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Abstract

Three-dimensional boundary recovery is a fundamental problem in mesh gen-
eration. In this paper, we propose a practical algorithm for solving this problem.
Our algorithm is based on the construction of a constrained Delaunay tetrahedral-
ization (CDT) for a set of constraints (segments and facets). The algorithm adds
additional points (so-called Steiner points) on segments only. The Steiner points
are chosen in such a way that the resulting subsegments are Delaunay and their
lengths are not unnecessarily short. It is theoretically guaranteed that the facets
can be recovered without using Steiner points. The complexity of this algorithm
is analyzed. The proposed algorithm has been implemented. Its performance is
reported through various application examples.

1. INTRODUCTION

Given a three-dimensional polyhedron P, a fundamental problem is to form a
"coarse"partition of P by a set of simple cells such that the boundary of P is rep-
resented by the cells. By coarse we mean that the number of cells is small. Many
applications are based on it.

This problem has many difficulties. It is known that additional points (so-called
Steiner points) are necessary in order to form a tetrahedralization of a polyhedron [1,2].
Two examples are shown in Fig. 1. Moreover, the problem to determine whether a
simple polyhedron can be tetrahedralized without Steiner points is NP-complete [3].
There are polyhedra which may require a large number of Steiner points to be tetra-
hedralized [4], see Fig. [1] right. One challenging question is: Given any polyhedron,
can we tetrahedralize it with the number of Steiner points as small as possible?

This problem has been long addressed in mesh generation methods.
The most popular methods are proposed in [5, 6, 7].

A common theme of these methods is: At first, an initial Delaunay
triangulation of the vertex set of a polyhedron P is constructed. Next, the boundary
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2 H. SI AND K. GÄRTNER

Figure 1. Two polyhedra which are not tetrahedralizable without Steiner point. Left: The Schönhardt
polyhedron [2] can be obtained by twisting the upper face around the axes of a parallel triangular
prism by a small angle. Right: The Chazelle’s polyhedron [4] formed by cutting wedges from a cube.
In the middle of the polyhedron are two sets of orthogonal lines. The lower and upper lines lie on

hyperbolic paraboloids z = xy, and z = xy + ǫ, respectively.

of P will be recovered by modifying the triangulation (e.g., edge/face swaps), Steiner points
are added when they are needed. They are efficient in engineering applications. However, many
operations, such as the edge/face swaps and the locations of Steiner points, are still not well
studied. These methods usually rely on ad hoc techniques to address questions like ”how to
perform combined swaps?” and ”where to place Steiner points?”. The implementation of these
methods is generally a complex task. Their complexities are hard to analyze.

Convex decomposition is a theoretical problem studied in computational geometry [4, 8, 9,
10, 11, 12]. Chazelle showed that any simple polyhedron (which contains no holes) P of n

vertices can be partitioned into O(n2) tetrahedra [4]. Chazelle and Palios [8] improved this
upper bound to O(n + r2), where r is the number of reflex edges of P (an edge of P reflex if
its adjacent faces form an angle larger than 180o). These works established the complexity of
the problem. However, they are neither general nor practical. In fact, the algorithm in [8] may
result in a large number of output tetrahedra, see Fig. 2 (b).

Delaunay triangulations are well-studied objects, see, e.g., [13, 14]. A simple systematic
approach to recover boundaries is to enrich the vertex set V of a polyhedron P by adding
Steiner points into the boundary of P until the Delaunay triangulation for V respects the
boundary of P [15, 16, 17]. The result is a so-called conforming Delaunay triangulation, see
Fig. 2 (c). This approach, however, may result in an unnecessarily large number of Steiner
points, especially when the boundary of the polyhedron contain small angles.

An alternative approach for this problem is to construct a constrained Delaunay
triangulation [18, 19, 20, 21], which is a triangulation for a point set that respects a set of
constraints (edges and faces), and it has properties close to those of a Delaunay triangulation,
see Fig. 3. This approach has both theoretical and practical features. It usually needs less
Steiner points than the conforming Delaunay triangulation approach. The termination of this
approach can be theoretically proved. It is possible to analyze its complexity.

We comment that constrained Delaunay triangulations are useful objects in other
applications as well. Many finite element mesh generation methods [22, 23, 24] use them
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 3

(a) The input polyhedron (b) Convex decomposition
20 nodes, 12 facets 138 nodes, 280 tets

(c) Conforming Delaunay (d) Constrained Delaunay
51 nodes, 103 tets 20 nodes, 29 tets

Figure 2. Examples of different approaches for meshing a simple polyhedra.

as the intermediate meshes to generate good quality tetrahedral meshes suitable for numerical
simulation. Since the boundaries are respected, many useful informations of the mesh domain,
such as the nearest boundary, the local feature size, etc, can be efficiently obtained from them.
They are perfect intermediate objects for generating conforming Delaunay meshes [25, 26].

Algorithms for generating constrained Delaunay tetrahedralizations are proposed in [20, 27,
21]. A key question in these algorithms is how to choose Steiner points. In [20], the majority of
Steiner points are chosen at the midpoint of missing boundary edges. This algorithm may create
unnecessary Steiner points. A set of Steiner points insertion rules are introduced in [21], such
that the Steiner points are chosen adaptively according to the geometric neighbor informations.
These choices of Steiner points considerably reduced the number of Steiner points.

Once all boundary edges of P are recovered, the next key question is how to recover the
facets of P? Shewchuk shows that it is possible to recover the facets without using Steiner
points [28]. So far, Shewchuk has proposed several algorithms for this purpose [20, 27]. The
flip-based facet insertion algorithm [27] has a better complexity. In [21], a simple facet recovery
algorithm based on local Delaunay tetrahedralizations is proposed.

Some applications in mesh generation, e.g., local re-meshing, use a pre-discretized surface
mesh as input, and require that the tetrahedral mesh of the domain must match the surface
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4 H. SI AND K. GÄRTNER

Figure 3. Constrained Delaunay triangulation. The circumcircle of the shaded triangle is not empty
but no enclosed vertex is visible from its interior.

mesh exactly. This requirement imposes a stronger restriction to this problem, i.e., no Steiner
points are added on the surface triangulation. Hence Steiner points are only added into the
interior of the object. Since a constrained Delaunay triangulation may contain Steiner points
in its boundary, hence the above algorithms do not directly solve this problem. We propose to
solve it by a post-processing step which removes the Steiner points from the boundary.

In this paper, we present a practical algorithm for constructing constrained Delaunay
tetrahedralizations of arbitrary polyhedra. This algorithm is based on our previous work [21]
and it contains many substantial improvements. The presented algorithm greatly simplifies
the original one and is much more efficient. The phase of local degeneracy removal in [21] can
be completely skipped. The complexity of the algorithm is analyzed.

Outline The paper is organized as follows. We first formalize the meshing problem in
Section 2. In Section 3 we give a definition of constrained Delaunay tetrahedralizations and
show some of their basic properties. The proposed algorithm is described in Section 4. The
individual phases (segment recovery and facet recovery) of the algorithm are discussed in
the Section 5 and Section 6, respectively. The analysis of the algorithms are given therein.
We discuss the approach for deleting and suppressing Steiner points in Section 7. Some
experimental results from publicly available examples are shown in Section 8. A conclusion
and an outlook is given in Section 9.

