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Density Esti1nation in the U nif or1n N or1n 
and White Noise Approxi1nation 

Alexander Korostelev1 and :Michael Nussbaum 
Wayne State University, Detroit and 

Weierstmss Institute, Berlin 

June 1995 

Abstract 

We develop the exact constant of the risk asymptotics in the uniform norm 
for density estimation. This constant has first been found for nonparametric 
regression and for signal estimation in Gaussian white noise. We show that for 
densities with Holder exponent > 1/2, the formal approximation of the i. i. d. 
experiment by Gaussian white noise in the sense of Le Cam's deficiency distance 
(asymptotic equivalence) can be utilized. For densities with Holder exponent 
:::; 1/2 where asymptotic equivalence fails, the result can still be established 
independently. 

1 Introduction 
Recently in [5] an asymptotically minimax exact constant has been found for loss in 
the uniform norm, for Gaussian nonparametric regression when the parameter set is a 
Holder function class. Donoho [3] subsequently extended the result to signal estimation 
in Gaussian white noise and showed it to be related to nonstochastic optimal recov-

. ery. This risk bound represents an analog of the now classical £2-minimax constant of 
Pinsker [10] valid for a Sobolev function class. From a risk bound valid in white noise, 
abstract decision theory allows to deduce asymptotic risk bounds for other models, 
by reference to the concept of asymptotic equivalence of experiments (in the sense of 
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Le Cam's deficiency distance). For density estimation this asymptotic equivalence is 
developed in [9]; examples of application related to the Pinsker bound can be found 
there. But this general reduction to Gaussian white noise, for all decision problems 
with uniformly bounded loss, is not possible if the parameter space is too large; in-
deed the smoothness index 1/2 has been shown to be critical (Brown and Zhang [l]). 
The purpose of this note is to discuss the potential and the limits of the asymptotic 
equivalence approach, in the context of the sup-norm minimax constant for density 
estimation. 
Consider a sample X1 , ... , Xn of i. i. d. observations having a probability density 
f = f(x) in the interval 0 :::; x :::; 1. Let (3, L and b be some positive constants, 
0 < b < 1, and let :E(f3, L, b) be the class of Holder densities 

"E (/3, L, b) = { g : l g = 1, g ( x) 2: b for 0 :::; x :::; 1, and 

lgl.BJ(x1)-gl.BJ(x2)I:::; Llx1 -x2l.B-L.BJ, 0:::; x1,x2:::; 1}. 

where l,BJ denotes the largest integer strictly less than {3. Assume that the density f 
belongs a priori to :E((3, L, b). Consider an arbitrary estimator fn = fn(x) measurable 
w.r.t. the observations X1, ... , Xn. We define the discrepancy of f~(x) and the true 
density f(x) by the sup-norm llfn - JI loo where 

llflloo = sup lf(x)I. 
O~x9 

Denote by Pt) the probability distribution of the observations X1 , ... , Xn, and by 
E}n) the expectation w.r.t. Pjn>. Let w(u), u ~ 0, be a continuous bounded loss 
function, i.e. a monotone function of u, w(O) = 0. Introduce the minimax risk 

Tn = rn(w(·); {3, L, b) = i~f sup Ejn>w(1/J~ 1 llfn - flloo) 
/..,,, /E"E(/3,L,b) 

(1) 

where 1/Jn = ((logn)/n/
31

<
21

3+
1
). This normalization factor guarantees a non-degenerate 

behaviour of the risk (1) as n ~ oo, cp. Ibragimov and Khasminskii [4], Devroye and 
.Gyorfi [2]. The goal of this paper is to find the exact asymptotics of the risk (1). To 
do this we need two additional definitions. First, note that the densities in ~({3, L, b) 
are unifomly bounded, i.e. 

(2) B.= B.({3, L, b) = max max f(x) < +oo. 
fE"E(,B,L,b) O~x9 

Secondly, denote by :E0(f3) an auxiliary class of Holder functions on the whole real line 
with constant L = 1: 

'Eo(f3) = {g(x), x E R1 : lgl.BJ (x1) - gl.BJ(x2)I:::; lx1 -x2l.B-L.BJ, X1,X2 E R1}. 

Let I 19112 denote the Lrnorm of g. Define the constant 

(3) A,e = max { g(O) I 119112 :::; 1, g E 'Eo(f3) }. 
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Theorem 1. · For any (3 > 1/2 and for any loss function w(u) the following equality 
holds for the minimax risk (1): 

(4) . ( (2B.£1ff3)/3!(2f3+1)) 
hm r n = w A13 f3 

n-too 2 + 1 

where B. = B.((3, L, b) and A 13 are defined by {2} and (3) respectively. 

