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Abstract: Fix p > 1, not necessarily integer, with p(d — 2) < d. We study the p-fold self-
intersection local time of a simple random walk on the lattice Z¢ up to time t. This is the
p-norm of the vector of the walker’s local times, ¢;. We derive precise logarithmic asymptotics of
the expectation of exp{6;||¢;||,} for scales 6; > 0 that are bounded from above, possibly tending
to zero. The speed is identified in terms of mixed powers of ¢t and 6;, and the precise rate is
characterized in terms of a variational formula, which is in close connection to the Gagliardo-
Nirenberg inequality. As a corollary, we obtain a large-deviation principle for |||,/ (tr:) for
deviation functions r; satisfying try > E[||||,)-

Informally, it turns out that the random walk homogeneously squeezes in a ¢t-dependent box
with diameter of order < /¢ to produce the required amount of self-intersections. Our main
tool is an upper bound for the joint density of the local times of the walk.

1. INTRODUCTION

In this paper, we give precise logarithmic asymptotics for the exponential moments of self-intersection
local times of random walks on Z% on various scales. This topic has been studied a lot in the last
decade, since it is a natural question, and a rich phenemonology of critical behaviours of the random
walk arises, depending on the dimension, the intersection parameter, the scale, and the type of the
random process. Furthermore, the question is technically very difficult to handle, due to bad continuity
and boundedness properties of the self-intersection local time. A couple of different techniques for
studying self-intersections have been introduced yet, wich turned out to be more or less fruitful in
various situations.

In this paper, we introduce a recently developed method to the study of self-intersections, which
enables us to derive limits in terms of an explicit variational formula describing the asymptotics; this
formula explains the optimal behaviour of the random walk to produce many self-intersections. We
are working in sub-critical dimensions, where this behaviour consists of a homogeneous squeezing of
the path over the whole time interval in a box of a certain time-dependent diameter.

Our method is strongly influenced by the celebrated Donsker-Varadhan large-deviations theory. The
main obstacle that has to be overcome to make these ideas work is the lack of continuity, and this is
serious. To overcome this, we use an explicit upper bound for the joint density of the walker’s local
times, which has been derived recently by Brydges, van der Hofstad and Konig [BHK07|. The main
task left after applying this bound is to identify the scaling limit of the arising formula, and this is the
main novelty of the present paper.

1.1 Self-intersection local time

Let (St)te[o,oo) be a simple random walk in Z¢ started from the origin. We denote by P the underlying
probability measure and by E the corresponding expectation. The main object of this paper is the
self-intersection local time of the random walk. In order to introduce this object, we need the local
times of the random walk at time ¢ > 0,

t
Kt(z) = / ]I{St:z} dt, for z € Zd. (1.1)
0

Fix p € (1,00) and consider the p-norm of the local times:

1/p
1]l = ( 3 zt(z)p) . fort>0. (1.2)
2€7Z4
If p is an integer, then, clearly

t t
||€t||g:/0 dtl.../o dtpﬂ{3t1=~“=5tp} (13)
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is equal to the p-fold self-intersection local time of the walk, i.e., the amount of time tuples that it
spends in p-fold self-intersection sites. For p = 2, this is usually called the self-intersection local time.
For p = 1, |||} is just the number ¢, and for p = 0, it is equal to #{S,: r € [0,t]}, the range
of the walk. It is certainly also of interest to study ||¢/|[5 for non-integer values of p > 1, see for
example |[HKMO6|, where this received technical importance.

The typical behaviour of ||[¢||5 for continuous-time random walks cannot be found in the literature,
to the best of our knowledge, but we have no doubt that it is, up to the value of the prefactor, equal
to the behaviour of the self-intersection local time, ||¢,||b, of a centred random walk in discrete time.
This has been identified as

n(p+1)/2 lf d — 1,

E[Hﬁnﬂg] ~ Cagp(n), where adp(n) = ¢ n(logn)P~1 if d = 2, (1.4)
n if d > 3,
where
I'(p+1) fd=2
¢ ={ (rvaas) Ha=z (1.5)

PR P ifd >3,

where v = P(S,, # 0 for any n € N) denotes the escape probability and 3 the covariance matrix of the
random walk. See |Ce07] for d = 2 and [BK09] for d > 3, but we could find no reference for d = 1.

1.2 Main results

In this paper, we study the behaviour of the random walk when the walker produces extremely many
self-intersections. We restrict to the subcritical dimensions, where d(p — 1) < 2p. Before we formulate
our results, let us informally describe the optimal behaviour to produce many self-intersections in these
dimensions. It is a homogeneous self-squeezing strategy: the walker does not leave a box with radius
on a particular scale oy < V/t (we write by < ¢ if limy o0 ¢;/by = 00), and the sizes of all the local
times are on the same scale t/af within this box. Furthermore, their rescaled shape approximates a
certain deterministic profile, which is given in terms of a characteristic variational formula.

In our result, we do not prove this path picture, but we derive precise logarithmic asymptotics, as
t — oo, for the exponential moments of 6;[|¢;|, for various choices of weight functions 6; € (0, 00) that
are bounded from above. As a direct consequence, this leads to asymptotics of the probability of the
event {||¢;||, > tr:} for various choices of scale functions r; € [0, 1] satisfying a4, (t) < try.