2. THE MESHING PROBLEM

In this section, we formalize the meshing problem treated by the presented algorithm. We
first define the input objects. A physical domain Ω in R3 is the volume enclosed by its
boundary ∂Ω. Usually, ∂Ω may be arbitrarily shaped, e.g., curved edges and surfaces. Many
applications require that ∂Ω includes internal boundaries which separate Ω into sub-domains
so that different materials can be modeled. Hence Ω is generally not a topological manifold. A
mesh domain is an object which approximates Ω topologically and geometrically.

We define a not necessarily convex polyhedron as the union of convex polyhedra, P =
⋃

P ,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 5

Figure 4. Polyhedra and faces. Left: A polyhedron (a handle) formed by the union of four convex
polyhedra. Two faces (one at top and one at bottom) of it are not simply connected. Right: Two

polyhedra. The shaded area highlights two 2-faces whose points have the same face figures.

where P is a finite set of convex polyhedra, and the space of P is connected, see Fig. 4. The
dimension of P , dim(P ), is the largest dimension of a convex polyhedron in P .

The definition of a face of a polyhedron P is taken from Edelsbrunner [29] with an additional
requirement in its connectness. Let Bǫ be the open ball of radius ǫ centered at the origin in
Rd. For a point x ∈ Rd we consider a sufficiently small neighborhood Nǫ(x) = (x + Bǫ) ∩ P .
The face figure of x is the enlarged version of this neighborhood within this polyhedron, i.e.,
x +

⋃

λ>0 λ(Nǫ(x)− x). A face of P is the closure of a maximal connected collection of points
with identical face figures. By this definition, a face F of P may contain holes, but the space
of F must be connected, see Fig. 4 for examples. F is again a polyhedron. The dimension of F

is the dimension of its affine subspace aff(F ), i.e., dim(F ) = dim(aff(F )). A 0-face is a vertex,
a 1-face is an edge (also called a segment), and a (dim(P ) − 1)-face is called a facet of P . All
proper faces of P form the boundary bd(P ) of P . The interior of P is int(P ) = P − bd(P ).

We define a piecewise linear system (abbreviated as PLS) to be a finite collection X of
polyhedra with the following properties

(i) P ∈ X =⇒ all faces of P are in X ,
(ii) P, Q ∈ X =⇒ ∃K ∈ X s. t. P ∩ Q = ∪K∈XK, and
(iii) dim(P ∩ Q) = dim(P ) =⇒ P ⊆ Q and dim(P ) < dim(Q).

This definition generalizes the one introduced by Miller et al. [30] by allowing non-convex
polyhedra, see Fig. 5. PLSs are flexible for representing non-manifold objects. The properties
(i) and (ii) are essential, they ensures that a PLS is closed by both taking boundaries and
taking intersections. The property (ii) is relaxed from that of a complex. For example, an
edge and a quadrilateral may intersect at a point v as long as v ∈ X . Since two non-convex
polyhedra P and Q may intersect at more than one faces of them, P ∩Q is a union of elements
of X . (iii) is an extra property which makes a PLS more flexible. For example, it allows a cube
to enclose an edge in its interior without the need of further decomposition. Furthermore, it
excludes the case of two polyhedra having the same dimension to overlap each other.

The dimension of a PLS X , dim(X ), is the largest dimension of its polyhedron. A subsystem
of X is a subset of X which is again a PLS. A particular subsystem is the i-skeleton, X (i), of
X which consists of all polyhedra of X whose dimensions ≤ i. For example, X (0) is the vertex
set, vert(X ), of X . The boundary system, ∂X , of X is the (dim(X ) − 1)-skeleton of X . The
underlying space of X is |X | =

⋃

P∈X
P . Note that |X | ⊆ Rd is a topological subspace of Rd.

The collection X gives a special topology on |X |, refer to [26].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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6 H. SI AND K. GÄRTNER
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Figure 5. A three-dimensional piecewise linear system X . In this figure, the dimensions of polytopes
Q, P, R, L ∈ X are 3, 2, 1, 1, respectively. U, V, W ∈ X are 0-polytopes, where V = R ∩ L = R ∩ Q,

L = L ∩ Q, and dim(L) < dim(Q).

Given a physical domain Ω, we use a PLS X to represent it such that Ω and |X | are
homeomorphic (i.e., they are topologically equivalent) and the shape of Ω is approximated by
|X | geometrically.

Next we define the output objects. A triangulation of a PLS X is a simplicial complex T
such that the underlying space of T equals to the convex hull of the vertices of X and every
polyhedron of X is represented by a subcomplex of T . More formally, T satisfies

(i) |T | = conv(vert(X )), and
(ii) ∀P ∈ X =⇒ ∃K ⊆ T such that |K| = P .

Note that T may contain Steiner points. We define a mesh of X to be a subcomplex K of
T such that |K| = |X |. According to our definitions, a triangulation of a set S of vertices
triangulates the convex hull of S, while a mesh of S is just S itself. See Fig. 6 for examples.
Our output object can be either a triangulation or a mesh of the input PLS.

The Meshing Problem: Let X be a 3D PLS. Find a tetrahedral mesh T of X such that
(i) the number of Steiner points in T is small, and (ii) the mesh quality of T is optimal.

Requirement (i) means that the number of Steiner points in T should not be arbitrarily
large. One way to bound it, is to show that this number is within O(np), where n is the input
size (e.g., the number of vertices, segments, facets) of X , and p is a constant.

The requirement (ii) has more meanings. First of all, the definition of mesh quality depends
on applications. In the context of numerical simulations, the mesh quality is determined
together by several measures on element shape, size, and orientation [31]. In 3D boundary
conformity problem, there is no precise definition of its mesh quality. A necessary requirement
is that the element edge length is not too short. This means that no Steiner point should be
added arbitrarily close to an existing vertex. More formally, the shortest edge length in T
should be a bounded mesh sizing function defined over |X |.

3. CONSTRAINED DELAUNAY TETRAHEDRALIZATIONS

Let S ⊂ Rd be a finite set of vertices. A Delaunay triangulation for S is a simplicial complex
whose union is the convex hull of S and every simplex is characterized by the Delaunay

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 7

(a) A PLS X (b) Not a triangulation of X

(c) A triangulation of X (d) A mesh of X

Figure 6. Triangulation and mesh.

criterion (also known as the ”empty sphere” criterion) [32]: a simplex σ whose vertices are in
S is Delaunay if there exists a circumscribed ball Bσ of σ such that Bσ contains no vertices of
S in its interior. Delaunay triangulations have many optimal properties [33] which are useful in
various applications. Efficient algorithms are proposed for computing Delaunay triangulations
in two and three dimensions, see e.g., [34, 35, 36, 37, 38].

Let X be a PLS in Rd. A conforming Delaunay triangulation of X is a triangulation of X
such that every simplex of the triangulation is Delaunay. Note that Steiner points are usually
needed in a conforming Delaunay triangulation of X . Edelsbrunner et al [39] proved that one
needs at most O(n3) Steiner points for obtaining a conforming Delaunay triangulation in R2.
No upper bound is available yet in dimension higher than two.