In the next section we will see how this result can be deduced from the one in a 
Gaussian continuous regression model, via asymptotic equivalence. We will then show 
that although equivalence fails for f3 < 1/2, the present minimax risk asymptotics still 
holds for any smoothness index f3 > 0 in the density model, as it does in continuous 
regression. For estimation problems which are local on [O, l], like estimation of a density 
at a point, such a result would not be surprising and can in fact be deduced from white 
noise using an appropriate concept of local asymptotic equivalence; see Low [8]. The 
minimax risk for the uniform norm, however, although it is related to kernel smoothing 
of data on [O, l], is a nonlocal one with respect to the interval. Indeed it can be shown 
that when the sup-norm loss is taken over a shrinking subinterval which is shrinking 
slower than the pertaining bandwidth, then the same minimax rate applies but the 

·minimax constant is smaller. Nevertheless the global sup-norm minimax constant is 
valid in both the density and the white noise model for low smoothness indices f3 near 0 
where the global asymptotic equivalence of the two experiments fails. This underlines 
the need for further study of concepts of reduced equivalence, pertaining to restricted 
classes of dedsion problems only, as suggested by L. Le Cam in [7] and [6]. 

2 Equivalence of Density and Regression Experi-
ments 

We obtain the proof of Theorem 1 reducing the problem to that in nonparametric 
regression via the equivalence of statistical experiments, see [9]. For any Jo E "'E((3, L, b) 
and for n 2:'.: 3 introduce the neighborhood of Jo by 

(5) Un= Un(fo) = {f: J E "'E(/3,L,b), llf- folloo S (n114 lognt1
}. 

For any fixed / 0 E E(f3, L, b) consider a regression problem with observation y(n) = 
y<n>(x) satisfying the Ito equation 

(6) Y<nl(x) = f(x) + Jfo~x)W(x), 0::; x::; 1, f E Un(fo), 

where W(x) is a standard Wiener process. The following statement is proved in [9]. 

Proposition 1. For any /3 > 1/2 and for Jo fixed the density experiment with 
observations X 1 , ... , Xn is locally equivalent over Un(fo) as n --)> oo to the regression 
experiment (6) with observation y<n>(x), 0 S x S 1. 
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Moreover, this equivalence can be made global. Let N = n/ log n, and let f N -

f N(xjXi, ... , XN) be an estimator of f (x), satisfying 

(7) inf Pt> (JN E Un(!)) ---+ 1 as n -l- oo. 
f E"E(/3,L,b) 

For /3 > 1/2 such an estimator can be defined e.g. by a standard histogram procedure. 
Let fN be a discretized version with values in E(/3, L, b), e.g. a projection of JN onto 
a finite E-net in E(/3, L, b). Consider observations Y.(n)(x) satisfying the Ito equation: 

(8) Y.(n)(x) = f(x) + ~~~ W(x), ( 
- ) 1/2 

O~x~l. 

Proposition 2. For any (3 > 1/2 the density experiment with observations X 1 , ... , Xn 
is globally equivalent over E(/3, L, b) as n -lo oo to the compound experiment with 
observations (X1, ... , XN; Y.(n)(x)) defined by (8). 

3 Asymptotics of Sup-Norm Risk in Regression 
·Consider the continuous regression 

(9) z<n>(x) = J(x) + a(x) w<n>(x) 0 ~ x ~ 1, Vii ' 
where a= a(x) is a given continuous function in x. 
First we consider the case when a is a constant, a2 > 0. In this case the exact 
asymptotics of the sup-norm risk was found in [5], Donoho [3]. As shown in these 
papers, if fn is an estimator of f from the observations (9) and if the minimax risk 
rn is defined by the expression (1) then for any loss function w(u) we have the following 
limit result 
(10) 
where 

(11) 

lim r n = w (C(/3, L, a 2
)) 

n-+oo 

2 - (2a2£1//3)/3/(2/3+1) 
C(f3, L, a ) - A13 2{3 + 1 . 

For the case where a2 = a2(x) > 0 is a known continuous function the result (10), (11) 
can be extended as follows. 

