∑
w=1

[

ϕ(w)−ϕ(v)
]

α1(v,w)

=
L

∑
v=1

fN(t,v)
L

∑
w=1

[

ϕ(w)−ϕ(v)
]

λ1(v) p1(v,w) (3.22)

and

d
dt

L

∑
z=1

ϕ(z) f (t,z) = (3.23)

1
2

L

∑
v,w=1

f (t,v) f (t,w)
L

∑
l,z=1

ϕ(z)
[

α2(v,w, l,z)+α2(v,w,z, l)
]

=
1
2

L

∑
v,w=1

f (t,v) f (t,w)
L

∑
l,z=1

[

ϕ(z)+ϕ(l)
]

α2(v,w, l,z)

=
1
2

L

∑
v,w=1

f (t,v) f (t,w)

{

∑
l,z6=v,w

[

ϕ(z)+ϕ(l)
]

α2(v,w, l,z)

−
[

ϕ(w)+ϕ(v)
]

∑
l,z6=v,w

α2(v,w, l,z)

}

=
1
2

L

∑
v,w=1

f (t,v) f (t,w)
L

∑
l,z=1

[

ϕ(z)+ϕ(l)−ϕ(w)−ϕ(v)
]

α2(v,w, l,z)

=
1
2

L

∑
v,w=1

f (t,v) f (t,w)
L

∑
l,z=1

[

ϕ(z)+ϕ(l)−ϕ(w)−ϕ(v)
]

q2(v,w) p2(v,w, l,z) ,

where ϕ is an arbitrary vector and the properties

L

∑
w=1

α1(v,w) = 0 and
L

∑
m,z=1

α2(v,w,m,z) = 0 (3.24)

were used. The weak equations make the analogy with corresponding (linear and
nonlinear) Boltzmann equations more evident. Moreover, the transformations (3.22)
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and (3.23) clarify the relationships (3.9), (3.10), (3.16), (3.17) between the param-
eters λ , p (determining the evolution of the system) and α (occurring in the kinetic
equation).

3.1 General properties

We first recall several properties that will be used both for mono-molecular and bi-
molecular processes.

representations of the quantities (3.3) and (3.5)

The generating function of the process (3.2) is defined as

Φ(N)(t,u1, . . . ,uL) = Eun1(t)
1 . . .unL(t)

L = ∑
n1+...+nL=N

un1
1 . . .unL

L V (t,n1, . . . ,nL) , (3.25)

where V denotes the distribution of the process. Using the identity

un1
1 . . .unL

L = ux1 . . .uxN (3.26)

one obtains from (3.25)

Φ(N)(t,u1, . . . ,uL) =
L

∑
x1,...,xN=1

ux1 . . .uxN W (t,x1, . . . ,xN) , (3.27)

where W denotes the distribution of the process (3.1). It follows from (3.27) that

∂
∂uv

Φ(N)(t,u1, . . . ,uL) =
L

∑
x1,...,xN=1

N

∑
i=1





(

∂
∂uv

uxi

) N

∏
k=1
k 6=i

uxk



W (t,x)

=
N

∑
i=1

L

∑
x1,...,xN=1

xi=v





N

∏
k=1
k 6=i

uxk



W (t,x) (3.28)

and

∂ 2

∂uv ∂uw
Φ(N)(t,u1, . . . ,uL) =

L

∑
x1,...,xN=1

∑
1≤i 6= j≤N





(

∂
∂uv

uxi

)(

∂
∂uw

ux j

) N

∏
k=1

k 6=i, j

uxk



W (t,x)

= ∑
1≤i 6= j≤N

L

∑
x1,...,xN=1
xi=v,x j=w





N

∏
k=1

k 6=i, j

uxk



W (t,x) . (3.29)
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On the other hand, the generating function (3.25) satisfies

∂
∂uv

Φ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= Env(t) (3.30)

and

∂ 2

∂uv ∂uw
Φ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= E [nv(t)nw(t)]−δv,w Env(t) . (3.31)

Representing it in the form

Φ(N)(t,u1, . . . ,uL) = exp
(

N ϕ(N)(t,u1, . . . ,uL)
)

