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Abstract

The inverse scattering of a time-harmonic elastic wave by a two-dimensional periodic structure in

R
2 is investigated. The grating profile is assumed to be a graph given by a piecewise linear function

on which the third or fourth kind boundary conditions are satisfied. Via an equivalent variational

formulation, existence of quasi-periodic solutions for general Lipschitz grating profiles is proved by

applying the Fredholm alternative. However, uniqueness of solution to the direct problem does not

hold in general. For the inverse problem, we determine and classify all the unidentifiable grating

profiles corresponding to a given incident elastic field, relying on the reflection principle for the Navier

equation and the rotational invariance of propagating directions of the total field. Moreover, global

uniqueness for the inverse problem is established with a minimal number of incident pressure or

shear waves, including the resonance case where a Rayleigh frequency is allowed. The gratings that

are unidentifiable by one incident elastic wave provide non-uniqueness examples for appropriately

chosen wave number and incident angles.

1 Introduction

Assume a time-harmonic (with time variation of the form exp(−iωt), ω > 0) incident plane elastic
wave is scattered by a diffraction grating in a linear isotropic and homogeneous elastic medium. Suppose
further that the grating is periodic in x1-direction and invariant in x3-direction, and that all elastic waves
are propagating perpendicular to the x3-axis, so that the problem can be treated as a problem of plane
elasticity. Moreover, the diffraction grating is supposed to have an impenetrable surface on which normal
displacement and tangential stress (or normal stress and tangential displacement) vanish. This gives rise
to the so-called third (or fourth) kind boundary conditions for the Navier equation. The direct problem is
to predict the displacement distribution given the incident elastic waves and grating profile, whereas the
inverse problem is to determine the grating profile from a knowledge of incident waves and near-field
measurements on a straight line above the grating. To the authors’ knowledge, there does not exist any
result regarding the direct and inverse scattering of elastic waves by diffraction gratings under the third
or fourth kind boundary conditions. The aim of this paper is to fill these gaps. We refer to the monograph
[20] for a comprehensive treatment of the boundary value problem of elasticity (including the boundary
conditions of the third and fourth kinds) and the monograph [8] for applications of diffraction gratings.

There exist several solvability results for the direct scattering problem when the displacement vanishes on
the grating surfaces ( which is called the first kind or Dirichlet boundary condition). Based on the boundary
integral equation method , T. Arens (see [3]) established the existence and uniqueness of quasi-periodic
solutions for the Dirichlet problem if the grating profile is given by the graph of a smooth (C2) function;
see also [4] for the investigation of the Green’s tensor of the Navier equation for a half-space and [5],
[6] for more general rough surface scattering problems. The same Dirichlet problem in general Lipschitz
domains is investigated by Elschner & Hu [13] but via a variational method. It is shown in [13] that, for
either an incident plane pressure or shear wave, there always exists a quasi-periodic solution to the direct
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problem by establishing the strong ellipticity of the corresponding variational formulation over a bounded
periodic cell and then applying the Fredholm alternative. Moreover, uniqueness can be guaranteed if the
grating profile is given by a Lipschitz graph. In Section 3 of this paper, we will review the existence proof of
[13] and show that it is also valid for more general incident elastic waves when the boundary conditions of
the third or fourth kind are imposed on the grating profiles. However, uniqueness does not hold in general
since the solution scattered by a flat grating is not unique if a Rayleigh frequency occurs; see Theorem 3.

We then proceed to consider uniqueness for the inverse problem which involves near-field measurements.
To our knowledge, the only paper dealing with the inverse scattering of elastic waves by diffraction gratings
is [2], which extends Hettlich and Kirsch’s work on Schiffer’s theorem (see [18]) to the case of inverse
elastic diffraction problems. It is proved in [2] that a Dirichlet periodic smooth surface (C2) can be uniquely
determined from the scattered field for one incident pressure wave and an interval of wave numbers.
Furthermore, a finite set of wave numbers is enough if a priori information about the height of the grating
curve is known. For other uniqueness results within smooth periodic profiles, we refer to [7], [19], [1]
and [11] for the inverse scattering of acoustic or electromagnetic waves. It should be mentioned that,
if the grating profiles are piecewise linear, by the reflection principles for the Helmholtz and Maxwell
equations, global uniqueness results by several incident waves are available for the inverse scattering of
time-harmonic electromagnetic waves, including TE or TM polarization; see [9], [10], [14], [15] and [16].
Relying on the reflection principle for the Navier system developed in [17], in this paper we are aimed to
prove global uniqueness for the inverse elastic diffraction problem in the case of boundary conditions of
the third or fourth kind. Note that such an approach does not work under the first kind (Dirichlet) or second
kind (Neumann) boundary condition, since in these cases there seems to be no reflection principle.

It is demonstrated in Section 4 that the global uniqueness by a fixed number of incident pressure or
shear waves is impossible for determining a flat grating. Thus, such gratings should not be included in
the admissible class A of grating profiles, which, in this paper, are given by the graphs of piecewise
linear functions. Following the arguments in [15], we prove that the total fields generated by two different
grating profiles of A but taking the same near-field values can be reduced to a finite sum of propagating
waves; see Lemma 3 in Section 5. Then, inspired by the ideas in [9],[10] and [14], we obtain the rotational
invariance of the reduced total field, using the reflection principle for the Navier equation; see Lemma 7.
By using the rotational invariance, we can determine all classes of grating profiles of A that cannot be
uniquely identified from the knowledge of the scattered waves corresponding to only one incident wave.
This enables us to prove global uniqueness within the polygonal periodic structures by a minimal number
of incident waves. Our main results on the inverse problem are

� Under the boundary conditions of the fourth kind, two incident pressure waves (four incident shear
waves) are enough to uniquely determine a grating Λ ∈ A, while one incident pressure wave is
(three incident shear waves are) sufficient if Rayleigh frequencies for the compressional (shear)
part of the displacement are excluded.