Let G be a planar straight line graph. Any two edges of G are either disjoint or meet at a
common endpoint (i.e., G is a 1-dimensional PLS). A constrained Delaunay triangulation of G
is a triangulation T of G such that the circumscribed circle of any triangle τ ∈ T contains no
vertex of T which is visible from the interior of τ , see Fig. 3. This definition is independently
developed by Lee and Lin [18] and Chew [19]. Note that Steiner points are not needed in this
definition. This concept can be generalized into d dimensions for d ≥ 3. While it is necessary
to take Steiner points into account.

A crucial concept is the visibility of points in Rd. The basic idea is: every polyhedron P ∈ X
may block the visibility of points which are not in P , while P does not block the visibility for
its own points. We say that two points x,y ∈ Rd are invisible to each other if there exists a
polyhedron P ∈ X such that the interior of the line segment xy intersects P at a single point.
Otherwise x and y are visible to each other. See Fig. 7 left for examples.

The next definition, referred as the constrained Delaunay criterion, relaxes the Delaunay
criterion by using the visibility of points. Let S be a finite set of points and X be a PLS in Rd

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 7. Visibility and constrained Delaunay criterion. The shaded region is a facet F of a PLS X in
R3, a,b, c, p ∈ F . ab is a segment of X . Left: d and q are invisible to each other since dq ∩ F = v.
c and p are invisible to each other since cp ∩ ab = u. u sees both c and p. Right: A circumscribed
ball of the tetrahedron abcd contains q. abcd is constrained Delaunay since q is not visible from its

interior. The triangle abc ⊂ F is constrained Delaunay since p is outside its diametric ball.

with vert(X ) ⊆ S. A simplex σ whose vertices are in S is constrained Delaunay if it is in one
of the two cases:

(i) There is a circumscribed ball Bσ of σ which is empty.
(ii) Let F be the lowest-dimensional polyhedron in X that contains σ. Let K = S ∩ aff(F ),

then there is a circumscribed ball Bσ of σ that no vertex of K contained in the interior
of Bσ is visible from any point in the interior of σ.

Case (i) means that every Delaunay simplex is constrained Delaunay. In (ii), K is the subset
of S in the affine hull generated by F . If a simplex σ ⊂ F is constrained Delaunay or not, only
depends on vertices of K. See Fig. 7 right for an example.

A constrained Delaunay triangulation (abbreviated as CDT) of X is defined as a
triangulation T of X such that every simplex of T is constrained Delaunay. A three-dimensional
CDT is also called a constrained Delaunay tetrahedralization.

By this definition, a CDT of X may contain Steiner points, i.e., the points in S \ vert(X ).
It is called a pure CDT if it does not contain Steiner points. A 2-dimensional pure CDT is
the same as the one defined by Lee and Lin [18] and Chew [40]. Shewchuk’s definition of a
CDT [41] is also a pure CDT.

In the following, we introduce some basic properties of the CDTs we’ve just defined. These
properties show that a CDT of a PLS X is very close to a conforming Delaunay triangulation
of X . The proof are omitted, they are found in [26].

Delaunay triangulations can be checked locally. The following theorem shows that a CDT
can be also checked locally.

Let X be a 3-dimensional PLS. Let T be any tetrahedralization of X . A triangle σ of T
is locally Delaunay if either (i) σ is on the boundary of the convex hull, or (ii) σ ⊂ |∂X|, or
(iii) the opposite vertex of τ is not in the interior of Bν of ν, where τ, ν ∈ T are the unique
tetrahedra such that σ = τ ∩ν. Note that (ii) implies that a triangle which is contained in the
boundary of |X | is automatically locally Delaunay.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 9

Theorem 1 (Constrained Delaunay Lemma [26]) If every triangles of T is locally De-
launay, then T is a CDT of X .

The key issue in the proof of the above theorem is to use the ”Acyclic Theorem” of
Edelsbrunner [42] which says that from any fixed viewpoint, a sequence of Delaunay simplices
formed by the in fromt/behind relation do not form a cycle. For each tetrahedra τ ∈ T and a
vertex p ∈ T which is visible from the interior of τ , one can always form a finite sequence of
tetrahedra {τ = τ0, τ1, ..., τk} in T which all intersect a line segment xp, where x is an interior
point of τ . Then p must not lie in the interior of the circumscribed ball of τ by the Theorem.

If a point set S in R3 is in general position, i.e., no 5 points of S share a common sphere,
then the Delaunay tetrahedralization of S is unique. By the above theorem, it is easy to show
that this property holds for CDT as well.

Corollary 2. Let T be a CDT of X . If vert(T ) is in general position, then T is the unique
CDT of X with respect to vert(T ).

Let X be a 3-dimensional PLS. The i-skeleton X (i) of X is an i-dimensional PLS, where
0 ≤ i ≤ 2. It is useful to know the properties of a CDT of X (i).

Theorem 3 ([26]) Let X be a 3-dimensional PLS.
(i) A CDT of X (2) is a CDT of X .
(ii) A CDT of X (i) is a conforming Delaunay tetrahedralization of X (i), where i = 0, 1.

Note that in (ii), X (0) (which is a set of points) and X (1) (which is a set of segments and
points) are 0-, and 1-dimensional PLSs embedded in 3-dimensional space, respectively. The
elements in X (0) and X (1) do not block the visibility in a set of tetrahedra. Hence every
tetrahedron in a CDT of X (0) or X (1) must be a Delaunay tetrahedron.

4. THE CDT ALGORITHM

Let X be a three-dimensional PLS, i.e., X is a collection of polyhedra of dimensions up to 3.
The boundary set of X is its 2-skeleton, X (2), which is the set of all vertices, segments, and
facets of X . The algorithm to construct a constrained Delaunay tetrahedralization T of X
works in the following steps:

1. Initialize a CDT D0 of X (0).
2. Let D1 = D0. Recover segments of X in D1 such that D1 is a CDT of X (1).
3. Let D2 = D1. Recover facets of X in D2 such that D2 is a CDT of X (2).

This algorithm proceeds in the increasing order of the dimensions of the skeletons. It
initializes a CDT of X (0) (which is a Delaunay tetrahedralization of vert(X )). This step can
be completed efficiently by any of the Delaunay triangulation algorithms mentioned before.

The next two steps are crucial. They perform segment recovery and facet recovery by
incrementally constructing a CDT Di of X (i), where i = 1, 2. We will discuss the details

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 H. SI AND K. GÄRTNER

Figure 8. A condition (Theorem 5) guarantees the existence of a CDT without Steiner points. The left
PLS does not satisfy the condition. The right PLS whose all edges are Delaunay satisfies the condition

if the vertex set of the PLS is in general position.

in the next two sections, respectively. On finish of these two steps, By Theorem 3, D2 is a
CDT of X .

In this algorithm, we only add Steiner points in step 2 (segment recovery). Step (3) is done
without adding Steiner points. In order to prove this, the following assumption is needed.

Assumption 4. Assume the vertex set of the CDT D1 of X (1) is in general position, i.e., no
five vertices of vert(D1) share a common sphere.