(3.32)

one obtains

∂
∂ t

Φ(N)(t,u1, . . . ,uL) = Φ(N)(t,u1, . . . ,uL)N
∂
∂ t

ϕ(N)(t,u1, . . . ,uL) (3.33)

and

∂
∂uv

Φ(N)(t,u1, . . . ,uL) = Φ(N)(t,u1, . . . ,uL)N
∂

∂uv
ϕ(N)(t,u1, . . . ,uL) (3.34)

and

∂ 2

∂uw ∂uv
Φ(N)(t,u1, . . . ,uL) = (3.35)

Φ(N)(t,u1, . . . ,uL)N
∂

∂uw
ϕ(N)(t,u1, . . . ,uL)N

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)+

Φ(N)(t,u1, . . . ,uL)N
∂ 2

∂uw ∂uv
ϕ(N)(t,u1, . . . ,uL) .

It follows from (3.30), (3.31), (3.34) and (3.35) that (cf. (3.3))

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
=

1
N

∂
∂uv

Φ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= fN(t,v) (3.36)

and (cf. (3.4), (3.5))

∂ 2

∂uw ∂uv
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
=

1
N

∂ 2

∂uw ∂uv
Φ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
−

N
∂

∂uw
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

=
1
N

[

E(nw(t)nv(t))−δw,v Enw(t)
]

−N fN(t,w) fN(t,v)

= N gN(t,w,v)−δw,v fN(t,w) = γN(t,w,v) . (3.37)
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Kolmogorov’s forward equation

Consider a Markov jump process Z(t) with a finite state space. Its time evolution is
defined as follows:

1. The process stays in state z for an exponentially distributed time with parameter
λ (z) , for some non-negative vector λ .

2. The process jumps into state y distributed according to probabilities p(z,y) . Go
to 1.

The distribution of the process

W (t,y) = P(Z(t) = y)

satisfies Kolmogorov’s forward equation

∂
∂ t

W (t,y) = ∑
z

W (t,z)λ (z) p(z,y)−W(t,y)λ (y) . (3.38)

3.2 Mono-molecular processes

According to the definition of mono-molecular processes (cf. (3.7), (3.8)), we introduce

λ (x) =
N

∑
i=1

λ1(xi) x = (x1, . . . ,xN)

and

p(x,y) =
1

λ (x)

N

∑
i=1

λ1(xi)
L

∑
v=1

p1(xi,v)δT1(x,i,v),y ,

where the transformation T1(x, i,v) replaces the i-th component of x by v . Equation
(3.38) implies (cf. (3.9), (3.10))

∂
∂ t

W (t,x) = ∑
y

W (t,y)
N

∑
i=1

λ1(yi)
L

∑
v=1

p1(yi,v)δT1(y,i,v),x−W (t,x)λ (x)

=
N

∑
i=1

L

∑
v=1

∑
y:T1(y,i,v)=x

W (t,y)λ1(yi) p1(yi,v)−W(t,x)λ (x)

=
N

∑
i=1

L

∑
w=1

W (t,T1(x, i,w))λ1(w) p1(w,xi)−W (t,x)
N

∑
i=1

λ1(xi)
L

∑
w=1

p1(xi,w)

=
N

∑
i=1

∑
w 6=xi

W (t,T1(x, i,w))λ1(w) p1(w,xi)−W (t,x)
N

∑
i=1

λ1(xi) ∑
w 6=xi

p1(xi,w)

=
N

∑
i=1

∑
w 6=xi

W (t,T1(x, i,w))α1(w,xi)+W (t,x)
N

∑
i=1

α1(xi,xi)

=
N

∑
i=1

L

∑
w=1

W (t,T1(x, i,w))α1(w,xi) . (3.39)
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It follows from (3.27) and (3.39) that

∂
∂ t

Φ(N)(t,u1, . . . ,uL) =
L

∑
x1,...,xN=1

ux1 . . .uxN

N

∑
i=1

L

∑
v=1

W (t,T1(x, i,v))α1(v,xi)

=
L

∑
v=1

N

∑
i=1

L

∑
l=1

L

∑
x1,...,xN=1

xi=l

ux1 . . .uxN W (t,T1(x, i,v))α1(v,xi)

=
L

∑
v=1

N

∑
i=1

L

∑
l=1

α1(v, l)ul

L

∑
x1,...,xN=1

xi=l





N

∏
k=1
k 6=i

uxk



W (t,T1(x, i,v))