Theorem 2 . Let in (9) a = a(x) be a known function continuous in x E (0, l], 
a(x) < 0, and let C(/3, L, a;) be given by {11} where 

a 2 = max a 2 ( x) * 0$x9 

Then for any /3 > 0 and for any loss function w( u) the minimax risk r n in the 
regression model (9) satisfies 

(12) lim rn = w (C(/3, L, a~)). n-+oo 
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The proof of this theorem goes along the lines of [5], [3]. There is only one non-
trivial fact which must be taken into account: the sup-norm risk is asymptotically 
independent of the choice of interval. Let 

Lemma 1. Let in (9) a 2 be a positive constant, let fn = fn(xjz(n)) be an estimator 
of the regression function f obtained from observations (9), and suppose that loss is 
measured on an interval [x1, x2], 0 :::; x1 < x2 :::; 1 only. Then the asymptotics of the 
minimax risk is independent of the interval, i.e. for any loss function w(u) we have 

(13) 

Proof. Rescaling the interval [x1, x2] into [O, 1] we reduce the n in (9) to (x2 - x1 )n 
and turn the Lipschitz constant L into L(x2 - x1).B which means that the product 

( 
2a2 ) .8/(2.B+l) 

C(/3, L, a2 )1/Jn = A.B 2(3 + 1 £
11.B(logn)/n 

stays asymptotically unchanged as n ~ oo.This proves attainability. For the lower 
risk bound, note that the reasoning in [5] for [xi, x2] = [O, l] shows that additional 
observations outside [O, l] can be neglected. 0 

Proof of Theorem 1. Let E > 0 and take an efficient estimator f ~ in Theorem 2 
obtained from observations (9) for a 2 (x) = B*. Substitute the observations z<n>(x) in 
this estimator by y}n) (x) from (8). Since the preliminary estimator f N takes values 
in E(/3, L, b), we have with probability one ll!Nll

00 
:::; B*. It is clear from the structure 

of the optimal estimator f ~ (see [5]) that its risk is monotone in the variance function, 
i. e. if applied in a model (9) with a 2 (x) :::; B* it does not behave worse than for the 
model it was designed for: a2 (x) = B*. Since the loss function is bounded, we obtain 
that in the compound experiment (7), (8) the asymptotic minimax risk w (C(/3, L, B*)) 
is attainable. Proposition 2 then implies the upper bound in (4): 

lim sup rn :::; w ( C(/3, L, B*)). 
n-oo 

To complete the proof note that the lower bound in (13) can be sharpened as follows. 
If /3 > 1/2 then for any Jo E E(/3, L, b) and for an arbitrary intervall [x1 , x2] ~ [O, l] 
one has 
(14) 

The equality (14) is a direct extension of the corresponding result in [5] and [3] where 
for a constant a neighborhood of magnitude 0 ( 1/Jn) is used to derive the lower bound. 
In the case f3 > 1/2 this neighborhood is contained in Un(fo) for n large (see also 
(17) in the next section). Now the lower bound liminf rn 2:: w(C(/3,L,B*)) is a 

n-oo 
consequence of (14) and Proposition 1. 0 
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4 The case of Holder exponent f3 < 1/2 
In this section we discuss the case /3 E (0, 1/2]. This case is not covered by the previous 
reasoning: through Theorem 2 is valid for any /3 > 0 the argument of equivalence 
(Propositions 1 and 2) is not applicable. In fact it has been established (see [1]) that 
asymptotic equivalence does not hold for f3 < 1 /2. As we show here, the asymptotics 
of the risk (1) in this case can be obtained from some direct calculations similar to 
[5]. These will be seen to go through for all f3 E (0, 1] at once, so we admit some 
intersection with the previous case here. 

Theorem 3. 
satisfies 
(15) 

where 

If 0 < /3 :::; 1 then for any loss function w( u) the minimax risk { 1} 

lim rn = w(Co) 
n--+oo 

Remark. In the case 0 < f3 :::; 1 the auxiliary problem (3) has an explicit solu-
tion A,e = ((2/3+1)(/3+1)/(4/32))/3/(2

,8+1), i. e. the right-hand sides in (4) and (15) 
coincide. 

Proof. The upper bound. Take the kernel K(u) = (2/3t 1(/3+1)(1-lul/3)+, u E R1
, 

and the bandwith hn = (Co'l/Jn/L) 11/3. For arbitrary small fixed E > 0 define regular 
grid points Xk = t:k'l/Jn, k = 0, ... , M where M = M(n) = (E'l/Jn)-1 is assumed integer. 
Take"'= ((/3 + 1)/(2/3 + 1))11/3. To take account of edge effects we put : 

Ko(X, xk) = K(h-;/(X - xk)) if hn ::=:; Xk < 1 - hn; 

Ko(X, xk) = "'-11[0,1thnJ(X - xk) if 0:::; Xk < hn; 
Ko(X, xk) = "'-11[-tthn,OJ(X - xk) if 1 - hn < xk :::; 1. 