Although this assumption is very strong, it can be satisfied easily by using techniques like
symbolic perturbations [43, 20, 44]. Hence, theoretically, there is no need to actually perturb
the vertices. We will discuss this issue in the implementation of this algorithm.

Shewchuk [28] showed that if every segment of X is Delaunay with respect to the vertex set
of X , then it is possible to recovery facets of X without using Steiner points. The following
theorem follows directly from Shewchuk’s result [28] and Corollary 2.

Theorem 5. If the vertex set of D1 is in general position and D1 contains all segments of X ,
then X has a unique CDT with no Steiner point.

The above theorem states a slightly stronger condition than Shewchuk’s condition [28] (see
Fig. 8). Note that the latter does not require the general position assumption to be hold for
the whole point set of D1. The success of this CDT algorithm is guaranteed.

5. SEGMENT RECOVERY

The Delaunay tetrahedralization D0 of vert(X ) may not contain all segments of X . This section
presents a segment recovery algorithm for recovering missing segments of X . The inputs are
X (1) and D0. The output of this algorithm is a CDT D1 of X (1). Hence every segment of X is
a union of edges of D1. For the mesh quality requirement, it is desired that no unnecessarily
short edge is introduced in D1.

5.1. Segment Splitting Rules

Vertices are classified into two types. A vertex of X is acute if at least two segments of X
incident at it form an angle less than 60o, otherwise it is non-acute. A Steiner point is always

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 11

non-acute. Remark : The choice of 60o is due to the fact that it is a safe value for the termination
of Ruppert’s Delaunay refinement algorithm [45].

A segment of X is transformed into two subsegments of X by inserting a Steiner point in it.
Later on, unless it is explicitly mentioned, the term ”segment” means either a segment or a
subsegment. We distinguish two types of segments in X : a segment is type-0 if both endpoints
of it are either non-acute or acute, it is type-1 if only one of its endpoints is acute.

The diametric ball of a segment is by definition the smallest circumscribed ball of it. A
vertex is said to encroach upon a segment if it lies inside the diametric ball of that segment.
We have the following fact due to the Delaunay property of D1.

Fact 6. If a segment of X is missing in D1 and vert(D1) is in general position, then it must
be encroached by at least one vertex of D1.

The local feature size [45] lfs(v) of any point v ∈ |X | is the radius of the smallest ball
centered at v that intersects two disjoint elements of X . The lfs() defines a continuous map
that maps every point in |X | into a positive value which suggests how large the ball of the
empty space around this point can be. This function only depends on the set X and does not
change as new points are inserted.

Let eiej be a segment in X with endpoints ei and ej . If eiej is missing in D1, it will be
split by a Steiner point v in the interior of it. A reference point p of v, which is responsible
for the insertion of v, is chosen randomly from the set of encroaching points of eiej .

Let Σ(c, r) be a sphere with center c and radius r, and let ‖ · ‖ be the Euclidean distance
function. Let c > 0 be a parameter given on the input. The choice of v is then governed by
three rules given below:

1. If eiej is type-0 (Fig. 9 left), then v = eiej ∩ Σ(c, r), where
if ‖ei − p‖ < 1

2‖ei − ej‖ then
c = ei, r = ‖ei − p‖;

else if ‖ej − p‖ < 1
2‖ei − ej‖ then

c = ej , r = ‖ej − p‖;
else

c = ei, r = 1
2‖ei − ej‖;

end.
2. If eiej is type-1 and ei is acute (Fig. 9 middle), then v = eiej ∩ Σ(c, r), where c = ei

and r = ‖ei − p‖. However, if ‖v − ej‖ < ‖v − p‖ and r > 1
c
lfs(ei), then reject v and

use Rule 3; end.
3. (Continued from Rule 2) Let v′ be the rejected vertex by Rule 2 (Fig. 9 right), then

v = eiej ∩ Σ(c, r), where c = ei, and
if ‖p− v′‖ < 1

2‖ei − v′‖ then
r = ‖ei − v′‖ − ‖p− v′‖;

else
r = 1

2‖ei − v′‖;
end.

The purpose of these rules is to avoid creating unnecessarily short edges. Note that Rule-1
never creates an edge shorter than the distance ‖ei − p‖. Rule-2 ensures that the edge eiv
at the acute vertex ei is at least ‖ei − p‖ as well. However, the edge vej (not at ei) may be

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



12 H. SI AND K. GÄRTNER
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Σ
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ei ejv v′

pΣ

Rule 1 Rule 2 Rule 3

Figure 9. Segment splitting rules.

shorter than it. The apply of Rule-3 ensures that the edge vej will not be too short. Note that
Rule-3 is only applied if the edge at acute vertex ei is not less than 1

c
lfs(ei). The condition

c > 0 guarantees the termination of this algorithm, i.e., no edge less than half of this distance
will be created.

For several segments sharing an acute vertex, by repeatedly using Rule 2, a protecting ball
is automatically created which ensures: no other vertex can be inserted inside the ball. The
effect is shown in Fig. 11 right. Note that the protecting ball is not necessarily completely
created, i.e., only the missing segments will be split and protected. Existing segments remain
untouched. This feature reduces the insertion of unnecessary Steiner points.

5.2. The Algorithm

The SegmentRecovery algorithm is described in Fig. 10. The inputs are a three-dimensional
PLS X and a Delaunay tetrahedralization D0 of vert(X ). The algorithm initializes D1 to be
D0, and a set S of all segments of X . Then it runs into a loop until S is empty.

At each time, a randomly selected segment eiej is removed from S. If it is missing in D1, a
Steiner point v is generated by one of the three segment splitting rules. v splits eiej into two
subsegments eiv and ejv, they are added into S. Moreover, the insertion of v may cause other
existing segments (subsegments) of X missing in D1, they are added into S as well. Here Bσ

means the diametric circumscribed ball of a segment σ ∈ X (1). D1 is updated to a Delaunay
tetrahedralization of the vertex set including v.

5.3. Comparison with another Algorithm

Shewchuk also proposed a segment recovery algorithm [20] for the same purpose. This
algorithm proceeds in two steps. The first step uses protecting spheres centered at acute
vertices of X . New points are placed at where the segments and spheres intersect (see Fig. 11).
The radii of these spheres are calculated in advance such that the subsegments inside the
spheres are guaranteed to be Delaunay. The second step simply recovers other (sub)segments
which are not Delaunay by recursive bisections. Fig 11 shows the results of the two algorithms
on a 2D input, respectively. Comparing the two results, our algorithm adds less Steiner points
and the created subsegments are longer.
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3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 13

Algorithm SegmentRecovery (X , D0, c)
// X is a three-dimensional PLS; D0 is the DT of vert(X ). c > 0.
1. D1 = D0;
2. Calculate the local feature sizes for all acute vertices;
3. Initialize a set S of all segments of X ;
4. while S 6= ∅ do
5. get a segment eiej ∈ S; S = S \ {eiej};
6. if eiej is missing in D1, then
7. find a Steiner point v ∈ int(eiej) by Rule-i, i ∈ {1, 2, 3};
8. S = S ∪ {eiv, ejv};
9. S = S ∪ {σ ∈ X (1), σ ∈ D1

∣

∣v ∈ int(Bσ)};
10. update D1 to be the DT of vert(D1) ∪ {v};
11. update X to be the PLS including v;
12. endif
13. endwhile
14. return D1;

Figure 10. The segment recovery algorithm.