=
L

∑
v=1

L

∑
l=1

α1(v, l)ul

N

∑
i=1

L

∑
x1,...,xN=1

xi=v





N

∏
k=1
k 6=i

uxk



W (t,x) . (3.40)

One obtains, according to (3.28) and (3.40),

∂
∂ t

Φ(N)(t,u1, . . . ,uL) =
L

∑
v=1

∂
∂uv

Φ(N)(t,u1, . . . ,uL)
L

∑
l=1

α1(v, l)ul

and, according to (3.32)-(3.34),

∂
∂ t

ϕ(N)(t,u1, . . . ,uL) =
L

∑
v=1

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)
L

∑
l=1

α1(v, l)ul . (3.41)

Equation (3.41) implies

∂
∂ t

∂
∂uw

ϕ(N)(t,u1, . . . ,uL) =
L

∑
v=1

∂ 2

∂uw ∂uv
ϕ(N)(t,u1, . . . ,uL)

L

∑
l=1

α1(v, l)ul +

L

∑
v=1

(

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)

)

α1(v,w)

so that (cf. (3.24))

d
dt

(

∂
∂uw

ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

=
L

∑
v=1

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
α1(v,w) (3.42)

and

d
dt

(

∂ 2

∂um ∂uw
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

= (3.43)

L

∑
v=1

∂ 2

∂uw ∂uv
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
α1(v,m)+

L

∑
v=1

∂ 2

∂um ∂uv
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
α1(v,w) .

According to (3.3), (3.5), (3.36) and (3.37), equations (3.42) and (3.43) take the form
(3.11) and (3.12), respectively.
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3.3 Bi-molecular processes

According to the definition of bi-molecular processes (cf. (3.14), (3.15)), we introduce

λ (x) =
1

2N ∑
1≤i 6= j≤N

λ2(xi,x j) x = (x1, . . . ,xN)

and

p(x,y) =
1

2N λ (x) ∑
1≤i 6= j≤N

λ2(xi,x j)
L

∑
v,w=1

p2(xi,x j,v,w)δT2(x,i, j,v,w),y ,

where the transformation T2(x, i, j,v,w) replaces the i-th and j-th components of x by
v and w , respectively. One obtains

∑
y

W (t,y)λ (y) p(y,x) =

1
2N ∑

y
W (t,y) ∑

1≤i 6= j≤N

λ2(yi,y j)
L

∑
v,w=1

p2(yi,y j,v,w)δT2(y,i, j,v,w),x

=
1

2N ∑
1≤i 6= j≤N

L

∑
v,w=1

∑
y:T2(y,i, j,v,w)=x

W (t,y)λ2(yi,y j) p2(yi,y j,v,w)

=
1

2N ∑
1≤i 6= j≤N

L

∑
l,m=1

W (t,T2(x, i, j, l,m))λ2(l,m) p2(l,m,xi,x j)

so that equation (3.38) implies (cf. (3.16), (3.17))

∂
∂ t

W (t,x) =
1

2N ∑
1≤i 6= j≤N

L

∑
l,m=1

W (t,T2(x, i, j, l,m))λ2(l,m) p2(l,m,xi,x j)−

1
2N

W (t,x) ∑
1≤i 6= j≤N

λ2(xi,x j)
L

∑
l,m=1

p2(xi,x j, l,m)

=
1

2N ∑
1≤i 6= j≤N

∑
(l,m)6=(xi,x j)

W (t,T2(x, i, j, l,m))λ2(l,m) p2(l,m,xi,x j)−

1
2N

W (t,x) ∑
1≤i 6= j≤N

λ2(xi,x j) ∑
(l,m)6=(xi,x j)

p2(xi,x j, l,m)

=
1

2N ∑
1≤i 6= j≤N

∑
(l,m)6=(xi,x j)

W (t,T2(x, i, j, l,m))α2(l,m,xi,x j)+

1
2N

W (t,x) ∑
1≤i 6= j≤N

α2(xi,x j,xi,x j)

=
1

2N ∑
1≤i 6= j≤N

L

∑
l,m=1

W (t,T2(x, i, j, l,m))α2(l,m,xi,x j) . (3.44)
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It follows from (3.27) and (3.44) that

∂
∂ t

Φ(N)(t,u1, . . . ,uL) =

1
2N

L

∑
x1,...,xN=1

ux1 . . .uxN ∑
1≤i 6= j≤N

L

∑
v,w=1

W (t,T2(x, i, j,v,w))α2(v,w,xi,x j)