In order to formulate the result, we have to introduce more notation. By LI = LI(R?) we denote
the usual Lebesgue space, which is equipped with the norm || - ||, if ¢ > 1. The space H' = H'(RY) is
the usual Sobolev space. By M;(X) we denote the set of probability measures on a metric space X
equipped with the Borel sigma field.

Now we formulate our main result.
Theorem 1.1 (Exponential Moments). Assume that p > 1 and d(p — 1) < 2p.

(i) For any 6 >0,

.1
t{%oglogE@Wt“p) = {0 (0), (1.6)
where
(d) _ . d
pi(0) = sup {0l — I (w): € My (Zh) } € (0,0), (1.7)

and J(p) = %way (Vu(z) - \/u(y))2 denotes the Donsker-Varadhan rate functional.



(i) Define A = W € (0,1) and let (6;),~, be a function in (0,00) such that

t>0
logt a2
+2
<%> <0 < 1. (1.8)
Furthermore, put
. 1
pia®) = sup {8llg*ll, — 5 Val3: g € H' gl = 1}, 6 >0. (1.9)
Then p;f)d(H) € (0,00), and
(a)
1 oullee] 1/ ( (@)
z1ogIE(e ,,) >0, (p5) (1) +o(1)), ¢ oo. (1.10)

(b) If, additionally to d(p — 1) < 2p, the stronger assumption d(p — 1) < 2 is fulfilled, then

%logE (e‘gt”@”p) < 6’;/)‘(/)[(;’;(1) + 0(1)), t — o0. (1.11)

A heuristic derivation of Theorem 1.1 is given in Section 1.5. The proof is given in Section 2. Some
comments on the related literature are given in Section 1.4. We proceed with a couple of remarks.

1.3 Remarks

Remark 1.2 (Connection between pi& and p;d;)(H)). Note that the Donsker-Varadhan functional is
equal to the walk’s Dirichlet form at |/, i.e.,

1
J(p) = §HV\//7H§7 1€ My (29,

where V here denotes the discrete gradient. Hence, we see that p;f)d(e) is the continuous version of

p;d;)(ﬁ). An important step in our proof of Theorem 1.1(ii) is to show that the continuous version of

this formula describes the small-6 asymptotics of the discrete one, i.e.,
P (0) ~ 05, (1), 6o, (1.12)

(Actually, we only prove a version of this statement on large boxes, see Lemma 2.1.) In the light of
this, we can heuristically explain the transition between the two cases in Theorem 1.1. Indeed, if we
use (i) for € replaced by 6; — 0, then we formally obtain

1 A (e
~logE (eet“ft”p) ~ p0:) ~ 6,95 (). (1.13)
Hence, (1.12) shows that Theorem 1.1(i) and (ii) are consistent. &

Remark 1.3 (On the constant pi&(@)). We will show in the following that
A—1

c 2p RS
p;,,)d(H) — 91/ )\ <m){d,p> 0 € (0,00), (1.14)

where .
xap = t{ IVl g € I L2 O H gl = 1= gl . (115

It turned out in [GKS07, Lemma 2.1] that x4, is positive if and only if d(p —1) < 2p, i.e., in particular
in the cases considered in the present paper. This implies in particular, that p;;)d(ﬁ) is finite and
positive for any 6 > 0. Because of (1.12), also p;;jzl(e) is finite and positive, for any sufficiently small
6 € (0,00). By monotonicity, it is positive for any 6 € (0,00). It is also finite (even not larger than @),

since J(p) > 0 and |||, < 1 for any u € M;(Z9).



Let us now prove (1.14). In the definition (1.9) of p;;)d(@), we replace g, for any 3 € (0,00), with
B42g(/3-), which is also L?normalized. This gives, for any > 0,

ps(0) = sup {Gﬁ
geH!: ||gll2=1

d(p

,1) 1
7 llgls = 582Vl -

Picking the optimal value

. d(p—1) [lg*[lp \ /Y
pr = (07—
( p ||V9||§)

9

we get
A—1

2p sIVal3 1\
© (g) — pl/A 5 2

Py a(0) =6777X sup I .
r geH": [lglla=1 (d(p— 1) [||g||§z/)<1 A>D

Note that the term in square brackets remains invariant under the transformation g +— ﬁd/zg(ﬂ'
which keeps the L?-norm fixed. Thus we may freely add the condition that ||g|j2, = 1. Recall (1.1
to see that the proof of (1.14) is finished.

~—

<>DT

Remark 1.4 (Relation to the Gagliardo-Nirenberg constant). In dimensions d > 2, the constant x4,
in (1.15) can be identified in terms of the Gagliardo-Nirenberg constant, Kgq,, as follows. Assume that
d>2and p< d%d? Then K is defined as the smallest constant C' > 0 in the Gagliardo-Nirenberg
inequality
d(p—1) _d(p—-1)

Wllzp < CIIVEI, ™ N, 7, fory € H'(RY). (1.16)
This inequality received a lot of interest from physicists and analysts, and it has deep connections to
Nash’s inequality and logarithmic Sobolev inequalities. Furthermore, it also plays an important role
of work of Chen [Ch04]|, [BC04] on intersections of random walks and self-intersections of Brownian
motion. See |[Ch04, Sect. 2| for more on the Gagliardo-Nirenberg inequality.