Figure 11. Comparison with Shewchuk’s algorithm [20] (in 2D). The protecting balls around acute
vertices are shown in circles. Left: a result of Shewchuk’s algorithm, 24 Steiner points. Right: a result

of our algorithm, 8 Steiner points.

6. FACET RECOVERY

The input of the facet recovery algorithm is a CDT D1 of X (1). Some facets of X may not be
represented by D1. This step does not need Steiner points.

6.1. The Algorithm

At initialization, let D2 = D1. Each facet F ∈ X together with the Steiner points inserted
on F is first triangulated into a two-dimensional CDT TF . We call triangles of TF subfaces to
distinguish other faces of D2. Some subfaces may be missing in D2. Add all missing subfaces
of TF into a set S. The facet recovery algorithm incrementally recovers missing subfaces of TF

and updates D2, it stops when S is empty.
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Figure 12. Left: The shaded area highlights a missing region Ω. Right: One of the cavities resulting
from a missing region is illustrated.

At each iteration i, several missing subfaces of TF are recovered together. We define a missing
region Ω to be a set of subfaces of TF such that

(i) the edges on the boundary of Ω are edges of D2, and
(ii) the edges in the interior of Ω are missing in D2.

Hence Ω is a connected set of missing subfaces. It may not be simply connected. Each missing
subface belongs to a missing region. A facet can have more than one missing region.

When a missing region Ω is found, one can derive a cavity in |D2| by removing all tetrahedra
whose interiors intersect with Ω. This cavity can be further subdivided into two cavities by
inserting the subfaces of Ω in it, see Fig. 12 right. Each cavity is a three-dimensional polyhedron
C whose facets are triangles. The boundary bd(C) of C is the union of triangular faces which
are either subfaces of Ω or faces in D2.

The next step is to tetrahedralize each cavity C without using Steiner points. The
TetrahedralizeCavity algorithm (given in Fig. 13) has two phases, (1) cavity verification
(lines 2 − 13), and (2) cavity tetrahedralization (lines 15 − 20).

In phase (1), each face σ ⊂ bd(C) is verified. If σ is not Delaunay with respect to the vertex
set of C, then C is enlarged by including the tetrahedron τ ∈ D2, σ < τ and τ is removed
from D2 (line 7). bd(C) is also changed, hence the three faces of τ are added into QC for later
processing (line 8). See Fig. 14 for an example. If σ is a subface of X , the enlargement of C

will cause σ missing from D2. For this reason, we have to queue σ in Q (lines 9− 11) so it will
be recovered later.

Phase (2) first constructs the Delaunay tetrahedralization DC of vert(C) (line 16). By
assumption 4, vert(C) is in general position, hence DC will include all faces contained in
bd(C). In other words, the interior of C is filled by a subset of tetrahedra of DC . The next
step is to remove those tetrahedra which are not in int(C) from DC (lines 16 − 20). Fig. 15
illustrates the idea of phase (2) in two dimensions.

The FacetRecovery algorithm is given in Fig. 16. It recovers facets of X incrementally.
Let TF be a CDT of a facet F ∈ X . It first initializes a queue Q of all subfaces of TF . Then
it runs into a loop until Q is empty. Once a subface σ is found missing in D2, a missing
region Ω containing σ is formed (line 6). All tetrahedra intersecting Ω are removed from D2.
Two cavities C1 and C2 separated by Ω are formed in the interior of |D2| (line 7). Then
C1 and C2 are partitioned into two sets (DC1

and DC2
) of tetrahedra by the subroutine

TetrahedralizeCavity (lines 8 − 10), respectively. D2 is then updated to respect Ω with
the new partitions of C1 and C2 (lines 12). Fig. 15 illustrates the idea of this algorithm in two
dimensions.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 15

TetrahedralizeCavity (D2, C, Q)
// D2 is a tetrahedralization; C is a cavity; Q is a queue.
1. // Phase (1): cavity verification.
2. initialize a queue QC of all faces contained in bd(C);
3. while QC 6= ∅ do
4. get a face σ ∈ QC ; QC = QC \ {σ};
5. if σ ⊂ bd(C) and σ is non-Delaunay wrt. vert(C), then
6. get the tetrahedron τ ∈ D2 such that σ < τ ;
7. C = C ∪ τ , D2 = D2 \ {τ};
8. QC = QC ∪ {ν < τ

∣

∣ ν 6= σ};
9. if σ is a subface of X , then
10. Q = Q ∪ {σ};
11. endif
12. endif
13. endwhile
14. // Phase (2): cavity tetrahedralization.
15. form the Delaunay tetrahedralization DC of vert(C);
16. for each tetrahedron τ ∈ DC , do
17. if τ * int(C), then
18. DC = DC \ {τ};
19. endif
20. endfor
21. return D2 = D2 ∪ DC ;

Figure 13. The cavity re-tetrahedralization algorithm.

p1

e1 e2

q1

p2

q2

σ

e1 e2

q1

p2

p1

q2

σ

Figure 14. The verification of the cavity (illustrated in 2D). Left: e1e2 is the segment being recovered.
The cavity C formed from e1e2 is a non-convex polygon. The edge p1q2 ⊂ bd(C) is not Delaunay
with respect to the vertex set of C. Right: C is enlarged by adding the triangle q1q2p1 into C. As a
result, the edges p1p2 and p1q1 are not on bd(C) anymore, and the edge q1q2 is included in bd(C).

6.2. Proof of Termination

The Assumption 4, i.e., the vertex set of D1 is in general position, is important. First, we need
to show that the enlargement of the cavity C will terminate, i.e., the do-while loop (lines
3 − 14) of the TetrahedralizeCavity algorithm will not run forever.

First note that the TetrahedralizeCavity algorithm terminates. The phase (1) (cavity
verification) of the algorithm guarantees that the phase (2) can be correctly executed since
every Delaunay simplex in vert(C) will appear in the Delaunay tetrahedralization of vert(C)
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(a) (b) (c) (d)

Figure 15. Cavity tetrahedralization (illustrated in 2D). (a) Two initial cavities separated by a
constraining segment. (b) The two Delaunay triangulations are constructed at each side of the segment.

(c) Classify triangles as ”inside” or ”outside”. (d) Remove ”outside” triangles.

FacetRecovery (X , D1)
// X is a three-dimensional PLS; D1 is the CDT of X (1).
1. D2 = D1;
2. Initialize a queue Q of all subfaces of X ;
3. while Q 6= ∅ do
4. get a subface σ ∈ Q; Q = Q \ {σ};
5. if σ is missing in D2, then
6. form a missing region Ω containing σ;
7. form two cavities C1, C2 from Ω;
8. for each Ci, i = {1, 2} do
9. TetrahedralizeCavity(D2, Ci, Q);
10. endfor
11. endif
12. endwhile
13. return D2;

Figure 16. The facet recovery algorithm.