=
1

2N

L

∑
v,w=1

∑
1≤i 6= j≤N

L

∑
x1,...,xN=1

ux1 . . .uxNW (t,T2(x, i, j,v,w))α2(v,w,xi,x j)

=
1

2N

L

∑
v,w=1

∑
1≤i 6= j≤N

L

∑
l,m=1

L

∑
x1,...,xN=1
xi=l,x j=m

ux1 . . .uxNW (t,T2(x, i, j,v,w))α2(v,w,xi,x j)

=
1

2N

L

∑
v,w=1

L

∑
l,m=1

α2(v,w, l,m)ul um ×

∑
1≤i 6= j≤N

L

∑
x1,...,xN=1
xi=l,x j=m





N

∏
k=1

k 6=i, j

uxk



W (t,T2(x, i, j,v,w))

=
1

2N

L

∑
v,w=1

L

∑
l,m=1

α2(v,w, l,m)ul um ∑
1≤i 6= j≤N

L

∑
x1,...,xN=1
xi=v,x j=w





N

∏
k=1

k 6=i, j

uxk



W (t,x) . (3.45)

One obtains, according to (3.29) and (3.45),

∂
∂ t

Φ(N)(t,u1, . . . ,uL) =
1

2N

L

∑
v,w=1

∂ 2

∂uv ∂uw
Φ(N)(t,u1, . . . ,uL)

L

∑
l,m=1

α2(v,w, l,m)ul um

and, according to (3.32), (3.33), (3.35),

∂
∂ t

ϕ(N)(t,u1, . . . ,uL) = (3.46)

1
2

L

∑
v,w=1

[(

∂
∂uv

ϕ(N)

)(

∂
∂uw

ϕ(N)

)

+
1
N

∂ 2

∂uv ∂uw
ϕ(N)

] L

∑
l,m=1

α2(v,w, l,m)ul um .

Remark 3.3 It is assumed that a solution of the “basic equation” (3.46) can be con-
structed in the form

ϕ(N)(t) = ϕ0(t)+
1
N

ϕ1(t)+
1

N2 ϕ2(t)+ . . . , (3.47)

where the functions ϕ0,ϕ1, . . . do not depend on N , and that

lim
N→∞

(

∂
∂uv

ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

=
∂

∂uv
ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
(3.48)

and

lim
N→∞

(

∂ 2

∂uw ∂uv
ϕ(N)(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

=
∂ 2

∂uw ∂uv
ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1
, (3.49)

where the right-hand sides in (3.48), (3.49) are finite.
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It is a consequence of (3.46) and (3.47) that the function ϕ0 satisfies the equation

∂
∂ t

ϕ0(t,u1, . . . ,uL) = (3.50)

1
2

L

∑
v,w=1

(

∂
∂uv

ϕ0(t,u1, . . . ,uL)

)(

∂
∂uw

ϕ0(t,u1, . . . ,uL)

) L

∑
l,m=1

α2(v,w, l,m)ul um ,

which implies

∂
∂uz

∂
∂ t

ϕ0(t,u1, . . . ,uL) =

1
2

L

∑
v,w=1

∂
∂uz

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)] L

∑
l,m=1

α2(v,w, l,m)ul um +

1
2

L

∑
v,w=1

(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)

∂
∂uz

(

L

∑
l,m=1

α2(v,w, l,m)ul um

)

and

∂ 2

∂uy ∂uz

∂
∂ t

ϕ0(t,u1, . . . ,uL) =

1
2

L

∑
v,w=1

∂ 2

∂uy ∂uz

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)] L

∑
l,m=1

α2(v,w, l,m)ul um +

1
2

L

∑
v,w=1

∂
∂uz

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)]

∂
∂uy

(

L

∑
l,m=1

α2(v,w, l,m)ul um

)

+

1
2

L

∑
v,w=1

∂
∂uy

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)]

∂
∂uz

(

L

∑
l,m=1

α2(v,w, l,m)ul um

)

+

1
2

L

∑
v,w=1

(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)

∂ 2

∂uy ∂uz

(

L

∑
l,m=1

α2(v,w, l,m)ul um

)

so that (cf. (3.24))

d
dt

(

∂
∂uz

ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

= (3.51)

