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Abstract

In the analysis of ill-posed inverse problems the impact of solution smooth-
ness on accuracy and convergence rates plays an important role. For linear ill-
posed operator equations in Hilbert spaces and with focus on the linear regu-
larization schema we will establish relations between the different kinds of mea-
suring solution smoothness in a point-wise or integral manner. In particular we
discuss the interplay of distribution functions, profile functions that express the
regularization error, index functions generating source conditions, and distance
functions associated with benchmark source conditions. We show that typically
the distance functions and the profile functions carry the same information as the
distribution functions, and that this is not the case for general source conditions.
The theoretical findings are accompanied with examples exhibiting applications
and limitations of the approach.

1 Introduction

The stable approximate solution of ill-posed inverse problems that can be formulated
as linear operator equations

Ax = y (1)

with an injective and bounded linear operator A : X → Y mapping between Hilbert
spaces X and Y and possessing a non-closed range R(A) requires regularization,
since under the above assumptions the (formal) solution mapping y 7→ x = A−1y ex-
ists for each y ∈R(A), however, this dependence is discontinuous. Precisely, this is
the Moore–Penrose inverse A†, which can be defined in a more general context as a
densely defined (unbounded) operator. Therefore, the solution theory aims at replac-
ing the discontinuous mapping A† by a family of continuous (bounded) regularization
operators Rα : Y → X indexed by the regularization parameter α > 0. This approach
is common since the early days of the theory of ill-posed equations, and a seminal
treatise along these lines is [4]. The goal is to design families Rα with the property
that Rαy→ A†y as α → 0 whenever y ∈R(A).

Regularization error

The deviation of Rαy from A†y is called regularization error, and we have for y = Ax
that

fx(α) := ‖A†y−Rαy‖ = ‖A†Ax−RαAx‖ = ‖x−RαAx‖, α > 0.
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In most cases the family Rα is given by a family of piece-wise continuous real functions
gα . By noticing that A† = (A∗A)† A∗ we assign

Rα := gα(A∗A)A∗, (2)

where spectral calculus allows to extend the real functions to operator valued ones. In
terms of the family gα the regularization error reads as fx(α) = ‖x− gα(A∗A)A∗Ax‖,
and this function was called profile function in [12]. A crucial observation in this con-
text is that the decay rate of fx(α) as α → 0 depends on smoothness properties of
the solution element x. The quantitative relation between smoothness properties of x,
given in terms of spectral information, called distribution function below, and the de-
cay of the profile function for a given regularization was first emphasized in [18, 19].
Here we take a more general point of view, and we shall subsume such properties as
different kinds of solution smoothness of x with respect to the operator H := A∗A.

Distribution function

The point-wise characteristics of the solution smoothness of x with respect to the
spectrum of H, which contains the complete spectral information of the element, ex-
ploits the (right-continuous version of the) spectral distribution function

F2
x (t) := ‖Etx‖2 := 〈χ(0,t](H)x,x〉= ‖χ(0,t](H)x‖2, 0 < t < ∞, (3)

or the equivalent representation as F2
x (t) =

∫ t
0 d‖Esx‖2 for t > 0. Above, we let χ(0,t]

be the characteristic function of the interval (0, t], and Et = Et(H), 0≤ t ≤ ‖H‖, be the
spectral resolution of the operator H, i.e., for any (bounded measurable) real function
h we have that

‖h(H)x‖2 =
∫ ‖H‖

0
h2(t) d‖Etx‖2,

we refer to [20, Chapt. 12] for details on spectral theory of bounded self-adjoint op-
erators in Hilbert space. We should note here that by definition the function Fx is
non-decreasing and right-continuous with limt→0 Fx(t) = 0. The latter property is a
consequence of zero being an accumulation point of the spectrum of H. The dis-
tribution function may have jumps at the points of the spectrum of H. In particular,
for compact operators H it will be piece-wise constant. Moreover, an immediate and
well-known observation is the following fact.

Fact 1 ([19, Prop. 2.3]). Given x ∈ X , the increase Fx(α) = O(ακ) as α → 0, for some
0 < κ < 1, implies that x ∈R(Hν) for every 0 < ν < κ .

General smoothness

The smoothness of solutions x ∈ X for ill-posed equations can be expressed mathe-
matically in different ways. The most traditional form is characterized by source con-
ditions. In its general version it is assumed that there is a non-decreasing continuous
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function ψ : (0,‖H‖]→ R+ = (0,∞) with limt→0 ψ(t) = 0 that we will call index func-
tion, for which

x = ψ(H)v, (4)

with some source element v ∈ X . Evidently, (4) can be rewritten as x ∈ R(ψ(H)).
Recent results assert that for every x ∈ X there is an index function ψ and a source
element v ∈ X satisfying (4), see [17, 13].

Although the concept of source conditions (4) proved to be useful in the error anal-
ysis of ill-posed operator equations, the point-wise characteristics (3) contains more
precise information of the smoothness of x with respect to the operator H. We exhibit
this in case of Tikhonov regularization, where the family Rα is given for y = Ax by
Rαy = (H +αI)−1Hx, and hence the corresponding profile function is

fx(α) := α‖(H +αI)−1 Hx‖, 0 < α < ∞, (5)

which is an index function,well-defined and increasing for all α > 0. A celebrated
converse result establishes a one-to-one correspondence between the distribution
and the profile functions in moderate cases.

Fact 2 ([19, Thm. 2.1]). Given x∈H, we have that fx(α) = O(ακ), for some 0 < κ < 1,
if and only if Fx(α) = O(ακ) as α → 0.

The key to the proof of Fact 2 is the following result. It uses the family wα ∈ X of ele-
ments given as wα := χ(α,‖H‖](H)H−1x, α > 0, which will prove useful later, see (23)
for the general construction.