It is clear that

K, = [¥l2p ot g R .
dp = wESHulI(DRd) 2—1) e T (wE}{I}(Rd) WHQP HV1/1|]2> ) (1.17)
vro o IVl ™ 9l ™ W lla=1

Clearly, the term over which the infimum is taken remains unchanged if ¢ is replaced by ¢g(-) =
Bgz/}(- B) for any 3 > 0. Hence, we can freely add the condition |¢||2, = 1 and obtain that

d
KQJ,=:X¢;?
In particular, the variational formulas for Ky, in (1.17) and for x4, in (1.15) have the same max-
imizer(s) respectively minimizer(s). It is known that (1.17) has a maximizer, and this is a smooth,
positive and rotationally symmetric function (see [We83|). Some uniqueness results are in [MS81]. <

Remark 1.5 (Large deviations). In the spirit of the Géartner-Ellis theorem (see [DZ98, Sect. 4.5]),
from Theorem 1.1(ii) large-deviation principles for [|¢;|, on various scales follow. Indeed, fix some
function (r4)¢~o satisfying

d(p—1
logt (d+2)
<%>F <<kl as t — oo. (1.18)

Then, as t — oo, under the conditions p > 1 and d(p — 1) < 2, we have

dp—1) %
77"t .
2p

Applying this to ur; instead of r¢, one obtains that ||¢||,/(¢r:) satisfies a large-deviation principle on the

scale trfp/(d(p_l)) with strictly convex and continuous rate function (0,00) > u — Xd’pd(’;—gl)um’/(d(p_l)).

1
- log P(||€e/t]],, = ) ~ —xap (1.19)
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In order to prove the upper bound in (1.19), put 6; = (rt)\/pf;;(l)))‘/(l_” and note that the assump-
tion in (1.8) is satisfied. Now use the exponential Chebyshev inequality to see that

1
? logIP’(HBt/th > Tt) <E (eat”&”p) e trife

Finally use (1.11) and summarize to see that the upper bound in (1.19) is true. The lower bound is
derived in a standard way using an exponential change of measure, like in the proof of the Gartner-
Ellis theorem. The point is that the limiting logarithmic moment generating function of 64|, is
differentiable throughout (0, 00), as is seen from (1.10) and (1.11).

However, it is not clear to us from Theorem 1.1(i) whether or not ||¢;||,/t satisfies a large-deviation
principle. Indeed, it is unclear if the map pil‘f;) is differentiable since the map p — 0||p|, — J(p) is
a difference of convex functions and therefore not necessarily strictly convex. As a result, we do not
know if the maximiser is uniquely attained. &

Remark 1.6. One might wonder what (1.19) might look like in the critical case p = d%‘l? Note
that the right-hand side is then equal to —xgq/(a—2)r¢; Which is nontrivial according to |GKS07,
Lemma 2.1], recall Remark 1.3. However, in d > 3, [Cal0, Theorem 2| shows that (1.19) holds,
for any tr !« re < 1, with xg.q/(a—2) replaced by sup{||Vf|[3: f € 022(29), || fll2p = 1}, which is a
discrete version of x4 4/(4—2)- This interestingly shows that the critical dimension d = pszl seems to
exhibit a different regime and is not the boundary regime of the cases considered here. <&

Remark 1.7 (Restrictions for r;). We believe that the large-deviations principle in (1.19) should
hold for more functions (r¢);~0 than those that satisfy (1.18), more precisely for all r; satisfying
agp(t) < (try)? < t?, recall (1.4). In d > 3, this would mean t1~P)/P < 1, < 1. Likewise, we believe

that also Theorem 1.1(ii) should be true for the corresponding 6, i.e., for 8; of order rt)‘/(l_)‘).

This restriction in our Theorem 1.1(ii) is necessary for a technical reason that comes from the error
terms in [BHKO7, Theorem 2.1, Prop. 3.6, which is an important ingredient of our proof of the upper
bound, see (2.7). Our proof of the lower bound in (1.10) does not use this and is indeed true in greater
generality. <&

Remark 1.8 (Restriction in the dimension). Certainly, we expect also the upper bound in (1.11) to
be true for any p > 1 satisfying d(p — 1) < 2p. However, for some technical reason, the method of our
proof does not seem to give this. The point is that in the proof of the statement in (1.12), we have to
approximate a certain step function with its interpolating polygon line in L?P-sense, and the difference
is essentially equal to the gradient of the polygon line. A control in L?-sense is possible by comparison
to the energy term, but the required L -control represents a problem that we did not overcome to full
extent, see (2.23). &

Remark 1.9. A partial result in direction of the statement in (1.10) has been derived by Xia Chen
[Ch04]. Let ¢: RY — [0,00) be an L'-normalized, smooth function, and use t.(-) = e%)(-¢€) as an
approximation of the Dirac measure at zero as € | 0. Then [Ch04, Theorem 3.1, (3.3)] states that, for
p € N with p> 1 and d(p — 1) < 2p, and for any ¢,60 > 0,

2 1
tli>1£lc> % logE[exp{@ktHLt * Q/JEHP}:| = sup{9Hg2 * T/)EHP - §||Vg||§ ge H' gl = 1}, (1.20)

-1/ _od d . . .
where oy = 6, and Ly(z) = 54 (|woy]) for © € RY. It is elementary to derive that the right hand

side of (1.20) for ¢ = 0 (interpreting ||g? * 1o|l, as ||g?||p) is equal to pi&(@) on the right hand side of
(1.10). In Section 1.5 we see that the whole statement in (1.20) for e = 0 and 6 = 1 is equivalent to our
statement in (1.10) and (1.11). Hence, (1.20) can be seen as a smoothed version of Theorem 1.1(ii).