1
2

L

∑
v,w=1

{

∂
∂uv

ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

∂
∂uw

ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

}

×

L

∑
l=1

[

α2(v,w, l,z)+α2(v,w,z, l)
]

and

d
dt

(

∂ 2

∂uy ∂uz
ϕ0(t,u1, . . . ,uL)

∣

∣

∣

∣

u=1

)

= (3.52)
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1
2

L

∑
v,w=1

∂
∂uz

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)]

u=1

L

∑
l=1

[

α2(v,w, l,y)+α2(v,w,y, l)
]

+

1
2

L

∑
v,w=1

∂
∂uy

[(

∂
∂uv

ϕ0

)(

∂
∂uw

ϕ0

)]

u=1

L

∑
l=1

[

α2(v,w, l,z)+α2(v,w,z, l)
]

+

1
2

L

∑
v,w=1

∂
∂uv

ϕ0

∣

∣

∣

∣

u=1

∂
∂uw

ϕ0

∣

∣

∣

∣

u=1

[

α2(v,w,y,z)+α2(v,w,z,y)
]

.

It follows from (3.36), (3.48) and (3.51) that the function (3.18) exists and satisfies
equation (3.19), and from (3.37), (3.49) and (3.52) that the function (3.20) exists and
satisfies equation (3.21).

We have reproduced the derivation of equations (3.19), (3.21) given by Leontovich
in [13]. Some more effort would have to be spent in order to fill the remaining gaps,
that is, to prove the assumptions collected in Remark 3.3. It follows from (3.46) (by
comparing terms having the same order with respect to N) that ϕ0 satisfies the non-
linear equation (3.50) and ϕ1,ϕ2, . . . satisfy linear equations as, for example,

∂
∂ t

ϕ1(t,u1, . . . ,uL) =

1
2 ∑

v,w

[

∂
∂uv

ϕ1
∂

∂uw
ϕ0 +

∂
∂uv

ϕ0
∂

∂uw
ϕ1 +

∂ 2

∂uv ∂uw
ϕ0

]

∑
l,m

α2(v,w, l,m)ul um .

Properties of these solutions have to be studied in order to justify the assumptions
concerning convergence of the series representation (3.47) and its regularity prop-
erties (3.48), (3.49). However, Leontovich’s approach via generating functions is re-
stricted to the finite state space. More general results have been obtained by other
methods. For example, [10, Theorem 2.3] implies (3.6) for all t > 0 provided that it
holds for t = 0 .

3.4 Examples

We consider several examples, where explicit calculations are possible. First we study
various initial states of the system (3.1) and illustrate their convergence properties.
Then we introduce a classical example of a mono-molecular process and study both
transient and steady state behaviour.

3.4.1 Initial states

Here we check the assumptions from Remark 3.3 in terms of the initial state of the
particle system. Conditions (3.47)-(3.49) take the form (cf. (3.36), (3.37))

ϕ(N)(0) = ϕ0(0)+
1
N

ϕ1(0)+
1

N2 ϕ2(0)+ . . . , (3.53)
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lim
N→∞

fN(0,v) =
∂

∂uv
ϕ0(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
(3.54)

and

lim
N→∞

γN(0,w,v) =
∂ 2

∂uw ∂uv
ϕ0(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
. (3.55)

Recall (cf. (3.25), (3.26))

Φ(N)(0,u1, . . . ,uL) = Eux1(0) . . .uxN(0) (3.56)

and (cf. (3.32))

ϕ(N)(0,u1, . . . ,uL) =
1
N

logΦ(N)(0,u1, . . . ,uL) . (3.57)

Example 3.4 Consider independent initial particles, with identical distribution

P(x1(0) = l) = pl , l = 1, . . . ,L . (3.58)

One obtains

Φ(N)(0,u1, . . . ,uL) =
(

Eux1(0)

)N
=

(

L

∑
l=1

ul pl

)N

= exp

(

N log
L

∑
l=1

ul pl

)

and

ϕ(N)(0,u1, . . . ,uL) = log
L

∑
l=1

ul pl (3.59)

so that

fN(0,v) =
∂

∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
=

pv

∑L
l=1 ul pl

∣

∣

∣

∣

u=1

= pv (3.60)

and

γN(0,w,v) =
∂ 2

∂uw ∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= −

pv pw
(

∑L
l=1 ul pl

)2

∣

∣

∣

∣

∣

u=1

= −pv pw . (3.61)

It follows from (3.59)-(3.61) that conditions (3.53)-(3.55) are fulfilled.