Lemma 1 ([19], or the original study [5]). Let wα be defined as above. The behavior
Fx(α) = O(ακ), for some 0 < κ < 1, yields α‖wα‖ = O(ακ) as α → 0.

In contrast, by using power type source conditions we only have that fx(α) = O(αν)
provided that x ∈R(Hν), again whenever 0 < ν < 1. This of course is less accurate
than the assertion in Fact 2, and it is mentioned in [19] that there are x ∈R(Hν) for
which fx(α) = o(αν). We will return to this discussion in Corollary 2.

Distance function

In the past years, with the study [11] as well as the subsequent studies in [1, 2, 8,
12, 14] and [7], the lack of information occurring when general source conditions are
used, was circumvented by using distance functions

dψ(R) := inf{‖x−ψ(H)v‖ : ‖v‖ ≤ R} , 0≤ R < ∞. (6)

Whenever x /∈R(ψ(H)) such distance functions dψ(R), which are positive, decreas-
ing, convex and continuous for all 0≤R < ∞, moreover tending to zero as R→∞, mea-
sure the degree of violation of x with respect to the benchmark source condition (4).
Most of the mentioned properties of the function dψ are given in [11, Lemma 2.5 and
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its proof]. For completeness we indicate the proof of the convexity. If for 0 < R,S < ∞

the minimizers for dψ(R) and dψ(S) are called vR,vS, respectively, then ‖(vR +vS)/2‖ ≤
(R+S)/2, and dψ((R+S)/2)≤ ‖x−ψ(H)((vR + vS)/2)‖ ≤ 1

2 (dψ(R)+dψ(S)).

Remark 1. In the previous study [12] the authors used the distance function ρψ de-
fined as

ρψ(t) := inf{‖tx−ψ(H)v‖ : ‖v‖ ≤ 1} , t > 0,

instead of dψ(R), R > 0. The relation

dψ(R) = Rρψ(1/R), R > 0, (7)

is evident from the definition. We know from [12, Lemma 5.3] that the functions ρψ as
well as the function t 7→ ρψ(t)/t, t > 0, are increasing index functions mapping (0,∞)
onto itself. Some more insight gives [6, Remark 1] indicating that the transformations
ρψ 7→ dψ according to (7) and its inverse dψ 7→ ρψ are involutions that preserve con-
vexity.

Here we confine to the usage of dψ as distance function. In the sequel, for short we
call the index function ψ in dψ benchmark. If the decay of dψ(R) → 0 as R → ∞ is
slow, then x strongly violates the benchmark source condition, whereas a fast decay
corresponds to a weak violation. The distance function approach, also called method
of approximate source conditions is a third way of expressing solution smoothness.
To see this we recall the following result, where as in the sequel we write dν(R) for
short if we mean dψ(R) with monomial benchmark ψ(t) = tν , ν > 0.

Fact 3 ([2, Theorem 3.2], [12, § 5.2]). Smoothness of the form
x ∈R(Hκ) with 0 < κ < ν implies for the distance function with monomial benchmark

ψ(t) = tν , t > 0, a decay rate dν(R) = O
(

R−
κ

ν−κ

)
as R→ ∞.

This assertion will be improved as a result of our analysis in Corollary 2.

At some place we will also use a well-known dual formulation of the distance function

dψ(R) = sup{〈x,v〉−R‖ψ(H)v‖, ‖v‖ ≤ 1} , R > 0, (8)

as an alternative to (6), which can be derived from the concept of Fenchel duality,
see [22, Sec. 2.7].

Outline

In this study we will establish relations between the different kinds of measuring solu-
tion smoothness, in particular between distance functions dψ(R), the distribution func-
tion Fx(α), and a regularization error fx(α) in the context of the linear regularization
schema introduced in Section 2. The basic question is, whether the distance function
carries the same spectral information as the distribution function. General lower and

4



upper bounds are given in Section 3. The proof of the main general result will be given
in Appendix A. For the specific case of power type behavior we even show a one-to-
one correspondence between the associated exponents in Section 4, which answers
the above basic question in the affirmative. We also highlight the theoretical results
by providing examples which show the application and limitations of our findings in
Section 5. In particular we discuss relations to other results in this direction, which
were previously obtained by several authors.

2 The linear regularization schema

Before formulating the main results in Sections 3 and 4 we shall recall the concept of a
regularization schema as given in [12], where only linear regularization operators Rα

are under consideration. If the family of operators Rα was obtained from some family
of generator functions gα , see (2), then the regularization error constitutes as

x−RαAx = (I−gα(H)H)x,

and we associate to the function gα the residual (bias) function
rα(t) := 1− tgα(t), 0 < t ≤ ‖H‖.
Definition 1. A family of piece-wise continuous functions gα(t) is called a regulariza-
tion if lim

α→0
rα(t) = 0 as α → 0 for all 0 < t ≤ ‖H‖ and the following estimates hold for

all 0 < t ≤ ‖H‖, 0 < α ≤ ᾱ , and with constants γ0,γ1 and γ∗:

1
√

t |gα(t)| ≤ γ∗/
√

α ,

2 |rα(t)| ≤ γ1,

3 t |gα(t)| ≤ γ0.

Using the notation of index functions introduced in the initial section we say that an
index function ϕ is a qualification of the regularization generated by gα with constant
γ if

|rα(t)|ϕ(t)≤ γϕ(α), 0 < t ≤ ‖H‖, 0 < α ≤ ᾱ.

A standard account on the linear regularization schema is [3].