The proof of (1.20) in [Ch04] uses a sophisticated, technically rather involved functional analytic
method, which reduces the problem to its Brownian analogue and makes it possible to use the well-
known large-deviation principle for the occupation times measures of Brownian motion.

However, we did not find any way to apply the result in (1.20) for the proof of Theorem 1.1. Indeed,
we use an alternate route. &

Remark 1.10. In [HKMO06, Prop. 2.1], for any p > 1 satisfying d(p — 1) < 2p, it is shown that

. . 1
lim sup lim sup —

log E (eeetnetnp) <0,
010 t—oco th,

under the assumption
2\
RS B A | for some € > 0,

which is slightly less restrictive than our assumption in (1.8). The method of the proof is based on
combinatorics; high polynomial moments of |¢;||, where asymptotically evaluated. &

1.4 Literature remarks

For decades, and particularly in this millenium, there is an active interest in the deviations of self-
intersection local times and their connections with the theory of large deviations. See the recent
monograph [Ch09] for a host of related results and concepts. This subject is a rich source of various
phenomena that arise, depending on the dimension d, the intersection parameter p and the scale of the
deviation, r;. In spite of this interest, there are not many results that identify the precise logarithmic
asymptotics of exponential expectations or of the decay of the probability of a large value of this local
time. The reason is that it is difficult to get a precise control on the p-norm of the local times, which
is a highly discontinuous object, and furthermore unbounded. Most of the available results identify
the logarithmic rate only, but not the precise prefactors. In Theorem 1.1, we identify this prefactor,
on the cost of some loss of generality in the scale and in the dimension. In many other investigations,
the parameter p is assumed to be an integer, which we do not do.

Various methods have been employed in this field. Le Gall [Le86] introduced a technique of successive
division of the path into equally long pieces and controlling the mutual interaction. This method has
been further developed by Asselah in a series of papers, out of which we want to mention [A08], [A09],
and [AC07]. Another strategy was developed by Xia Chen, who made the application of Donsker-
Varadhan’s large-deviation technique possible by a sophisticated compactification procedure, which
uses a lot of abstract functional analysis and goes back to de Acosta. See [Ch09] for a thorough and self-
contained presentation of the field and of his method and results. As mentioned in Remark 1.10 above,
a combinatorial method was applied in [HKMO06, Prop. 2.1|. Recently, Castell [Cal0| used Dynkin’s
isomorphism for deriving precise logarithmic asymptotics for the deviations of the intersection local
times in d > 3 for the critical parameter p = d%'lz, which is the boundary of our restriction d(p—1) < 2p.
See the introduction of [Cal0| for an extensive but concise summary of related results.

The present paper uses a new strategy that goes back to a formula for the joint density of the local
times of any continuous-time finite-state space Markov chain. The kernel is an explicit upper bound for
this density, which basically implies the upper bound in Donsker-Varadhan’s large-deviation principle
for these local times without using any topology. In this way, one obtains a discrete, t-dependent
variational formula, and the main task is to find its large-t asymptotics. This is done via techniques
in the spirit of I'-convergence. An example of this technique was carried out in [HKMO06, Section 5].

1.5 Heuristic derivation of Theorem 1.1

We now give a heuristic derivation of Theorem 1.1(ii), which is based on large-deviation theory.
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Recall that A = (2p —dp + d)/2p € (0,1). For some scale function oy — o0, to be specified later,
define the random step function L;: R? — [0,00) as the scaled normalized version of the local times
gt; i.e.,

d
Li(x) = %Et(pﬁad), for z € R% (1.21)
Then L; is a random element of the set
]—“:{felefzo,/ f(x)dle} (1.22)
R4

of all probability densities on R?. In the spirit of the celebrated large-deviation theorem of Donsker and
Varadhan, if oy satisfies 1 < af < aqo(t) (see (1.4)), then the distributions of L; satisfy a weak large-
deviation principle in the weak L'-topology on F with speed tat_z and rate function Z: F — [0, 0]
given by

2 .
I(f) = VYT, it VT € HIRD, (1.23)
o0 otherwise.
Roughly, this large-deviation principle says that,
to.
P(L, € ) = exp{—a—% bgfj(f) + 0(1)} } (1.24)

and the convergence takes place in the weak topology. This principle has been partially proved in a
special case in [DV79], a proof in the general case was given in [HKMO06, Prop. 3.4].