� Under the boundary conditions of the third kind, four incident pressure waves (two incident shear
waves) are enough to uniquely determine a grating Λ ∈ A, while three incident pressure waves
are (one incident shear wave is) sufficient if Rayleigh frequencies for the compressional (shear)
part of the displacement are excluded.

Note that the above two results are similar to those in [16] on inverse scattering of electromagnetic waves
for TE and TM polarizations.
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The paper is organized as follows. In the following Section 2, we rigorously formulate the direct and
inverse problems. Following [3] and [13], a radiation condition based on Rayleigh expansions is used
in the direct problem. In Section 3, we investigate the existence of quasi-periodic solutions for a broad
class of incident elastic waves in general Lipschitz domains and present non-uniqueness examples for
the direct diffraction problem. The reflection principle for the Navier equation together with the reduction
of the total field to a finite number of terms is presented in Section 5. The aim of Section 6 is to prove
global uniqueness with a minimal number of incident pressure waves in the resonance case. Compared
to the case where Rayleigh frequencies are excluded (see [9] for the inverse scattering of electromagnetic
waves), the resonance case gives rise to additional classes of unidentifiable grating profiles which provide
non-uniqueness examples for appropriately chosen wave number and incident angles. Finally, in Section
7, we carry over the arguments from Section 6 to prove uniqueness for the incident shear waves.

The method presented in Section 6 can be extended to prove uniqueness for general polygonal grating
profiles which are not necessarily given by the graphs of piecewise linear functions. To this end, we need
to justify the first assertion of Lemma 3 in the case of general polygonal periodic structures, using the
path argument developed recently for bounded obstacle scattering problems (see, e.g., [17, 21, 23]). The
idea of proving rotational invariance can be employed to simplify the uniqueness proof in [14]. We believe
that all the arguments within this paper can be extended to the 3D case of doubly periodic structures.

2 Mathematical formulation of the direct and inverse scatte ring prob-

lems

Let the cross-section of the diffraction grating in the (x1, x2)-plane be given by a Lipschitz curve Λ, which
is 2π-periodic with respect to x1-direction. The region above the grating is denoted by ΩΛ. Suppose that
a time-harmonic plane elastic wave with the incident angle θ ∈ (−π/2, π/2) is incident on Λ from above,
which is either an incident pressure wave taking the form

uin = uin
p (x) = θ̂ exp(ikpx · θ̂) with θ̂ := (sin θ,− cos θ)⊤ (1)

or an incident shear wave taking the form

uin = uin
s (x) = θ̂⊥ exp(iksx · θ̂) with θ̂⊥ := (cos θ, sin θ)⊤ , (2)

where
kp := ω/

√

2µ+ λ , ks := ω/
√
µ

are the compressional and shear wave numbers respectively, λ and µ are the Lamé constants satisfying
µ > 0 and λ+µ > 0, ω > 0 denotes the angular frequency of the harmonic motion and ⊤ indicates the
transpose of a vector in R2. For simplicity we assume the mass density of the elastic medium is equal to
one, so that the total displacement u(x1, x2), which can be decomposed as the sum of the incident field
uin and the scattered field usc, satisfies the Navier equation (or system):

(∆∗ + ω2)u = 0 in ΩΛ , ∆∗ := µ∆ + (λ+ µ) grad div . (3)

We assume the grating is impenetrable, and the vanishing normal displacement and tangential stress (or
normal stress and tangential displacement) lead to the following boundary conditions on Λ:

boundary conditions of the third kind: n · u = 0, τ · Tu = 0, (4)

or boundary conditions of the fourth kind: τ · u = 0, n · Tu = 0, (5)
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where Tu stands for the stress vector or traction having the form:

Tu = 2µ ∂nu+ λ n div u+ µτ(∂2u1 − ∂1u2) (6)

with the exterior unit normal n = (n1, n2)
⊤ and the unit tangential vector τ = (−n2, n1)

⊤ on Λ. Here
and in the following the notation ∂jv = ∂v

∂xj
is used. The periodicity of the structure together with the

form of the incident waves implies that the solution u must be quasi-periodic with the phase-shift α (or
α-quasi-periodic), i.e.

u(x1 + 2π, x2) = exp(2iαπ) u(x1, x2) , (x1, x2) ∈ ΩΛ , (7)

where either α := kp sin θ for the incident pressure wave (1), or α := ks sin θ for the incident shear
wave (2). To ensure well-posedness of the boundary value problem (3)–(7), a radiation condition must be
imposed as x2 → +∞. Note that the scattered field usc, which also satisfies the Navier equation (3),
can be decomposed into its compressional and shear parts,

usc =
1

i
(grad ϕ+

−−→
curl ψ) with ϕ := − i

k2
p

div usc , ψ :=
i

k2
s

curl usc , (8)

where the two curl operators in R2 are defined by

curl u := ∂1u2 − ∂2u1 , u = (u1, u2)
⊤ and

−−→
curl v := (∂2v,−∂1v)

⊤ ,

and the scalar functions ϕ, ψ satisfy the homogeneous Helmholtz equations

(∆ + k2
p)ϕ = 0 and (∆ + k2

s)ψ = 0 in ΩΛ . (9)

Applying the Rayleigh expansion for the scalar Helmholtz equation to ϕ and φ respectively, we finally
obtain a corresponding expansion of usc into outgoing plane elastic waves:

usc(x) =
∑

n∈Z

{

Ap,n

(

αn

βn

)

exp(iαnx1 + iβnx2) + As,n

(

γn

−αn

)

exp(iαnx1 + iγnx2)

}

,

(10)
for x2 > Λ+, where the constants Ap,n, As,n ∈ C are called the Rayleigh coefficients and