Regularization from a single function

In many cases the regularization family gα can be obtained from a single function, say
g : (0,∞)→ R, accompanied with the function r(t) := 1− tg(t), t > 0, where we refer
to [21, § 2.3] and to the German textbook [15]. It is easy to see that such function g
gives rise to a regularization by exploiting the dilatation procedure

gα(t) :=
1
α

g
( t

α

)
, t > 0, α > 0,

provided that g obeys
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4
√

t |g(t)| ≤ γ∗, t > 0,

5 |r(t)| ≤ γ1, t > 0, and

6 t |g(t)| ≤ γ0, t > 0.

Notice that by construction we have that rα(t) = r(t/α) for t,α > 0, and that rα is well
defined for every α > 0, i.e., ᾱ := ∞.

Profile functions

With respect to any given regularization gα we are interested in the profile function
(regularization error), which is seen to equal

fx(α) := ‖rα(H)x‖, 0 < α ≤ ᾱ. (9)

We shall assume that ‖rα(H)x‖ is a non-decreasing function in α for simplicity. This is
the case if the underlying regularization gα is such that the function α 7→ |rα(t)| , 0 <
α ≤ ᾱ , is non-decreasing, which is always satisfied for regularization from a single
function g with non-increasing r. If the regularization gα consists of continuous func-
tions, then fx is continuous and hence with limα→0 fx(α) = 0 an index function.

Example 1 (Tikhonov regularization). This regularization method with the continuous
functions gα(t) = 1/(t + α) and rα(t) = α/(t + α) is obtained from g(t) := 1/(t + 1),
with r(t) = 1/(t +1). We observe that the function r is decreasing and moreover that
1
2 = r(1)≤ r(t)≤ 1, 0 < t ≤ 1. Any concave index function, in particular any linear, is
a qualification of the method.

Example 2 (spectral cut-off). Another important regularization method is spectral cut-
off, where gα(t) = 1/t, t > α , and gα(t) = 0, otherwise. This function with a jump at
the point t = α corresponds to g(t) = 1/t, t > 1, and g(t) = 0, otherwise. The residual
function is r(t) = χ(0,1](t), the characteristic function of the interval (0,1], again a non-
increasing function in t. Spectral cut-off has arbitrary index functions as qualification.
We notice the important observation that for spectral cut-off we have that

‖rα(H)x‖ = Fx(α), 0 < α ≤ ‖H‖. (10)

One important observation from [18] relates the distribution function Fx to the profile
function fx as follows.

Proposition 1. For every regularization gα there is a constant
0 < c≤ 1 such that

Fx(cα)≤ 2 fx(α), 0 < α ≤ ‖H‖.
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Proof. We first notice that by item (i) of Definition 1 with constant γ∗ we find a 0 < c≤ 1
for which |rα(t)| ≥ 1/2 whenever 0 < t ≤ cα . Precisely, setting c := min

{
1

4γ2
∗
,1
}

we
have

|rα(t)| ≥ 1− t |gα(t)| ≥ 1− γ∗
√

t/α ≥ 1− γ∗
√

c≥ 1/2.

Then we bound

f 2
x (α) =

∫ ‖H‖

0
|rα(t)|2 dF2

x (t)

≥
∫ cα

0
|rα(t)|2 dF2

x (t)≥ 1
4

∫ cα

0
dF2

x (t) =
1
4

F2
x (cα),

from which the assertion follows.

3 General results

As already mentioned, both functions, the regularization error fx and the distance
function dψ reflect smoothness of x in the sense of certain spectral properties of the
involved element with respect to H.

We shall establish for x /∈R(ψ(H)) a one-to-one correspondence between distance
functions dψ(R) and profile functions fx(α), for an appropriate relation between R and
α . To this end let

Φψ(R) :=
dψ(R)

R
= ρψ

(
1
R

)
, R > 0. (11)

Since dψ(R) is decreasing and continuous for 0≤ R < ∞, the function Φψ(R) is even
a strictly decreasing continuous function for all positive R mapping (0,∞) onto itself.
By the above reasoning the equation

Φψ(R) = ψ(α) (12)

has a unique solution R = R(α) for each α ∈ (0, ᾱ].

The following upper bound was derived by using the function ρψ in [12, Thm. 5.5]. For
the convenience of the reader we recall the proof within the present context, here.

Proposition 2. If the regularization gα has qualification ψ with constant γ and if x /∈
R(ψ(H)), then

‖rα(H)x‖ ≤ (γ + γ1)dψ

(
Φ
−1
ψ (ψ(α))

)
, 0 < α ≤ ᾱ.

Proof. Let R = R(α) be given by solving equation (12), and let v be the minimizer of
the distance function dψ(R). Then

‖rα(H)x‖ ≤ ‖rα(H)(x−ψ(H)v)‖+‖rα(H)ψ(H)v‖
≤ γ1dψ(R)+ γψ(α)R

= (γ1 + γ)max
{

dψ(R),ψ(α)R
}

,

which allows us to complete the proof.
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Our goal is to establish a converse to the bound from Proposition 2, and we shall dis-
tinguish a low-benchmark and a high-benchmark case, respectively. The main gen-
eral result is the following Theorem 1. We establish essential cross connections be-
tween distance and profile functions. This will be helpful for discussing the power type
case in the subsequent section. Because the proof of this theorem is rather technical,
we postpone it to Appendix A.

Theorem 1. Let ψ be an index function and x /∈ R(ψ(H)). Moreover let gα be a
regularization.

low-benchmark If the function t 7→ ψ2(t)/t is non-increasing, or

high-benchmark if the function t 7→ψ2(t)/t is non-decreasing, and the regularization
is obtained from a single function g with non-increasing r, |r(1)|> 0,

then
dψ

(
2max{γ0,γ∗}Φ

−1
ψ (ψ(α))

)
≤C‖rα(H)x‖, 0 < α ≤ ᾱ, (13)

with constant C = 1 in the low-benchmark case and C = γ1/ |r(1)| in the high bench-
mark case.