Introduce the kernel estimator 
n 

f~(xk) = (nhnt1 L Ko(Xi, xk), k = 0, ... , M. 
i=l 

Finally, for x E (xk-I, xk) define f~(x) as the linear interpolation 

Introduce the bias bn(x) = EJn) f~(x) - f (x), 0 :::; x :::; 1, and the centered stochastic 
term Zn(x) = f~(x) - J(x) - bn(x). 

Lemma 2. Uniformly in f E E(/3, L, b) we have the inequality 
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Proof. For xk E [hn, 1 - hn] we have 

lbn(xk)I < j K(u)lf(xk + h,..u) - f(xk)ldu::; Lh~ j K(u)iulPdu = CoefJn/(2fJ + 1). 

If Xk E. (0, hn] then 

lbn(xk)I ::; "-l Lh~ f uPdu = Co'l/Jn!ip /(fJ + 1) = Co'l/Jn/(2fJ + 1). D 

Lemma 3. For arbitrary small a > 0 we have 

lim sup Pt> ('l/7~ 1 llznlloo > (1+a)2/3Co/(2/3+1)) = 0. n-+oo /E"£(/3,L,b) 

Proof. Define the random variables 

~ik = h~ 1 Ko(Xi, xk) - Et> [h~ 1 Ko(Xi, xk)] , i = 1, ... , n, k = 0, ... , M. 

Note that for any Xk E [hn, 1 - hn] the variance 

D~k = Var}n) [~;k] = f(xk)h;", 1 (~:1{) (1 + o(l)) as n-> oo, 

and E}n) [~fk] = O(h~2) as n--+ oo uniformly in f E E(/3, L, b). Note that for n large 

( ('lflnvn/ Dnk)(l + a)2/3Co/(2/3 + 1)) 
2 

= 

2 
(B./ J(xk))(l + a)2 

( 2/3 + l) logn (1 + o(l)) > (2 +a) log M. 

Put An= ((2 + a)(log M))1l2
• The Chebyshev exponential inequality yields 

lim Pt> ('l/7~ 1 max Zn(xk) > (1+a)2/3Co/(2/3+1)) n-+oo xkE[hn,1-hn] 

< E p;n> ((nD~kt112 t~ik >A,.) 
XkE[/in,l-/in) i=l 

< L exp(-cAn)E}n) [exp(~1k(nD~kt 112r 
XkE(hn,1-hn) 

::; M exp(-c.A,.) (I+ ;: (1+ o(l) r as n -> oo. 

Now take c =An and let 8 > 0 be arbitrarily small. The above latter expression does 
not exceed M · exp(-A~ + iA~(l + 8)) = M · M-(l+a/2){l-o) = M-a/2 Af(l+a/2>0 which 
is vanishing as n --+ oo if 8 is small enough. For the same reasons the probability 
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Pjn) ( 7.f;-;;_ 1 minxkE[hn,l-hnJ Zn (xk) < -(1+a)2/3Co/(2/3+1)) is vanishing as well. Note 
that there are only a bounded number of points Xk E (0, hn) U (1 - hn, l] and asymp-
totically as n---+ oo they do not influence the value of llznlloo. Thus the lemma follows. 
0 

The lower bound. It suffices to prove that for an arbitrary estimator Jn and for any 
small a> 0 

(16) liminf sup Pt) (llfn - flloo ~ (1 - a)Co7./Jn) = 1. 
n-+oo f E 'E(/3,L,b) 

Take a small value E = E(a) > 0, the final choice of E will be made below. Let 
f* E "'Ei(/3,L,b) be such that f*(x) =Jo is a constant in x E [t1,t2],t2-t1 = E, and 
Jo= B*/(1 + E). Introduce a family of functions 

M 

(17) f(x;O) = f(x;01, ... ,0M) = f*(x) +Lh~ L,Ojg(h;;1(x-hnaj)), 0::; x::; 1, 
j=l 

where ai = x1, ai+l - aj = 2(1 + l/E), j = 1, ... , M, M = M(n) = [n11((213+1) (l+e))], 