Λ+ := max
(x1,x2)∈Λ

x2 , αn := α + n , βn = βn(θ) :=

{ √

k2
p − α2

n if |αn| ≤ kp

i
√

α2
n − k2

p if |αn| > kp ,
(11)

and γn := γn(θ) is defined analogously as βn with kp replaced by ks. This is the radiation condition
we are going to use in the following; see also [3]. Since βn and γn are real for at most a finite number
of indices, only a finite number of plane waves in (10) propagate into the far field, with the remaining
evanescent waves (or surface waves) decaying exponentially as x2 → +∞. The above expansion
converges uniformly with all derivatives in the half-plane {x ∈ R2 : x2 ≥ b} for any b > Λ+. Given a
fixed incident angle θ, define

πp := {n ∈ Z : βn(θ) = 0}, πs := {n ∈ Z : γn(θ) = 0}. (12)

We say that a Rayleigh frequency occurs if either πp 6= ∅ or πs 6= ∅, and that Rayleigh frequencies of the
compressional (shear) part are excluded if πp = ∅ (πs = ∅).
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Now, our diffraction problem can be formulated as the following boundary value problem.

Direct problem (DP): Given a grating profile curve Λ ⊂ R2 (which is 2π-periodic in x1) and an incident
field uin of the form (1) or (2), find a vector function u = u(x; θ) = uin + usc ∈ H1

loc(ΩΛ)2 that satisfies
the Navier equation (3), one of the boundary conditions (4) and (5), the quasi-periodicity (7) and the
radiation condition (10).

The inverse problem which involves the near-field measurements u(x1, b) for some fixed b > Λ+ can be
formulated as follows:

Inverse problem (IP): Determine the grating profile Λ from the knowledge of the near-field data u(x1, b; θj)
for all x1 ∈ (0, 2π), j = 1, 2, · · · , N. Here u(x; θj) are solutions of (DP) corresponding to N distinct
incident pressure or shear waves uin of the form (1) or (2) with distinct incident angles θj ∈ (−π

2
, π

2
)

(j = 1, 2, · · · , N).

In this paper we are mainly interested in the following uniqueness questions about (IP):

Let the incident angle θ ∈ (−π
2
, π

2
) be fixed, and let A be the admissible class of grating profiles.

Suppose the two gratings Λ1, Λ2 ∈ A generate the total fields uj (j = 1, 2) for an incident pressure
resp. shear wave of the form (1) resp. (2). Does the relation

u1(x1, b) = u2(x1, b), ∀ x1 ∈ (0, 2π) , for some b > max{Λ+
1 ,Λ

+
2 }

imply Λ1 = Λ2? If not, what kind of geometric characteristics do Λ1 and Λ2 share in order to generate
the same near field on x2 = b ? And how many incident elastic waves are sufficient to uniquely determine
an arbitrary grating profile Λ ∈ A ?

3 A solvability result for (DP)

In this section, we propose an equivalent variational formulation of the boundary value problem (DP)
and give an existence result for the direct problem. Moreover, we construct non-trivial quasi-periodic
solutions of the homogenous boundary value problem when Λ is given by a flat grating, which provide
non-uniqueness examples of (DP).

We restrict the scattering problem to a single bounded periodic cell by introducing an artificial boundary

Γb := {(x1, b) : 0 ≤ x1 ≤ 2π} , b > Λ+ ,

and the bounded domain

Ωb = ΩΛ,b := {(x1, x2) ∈ ΩΛ : 0 < x1 < 2π, x2 < b} ,

lying between the segment Γb and one period of the grating profile curve which we denote by Λ again.
We assume that Λ is a Lipschitz curve, so that Ωb is a bounded Lipschitz domain.

Let the energy space of our variational problem be defined by

Vα = Vα(Ωb) := {u ∈ H1
α(Ωb)

2 : u satisfies (4) or (5) on Λ},

where H1
α(Ωb) denotes the Sobolev space of scalar functions on Ωb which are α-quasi-periodic with

respect to x1. In the following Vα is equipped with the norm of the usual Sobolev space H1(Ωb)
2 of

vector functions.
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Now we introduce the Dirichlet-to-Neumann (DtN) map T on the artificial boundary Γb. Let Hs
α(Γb) and

Hs
per(Γb) denote the Sobolev spaces of order s ∈ R of functions on Γb that are α-quasi-periodic and

periodic respectively. Then, for any u ∈ H1
α(Ωb)

2, we have

v := u|Γb
∈ H1/2

α (Γb)
2 , exp(−iαx1) v ∈ H1/2

per (Γb)
2

from the trace theorem. For any v ∈ H
1/2
α (Γb)

2, we define T v as the traction Tusc on Γb where usc

is the unique α-quasi-periodic solution of the homogenous Navier equation in {x2 > b} which satisfies
(10) and usc = v on Γb.

It follows from the first Betti formula that for u, ϕ ∈ Vα

−
∫

Ωb

(∆∗ + ω2)u · ϕdx =

∫

Ωb

(aL(u, ϕ) − ω2u · ϕ) dx−
∫

Γb

ϕ · Tu ds (13)

where the bar indicates the complex conjugate, and

aL(u, ϕ) = (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+ λ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + µ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) . (14)

Making use of the relation

Tu = T (usc + uin) = T usc + Tuin = T u+ f0 , with f0 := Tuin − T uin ,

we obtain the following variational formulation of (DP): Find u ∈ Vα such that
∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds =

∫

Γb

f0 · ϕds , ∀ ϕ ∈ Vα . (15)

It should be remarked that each variational solution u ∈ Vα(Ωb) of (15) can be extended to a solution
u = uin + usc of the Navier equation (3) for x2 ≥ b via the uniqueness for the exterior Dirichlet problem
(see [13]), and that each solution u ∈ H1

loc(ΩΛ)2 of the boundary value problem (DP) satisfies the
variational problem (15). Thus the problem (DP) and (15) are equivalent. Next we show an existence
result for general incident pressure waves taking the form

uin
(p)(x) =

∑

|αn|<kp

pn

(

αn

−βn

)

exp[i(αnx1 − βnx2)] (16)

with α = kp sin θ, pn ∈ C, or incident shear waves taking the form

uin
(s)(x) =

∑

|αn|<ks

sn

(

γn

αn

)

exp[i(αnx1 − γnx2)] (17)

with α = ks sin θ, sn ∈ C. Note that the incident pressure wave (1) or shear wave (2) is only one term
of the finite sums in (16) or (17).