(providing the fact that vert(C) is in general position). Let F 6= ∅ be the set of faces of D
(2)
2

(the 2-skeleton of D2) such that no face of F is crossed by any subfaces of X , for example, a

convex hull face of D
(2)
2 must be in F . Clearly, any face σ ∈ F is Delaunay with respect to

vert(D2). It is also true that any face σ ∈ F is Delaunay with respect to vert(C). The set F
limits the enlargement of C, i.e., C stops expanding at a σ ∈ F .

There is a potential case of deadlock. In the TetrahedralizeCavity algorithm, after the
recovery of a missing region Ω, some originally existing subfaces may be missing from D2, they
are queued and will be recovered later (lines 9 − 11). If the recovery of such subfaces (by the
FacetRecovery algorithm) will cause Ω (or part of it) to be missing from D2 again, then a
deadlock may appear. The next lemma shows that a deadlock will not happen.

Lemma 7. Let Ω be a missing region, C is one of the cavities formed from Ω. Suppose there
is a subface σ ⊂ C (hence it is missing from D2 after the recovery of Ω). Let Ωσ be the missing
region containing σ formed immediately after the recovery of Ω, and let Cσ be any of the two
cavities formed from Ωσ in the TetrahedralizeCavity algorithm. Then |Cσ| ⊂ |C|.

Proof By the definition of a missing region, Ωσ is contained in C (since all edges on bd(C)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



3D BOUNDARY RECOVERY BY CONSTRAINED DELAUNAY TETRAHEDRALIZATION 17

are edges of D2). It further implies that the initial cavity Cσ formed from Ωσ is contained in
C. Note that Cσ may be enlarged in the TetrahedralizeCavity algorithm.

Since any face ν ⊂ bd(C) is Delaunay with respect to vert(C), ν is also Delaunay with
respect to the initial vert(Cσ). Hence Cσ could not include any tetrahedron outside C since
any face ν ⊂ bd(C) limits the enlargement of Cσ. This implies that |Cσ| ⊂ |C|.

Note that there is no ordering on the subfaces in Q in the FacetRecovery algorithm.
While Lemma 7 only guarantees no deadlock if the algorithm performs a specific recovery
ordering on the subfaces in Q. We thus prove a ”weak” termination of the algorithm which
depends on such a specific ordering.

Theorem 8. Suppose that the assumption 4 is satisfied. Moreover, the subfaces in
Q are randomly ordered with one exception, that is, the subfaces queued in the
Tetrahedralizecavity algorithm are always processed first. Then the FacetRecovery
algorithm terminates.

Proof Each missing region will be recovered. Lemma 7 and the specific ordering in Q together
ensure that two missing regions can not form a deadlock. Hence Q will be empty and D2

contains all subfaces of X .

In practice, we found that the termination of this algorithm does not depend on any ordering.
For example, a random ordering in Q always terminated.

6.3. Correctness

In this section, we establish the correctness of the FacetRecovery algorithm, i.e., the
resulting tetrahedralization D2 is a CDT of X .

Theorem 9. D2 is a CDT of X .

Proof The FacetRecovery algorithm is an iterative process. In each iteration, a missing
region is recovered and D2 is updated. Let Di

2 denote the tetrahedralization after the recovery
of i-th missing region, where i = 0, 1, ..., m. Hence initially, D0

2 = D1. Since the algorithm
terminates, m is a finite number. We want to show that Dm

2 is a CDT of X .

We first show that D1
2 is a CDT. Tetrahedra of D1

2 which are outside the two cavities remain
Delaunay. Let τ ∈ D1

2 be a tetrahedron created inside a cavity C, and Bτ be its circumscribed
ball. Let τ ′ ∈ D1

2 be another tetrahedron sharing a face σ with τ . Let v be the vertex of τ ′

opposite to σ. We have the following cases:

(1) σ is a face inside C. Then τ ′ ⊂ C, and Bτ must not contain v (guaranteed by the
TetrahedralizeCavity algorithm).

(2) σ is a subface (hence σ ⊂ bd(C)). Then τ is constrained Delaunay even if Bτ contains
v, i.e, the inside of τ is not visible by v. Otherwise, if v is visible by a point x ∈ τ , there
exists a non-locally Delaunay face in D0

2 which intersects the line segment xv, which
means that D0

2 is not a Delaunay tetrahedralization - a contradiction;
(3) σ is not a subface and σ ⊂ bd(C). Then τ ′ * C, and Bτ must not contain v. Otherwise,

D1 is not a Delaunay tetrahedralization since the circumscribed ball of τ ′ is not empty,
i.e., it contains the vertex of τ opposite to σ.
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By induction, after iteration i, where i > 1, Di
2 is a CDT. Now we want to show that Di+1

2

is a CDT. Using the similar arguments as above, the only difference is in the case (3) which
is given below:

(4) σ is not a subface and σ ⊂ bd(C). Then Bσ must not contain v. Otherwise, Di
2 is not a

CDT since the circumscribed ball of τ ′ contains the vertex of τ opposite to σ which is
also visible from the interior of τ ′.

Thus after all missing regions are recovered, D2 = Dm
2 is a CDT of X .

6.4. Running time estimation

In this section we consider the behavior of the FacetRecovery algorithm with respect to
the number of vertices and facets of the input PLS.

Theorem 10. Let X be a three-dimensional PLS which has v vertices. One missing facet can
be recovered in expected time O(v2 + v log v).

Proof We prove this theorem by constructing a PLS which needs such a running time. Further
it is shown that it is indeed the worst case.

The PLS Lv,1 (1-layer) shown in Fig. 17 (a) has only 1 facet. It is a slightly perturbed
square (to make it non-degenerate). Lv,1 contains a set of v points (here v = 100) which are
randomly distributed slightly above the facet. The diameter of the facet is much larger than
that of the point set. There is another point in Lv,1 which lies below the center of the facet.
The Delaunay tetrahedralization of vert(Lv,1) is shown in (b). The facet of Lv,1 is missing in
it. The cavity formed from the missing facet has size O(v). The CDT of Lv,1 is shown in (c).

Note that the removal of outside tetrahedra (lines 2− 6 in TetrahedralizeCavity) takes
linear time. The time for recovery of this facet is dominated by the time for constructing the
Delaunay tetrahedralization of the set of v vertices. There exist point sets with linear size
Delaunay tetrahedralizations that reach quadratic intermediate size with positive constant
probability. By using the randomized incremental flip algorithm [37], the expected time for
constructing the Delaunay tetrahedralization is at most O(v2 + v log v). Note that the largest
possible size of a cavity is v. These statements together prove the claim.

Next we show an example that the FacetRecovery algorithm runs in time Ω(fv2 +
fv log v), where f are the number of facets.

Let Lv,f be the PLS extended from Lv,1 by including a set of f parallel facets. Fig. 17 (d)
shows an example for f = 5. Clearly, the Delaunay tetrahedralization of vert(Lv,f ) will not
contain the f facets, see (e). If the set of missing facets are recovered in an order which is from
bottom to top, then the size of each cavity remains O(v). This implies that the total time for
recovery of the f facets is at least O(fv2 + fv log v).

Remark : Note that the order of the recovery of the missing facets is important. For example,
if we reverse the recovering order in the above proof, i.e., missing facets are recovered from
top to bottom, only the top facet needs time O(v2 + v log v), while the size of all other cavities
is a constant (here it is 4).