(} = (01 , ... , OM) EK= [-1, l]M; the "basic" function is 

As is easily seen, Jg= 0, J g2 = (l+E) 4/32/(/3+1)(2/3+1), and for E small enough and 
n sufficiently large f (x; 0) E "'E(/3, L, b) for (} E K. The density f(x; 0) differs from 
f*(x) only in the interval [t1 ,t1 +2(1+1/E)Mhn] ~ [t1,t2] for n large since Mhn-+O 
as n---+ oo for any E fixed. Put for shortness Pj(.~o) = PJn) and Ej(~o) = E~n). The 
log-likelihood ratio is given by 

Define ~i = f01 Lh~ E?=1 g(h~
1 (Xi - hnai)), j = 1, ... , M. Note that 

E~n) ~j = O; E~n) ~J = (1 + E)2 (2/(2/3+1)) logn = 2(1 + E)3 log M, 

E~n) ~i~k = 0 if j =f k, j, k = 1, ... , M. 
The Taylor expansion implies that An(B) can be approximated by 
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· (n) I - I Lemma 4. hmn~oo SUPeeK Eo exp(An(B)) - exp(An(B)) = 0. 

We skip the proof of this lemma, just noting that 

and An(B) - An(B) --)> 0 as n--)> 00 in pJn) -probability uniformly in e E K. More-
over these random variables do have exponentially fast decreasing distribution tails. 
Calculations are based on the Chebyshev exponential inequality. 

Though the random variables !:ii are non-correlated under PJn) they are dependent 
via the sample X1, ... , Xn. But they are conditionally independent given the number 
of sample points in the support of each function g(h-;;1 (· - hnai)). Define 

Introduce the events 

Note that the joint pJn> -distribution of (vi, ... , VM) is independent of e E K' and 
PJn) (UJ!,1 Ain) --)> 0 as n--)> oo, or 

M 

(18) lim inf pJn) (Bn) = 1 where Bn = n Ajn· 
n~ooeeK · 1 J= 

The crucial point of the proof is that !:ii are PJn> -conditionally independent given 
V1, ... , VM, i. e. 

(19) 

M 
= IT pJn) (!:ii ~ tj I Vj = nj). 

j=l 

Direct calculations show that if ni : lni - mrol ~ nef4 (n7ro) 1l 2 then 

where M o(M-1
)--)> 0 as n--)> oo uniformly in IBil ~ 1. 

Now we are ready to prove (16). We omit those details which are similar to the gaussian 
case in [5]. First, standard arguments show that (16) is equivalent to 

(21) 
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where Bn (Bn1, ... ,BnM) is an arbitrary estimator of e = (Bi, ... ,BM), llBllM = 
max1::;j::;M IBil. Put Cn = {llBn - BllM < 1- o} Applying Lemma 4 and (18), we 
obtain that 

As in the gaussian case (see [5]), the minimal value of the right hand side of (22) is 
attained if we take Bn = T~ = (T~1 , ... , T~M); T~j = lj if llil ~ a, and T~j =a if 
lj > a, T~j = -a if lj < -a where lj = ~i/(2(1 + E)3 log M). Define a set of 
integers 

Let T/i =!exp { Bi~i - BJ(l + E)3 log M }, "'i = I(IT~i - Bil < 1 - a). For n large (22) 
implies that 

> 1- € - E~n) I(Bn) [L [! 'T/i K.; dO] 

- 1-E 

- I: PJn) (v1 = n1, ... , VM = nM) E~n) [L iI 'T/i K.j dO I V1 = ni, ... :VM = nM] . 
(ni, ... ,nM )EN J=l 

In view of (19) and (20) each conditional expectation is a product 

(23) ~ g ( 1 + o(M-1) - l
1 
E~n) ['T/;(1 - K.;) I V1 = ni, ... , vM = nM] dO;) 

Here on the event {.3.j ~ a/4} we have 

- J_1
1 
%(1- K.;)exp (-%(E~n)Aj)(O; -.&1) 2

) exp G(E~n)Aj).&J) dO; 

> % J_11~~; I(IYI ~ 1- a) exp (-%(E~nl Aj)y2
) dy 

> % {~"12 

exp (-%(E~n) Aj)y2) dy ~ ~exp (-(1 + €)3 (log M)(l - a/2)2) · 
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Hence 

and ( 23) does not exceed 

Choose E such that a 1 = (1 - a/2). Under this choice for all M large one has the 
inequality (1 + o(M-1) - (a/4)M- 01 )M:::; E. Hence 

sup PJn) ( Cn) ~ 1 - E - E L PJn) (v1 = ni, ... , VM = nM) ~ 1 - 2E. D 
9EK (n1, ... ,nM)EN 
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