Theorem 1. Assume that the grating profile Λ is a Lipschitz curve. Then, for all incident elastic waves of
the form (16) or (17), there always exists a solution to the variational problem (15) and hence to problem
(DP).
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Proof. We sketch the proof, referring to [13] for more details. Let the sesquilinear form B(u, ϕ) defined
by

B(u, ϕ) :=

∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds , ∀ u, φ ∈ Vα , (18)

with T u := T (u|Γb
). Problem (15) can be written in the form

Bu = F0 , F0 ∈ V ′
α , (19)

where F0 is given by the right hand side of (15), and the operator B : Vα → V ′
α is defined by the

sesquilinear form (18). By a detailed analysis of the DtN map T , it is verified in [13] that T is the sum of
a finite dimensional operator and an operator T1 satisfying

Re

{

−
∫

Γb

u · T1u ds

}

≥ 0 , ∀ u ∈ H1
α(Ωb)

2 . (20)

This together with Korn’s inequality implies that the sesquilinear formB is strongly elliptic over Vα and the
operator B is always a Fredholm operator with index zero. Therefore, equation (19) is solvable if its right
hand side F0 is orthogonal (with respect to the duality (·, ·)Ωb

extending the scalar product in L2(Ωb)
2)

to all solutions v of the homogenous adjoint equation B∗v = 0. Note that such v can always be extended
to a solution of (3) in the unbounded domain ΩΛ by setting

v(x) =
∑

n∈Z

{

Ap,n

(

αn

−βn

)

exp(i αnx1 − iβnx2) + As,n

(

−γn

−αn

)

exp(i αnx1 − i γnx2)

}

, (21)

for x2 ≥ b, where the Rayleigh coefficients Ap,n, As,n are determined by the n-th Fourier coefficient v̂n

of e−iαx1v|Γb
via the following relation:

v̂n =

(

αn −γn

−βn −αn

) (

Ap,ne
−iβnb

As,ne
−iγnb

)

.

On the other hand, it can be derived from

(B∗v, ψ)Ωb
= (v,Bψ)Ωb

= B(ψ, v) = 0, ∀ψ ∈ Vα (22)

that

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks; (23)

see [13]. This means that v has vanishing Rayleigh coefficients of the incoming modes, and therefore,

v̂n = (0, 0)⊤ for |αn| ≤ kp < ks, v̂n = (αn,−βn)⊤Ap,n exp(−iβnb) for |αn| ≤ ks.

Through direct calculations, we deduce that f0 := Tuin − T uin takes the form

f0 =
∑

|αn|<kp

pn
2iβnkp(λ+ 2µ)

α2
n + βnγn

(

−αn

γn

)

e−iβnbeiαnx1 =:
∑

|αn|<kp

hne
iαnx1
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for the incident pressure wave uin
(p) defined in (16), which leads to

F0(v) =

∫

Γb

f0 · vds = 2π
∑

|αn|<kp

hn · v̂n = 0.

For the incident shear wave uin
(s) defined in (17), we obtain

f0 =
∑

|αn|<ks

sn
−2iγnksµ

α2
n + βnγn

(

βn

αn

)

e−iγnbeiαnx1 :=
∑

|αn|<ks

gne
iαnx1,

so that

F0(v) =

∫

Γb

f0 · vds = 2π
∑

|αn|<ks

gn · v̂n

= 2π
∑

|αn|<ks

sne
−iγnb −2iγnksµ

α2
n + βnγn

(

βn αn

)

· Ap,ne
iβnb

(

αn

−βn

)

= 0.

Therefore, the right hand side of equation (19) is always orthogonal to each solution of (22). Applying the
Fredholm alternative completes the proof. 2

It is shown in [13] that uniqueness holds for the Dirichlet problem if Λ is given by the graph of a Lipschitz
function. However, the uniqueness for the third or fourth kind boundary value problem is not valid even if Λ
can be represented by a smooth function. This can be seen from the scattering problem for flat gratings;
see the following theorem.

Theorem 2. Assume Λ := {x2 = a}, and let u satisfy the Rayleigh expansion (10) in x2 > a.

(i) If u satisfies the boundary conditions of the third kind (4) on Λ, then

u = c1e1 exp(ikpx1) + c2e1 exp(−ikpx1).

(ii) If u satisfies the boundary conditions of the fourth kind (5) on Λ , then

u = c3e2 exp(iksx1) + c4e2 exp(−iksx1).

Here cj ∈ C (j = 1, 2, 3, 4) are constants, e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Proof. We assume the boundary conditions of the third kind, n · u = τ · Tu = 0, are imposed on Λ.
Since n = (0, 1)⊤, τ = (−1, 0)⊤ on {x2 = a}, these boundary conditions take the form

u2 = 0 and ∂2u1 = 0 on Λ. (24)

Inserting the Rayleigh expansion (10) into the conditions (24) and using the fact that {exp(iαnx1), n ∈
Z} is an orthogonal basis of L2(0, 2π), we obtain

(

βn −αn

iαnβn iγ2
n

) (

Ap,ne
iβna

As,ne
iγna

)

= 0 for n ∈ Z. (25)

Since γ2
n +α2

n = k2
s 6= 0, ∀n ∈ Z, it follows from (25) thatAs,n = Ap,n = 0 if βn 6= 0, and As,n = 0 if

βn = 0. In view of the definition of βn (see (11)), we can complete the proof in the case of the third kind
boundary conditions. Noting that the boundary conditions of the fourth kind on {x2 = a} can be written
as u1 = 0 and ∂2u2 = 0 on Λ, we can prove the second assertion analogously. 2

Remark 1. If Λ := {x2 = a}, then the problem (DP) admits a unique solution if Rayleigh frequencies of
the compressional (resp. shear) part are excluded under the third (resp. fourth) kind boundary conditions.
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4 Inverse scattering by flat gratings

We begin with introducing some notations that will be used throughout the following sections.