Example 3.5 Consider deterministic initial particles, nl(0) of them located in state l ,
where

lim
N→∞

nl(0)

N
= f (0, l) , l = 1, . . . ,L . (3.62)
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One obtains (cf. (3.56))

Φ(N)(0,u1, . . . ,uL) = un1(0)
1 . . . unL(0)

L

and (cf. (3.57))

ϕ(N)(0,u1, . . . ,uL) =
1
N

L

∑
l=1

nl(0) logul (3.63)

so that

fN(0,v) =
∂

∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
=

nv(0)

N

and

γN(0,w,v) =
∂ 2

∂uw ∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= −δw,v

nv(0)

N
. (3.64)

It follows from (3.62) and (3.63) that

lim
N→∞

ϕ(N)(0,u1, . . . ,uL) =
L

∑
l=1

f (0, l) logul =: ϕ0(0,u1, . . . ,uL) . (3.65)

However, the series representation (3.53) does not hold. Indeed, it would imply

ϕ1(0) = lim
N→∞

N
[

ϕ(N)(0)−ϕ0(0)
]

= lim
N→∞

L

∑
l=1

[

nl(0)−N f (0, l)
]

logul . (3.66)

Consider L = 2 and n1(0) = Int[N/2] (integer part) so that f (0,1) = f (0,2) = 1
2 . Then

n1(0)−N f (0,1) =

{

0 , if N is even ,
−0.5 , otherwise

so that (3.66) does not exist. Conditions (3.54), (3.55) are fulfilled with ϕ0 defined in
(3.65).

Example 3.6 Consider identical initial particles, with distribution (3.58). This means
that initially all particles are in the same state, which is random. One obtains (cf.
(3.56))

Φ(N)(0,u1, . . . ,uL) = E

(

ux1(0)

)N
=

L

∑
l=1

uN
l pl

and (cf. (3.57))

ϕ(N)(0,u1, . . . ,uL) =
1
N

log
L

∑
l=1

uN
l pl , (3.67)
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which implies

∂
∂uv

ϕ(N)(0,u1, . . . ,uL) =
uN−1

v pv

∑L
l=1 uN

l pl

and

∂ 2

∂uw ∂uv
ϕ(N)(0,u1, . . . ,uL) =

δv,w (N −1)uN−2
v pv ∑L

l=1 uN
l pl −uN−1

v pv N uN−1
w pw

(

∑L
l=1 uN

l pl
)2

so that

fN(0,v) =
∂

∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= pv

and

γN(0,w,v) =
∂ 2

∂uw ∂uv
ϕ(N)(0,u1, . . . ,uL)

∣

∣

∣

∣

u=1
= δv,w (N −1) pv − pv N pw . (3.68)

It follows from (3.67) that (weighted lq-norm)

lim
N→∞

ϕ(N)(0,u1, . . . ,uL) = lim
N→∞

log

(

L

∑
l=1

uN
l pl

)
1
N

= log

(

max
l=1,...,L

ul

)

=: ϕ0(0,u1, . . . ,uL) . (3.69)

However, the series representation (3.53) does not hold. Indeed, consider L = 2 , p1 =
p2 = 1

2 , u1 = 1 , u2 = 1
2 so that

ϕ(N)(0,u1,u2) =
1
N

log

(

1
2

[

1+
1

2N

])

=
1
N

[

log
1
2

+
∞

∑
k=1

(−1)k+1

k !

(

1
2N

)k
]

and ϕ0(0,u1,u2) = 0 . Condition (3.53) would imply

ϕ1(0) = lim
N→∞

N
[

ϕ(N)(0)−ϕ0(0)
]

= log
1
2

and

ϕk(0) = lim
N→∞

Nk
[

ϕ(N)(0)−
1
N

ϕ1(0)

]

= lim
N→∞

Nk−1 log

(

1+
1

2N

)

= 0 ∀k ≥ 2 .