If the regularization has qualification ψ , then

‖rα(H)x‖ ≤ 2max{γ,γ1}dψ

(
Φ
−1
ψ (ψ(α))

)
, 0 < α ≤ ᾱ.

Remark 2. In case that the distance function dψ does not decay too quickly we
can take out the leading constant 2max{γ0,γ∗} on the left in (13). Precisely, a non-
decreasing function, say h : (0,∞)→ (0,∞), is said to obey a ∆2-condition if there is
a constant C2 ≥ 1 such that h(2t) ≤ C2h(t), t > 0. This restricts the growth rate of
the function h to be sub-exponential. Within the present context this specifies to the
following. If the function 1/dψ obeys a ∆2-condition, in particular, if dψ decays sub-
exponentially, then there is a constant 0 < c≤ 1 such that

cdψ

(
Φ
−1
ψ (ψ(α))

)
≤ dψ

(
2max{γ0,γ∗}Φ

−1
ψ (ψ(α))

)
In this case the upper and lower bounds for the profile function in Theorem 1 coincide
up to constants.

We highlight one specific instance of Theorem 1, when we choose spectral cut-off as
regularization. In this case the profile function fx(α) has a clear interpretation, see
the representation (10) in Example 2.

Corollary 1. For an arbitrary index function ψ we have that

dψ

(
2Φ

−1
ψ (ψ(α))

)
≤ Fx(α)≤ 2dψ

(
Φ
−1
ψ (ψ(α))

)
, 0 < α < ∞.
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Proof. The proof of the lower bound is the same as for the high-benchmark case
of Theorem 1 applied to the spectral cut-off schema, but instead of Lemma 7 here
one has to use Remark 5, see Appendix A below. For the upper bound we apply
Theorem 1 again to spectral cut-off and take into account that γ∗ = γ0 = 1.

We close this section with general remarks on techniques for bounding distance func-
tions. The ‘standard’ way for establishing upper bounds is to use the family wα :=
χ(α,‖H‖](H)ψ(H)−1x ∈ X , 0 < α ≤ ᾱ , since here ‖x−ψ(H)wα‖ = Fx(α). This family
adapts the choice used for proving Lemma 1. Upper bounds are then obtained from
this, since dψ(‖wα‖)≤ Fx(α), such that upper bounds for ‖wα‖, typically of the order
Fx(α)/ψ(α), yield upper bounds for dψ by monotonicity.

It is harder to establish lower bounds. Two ways are worth mentioning. First, Corol-
lary 1 yields, with R := Φ−1

ψ (ψ(α)) that

Fx(ψ−1(Φψ(R)))≤ 2dψ(R), R≥ R0.

In the ‘moderate’ cases, if the smoothness given by the distribution Fx is far enough
from the benchmark ψ , this yields lower bounds for dψ , see e.g. the reasoning in
Example 3(c), below. However, in extremal cases, if the actual smoothness is close
to the benchmark, then one apparently must rely on the Fenchel duality (8), and one
must guess an appropriate choice of v∈X , often from some parametric family uα , α >
0. Here we point at the corresponding choice in Example 3(a).

4 Power-type behavior

Here we discuss consequences of Corollary 1 for power-type functions of growth and
decay rates expressing the solution smoothness. In general such functions corre-
spond to moderate smoothness situations; other behavior is possible, see Example 4.
In the following result we consider power-type benchmark smoothness ψν(t) := tν

for some fixed ν > 0 with the corresponding distance functions dν(R) := dψν
(R) and

associated quotient functions Φν(R) := dν (R)
R .

Since the results will be asymptotic in nature, we recall the following notion and nota-
tion.

Definition 2. Suppose that f ,g : (0,a) → (0,∞) are real functions. Then we denote
f = O(g) as t → 0, if there are constants C < ∞ and 0 < t̄ ≤ a such that f (t) ≤
Cg(t), 0 < t < t̄. We denote f ³ g if f = O(g) and g = O( f ). Finally, we denote
f = o(g) if f (t)/g(t)→ 0 as t → 0.

The above behavior is concerned with functions defined in a right neighborhood of
zero, but similar notion and notation applies for positive functions f (R),g(R), R ∈
[M,∞), M > 0, when the limit case R→ ∞ is under consideration.

The following result extends and reproves [18, Thm. 2.2] by using distance functions.
Its proof, as given here, will use the results obtained so far.
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Theorem 2. Let 0 < κ < ν . For x ∈ X satisfying the condition x /∈R(Hν) the following
assertions are equivalent:

1 The distribution function for x behaves like Fx(α)³ ακ as α → 0.

2 The distance function for x behaves like dν(R)³ R−
κ

ν−κ as R→ ∞.

3 For an arbitrary regularization gα , which has ϕ(t) = tν , t > 0, as qualification,
the profile function fx(α) := ‖rα(H)x‖ for x behaves like fx(α)³ ακ as α → 0.

The assertions remain valid when replacing ³ by either big-o ‘O ’ or little-o ‘o’.

We shall see in the examples 3 and 5, given in Section 5, that power type behavior
actually occurs for compact and non-compact operators H.

To prove Theorem 2 we start with the following preliminary result.

Lemma 2. Let 0 < κ < ν . We have that dν(R) = O(R−κ/(ν−κ)) as R→ ∞ implies that
dν(Φ−1

ν (α)) = O(ακ) as α → 0. The assertion remains true if we replace big-O ‘O ’
by little-o ‘o’.