1. A#: the number of elements in a set A.

2. |A1A2|: the length of a line segment A1A2 with end points A1, A2 ∈ R2.

3. |c|: the modulus of a number c ∈ C; ||x||: the Euclidean norm of a vector x ∈ R
2.

4. Rl: the reflection with respect to a line l in R2.

5. R′
l: the reflection with respect to the line l′ that passes through the origin O and is parallel to l.

Theorem 3. Let Λj := {x2 = bj} where bj is a constant satisfying |bj | < b (j = 1, 2), and assume
that uj := uj(x; θ) satisfies problem (DP) corresponding to the profile Λj . If

u1(x; θm) = u2(x; θm) on x2 = b (26)

holds for 2B# + 1 incident pressure (shear) waves of the form (1)((2)) with distinct incident angles θm ∈
(−π

2
, π

2
) (m = 1, 2, · · · , 2B# + 1), then b1 = b2. Here

B :=

{

n ∈ Z : |n| < 2bk

π

}

(27)

with k = kp for an incident pressure wave or k = ks for an incident shear wave.

Proof. Suppose the total fields uj satisfy the boundary conditions of the fourth kind on Λj (j = 1, 2), and
assume uin is the incident pressure wave defined in (1). We shall prove the theorem by contradiction.
Assume that b1 6= b2. Following the proof of Theorem 2, we can derive that

uj(x) = θ̂eikpx·θ̂ −
(

sin θ
cos θ

)

ei(αx1+β(x2−2bj) +
∑

γn=0

A(j)
s,n

(

0
−αn

)

eiαnx1, in x2 > bj (28)

for j = 1, 2. Substituting (28) into (26) gives

eiβ(b−2b1) = eiβ(b−2b2), and A(1)
s,n = A(2)

s,n if γn = 0,

which implies the relation

b2 − b1 =
π

β
m =

π

kp cos θ
m, for some m ∈ Z.

Since b2 − b1 < 2b, m must belong to the set B defined in (27) with k = kp. Thus, it is clear from
(26) that for each incident angle θm, there exists some nm ∈ B. Moreover nm1

= nm2
if and only if

θm1
= θm2

or θm1
= −θm2

. Therefore, if (26) holds for 2B# + 1 incident waves with distinct incident
angles, then B contains at least B# + 1 elements, which is impossible. The other cases can be proved
by a similar argument. 2

Remark 2. It follows from B# → ∞ as k → ∞ or b→ ∞ that a fixed number of incident elastic waves
is not sufficient to uniquely determine an arbitrary flat grating, since the corresponding counterexamples
can be readily constructed from the proof of Theorem 3. In fact, if the number of incident pressure waves
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is N ∈ N, then in the case of the fourth kind boundary conditions, we may choose the grating profiles
Λ1 = {x2 = 0},Λ2 = {x2 = π}, take kp > N , and let ks and the incident angles θj (j = 1, 2 · · · , N)
satisfy

θj > 0, cos θj =
j

kp

, γn(θj) 6= 0, for j = 1, 2 · · · , N, ∀n ∈ Z.

It follows from (28) that the total fields u
(m)
j (x) corresponding to θj (j = 1, 2 · · · , N), Λm (m = 1, 2)

can be written as

u
(1)
j (x) =

(

sin θj

− cos θj

)

eikp(x1 sin θj−x2 cos θj) −
(

sin θj

cos θj

)

eikp(x1 sin θj+x2 cos θj),

u
(2)
j (x) =

(

sin θj

− cos θj

)

eikp(x1 sin θj−x2 cos θj) −
(

sin θj

cos θj

)

eikp(x1 sin θj+(x2−2π) cos θj).

Moreover, it can be verified from kp cos θj ∈ N that

u
(1)
j (x1, b; θj) = u

(2)
j (x1, b; θj), ∀ b > π, j = 1, 2 · · · , N.

Thus N incident plane pressure waves are not enough to uniquely determine a flat grating under the
fourth kind boundary conditions. The counterexamples for the other cases can be constructed similarly.
This implies that the global uniqueness by finitely many incoming plane elastic waves is impossible for
general periodic gratings.

To prove global uniqueness for the inverse problem, we therefore exclude flat gratings by defining the
following admissible class of periodic grating profiles:

A :=















(x1, f(x1)) :

f(x1) is a piecewise linear function satisfying f(x1 + 2π) = f(x1)
and maxx1∈R{f(x1)} < b. The graph of f(x1) consists of finitely
many line segments in [0, 2π] and is not a straight line parallel
to the x1-axis.















.

5 Auxiliary lemmas

The following two lemmas play an important role in this paper; the first one is related to properties of
almost periodic functions and can be found in [12] (see also [9] for a new proof), while the second one on
the reflection principle for the Navier equation is the main tool of this paper.

Lemma 1. Let aj ∈ C2, and let λj ∈ R be distinct numbers (j = 1, 2, · · · , n). If

n
∑

j=1

aj exp(iλjt) = 0, ∀ t ∈ R,

then aj = (0, 0)⊤, j = 1, 2, · · · , n.
Definition 1. Let S ⊂ ΩΛ be a ray starting from one point and leading to infinity in {x2 > b} for b > Λ+.
If u satisfies the boundary conditions of the third (fourth) kind on S, then S is called a third (fourth) kind
ray of u. Similarly, S is called a third (fourth) kind line of u if S is a straight line on which u satisfies the
corresponding conditions.
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Lemma 2. (Reflection principle for the Navier equation) Let Ω be a symmetric domain with respect to
a line l, and let l̃ ⊂ Ω be a subset of another line such that Rl(l̃) ⊂ Ω. Assume u ∈ H1(Ω)2 satisfies
the Navier equation △∗u+ ω2u = 0 in Ω.