In order to heuristically recover Theorem 1.1(ii) in terms of the statement in (1.24), note that

1/p 4 P\ 1/P d(1=p)
9t||zt||p:9t( > zt(z)p) = 16,04, (Z Li(Z) ) = 0o, * ||Ldll,-
z€Zd zezd
B VAC2Y
Now we choose a; = 0, and have therefore that
t 1/ t
Oulltell, = —5 || Lill,  and 10, = ;. (1.25)

ay ay

Therefore, the scale t/a? of the large-deviation principle coincides with the logarithmic scale tH;/)‘ of
the expectation under interest in Theorem 1.1(ii). A formal application of Varadhan’s lemma yields

(1) = B exp { b }) = exp { 7 +o(1)},

t
where

p=suw{lfly ~7(7): f € 7}
1
=sup {[lg°[, — 5IVgl3 - g € L2 NL¥ N H', |lgll2 =1} (1.26)

= piy(1).
This ends the heuristic derivation of Theorem 1.1(ii). In the same way, one can derive also Theo-
rem 1.1(i); this is similar to the line of argument used in [GM98|.

Hence, we see informally that, in Theorem 1.1(ii), the main contribution to the exponential moments
should come from those random walk realisations that make the rescaled local times, L¢, look like the
minimiser(s) of the variational formula pi&(l). In particular, the random walk should stay within a
region with diameter oy < t'/¢, and each local time should be of order t/af > 1. That is, there
is a time-homogeneous sqeezing strategy. In Theorem 1.1(i), the interpretation is analogous, but the
diameter of the preferred region is now of finite order in ¢. This is why a discrete picture arises in the
variational formula pil‘f;)(l).



There are several serious obstacles to be removed when trying to turn the above heuristics into an
honest proof: (1) the large-deviation principle only holds on compact subsets of R?, (2) the functional
L; — ||L¢||p is not bounded, and (3) this functional is not continuous. Removing the obstacle (1) is
easy and standard, but it is in general notoriously difficult to overcome the obstacles (2) and (3) for
related problems.

2. PROOF OF THEOREM 1.1

We prove Theorem 1.1(i) (that is, (1.6)) in Section 2.1, the lower-bound part (1.10) of Theorem 1.1(ii)
in Section 2.2 and the upper-bound part (1.11) in Section 2.3.

2.1 Proof of (1.6)

This is analogous to the proof of [GM98, Theorem 1.2|; we will sketch the argument. First we explain
the lower bound. Let Qg denote the box [~ R, R]*NZ% and insert an indicator on the event {supp(¢;) C
Qr} in the expectation, to get, for any 6 > 0,

E (eeuztnp) >E <eet||zt/t||p Il{supp(zt)cQR}> .

Now observe that the functional p — ||p|/, is continuous and bounded on the set M;(Qgr) of all
probability measures on Qg. Furthermore, under the sub-probability measure P(-,supp(¢;) C Qr),
the distributions of ¢;/t satisty a large-deviations principle with scale ¢ and rate function equal to the
restriction of J defined in Theorem 1.1(i) to M;(Qr). Hence, Varadhan’s lemma |DZ98, Lemma 4.3.4]
yields that

lim inf 1 logE (eellgtnp) > sup (Ol|plly — J(w)). (2.1)

tmoo 1 HEMi1(QR)

Letting R — oo and using an elementary approximation argument, we see that the right-hand side
converges towards p;‘j;,(o). This ends the proof of the lower bound in (1.6).

Now we explain the upper bound. Introduce the periodized version of the local times in Qg,
67(z) = > l(z+Rx), te(0,00,ReN,z€Z” (2.2)
T€Z

Then it is easy to see that [|¢]|, < |||, Hence, for any 8 € (0, 00),
E (el < E(eenfi’”np) _ E(GthlfiR)/tllp).

It is well-known that (@R)/t)bo satisfies a large-deviations principle on the set of probability measures
on Qg with rate function i +— Jg per (1) equal to the Dirichlet form at /z of —%A in Qg with periodic
boundary condition. By continuity and boundedness of the map g — |||, it is clear from Varadhan’s
lemma that

lim sup E logE (eenzt”p) < sup  (Olullp — Jrper (1)) (2.3)

t—oo 1 HEM1(Qr)

In the same way as in the proof of [GM98, Lemma 1.10|, one shows that the difference between the
variational formulas on the right-hand sides of (2.3) and (2.1) vanish in the limit as R — oo. This
ends the proof of (1.6).

2.2 Proof of the lower bound (1.10)

Fix ¢ > 1 with % +% = 1, and consider a continuous bounded function f: R? — R such that || f||, = 1.
According to Holder’s inequality, we have

1Lillp = (f; L)



Recall from Section 1.5 that oy = 0;1/(2)‘)

B (eatnztup) -F (em;antnp) >E (eta{2<f,Lt)ﬂ{supp( Lc BR}) , (2.4)

where we denote B = [~ R, R]¢. According to [GKS07, Lemma 3.2], the distributions of L; under the
sub-probability measure P(-,supp(L;) C Bpr) satisfy, as t — oo, a large-deviation principle on the set
of probability densities on R? with support in Br. The rate function is