Proof. The assumption on dν implies that Φν(R) = O(R−1/(ν−κ)), thus there are 0 <
C < ∞ and 0 < R0 < ∞ for which Φν(R) ≤ CR−1/(ν−κ) whenever R ≥ R0. This yields
that Φ−1

ν (CR−1/(ν−κ))≥R, by monotonicity. We assign α :=CR−1/(ν−κ) and thus have
that Φ−1

ν (α)≥ (α/C)κ−ν . Therefore, using the monotonicity of dν we see that

dν(Φ−1
ν (α))≤ dν((α/C)κ−ν)≤C

(
(α/C)κ−ν

)−κ/(ν−κ) = O(ακ).

The assertion for little-o is along the same lines, but more tedious.

Proof of Theorem 2. We first proof the equivalence of items (I) and (II) in either of
the asymptotic regimes. By Lemma 2 and Corollary 1 the order of magnitude of dν

yields the corresponding order for Fx. For the converse we use the approximation
wα := χ(α,‖H‖](H)H−νx. By substituting the operator H in Lemma 1 with Hν we see
that Fx(α) = O(ακ) yields an inequality of the form αν‖wα‖ = O(ακ). Therefore,
there is 0 < C < ∞ such that

dν(Cα
κ−ν)≤ dν(‖wα‖)≤ ‖x−Hνwα‖ = Fx(α).

By letting α := (R/C)−1/(ν−κ) we obtain that

dν(R)≤ Fx

(
(R/C)−1/(ν−κ)

)
= O(R−1/(ν−κ)) as R→ ∞.

Again, for little-o the reasoning is similar.

Finally, suppose that Fx(α)³ ακ . Plainly, by the first part of the proof this implies that
dν(R) = O(R−κ/(ν−κ)). If it were true that dν(R) = o(R−κ/(ν−κ)), then this would imply,
again by the beginning of the proof, that Fx(α) = o(ακ), contradicting the assumption.
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Similar applies by assuming that dν(R)³ R−κ/(ν−κ) , and this shows the equivalence
of items (I) and (II) in either of the asymptotic regimes.

Next, the asymptotics dν(R) = O(R−
κ

ν−κ ) implies that fx(α) = O(ακ), by Lemma 2
and Proposition 2. The same applies for little-o ‘o’.

Finally, if Fx(α) ³ ακ then, by the first part of the proof, and by Proposition 2, this
implies that fx(α) = O(ακ). From Proposition 1 we deduce that ακ = O( fx(α)) in this
case.

Since Item (I) is a special case of Item (III), the proof is complete.

This shows that in power type situations, the decay rates of the distance function as
well as of the profile function both relate to the ‘point-wise’ behavior of the spectrum of
x with respect to H, given by Fx. In contrast smoothness expressed by source condi-
tions (4), i.e., requiring that x is in the range of some index function of the operator H,
considers the spectrum of H in an ‘integral’ form only. We dwell on this, and highlight
some relations to the study [2].

Lemma 3. Let ψ be an arbitrary index function. If x ∈ R(ψ(H)) then
Fx(α) = o(ψ(α)) as α → 0.

Proof. First, by the injectivity of the operator H we have F2
x (α)→ 0 as α → 0. Next,

by assumption the function 1/ψ2 ∈ L1((0,∞),dF2
x ), and hence the measure dGx(t) :=

1/ψ2(t)dF2
x (t) is absolutely continuous with respect to dF2

x . Thus for each ε > 0 there
is δ > 0 such that

∫
A dF2

x (t) ≤ δ implies that
∫
A dGx(t) ≤ ε for all Borel sets A ⊂

(0,∞). In particular, if αδ is small enough such that F2
x (αδ )≤ δ , then

ε ≥
∫

αδ

0

1
ψ2(t)

dF2
x (t)≥ 1

ψ2(αδ )
F2

x (αδ ),

from which the proof can be completed.

In the light of Theorem 2 this yields the following strengthening and generalization
of [2, Thms. 3.1 & 3.2].

Corollary 2. Let 0 < η < ν , and suppose that x ∈R(Hη) but x 6∈R(Hν). Then

dν(R) = o(R−η/(ν−η)) as R→ ∞, (14)

and

fx(α) = o(αη) as α → 0, (15)

for an arbitrary regularization gα , which has ϕ(t) = tν , t > 0, as qualification.

Proof. By Lemma 3 we deduce from the assumption that Fx(α) = o(αη). Now, Theo-
rem 2, in the little-o ’o’ cases, yields both (14) and (15).
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This explains that optimal decay rates for the regularization error based on general
smoothness in terms of index functions ψ in (4) cannot be obtained, as this was
already mentioned after Lemma 1. This can also be seen from [17]. In addition, we
refer to the discussion on lower bounds in [12], and also the study [16, § 4].

5 Examples

We turn to discussing examples in connection with the theoretical results. The first
example is based on a non-compact multiplication operator, in particular it points at
the limitations of the bounds from Theorem 1 when the distance functions do not obey
some ∆2-condition.