(i) If u satisfies the boundary conditions of the fourth kind, τ · u = n · Tu = 0 on l ∩ Ω, then

u(x) + R′
l(u(Rl(x))) = 0 in Ω. (29)

(ii) If u satisfies the boundary conditions of the third kind, n · u = τ · Tu = 0 on l ∩ Ω, then

u(x) − R′
l(u(Rl(x))) = 0 in Ω. (30)

In particular, if l̃ is a fourth (third) kind line of u in the case (i) ((ii)), then Rl(l̃) is also a fourth (third)
kind line of u.

Remark 3. The original version of the reflection principle for the Navier equation can be found in [17],
which is proved in the three dimensional case when the domain Ω is symmetric with respect to the x1x2-
plane. The proof readily carries over to the two dimensional domain Ω in the above lemma. Note that the
relations (29) and (30) are similar to those given in [21, 22] for the Maxwell equations.

In the following, we denote by uj(x; θ) the corresponding total fields for (DP) associated with the profiles
Λj := {x2 = fj(x1)} ∈ A (j = 1, 2), and assume b > max{Λ+

1 ,Λ
+
2 }.

Lemma 3. If the relation u1(x1, b; θ) = u2(x1, b; θ), ∀x1 ∈ (0, 2π), holds for two different grating
profiles Λ1,Λ2 ∈ A, then

(i) Under the boundary conditions of the third (fourth) kind, there always exists a third (fourth) kind ray of
both u1 and u2. Moreover, this ray is non-parallel to the coordinate axes.

(ii) Both the total fields uj = uin + usc
j , j = 1, 2, can be reduced to a finite sum of propagating waves,

i.e.,

u1 = u2 = uin +
∑

|αn|≤kp

Ap,n

(

αn

βn

)

ei(αnx1+βnx2) +
∑

|αn|≤ks

As,n

(

γn

−αn

)

ei(αnx1+γnx2) (31)

for x2 > max{Λ+
1 ,Λ

+
2 }.

Proof. (i) Since Λj is piecewise linear and uj ∈ H1
loc(ΩΛj

)2, from the standard elliptic regularity theory
it follows that uj is infinitely smooth up to Λj except for the corner points and is real-analytic in ΩΛj

.
It follows from the assumption u1(x1, b; θ) = u2(x1, b; θ), ∀x1 ∈ (0, 2π), and the uniqueness of the
Dirichlet problem (see [3, 13]) that u1 = u2 for x2 ≥ b. By the unique continuation of solutions to the
Navier equation, we have

u1 = u2 for x2 > max{Λ+
1 ,Λ

+
2 }. (32)

Relying on the analyticity of uj and the reflection principle for the Navier equation, the ’exit’ ray mentioned
in assertion (i) can always be found if Λ1 6= Λ2 and Λj (j = 1, 2) are given by the graphs of piecewise
linear functions. We refer to [15] for the details in the case of the Helmholtz equation with the Dirichlet
or Neumann boundary condition, and the argument can be carried over to the Navier equation with the
boundary conditions of the third or fourth kind.
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(ii) Following [15], we prove the second assertion under the fourth kind boundary conditions. The proof
under the third kind boundary conditions is analogous. By the identity (32), we can write

u(x) = u1(x) = u2(x) = I(x) +
∑

|αn|>kp

Ip,n(x) +
∑

|αn|>ks

Is,n(x)

for all x1 ∈ R and x2 > max{Λ+
1 ,Λ

+
2 }, where

Ip,n(x1, x2) := Ap,n(αn, βn)⊤ei(αnx1+βnx2), Is,n(x1, x2) := As,n(−γn, αn)⊤ei(αnx1+γnx2),

I(x1, x2) := uin(x1, x2) +
∑

|αn|≤kp

Ip,n(x1, x2) +
∑

|αn|≤ks

Is,n(x1, x2).

Without loss of generality, we let l := {x2 = kx1 : x1 > 0}, for some k 6= 0, be the fourth kind ray
involved in assertion (i), on which u satisfies τ · u = n · Tu = 0 with τ = 1√

1+k2
(1, k). We then have

0 = τ · u|l = τ · I(x1, kx1) +
∑

|αn|>kp

τ · Ip,n(x1, kx1) +
∑

|αn|>ks

τ · Is,n(x1, kx1), ∀x1 > 0. (33)

Noting that τ · I(x1, kx1) is an almost periodic function on R+ , and τ · Ip,n(x1, kx1) for |αn| > kp,
τ · Is,n(x1, kx1) for |αn| > ks are exponentially decaying functions as x1 → +∞, we obtain from (33)
that (see, e.g., [12, P. 407] concerning the first equality )

max
x1∈R+

|τ · I(x1, kx1)| = lim sup
x1→+∞

|τ · I(x1, kx1)|

= lim sup
x1→+∞







∑

|αn|>kp

τ · Ip,n(x1, kx1) +
∑

|αn|>ks

τ · Is,n(x1, kx1)







≤ ǫ,

for any ǫ > 0. Thus τ · I(x1, kx1) ≡ 0. This together with (33) implies that
∑

|αn|>kp

Ap,n(αn + ik|βn|)eiαnx1−|βn|kx1 +
∑

|αn|>ks

As,n(−i|γn| + kαn)eiαnx1−|γn|kx1 = 0, (34)

for all x1 > 0. LetA∗ = min{inf |αn|>kp
{|βn|}, inf |αn|>ks

{|γn|}}. Then there exist at most four different
indices n1, n2, m1, m2 ∈ Z such that

βn1
= βn2

= γm1
= γm2

= iA∗, αn1
= −αn2

> kp, αm1
= −αm2

> ks.