. Using (1.25), we obtain, for any R > 0, the lower bound

1
9> — §HV9H3, g€ H',|gll2 = 1,supp(g) C B,

and we put the value of the rate function equal to 400 if g is not in H! or not normalized or if its
support is not contained in Br. The speed is tat_2, which is identical to the logarithmic scale in
(1.10), t@tl/)‘. Since the map L; — (f, L) is continuous, we obtain, by Varadhan’s lemma, from that
large-deviation principle the following estimate for the exponential moments:

2
« 1
lim inf =L log E (ef’t"ft”ﬂ> > sup <<f,g2> - —HV9|!§> '
t=oo t gem: gllp=1 2
supp(9)CBR

Certainly we can restrict the supremum over g to g € L? . Since the left-hand side does not depend on
f, we can take on the right-hand side the supremum over all continuous bounded f: Br — R satisfying
||l fllg = 1. Using an elementary approximation argument and the duality between L? and LP, we see
that

1 1
s s (- gIE) = s (1Pl IvalR)
FeC(BR),|Ifllq=1 geH1: liglia=1 geHINL2P: |g|la=1

supp(9)CBR supp(9)CBR

Letting R — oo and using another elementary approximation argument, we see that the right-hand
side converges to pi&(l). This ends the proof of the lower bound in (1.10).

2.3 Proof of the upper bound (1.11)

Fix 0; € (0,00) satisfying (1.8). Recall from Section 1.5 that A = (2p —dp + d)/2p € (0,1) and that
op = Gt_l/(w‘). As in the proof of (1.6), we estimate from above against a periodized version of the walk,
but now in the ¢t-dependent box Qra, = [~Ras, Rag]? N Z9. Recall that KéRat) denotes the periodized

version of the local times, see (2.2). We estimate

E (elr) < B (2147 ) = (exp {ta7 2|20, }) (2:5)

Note that £ is the local time vector of the continuous-time random walk on Qra, with generator

ARa,, which is % times the Laplace operator in Qg,, with periodic boundary condition.

Now we employ a recently developed method for effectively deriving large-deviation upper bounds
without continuity and boundedness assumptions. The base of this method has been laid in [BHKO07]
and has been applied first in [BHK(07, Theorem 3.7] and [HKMO06, Section 5]. The main point is
the identification of a joint density of the local time vector EéRat) and of an explicit upper bound for
this density. In this way, no continuity or boundedness is required, which is a great improvement
over classical large-deviations arguments. The upper bound is in terms of a discrete-space variational
formula and additional error terms involving the box size. Let us remark that these error terms give
us the lower restriction for 6; in (1.8). The main work after the application of the upper bound is to
derive the large-t asymptotics of the discrete variational formula, which requires Gamma-convergence
techniques.
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We apply [BHKO07, Theorem 3.6| to get, for any ¢ > 1,

log B (exp {tar 2|27 }) <t sup Jog® Iy — | (~Arad) " VI3
/‘GMI(QRat) (2 6)

* |QRat| log (2d\/— t) + log |QRat| + ‘that‘

Here we have used that gy, , defined in [BHKO07, (3.2)], is equal to 2d.
Let us first show that the terms in the second line on the right hand side are asymptotically negligible

on the scale t/a? = t6’1/>‘ Indeed, these terms are of order af logt, and we see that
t logt 2 Jog t t
odlogt = —2ad+2 8% _ 9 »n 080 b (2.7)
R ¢ af ¢ ap’

where we used (1.8).
Hence, substituting this in (2.5) and (2.6), it is clear that, for the proof of the upper bound in (1.11),

it is sufficient to prove the following.

Lemma 2.1.

limsup limsupa?  sup {a;”‘”,u”p— | (—ARa,) )12 V| } (C) (1). (2.8)
R—oo  t—o00 PEM1(QRay)

Proof. We will adapt the method described in [HKMO06, Prop. 5.1|. First, we pick sequences R,, — oo,
tp, — o0 and p, € M1(BR,q,,) such that

Lhus. of (2.8) < oy VP unllp — 02 || (~Aryar,) Vil + L, neN (2.9)

We may assume that g, is a probability measure on Z¢ with support in Br,au, -

In the following, we will construct a sequence (hy,), in H' such that (1) h,, is L?-normalized, (2)

the term o? ||(—AR,a.,)Y?\/Enll3 is approximately equal to its energy, 3[Vh,|2, and (3) the term

oL DIp

finished.

||p is approximately equal to ||h2||,. Having constructed such a series, the proof is quickly

We are using finite-element methods to construct such function h,, see [B0O7] for the general the-
ory. We split R? along the integer grid into half-open unit cubes C(k) = x%&_,(k;, k; + 1] with
k = (ki1,...,kg) € Z% BEach such cube is split into d! ‘tetrahedra’ as follows. For ¢ € Gy, the
set of permutations of 1,...,d, we denote by T, (k) the intersection of C'(k) with the convex hull gen-
erated by k,k + e,(1),...,k +e51) + ... + €5(q), where e; denotes the i-th unit vector in R?. Up to
the boundary, the tetrahedra T, (k) with 0 € &4 are pairwise disjoint. One can easily see that, for
x € C(k),

T < Tg(k) — To(1) — L‘TU(l)J > 2 To(d) — {xg(d)J > 0.

The interior of T, (k) is characterised by strict inequalities. A site = belongs to two different of these
tetrahedra if and only if at least one of the inequalities is an equality.