Example 3. The authors in [9, 11] have discussed injective multiplication operators
in L2(0,1) with non-closed range, and [9, Example 4.6], or [11, § 3, Example 2], will
guide us, here. Precisely, we focus on the non-compact operator

[Hx](s) := m(s)x(s), 0 < s < 1, (16)

with multiplier function m ∈ L∞(0,1) possessing an essential zero. Below, we shall
restrict to cases where m is strictly increasing and continuous for 0 < s < 1 with limit
conditions limt→0 m(t) = 0 and limt→1 m(t) = 1. It is evident for such multiplication
operators that

F2
x (t) =

∫
{s∈(0,1):0<m(s)≤t}

x2(s)ds =
∫ m−1(t)

0
x2(s)ds, 0 < t ≤ 1. (17)

This distribution function is continuous with Fx(1) = ‖x‖ and can be extended continu-
ously as Fx(t) = ‖x‖ for all 1 < t < ∞. So we can easily derive the following represen-
tation for an arbitrary function h ∈ L2((0,∞),dF2

x ), namely that

‖h(H)x‖2 =
∫

∞

0
h2(t)dF2

x (t) =
∫ 1

0
h2(m(s))x2(s)ds. (18)

We now restrict to the case that x≡ 1 is a constant function, hence F2
x (t) = m−1(t), 0 <

t ≤ 1. We notice that 1 ∈ R(H) if and only if 1/m ∈ L2(0,1), and hence we shall
confine ourselves to distance functions d1(R), R > 0, with respect to the benchmark
ψ(t) = t, t > 0.

We will derive results for the quantities under consideration for different multipliers m
for which 1 6∈R(H). In our considerations we shall need the family wα := χ(α,1](H)H−11,
for which 1−Hwα = χ(0,α](H)1, thus ‖1−Hwα‖ = Fx(α). Moreover, the representa-
tion (18) yields that

‖wα‖2 =
∫ 1

m−1(α)

1
m2(s)

ds. (19)

The following cases for multipliers are of interest.
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(a) m(s) =
√

s : This is the limiting case for 1 6∈R(H). Here we have Fx(α) = α, 0 <
α ≤ 1 and hence Fx(α) ³ α , i.e. item (I) in Theorem 2 is satisfied with κ = 1,
but we cannot apply this theorem with ν = 1 and benchmark ψ(t) = t, t > 0,
since the required strict inequality κ < ν fails. This is reflected in the follow-
ing behavior of the distance function. Plainly, ‖wα‖ =

√
log(1/α2) and thus

d1

(√
log(1/α2)

)
≤ α, 0 < α < 1. By letting R :=

√
log(1/α2) this rewrites as

d1(R)≤ e−R2/2, R > 0,

which expresses a very high decay rate of the distance function as R→ ∞.

We obtain some lower bound by using the Fenchel duality from (8) with Ansatz

v := uα(s) =
√

αs−1
χ[α,1](s), 0 < s < 1,

for α from
√

log(1/α)= θR and θ > 1. This yields ‖uα‖ ≤ 1, ‖Huα‖ ≤
√

log(1/α),
and 〈1,uα〉=

√
α log(1/α), such that

d1(R)≥ (θ −1)R2e−θ
R2
2 , R≥ Rθ > 0.

This yields that for each θ > 1, and for some unspecified constants 0 < c(θ)≤
c(θ) < ∞ we have that

c

(√
α2 log(

1
α2 )

)θ

≤ ‖rα(H)1‖ ≤ c

√
α2 log(

1
α2 ), 0 < α ≤ ᾱ(θ). (20)

Indeed, for the upper estimate we temporarily introduce the function ζ (α) :=√
log(1/(α2 log(1/α2))). For this function we have, using the lower bound from

above, that
αζ (α)≤ α

2 ≤ e−θζ 2(α) ≤ d1(ζ (α)),

for α small enough. This yields Φ1(ζ (α)) ≥ α , and the monotonicity of Φ1 im-
plies that Φ

−1
1 (α) ≥ ζ (α). Then we can use the upper bound in Theorem 1 to

deduce that

‖rα(H)1‖ ≤ d1(Φ−1
1 (α))≤ d1(ζ (α))≤ e−ζ 2(α)/2 ≤

√
α2 log(

1
α2 ),

which proves the right hande side in (20). The lower bound is established simi-
larly, and we omit its proof. We observe from (20) that Theorem 1 does not give
precise bounds for the profile function. For Tikhonov regularization we can de-

rive the behavior of the profile function, and it behaves like fx(α)³
√

α2 log( 1
α2 )

as α → 0. Indeed, in view of the upper bound in (20), we only need a lower
bound, and this can be derived as

f 2
x (α) = ‖rα(H)1‖2 =

∫ 1

0

α2

(
√

s+α)2 ds≥ cα
2 log(1/α),

for α small enough and some constant c > 0, such that the upper bound in (20)
has the right order of magnitude. Notice also the different rates of increase for
the distribution function (Fx(α)³ α) and the profile function.
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m(s) Fx(α) fx(α) d1(R)
√

s α

(√
α2 log( 1

α2 )
)θ

e−θR2/2

s
√

α
√

α 1/R
e1−1/

√
s 1/ log(1/α) 1/ log(1/α) 1/ log(R)

Table 1: This table summarizes the asymptotic behavior of the quantities of interest in
cases (a)–(c). Notice that the exponent θ in the row for m(s) =

√
s is not sharp, and

that it equals θ = 1 for the upper bound, while any θ > 1 can be chosen for the lower
bound.

(b) m(s) = s : This is an intermediate case, and we shall see that the main results are
sharp, here. In this case Fx(α) =

√
α, 0 < α ≤ 1, and by applying Theorem 2

with ν = 1 and κ = 1/2 we immediately find both, the corresponding rates for
the distance function d1 as

c
1
R
≤ d1(R)≤ c

1
R

, 0 < R0 ≤ R < ∞,

as well as for the profile functions fx as

c̃
√

α ≤ ‖rα(H)1‖ ≤ ĉ
√

α, 0 < α ≤ ᾱ.