Multiplying (34) by exp(A∗kx1) and letting x1 → +∞, we obtain

0 = Ap,n1
(αn1

+ ikA∗) exp(iαn1
x1) + Ap,n2

(−αn1
+ ikA∗) exp(−iαn1

x1)

+As,m1
(−iA∗ + kαm1

) exp(iαm1
x1) + As,m2

(−iA∗ − kαm1
) exp(−iαm1

x1)

for x1 > 0. Since exp(±iαn1
x1), exp(±iαm1

x1) are linearly independent functions and k is non-zero,
we obtain that

Ap,n1
= Ap,n2

= As,m1
= As,m2

= 0.

Setting A∗∗ = min{inf |βn|>A∗{|βn|}, inf |γn|>A∗{|γn|}} and repeating the argument above, we see
that Ap,n = 0 for |αn| > kp and As,n = 0 for |αn| > ks. 2
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6 Inverse scattering of incident pressure waves

In this section, the uniqueness of inverse scattering of incident pressure waves by one-dimensional
diffraction gratings is investigated. Throughout this section, we make the following assumptions:

(A1) The incident wave is the incident pressure wave defined in (1), i.e. uin := θ̂ exp (ikpx · θ̂) with
some fixed incident angle θ ∈ (−π

2
, π

2
).

(A2) Λ1,Λ2 ∈ A are two different grating profiles. Furthermore, without loss of generality we suppose
that one of the profiles Λ1,Λ2 has a corner point at the origin O = (0, 0).

(A3) u1(x; θ) = u2(x; θ) holds on Γb.

By Lemma 3 (ii), we have u = u1 = u2 on R2. Let Λ denote one of the profiles Λj (j = 1, 2), and
define (α, β) := (α0, β0) = (kp sin θ, kp cos θ).

6.1 Rotational invariance

In this subsection, based on the reflection principle for the Navier equation, we will prove that the total
field u of (31) remains rotationally invariant, and then use such invariance to determine the finite number
of propagating directions and Rayleigh coefficients of the compressional part, whereas the shear part of
the total field is proved to be empty.

Since both the normal vector n and the tangential vector τ on a straight line are constant vectors, and
since by Lemma 3 (ii) u is an analytic function in R2, each line segment of Λ can be extended to a
third (fourth) kind line of u in R2. Thus, by the definition of A, there exist at least two third (fourth) kind
lines, say L1 and L2, extending two line segments of Λ. Furthermore, both L1 and L2 are not parallel
to the x2-axis since each element of A is given by the graph of a function. By assumption (A2), we may
suppose L1 ∩ L2 = O, and then u takes the form

u =
∑

n∈P

Ap,nPn exp(ix · Pn) +
∑

n∈S

As,nS⊥
n exp(ix · Sn) in R

2, (35)

where

P := {n ∈ Z : |αn| ≤ kp, Ap,n 6= 0} ∪ {κ}, S := {n ∈ Z : |αn| ≤ ks, As,n 6= 0},

Pn = (αn, βn)⊤ for n ∈ P\{κ}, Pκ = (α,−β)⊤, Sn = (αn, γn)
⊤ for n ∈ S, Ap,κ = 1

kp
.

For convenience we introduce the following notations:

P = {Pn : n ∈ P}, S = {Sn : n ∈ S}.

Note that P consists of a finite number of upward propagating directions of the compressional part of u,
{Pn : n ∈ P\{κ}}, as well as the incident direction Pκ, whereas S consists of finitely many upward
propagating directions of the shear part of u.

Remark 4. (i) By the definitions of αn, βn and γn (see (11)), we have that P ⊂ Bkp
(O) and S ⊂

Bks
(O), where Br(O) := {x ∈ R2 : ||x|| = r} denotes the circle centered at the origin O with radius

r.
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(ii) Since the plane pressure wave of the form (1) is taken as an incident wave, Pκ is the unique element
in P whose x2-component is negative. Moreover, if πp = ∅, then each element of P but Pκ has a
positive x2-component; and if πp 6= ∅, at most two elements of P , (kp, 0) and (−kp, 0), have vanishing
x2-components. The x2-components of the elements in S are all positive if πs = ∅, while (ks, 0) or
(−ks, 0) belongs to S if πs 6= ∅. Recall that πp and πs are defined in (12).

By the α-quasi-periodicity of solutions of (DP), we arrive at

Lemma 4. If (−α, β) ∈ P , then 2kp sin θ ∈ Z. If (±kp, 0) ∈ P , then kp(1 ∓ sin θ) ∈ Z. Finally, if
{(−α, β), (kp, 0), (−kp, 0)} ⊂ P , then kp(1 + sin θ) ∈ Z and kp(1 − sin θ) ∈ Z.

Define

D =







l :
l is a line that passes through the origin O. Furthermore, l is a
third (fourth) kind line of u corresponding to the boundary
conditions of the third (fourth) kind on the grating profile.







.

Obviously, we have D# ≥ 2 since L1, L2 ∈ D. Next we derive some important properties of D by
the reflection principle. The following lemma tells us that D# < ∞ and the angles formed by every two
neighboring lines of D are all equal.

Lemma 5. D consists of a finite number of lines which form an equi-angular system of lines in R
2.