Now we introduce the following functions. For n € N, i € {1,...,d} and y € R?, put

froil [\/Mn ] +esq) + \/Mn ] +esqy + - Feoi-n) ] (Yo(i) — Wory])- (2.10)

Furthermore, given k € Z% and y € C(k), we pick some o(y) € &4 such that y € Ty, (k) and define

gn(@) = & (|, 2 ) + d/Qanmnx (o, 7). (2.11)
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Now we show that g, is well-defined, i.e., that if y lies in Ty, (k) and in Tp,(k), then

d d
> Fuori@) =D faeai®)- (2.12)
i=1 i=1

For sake of simplicity, we do this only for the special case
o1(1) =1=02(2) and 01(2) =2 = 09(1), and o1(z) = o9(7) for ¢ > 3.
That is, y1 — |y1] = y2 — |y2| > yi — |y:] for any i € {3,...,d}. We calculate

d d
> Froi®) = - Feni@) = [\ (lu) + 1) = Jua(ly)) ] (1 = Ln))
=1 i=1

+ [\/Mn(LyJ +ep+ey) — \/un(LyJ ~|—e1] (y2 — ly2])
= [V (L) + e2) = /1 (18] (2 = L32))
- [\/,un(LyJ +eyter)— \/un(LyJ +e2] (y1 = [w1])-

This is equal to zero, since y1 — |y1] = y2 — [y2|. Hence, we know that g, is well-defined. Furthermore,
this also shows that g, is continuous within each C'(k). From now on, we abbreviate f, ;(,):(y) by
fn,o’,i(y)'

Similarly, we see that g, is also continuous at the boundary of each of the cubes. Indeed, a site
y € R? belongs to this boundary if and only if it has at least one integer coordinate. For the sake of
simplicity assume that only for ¢ = 1 it holds that y; — |y;| = 1. It is clear that y € Ty, (k)NT,, (k +€1)
where 01,09 € G4 are given by

0'1(1) = 1,02(d) =1 and Ul(i + 1) = O'Q(i) Vi e {1,... ,d — 1}

Choose an arbitrary sequence (y™),, € Ty, (k + e1) that converges to y. For sufficiently large m it
holds that |y] +e; = [y™]. We see now that:

d
(DY 43 Froni@™) = pa(ly) + 1) 1/2+Z Yoty = Lyomin])

=1
X [\/Nn('_yJ +e1 + epy1) oy \/Mn ]+ e1 +eqy) +"’+602(¢_1))]

Note that the summand for i = d converges to zero, since hmm—>oo(y02(d Ly(’") )]) = 0. In the

remaining sum on ¢ = 1,...,d — 1, we shift the sum by substituting ¢ = j — 1 and replace o2(j — 1) by
o1(j), to get, as m — oo,

d
fin Ly ] )1/2 + Z o2 (y™)

1=1

= L) + [ (VI 5 ) = Vil 0531y = Lman )

d
+ Z [\/Mn(LyJ +eoy (1) T ey 2) o)) — \/Mn(LyJ +€oy(1) T Coy(2) + +eal(j—1)):|

X Yortiy — Wor(n)) +o(1)

d
= un(ly))'?+) [\/Mn(LyJ + eyt + o) \/Mn | +eg )+ +e<71(j—1)):|
=1

X Yoty = Wor(y)) +o(1).
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As y;.m) — yj, we see that the last term converges towards pu,(|y|)"/? + 2?21 fnos,j(y). Hence, we

proved the continuity of g, at the border of each C(k) and thus the continuity of g, on the entire R,
In addition, as g, is clearly differentiable in the interior of each tetrahedron T,(k), we get that g, lies
in H'. An elementary calculation shows that

2
IVnll3 = of || (~Aruar,) "~ Vimlly,  neN (2.13)
Furthermore, we will prove at the end of the proof of this lemma that, for any n € N,

d(p—1 d(p—1)—2]/2 d(p—1)-2]/2 d(p—1)—2
AT anlly < g2 [1 -+ CaltT™ ] 4 [V g + 1] a0V 4 Q[0 (.14

n

1/2

where C' depends on d and p only. Our assumption d(p — 1) < 2 implies that the exponents at ay, on
the right-hand side are negative. Recalling that ay, tends to infinity as t,, — oo we have (at the cost
of choosing a subsequence of (R, ty, fin)n):

d(p—1
0™ lunlly < g llp(1+ ) + 5 (199a]13 +1). (2.15)

Note that g, asymptotically satisfies periodic boundary condition in the box [—R, R]d. Now we
compare it to some version that satisfies zero boundary condition. To this end, introduce Vg, =
®?:1 Vg, : R? — [0,1], where ¢p : R — [0,1] is zero outside [~ Ry, R,], one in [-R, + RS, R, — RZ]
and linearly interpolates between —R,, and —R,, + R, and between R, — R} and R,. Here ¢ > 0 is
picked so small that p < d—;‘f%v where we point out that our assumption d(p — 1) < 2 also implies

p < d%‘ll. We are going to estimate the changes of the functionals when going from g, to ¢,¥g,. We

first use the triangle inequality in (2.11) and note that the L?norm of z 04%2 2?21 froilag,x) is

not larger than Ca; '||Vgy |2, where C' € (0,00) depends on d only, to see that

d
lgnlz < || /ae.m(law, 1)||, + (|0 = failas, I, < 1+ Caz! [Vgallo
i=1

Analogously we derive ||g, |2 > 1 — Ca; || Vgn|l2 and thus we get
gl = 1] < Ca7 I Vgals,  meN. (2.16)