(c) m(s) = e1−1/
√

s: This is an example of the other limiting case, where Theorem 2
also cannot be applied. Such multiplier function m results in a logarithmic in-
crease for the distribution function, since m−1(α)= 1/(1+log(1/α))2, and hence
Fx(α) ³ 1/ log(1/α) as α → 0. To bound the distance function from above we
use (19) to see that ‖wα‖ ≤ 1/α . Thus, d1(R)≤ 1/ log(R), R > 0. The right hand
side in Corollary 1 yields a lower bound for the distance function. Indeed, this
gives c

log(R/d1(R)) ≤ d1(R), and thus, since log(ξ )≤ cξ/2, ξ ≥ 2/c,

c
2

1
d1(R)

≤ c
1

d1(R)
− log(

1
d1(R)

)≤ log(R), R≥ R0,

such that d1(R) ³ 1/ log(R), which expresses a very low decay rate of the dis-
tance function as R → ∞. On the other hand, the function 1/d1 obeys a ∆2-
condition in this case, and the bounds from Theorem 1, and Corollary 1, pro-
vide the right order of magnitude, such that also in this case we have the exact
asymptotics for all quantities of interest.

We summarize the derived asymptotic results in Table 1.

Example 4. We use once more the multiplication operator (16), now with m(s) =
√

s,
but we consider the function

x(s) :=
√

s−1/2 log(1/s), 0 < s < 1.

14



By using (17), and partial integration, we see that

F2
x (t) =

∫ t2

0
s−1/2 log(1/s)ds = 2t log(1/t2)+2

∫ t2

0
s−1/2 ds³ t log(1/t).

as t → 0. If we now fix the benchmark ψ(t) = t, then we see that then d1(R) ³
R−1 log(R). This is a non-polynomial, but still moderate, behavior. Let us consider
the quantity

ηsup := sup
{

η > 0 : d1(R) = O
(

R−η/(1−η)
)}

∈ (0,1], (21)

and we see that for x from above it holds ηsup = 1/2, but the supremum is not attained
here. On the other hand, it still holds that x ∈ R(Hµ) for all µ < 1/2. Revisiting [2,
Cor. 3.3] we must note that the one-to-one correspondence of exponents in distance
function and Hölder type source conditions mentioned there in Corollary 3.3, ibid., has
to be rendered more precisely as ηsup = sup{µ > 0 : x ∈R(Hµ)} .

Example 5. The authors in [10] studied the compact integration operator A in L2[0,1],
given as

[Ax](t) :=
∫ t

0
x(τ) dτ, 0≤ t ≤ 1.

These authors computed the asymptotics of the distance function for the constant
function x≡ 1 with benchmark A∗. Since R(A∗)=R(H1/2) this corresponds to ψ1/2(t)=√

t, and it was proved there that d1/2(R)³ 1/R as R→ ∞. Within the present context
this can be seen by evaluating the asymptotics of Fx, since we know the singular sys-
tem {σi,ui,vi}∞

i=1 of the integration operator A with singular values σi = 1
π(i−1/2) ³ i−1

as i→∞ and singular functions ui(t) =
√

2cos((i−1/2)πt), 0≤ t ≤ 1, i = 1,2, .... Then
〈1,ui〉 ³ i−1 and consequently

∞

∑
i=k
〈1,ui〉2 ³

∞

∑
i=k

1
i2
³ 1

k
³ σk as k → ∞.

We know from [19, Remark 2.2] that for all µ > 0 the asymptotics ∑
∞
i=k〈x,ui〉2 ³ σ

4µ

k
is equivalent to Fx(α) ³ αµ . Here we apply this for µ = 1/4 and x ≡ 1. Then we
have Fx(α)³ α1/4, and we can use Theorem 2 with κ = 1/4 and ν = 1/2 to see that
fx(α) ³ α1/4, and also that d1/2(R) ³ 1/R, which concisely reproves the result from
[10].

A Proof of Theorem 1

We first provide the necessary ingredients to prove Theorem 1. In our followup anal-
ysis we will approximate the unknown minimizing element v in the definition of dψ(R)
within some suitable family vα and wα , respectively, and we introduce these, here. We
(formally) assign

vα := gα(ψ2(H))ψ(H)x, (22)

15



and

wα := gα(H)Hψ(H)−1x, 0 < α ≤ ᾱ, (23)

where in case of wα we have to assume that the operator gα(H)Hψ(H)−1 is a
bounded one. For spectral cut-off the element wα is finite without any constraint on
the function ψ , since there wα =

∫
∞

α
ψ(t)−1 dEtx for α > 0. Otherwise, for general

regularization we provide the following sufficient conditions.

Lemma 4. If the function t 7→ ψ2(t)/t is non-increasing then

‖gα(H)Hψ(H)−1‖ ≤ max{γ0,γ∗}
ψ(α)

, 0 < α ≤ ᾱ.

Thus the element wα is well-defined in this case.

Proof. It is enough to show that t |gα(t)|/ψ(t)≤max{γ0,γ∗}/ψ(α). If t > α then the
monotonicity of ψ allows to conclude that

t |gα(t)|/ψ(t)≤ γ0/ψ(α).

Otherwise, if t ≤ α then

t |gα(t)|/ψ(t) =
√

t |gα(t)|
√

t
ψ(t)

≤ γ∗√
α

√
α

ψ(α)
,

and the proof is complete.

Remark 3. A look at Example 3, see (19), reveals that we used exactly the construc-
tion wα corresponding to (23) and for spectral cut-off.

Remark 4. Notice that for ψ(t) =
√

t, t > 0, both elements vα and wα coincide. The
proofs given below will distinguish between the two cases that ψ tends to zero slower
than t 7→

√
t (low-benchmark case) and faster than t 7→

√
t (high-benchmark case).

The following is obvious.

‖x−ψ(H)vα‖ = ‖rα(ψ2(H))x‖ (24)

and

‖x−ψ(H)wα‖ = ‖rα(H)x‖. (25)
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A.1 Low-benchmark case

Here we assume that the function ψ2(t)/t is non-increasing, and hence the ele-
ment wα from (23) is well-defined.