As to conditions (3.54), (3.55), we note that expression (3.68) does not converge,
except in the deterministic case p1 = 1 . The function ϕ0 defined in (3.69) does not
have a continuous first derivative so that the second derivative does not exist.
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3.4.2 Ehrenfest model

The Ehrenfest model [9] is a special mono-molecular process. There are two states
1 and 2 indicating the number of the box, where the particle is located. Particles are
chosen at random and then moved into the other box.

mean values

Equation (3.11) takes the form

d
dt

fN(t,1) = −a fN(t,1)+b fN(t,2)

d
dt

fN(t,2) = a fN(t,1)−b fN(t,2) ,

where a = λ1(1) and b = λ1(2) . The transposed matrix

α ′
1 =

(

−a b
a −b

)

satisfies

(α ′
1)

k = [−(a+b)]k−1 α ′
1 , k ≥ 1 ,

so that

exp(t α ′
1) =

∞

∑
k=0

(t α ′
1)

k

k !
= I +α ′

1

∞

∑
k=1

[−(a+b)]k−1 tk

k !
= I −

1
a+b

α ′
1

∞

∑
k=1

[−(a+b) t]k

k !

= I −
exp(−(a+b) t)−1

a+b
α ′

1 . (3.70)

Thus, the solution (3.13) takes the form

fN(t) = fN(0)−
exp(−(a+b) t)−1

a+b
α ′

1 fN(0) . (3.71)

It follows from (3.71) that

fN(∞) =

(

I +
1

a+b
α ′

1

)

fN(0)

so that

fN(∞,1) =
b

a+b
and fN(∞,2) =

a
a+b

.
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fluctuations

Consider the standard case a = b = 1 . Since γN is symmetric, equation (3.12) reduces
to the system

d
dt

γN(t,1,1) = 2γN(t,1,1)α1(1,1)+2γN(t,1,2)α1(2,1)

= −2γN(t,1,1)+2γN(t,1,2)

d
dt

γN(t,1,2) = γN(t,2,1)α1(1,1)+ γN(t,2,2)α1(2,1)+

γN(t,1,1)α1(1,2)+ γN(t,1,2)α1(2,2)

= −2γN(t,1,2)+ γN(t,1,1)+ γN(t,2,2) (3.72)
d
dt

γN(t,2,2) = 2γN(t,2,1)α1(1,2)+2γN(t,2,2)α1(2,2)

= −2γN(t,2,2)+2γN(t,1,2) .

Assume

γN(0) =

(

c d
d c

)

(3.73)

so that γN(0) commutes with α1 . Then a solution of (3.72) is obtained in the form (cf.
(3.12), (3.70))

γN(t) = exp(2 t α1)γN(0) =

(

I +
1
2

α1

)

γN(0)−
1
2

exp(−4 t)α1 γN(0)

=
c+d

2

(

1 1
1 1

)

−
c−d

2
exp(−4 t)α1 . (3.74)

initial states

In Example 3.4, condition (3.73) holds with c = d =−1
4 provided that (cf. (3.58), (3.61))

p1 = p2 =
1
2

. (3.75)

One obtains (cf. (3.71))

fN(t,1) = fN(t,2)) =
1
2

∀ t ≥ 0 (3.76)

and (cf. (3.5), (3.74))

gN(t) =
1
N

(

γN(t)+
1
2

I
)

= −
1

4N
α1 ∀ t ≥ 0 . (3.77)

In this case, the system starts already in the steady state.
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In Example 3.5, condition (3.73) holds with c = −1
2 and d = 0 provided that (cf.

(3.62), (3.64))

n1(0) = n2(0) .

One obtains constant expected values (3.76) and the covariance matrix (cf. (3.5),
(3.74))

gN(t) = −
1

4N

[

1− exp(−4 t)
]

α1

so that (cf. (3.77))

gN(0) = 0 and gN(∞) = −
1

4N
α1 . (3.78)

In this case, the norm of the covariance matrix is monotonically increasing in time.

In Example 3.6, condition (3.73) is satisfied with (cf. (3.68))

c =
N
4
−

1
2

, d = −
N
4

provided that (3.75) holds. One obtains constant expected values (3.76) and the co-
variance matrix (cf. (3.5), (3.74))

gN(t) = −
1

4N

[

1+(N −1) exp(−4 t)
]

α1

so that (cf. (3.77), (3.78))

gN(0) = −
1
4

α1 and gN(∞) = −
1

4N
α1 .

In this case, the norm of the covariance matrix is monotonically decreasing in time.
Moreover, gN(t) does not converge to zero with N → ∞ , for any t ≥ 0 , but gN(∞) does.
This means that the system is not “chaotic” for any t > 0 , but its steady state is.
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