Using Schwarz’s inequality and using n so large that dR_° < 1, this allows us to show that

d
IV (gn¥R,)|I3 < /]Rd Z |05 gn (2) ¥R, (z) + gn(x)ai\IJRn(x)Fdx
=1

< IVgnll3 + 2R llgnllz | Vgnllz + dR7 >l gnl3

< [ Vgnll3 + 28,5 (llgnl13 + IV nll3) + dR;*|gn 3

< IVgall3[1 + Ry®] + 2R llgnll3

< IVgnll3[1 + Ry7] + 2R (1 + 2Caq IV gnllz + C%a; 2| Vgal3)-

Hence, we have (probably by choosing again a subsequence of (Ry, ty, fin)n):

IVgull3 = V(9 ¥R)I3(1 = 5) — 5. neN (2.17)
Furthermore, we note that, without loss of generality, we may assume that
B BRr, _gs
/ g2 (z)dz < Br, \ Br. 1| 9P () du, n € N. (2.18)
BRn\BRnfR% |BRTL| BRn

This can be easily derived using the shift invariance of the second integral due to periodic boundary
conditions. To see this, assume that for every shift 6,(z) =  + z modulo Bg, with z € Bp, it holds
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that:

B Bpr _pe
/ G2 (0.()) da > BB \Bramil [ oy g (2.19)
BRn\BRn RE, ‘BR’IL ‘ BR,,.L

Now, integrate both sides over all z € Bpg,, to get a contradiction by changing the order of the
integration. Hence, for some z € Bpg,, the opposite of (2.19) holds, and we continue to work with
gn © 0, instead of g,. All properties considered so far are preserved by periodicity.

Note that the quotient on the right-hand side of (2.18) can be estimated against C RS~ where C
does not depend on n. Thus, we have:

lgnllh = 1(9a ¥R, )25 < CRYgallp
which leads (after probably choosing again a subsequence of (R, ty, fin)n) t0
lgnlly < I(9n R, Ip(1+2),  neN. (2.20)
Summarizing, substituting (2.13) and (2.15), and using (2.17) and (2.20), for any n we have
Rhs. of (2.9) < lgallp(1+ 7)) = [Vgal3(1 = 2) = 51 Vgull3 + 2
< H9n PR )2llp(L + 2) = [V (gn¥R,)IB(L — 3) — %HV%H% +

3
192 PR, )My L+ 5 V(92 ¥r,)I3
19. PR3 1-2  [l9a ¥k, I3

(2.21)

(1= DY, M13 = 5 1Vgal3 + 3

Now observe that h, = g, Ur, /|9, VR, |l2 is an L?-normalized element of H' and of L?. Hence, we
may estimate the term in the brackets against the supremum over all such functions, which is equal
to pf;’)p(}tgfz) see (1.9). Since péﬁ}(}tiﬁ) > 0 by (1.14) and, obviously, ||g. Vg, |3 < |lgn |3, we can

proceed with
o) (143 o) (143
Rehus. of (2.9) < ), (755m) (1= Dllgall3 — HIVanll3 + 2 < o, (15570) l9nll3 — 21 Vgal3 + 2.

By (2.16) and at the cost of chosing again a subsequence of (Ry,tn, iin)n, we have that [|g,|3 <

1+ %HVgnH%/piZ;(ig;Z) Using this in the last display, we arrive for all n, at

R.hus. of (2.9) < pi&(ii’é;Z) +3,

Recalling (1.14), we see that the right-hand side converges to p(c) (1) as n 1 co. This ends the proof of
the lemma.

Now we give the proof of (2.14). Recall (2.10) and (2.11) and that we write f;, ,;(y) instead of
Ino(y),i(y). The triangle inequality gives that

d
d d
lonllzp = a/2llun(Lar, - 1)2 2 — o2 \an,g,xatn I,
(2.22)
d(p—1)/2 3 d(p—1)/2
= a7 — 0| me
Now we estimate, for any y € R%,
d » d 2
‘ Z fn,cr,i(y)‘ <d¥r Z ‘\/Mn(LyJ +es) + \/Mn | +esqy+-+ ea(i—l))‘
i=1 i=1

d
<@ | Junlly) + eoqy + ) = Vi () o+ + o)
=1

= d2pa;d_2!Vgn(y/atn)‘27
(2.23)
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since the term in brackets is not larger than one (recall that p, is a probability measure on a finite
set). Using this in (2.22), we obtain

d(p—1)/2 1 d(p—1)—2]/2 ’
ap " lall < Nlgallzp + dag, "~V 72V g, 13

n

1
Now square both sides and use the estimates ||[Vg,||5 <1+ [|[Vgnll2 and ||gnll2p]|Vnll2 < %(”gn”%p +
Vgnl3) and summarize to arrive at (2.14).

O
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