Lemma 5. If the function ψ2(t)/t is non-increasing then

dψ

(
2max{γ0,γ∗}Φ

−1
ψ (ψ(α))

)
≤ ‖rα(H)x‖, 0 < α ≤ ᾱ. (26)

Proof. Given α , we let R from ψ(α) = Φψ(R), and denote by v the minimizing element
for dψ(R). By using the element wα from (23) we have by (25) that

dψ(‖wα‖)≤ ‖rα(H)x‖,

such that it is enough to bound ‖wα‖, appropriately.

‖wα‖ ≤ ‖gα(H)Hψ
−1(H)(x−ψ(H)v)‖+‖gα(H)Hψ

−1(H)ψ(H)v‖

≤max{γ0,γ∗}
dψ(R)
ψ(α)

+ γ0R

≤ 2max{γ0,γ∗}Rmax
{

Φψ(R)
ψ(α)

,1
}

= 2max{γ0,γ∗}R.

From this the proof can easily be completed.

A.2 High-benchmark case

We turn to the the high-benchmark case, where ψ tends to zero faster than t 7→
√

t,
and we start with the following observation.

Lemma 6. Let gα be any regularization. Then

dψ((γ0 + γ∗)Φ−1
ψ (

√
α))≤ ‖rα(ψ2(H))x‖, 0 < α ≤ ᾱ. (27)

If, in addition the function t 7→
√

t is a qualification of the regularization then

‖rα(ψ2(H))x‖ ≤ (γ + γ∗)dψ(
(

Φ
−1
ψ (

√
α)
)
), 0 < α ≤ ᾱ. (28)

Proof. We consider the family vα from (22). In a first step we bound the norm of vα .
To this end let R be obtained from

√
α = Φψ(R), and denote v the element realizing

the distance function dψ(R). Then we have that

‖vα‖ ≤ ‖gα(ψ2(H))ψ(H)(x−ψ(H)v)‖+‖gα(ψ2(H))ψ2(H)v‖

≤ γ∗√
α

dψ(R)+ γ0R = (γ∗+ γ0)R = (γ∗+ γ0)Φ−1
ψ (

√
α),

by the choice of R.
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Since the distance function is decreasing we obtain that

dψ((γ0 + γ∗)Φ−1
ψ (

√
α))≤ dψ(‖vα‖)≤ ‖x−ψ(H)vα‖ = ‖rα(ψ2(H))x‖,

which yields (27).

Now, suppose that gα has qualification as stated. Then we can argue, with element v
as before, that

‖rα(ψ2(H))x‖ ≤ ‖rα(ψ2(H))(x−ψ(H)v)‖+‖rα(ψ2(H))ψ(H)v‖
≤ γ1dψ(R)+ γ

√
αR = (γ1 + γ)dψ(R)

= (γ1 + γ)dψ(
(

Φ
−1
ψ (

√
α)
)
).

The proof is complete.

In order to establish the required bound from Theorem 1 we need to bound ‖rα(ψ2(H))x‖
from above. To this end we provide some estimate for regularization from a single
function.

Lemma 7. Suppose that ψ is an index function such that ψ2(t)/t is non-decreasing.
If the function g gives rise for a linear regularization and if the accompanying function
r has a non-increasing absolute value, and if |r(1)|> 0, then∣∣∣∣r( ψ2(t)

ψ2(α)

)∣∣∣∣≤ γ1

|r(1)|
r
( t

α

)
, t,α > 0. (29)

Consequently, ∣∣∣rψ2(α)(ψ
2(t))

∣∣∣≤ γ1

|r(1)|
|rα(t)| .

Proof. We consider two cases. If t ≤ α then 0 < ψ2(t)/ψ2(α)≤ 1, and hence∣∣∣∣r( ψ2(t)
ψ2(α)

)∣∣∣∣≤ |r(0)|= γ1 ≤
γ1

|r(1)|
|r(1)| ≤ γ1

|r(1)|

∣∣∣r( t
α

)∣∣∣ .
Otherwise, if t > α then ψ2(t)

t > ψ2(α)
α

, and hence ψ2(t)
ψ2(α) > t

α
, such that the monotonicity

of x 7→ |r(x)| yields ∣∣∣∣r( ψ2(t)
ψ2(α)

)∣∣∣∣≤ ∣∣∣r( t
α

)∣∣∣ ,
and the proof is complete, since 1≤ γ1/ |r(1)|.

For Tikhonov regularization this is fulfilled with γ1/ |r(1)|= 2.

Remark 5. Notice that in case of spectral cut-off we have the equality
∣∣∣rψ2(α)(ψ

2(t))
∣∣∣=

|rα(t)| for arbitrary index function ψ .
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The bound for the high-benchmark case is now given in

Lemma 8. Let gα be a regularization which is obtained from a single function g with
non-increasing function r, |r(1)|> 0. Then

dψ((γ0 + γ∗)Φ−1
ψ (ψ(α)))≤ γ1

|r(1)|
‖rα(H)x‖, α > 0.

Proof. We shall apply Lemma 6 with α := ψ2(α) and obtain that

dψ((γ0 + γ∗)Φ−1
ψ (

√
α))≤ ‖rψ2(α)(ψ

2(H))x‖, α > 0,

such that an application of Lemma 7 allows to complete the proof.

Proof of Theorem 1. Lemmas 5 and 8 yield the first assertion in Theorem 1. The up-
per bound was established in Proposition 2, by noticing that γ1 +γ ≤ 2max{γ1,γ}.
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[22] C. Zălinescu. Convex analysis in general vector spaces. World Scientific Pub-
lishing Co. Inc., River Edge, NJ, 2002.

20