The worst case complexity of this algorithm remains open. The main difficulty is that there
are facets which may be recovered multiple times (due to the cavity enlargement procedure in
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(a) L100,1 (1 layer) (b) The DT (c) The CDT

(d) L100,5 (5 layers) (e) The DT (f) The CDT

Figure 17. Examples (Layers). The PLS L100,1 shown in (a) has 1 facet (1 layer), 100 vertices lie
on top of the facet, one vertex below the center of the facet. The facet is missing in the Delaunay
tetrahedralization of vert(L100,1) shown in (b). The CDT of L100,1 is shown in (c). The PLS L100,5

shown in (d) is extended from L100,1 by including 5 parallel facets. (e) and (f) respectively show the
Delaunay tetrahedralization and the CDT of L100,5.

TetrahedralizeCavity). In our practice of this algorithm, it is very seldom that we need
to recover a facet twice or more times.

7. BOUNDARY STEINER POINTS REMOVAL

In this section, we consider the related meshing problem: Given a surface triangular mesh F
of a three-dimensional PLS X , we want to find a tetrahedral mesh T of X such that F is a
subcomplex of T .

The three-dimensional CDT algorithm proposed in this paper will add Steiner points on
elements of F , and all of them are added on edges of F . We then must remove these Steiner
points by either suppressing them or by relocating them into the interior of X . Of course the
resulting mesh is not a CDT anymore. But this is not the question here.

7.1. Point Relocation

It is shown in [7] that any Steiner point inserted on an element (edge or face) of F is guaranteed
to be removed from that element. The proposed approach is straightforward. Consider a Steiner
point v inserted on a face F ∈ F . Assume that F is an external face. One can form a ”half-
ball” Bv of v which consists of all tetrahedra in T having v as a vertex. The boundary ∂Bv

are triangular faces either (i) coplanar with v, or (ii) visible by v (since they form tetrahedra
with v), see Fig. 18 left for an example. Hence it is always possible to relocate v inside Bv

such that Bv becomes a ”full-ball” of v, see Fig. 18 middle. As a result, v has been removed
from F . Steiner points inserted on edges of F can be removed by the same principle. The only
difference is that an edge may be shared by arbitrary number of faces. Hence it may produce
many half-balls. Within each one the Steiner point from the edge can be relocated.
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v

E

∂Bv

Bv

Figure 18. Boundary Steiner points removal (the 2D case). Left: v is a Steiner point on edge E. The
half-ball Bv consists of all triangles having v as a vertex in one region. The bold lines are the boundary

complex ∂Bv . Middle: v is relocated into the interior of Bv . Right: After v is deleted from Bv.

7.2. Point Deletion

The relocated Steiner points may be completely removed from the mesh. The most common
approach for this purpose is edge contraction – the Steiner points are removed by contracting
edges to zero length. Although the operation is easy in principle, it is not trivial to select one
edge to be contracted such that the resulting shapes of tetrahedra are optimal. This issue is
addressed in [46] in which several criteria for contracting edges are proposed.

Another approach to directly delete v after forming the half-ball Bv is to re-tetrahedralize
Bv such that the new tetrahedralization of Bv does not contain v. A flip-based approach works
in the following steps,

1. Re-triangulate the boundary of Bv such that v is not on ∂Bv any more.
2. Form a Delaunay tetrahedralization D of the vertices of Bv (without v);
3. Recover the faces of ∂Bv in D by combination of edge/face flips;
4. If all faces of ∂Bv are recovered, remove tetrahedra outside Bv from D; return D;

Otherwise, return ∅.

Although the above approach does not guarantee to work for all cases, it is shown in [47]
that the flipping algorithm is effective in forming a tetrahedralization of Bv. In Section 8,
experiments on selected mesh examples are reported (see Table II).

7.3. Mesh Optimization

It is known that not all relocated points can be deleted, for example, when F is the surface
mesh of a Schönhardt polyhedron. Moreover, some relocated points may be very close to the
boundary faces (or edges). The resulting mesh must be optimized. Common mesh improvement
techniques are local edge (or face) swapping, mesh smoothing, and even new point insertion.
These techniques can be appropriately combined in optimizing some pre-defined mesh objective
functions, see e.g. [48, 49].
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(a) A 3D PLS (b) The surface mesh (c) The DT
460 vertices, 954 subfaces, 460 vertices,
328 facets 706 segments 2637 tetrahedra

(d) Segment recovery (e) Facet recovery (f) A CDT
213 break points 6446 subfaces 482 Steiner points

269 protect points 22 are missing 2738 tetrahedra

Figure 19. Example: Cami1a. The input PLS and the constructed CDT are shown in (a) and (f),
respectively. Pictures from (b) to (e) show the intermediate status of the CDT algorithm.

8. EXAMPLES AND DISCUSSIONS

The CDT algorithm has been implemented in the program TetGen [50]. In this section, we
provide several application examples to illustrate the practical behavior and the effectiveness
of the CDT algorithm. Using the examples, we discuss the complexity of this algorithm and
possible improvements.

The assumption 4 can be fulfilled by using techniques of symbolic perturbation [43, 20, 44].
In practice, it is helpful to actually add some Steiner points (so-called break points) to remove
the local degeneracies [21] in the facets of the PLS. In the implementation of TetGen, both
techniques are used. A symbolic perturbation approach [20] is used through out the CDT
algorithm. In addition, a local degeneracy removal algorithm [21] is called before the segment
recovery algorithm.

Fig. 19 illustrates an example of one run of the CDT algorithm on a mechanical part (Cami1a,
available from [51]) with the intermediate status of the different steps. The input PLS shown
in (a), it has 460 vertices, 706 segments, and 328 facets. The surface mesh is shown in (b). It
is the input of the local degeneracy removal algorithm and contains 954 subfaces. (c) is the
initial Delaunay tetrahedralization of the vertex set. The status after the SegmentRecovery
algorithms is shown in (d). The number of break points and protect points are 213 and 269,
respectively. (e) shows the initial status of the FacetRecovery algorithm, there are 6446
subfaces in which 22 are missing (highlighted). The resulting CDT is shown in (f). A vertical
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cut is used to visualize the interior constrained Delaunay tetrahedra.

In the above example, the number of Steiner points is in the order of the input size. This
is a typical case observed in practice. Using an appropriate point insertion order, the current
one is random, it will be possible to reduce the number of Steiner points. The local degeneracy
removal algorithm may be called only when it is necessary. It currently may add at most O(n)
Steiner points.

(a) A view of the input PLS (b) A view of the input surface mesh
22905 nodes 45806 triangles

(c) A view of the output CDT (d) A view of the output surface mesh
43044 nodes 2542 break points

134700 tetrahedra 17597 protect points

Figure 20. Example: Wing-Iso. A global and a local views of the input PLS are shown in (a) and (b),
respectively. Two detailed views of the output CDT are shown in (c) and (d).
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1 Cami1a Heart Fan Crystal Wing-Iso IFP

2 Input nodes 460 3, 588 6, 516 11, 706 22, 905 57, 270
3 Input segs 706 11, 205 19, 709 37, 785 46, 693 172, 001
4 Input facets 884 7, 620 13, 180 26, 399 45, 806 114, 680
5 Break points 213 0 102 8 2, 542 0
6 Protect points 269 3, 622 4, 992 10, 789 16, 913 1, 963
7 Delaunay tetra. 0.05 0.22 0.41 0.81 1.61 4.85
8 Surface mesh 0.02 0.03 0.10 0.15 0.44 0.38
9 L.d. removal 0.07 0.10 0.18 0.42 0.42 1.80

10 Seg. recovery 0.12 0.28 0.37 0.97 2.02 0.51
11 Facet recovery 0 0.06 0.07 0.64 0.13 0.31
12 Total time (sec.) 0.26 0.69 1.13 2.99 4.62 7.85

Table I. Runtime statistics of the CDT algorithm. Tested by TetGen (compiled by g++ with -O3
option) on a linux workstation (Intel(R) Xeon(R) CPU 2.40GHz). (In line 9, L.d. = Local degeneracy.)

The geometry of the next example shown in Fig. 20 is the wing of an airplane placed inside
a large bounding box, see (a). The surface of the wing and the bounding box were triangulated
by 22905 nodes and 45806 triangles. A detailed view of the surface triangulation of the wing
is shown in (b). To generate the CDT from the surface mesh, TetGen added 19, 455 Steiner
points, 2542 are break points and 16, 913 are protect points. A view of the inside of the CDT
near the wing is shown in (c). In (d), the modified surface mesh of the CDT is shown.

We next report the detailed run times of the CDT algorithm on some selected examples in
Table I. Most of the input PLSs (whose boundary are triangular surface meshes) are available
from the repository of 3D Meshes Research Database maintained by INRIA’s GAMMA
project [51]. Two of the generated CDTs are shown in Fig. 21. Table I is divided into four
parts: the input sizes (the number of nodes, segments, and facets) are reported in rows 2 − 4,
they are increasing from left to right; the number of break points and protect points are listed
in rows 5 − 6, respectively; then the running time statistics in individual steps of the CDT
algorithm are given in rows 7 − 11, the time is reported in seconds; and the total run time
(which is the sum of the detailed times) is given in row 12.

From Table I we see that the majority Steiner points of these examples are inserted in the
segment recovery step (line 10). Hence this step took the most of the run time. The run times
for facet recovery (line 11) were relatively small, because the number of missing facets was
small.

Our CDT algorithm will insert Steiner points on the boundary (segments and facets) of the
input PLS. In Section 7 we discussed a post-processing step to remove Steiner points from
boundaries so that the output mesh can conform to the input surface mesh of the PLS with
possibly some Steiner points remaining inside the PLS. Table II reports the experiments of
this step on some selected examples. The majority of the Steiner points can be completely
deleted from the mesh, only few of them have been relocated to the interior of the domain.

Although our algorithm does not directly work on smooth domains (boundaries are curved
surfaces), it is possible to combine our algorithm with other surface meshing algorithms,
e.g., [52, 53], such that smooth domains and piecewise smooth domains can be approximated
by CDTs. It has been shown that any C2-smooth surface Σ can be well-approximated by a
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Figure 21. Examples: Crystal (left) and IFP (right). The generated CDTs are shown. See Table I for
their statistics.

Cami1a Heart Crystal IFP

Input Steiner points 482 3, 622 10, 797 1, 963
Deleted Steiner points 446 3, 605 10, 778 1, 957

Relocated Steiner points 36 17 21 6
Total time (sec.) 0.76 0.79 0.88 0.27

Table II. Post-processing: Steiner point removal and relocation (discussed in Section 7).

restricted Delaunay triangulation of a set of ǫ-samples on Σ [54]. Fig. 22 left shows a restricted
Delaunay triangulation of a piecewise smooth surface. This model is freely available from [55].
Since such a triangulation is a two-dimensional PLS, the domain can be approximated by a
CDT, see Fig. 22. Theoretically, our CDT algorithm needs no Steiner points in constructing
the CDTs from such inputs.

9. CONCLUSION

In this paper, the problem of 3D boundary conformity is studied. A challenging question
is: Given any 3D polyhedron, can we tetrahedralize it with the number of additional points
(Steiner points) as small as possible? This question still remains theoretically open, but some
algorithmic improvements have been reached by this work.

We proposed an algorithm to construct a constrained Delaunay tetrahedralization (CDT)
of an arbitrary 3D piecewise linear system (PLS). The correctness of this algorithm was
theoretically proven. The choices of Steiner points are adaptively determined by local
geometric information. The number of Steiner points could be reduced compared to Shewchuk’s
approach [20]. An analysis on this algorithm was provided. This algorithm is simple and easy
to implement. The work and status are summarized as follows:
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Figure 22. Examples n10. Left: a restricted Delaunay triangulation of a piecewise smooth surface.
Right: a CDT partition of the domain bounded by this surface (a cut views the interior tetrahedra),

it contains no Steiner points.

• We gave a definition of a constrained Delaunay triangulation (CDT) of a piecewise linear
system (PLS) of any dimension. Our definition allows Steiner points (points which do not
belong to the input PLS) in a CDT. Hence every PLS can have a CDT. We showed several
basic properties of such objects which are close to those of Delaunay triangulations.

• We proposed a practical algorithm for constructing a CDT of any three-dimensional PLS.
Steiner points are used in order to recover the boundaries. Termination and correctness
of this algorithm are proved. We give a partial analysis of the complexity of the individual
steps of the algorithm. It has been implemented and the practical performance is reported
through various examples.

• The three segment splitting rules handle the small input angle problem well. Previous
works [20, 56, 57] require a separate step to protect the sharp corners, and it must be
done in advance. Our rules avoid the pre-processing step by adaptively selecting the
segments to be split. Moreover, the achieved edge lengths are usually better, i.e., some
input segments may not be split.

Some theoretical questions regarding this algorithm that should be investigated:

• The complexity of the segment recovery algorithm with regard to the input size is not
known yet. This is closely related to an open question [29] in computational geometry,
i.e., what is the upper bound of the number of Steiner points needed to construct a
conforming Delaunay tetrahedralization of a three-dimensional PLS?

• Limiting the number of Steiner points is important since it directly influences the
performance of the facet recovery algorithm. Some technical details of the segment
recovery algorithm need further investigation. Currently, the segments are split in a
randomized order. It generally works well, but sometimes it results in unnecessary Steiner
points.
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• Although the problem of removing Steiner points from the boundary is discussed and
implemented, the problem is far from being solved. Difficulties are arising in practice
when the input boundary of the PLS contains anisotropic features.

• The proposed CDT algorithm only takes a piecewise linear boundary as input. It would
be a possible extension to let the algorithm directly handle inputs containing smooth
surfaces. The piecewise smooth complex [53] could be considered.

ACKNOWLEDGEMENTS

This work was supported in part by the WIAS research project Numerical Mthods and by the
3D-Topografie (RGI-011) project led by Delft University of Technology. We thank the referees for
their valuable comments and suggestions.

REFERENCES

1. Lennes NJ. Theorems on the simple finite polygon and polyhedron. American Journal of Mathematics
1911; 33(1/4):37–62.
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