Proof. We refer to [9] or [14] for the proof in the case of the Maxwell and Helmholtz equations. Note that
the result is already implicitly contained in [15] and [16]. 2

For all l ∈ D, the reflection Rl can be represented via an orthogonal matrix such that Rl(x)·y = x·Rl(y).
Thus, it follows from the reflection principle that

0 =
∑

n∈P

Ap,n [Pn exp(ix · Pn) ± Rl(Pn) exp(ix · Rl(Pn))]

+
∑

n∈S

As,n

[

S⊥
n exp(ix · Sn) ± Rl(S⊥

n ) exp(ix · Rl(Sn))
]

holds in R2, where + or − is taken for the fourth or third kind boundary conditions, respectively. In view
of Lemma 1, the following lemma can be readily derived from the above identity.

Lemma 6. Assume l ∈ D.

(i) Rl(P) = P , Rl(S) = S.

(ii) If Rl(Pn) = Pm for n,m ∈ P , then

Ap,n + Ap,m = 0 resp. Ap,n −Ap,m = 0

under the boundary conditions of the fourth resp. third kind.

If Rl(Sn) = Sm for n,m ∈ S, then

As,n Rl(S⊥
n ) + As,mS⊥

m = 0 resp. As,n Rl(S⊥
n ) − As,mS⊥

m = 0

under the boundary conditions of the fourth resp. third kind.
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(iii) In the case of the fourth kind boundary conditions, Rl(Pn) 6= Pn for all n ∈ P , and in particular,
Rl(Pκ) 6= Pκ for the incident direction Pκ = (α,−β)⊤. In the case of the third kind boundary
conditions, Rl(Sn) 6= Sn for all n ∈ S.

Let Rotϕ be the rotation around the origin O by the angle ϕ, and let Refϕ be the reflection about the
line L through the origin which makes an angle ϕ with the positive x1-axis. Both Rotϕ and Refϕ can
be represented via orthogonal matrices. With these definitions and representations, the following identity
can be justified:

Refϕ1
Refϕ2

= Rot2(ϕ1−ϕ2). (36)

Lemma 7. (Rotational invariance) We have that

Rot 2π

D#
(u(x)) = u(Rot 2π

D#
(x)), Rot 2π

D#
(P) = P, Rot 2π

D#
(S) = S.

Proof. It follows from Lemma 5 that the angle formed by every two neighboring lines of D is π
D# . Thus,

by (36) we may choose two neighboring lines of D, l1 and l2, such that

Rot 2π

D#
(x) = Rl1Rl2(x) ∀ x ∈ R

2.

Since u is analytic in R
2, applying the reflection principle twice leads to

u(Rot 2π

D#
(x)) = u(Rl1Rl2(x)) = ∓Rl1(u(Rl2(x))) = ∓∓ Rl1Rl2(u(x)) = Rot 2π

D#
(u(x)). (37)

Therefore, the total field u remains rotationally invariant in the sense of (37), which together with Lemma
1 implies the relations Rot 2π

D#
(P) = P,Rot 2π

D#
(S) = S. 2

Remark 5. Combining Lemma 6 (i) and Lemma 7, we obtain that

GP := {Rot 2jπ

D#
(P) : j = 1, 2, · · · , D#} ⊂ P, ∀P ∈ P, (38)

GS := {Rot 2jπ

D#
(S) : j = 1, 2, · · · , D#} ⊂ S, ∀S ∈ S. (39)

In addition, if Rot 2jπ

D#
(Pn) = Pm for some n,m ∈ P , or Rot 2jπ

D#
(Sn) = Sm for some n,m ∈ S,

1 ≤ j ≤ D#, then it holds that

Ap,m Pm = Ap,n Rot 2jπ

D#
(Pn), or As,m S⊥

m = As,n Rot 2jπ

D#
(S⊥

n ).

Lemma 8. The total field only consists of the compressional part, or equivalently, S = ∅.

Proof. For all S ∈ S, the set GS defined in (39) consists of the vertices of some D#-sided regular
polygon centered at the origin. IfD# ≥ 3, then one element of GS must have a negative x2-component,
which is impossible due to Remark 4 (ii). Thus D# = 2, i.e., D = {L1, L2} with L1⊥L2, where Lj

(j = 1, 2) are two third (fourth) kind lines extending two line segments of Λ. Recalling that Rotπ(S) = S
if D# = 2, and that the second components of the elements in S are all non-negative, we obtain that
S = {(ks, 0), (−ks, 0)}. It is seen from RLj

(S) = S (j = 1, 2) (Lemma 6 (i)) that one of the lines
L1, L2 must be parallel to the x2-axis, contradicting the fact that Λ is given by the graph of a function.
Thus S = ∅. 2

It follows from the proof of Lemma 8 that we may have S = {(ks, 0), (−ks, 0)} for polygonal grating
profiles which are not necessarily given by the graphs of piecewise linear functions. By Lemma 8, we only
need to consider the elements in P , which remain invariant under the rotation Rot 2π

D#
.
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Lemma 9. (i) If D# = 2, then

(a) Under the boundary conditions of the third kind,

P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}, if πp 6= ∅,
P = {(α,−β), (−α, β)}, if πp = ∅.

(b) Under the boundary conditions of the fourth kind,

πp 6= ∅, P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}.

(ii) If D# ≥ 3, then P = GPκ
:= {Rot 2nπ

D#
(Pκ) : n = 1, 2, · · · , D#}.

Here πp := {n ∈ Z : βn(θ) = 0}.

Proof. (i) Assume D# = 2. The assertion (i) (a) follows directly from Remark 4 (ii) and the fact that
Rotπ(P) = −P ∈ P for any P ∈ P . To prove (i) (b), we only need to exclude the case πp = ∅. By
Lemma 5 (ii), we may assume D = {L1, L2} with L1⊥L2. If πp = ∅, then P = {(α,−β), (−α, β)}.
Thus, we obtain from RLj

(P) = P (j = 1, 2) that one of the lines L1, L2 must pass through Pκ, which
contradicts Lemma 6 (iii). This proves the first assertion.

(ii) Note that GPκ
consists of the vertices of some D#-sided regular polygon centered at the origin. If

there exists some P ∈ P\GPκ
, then at least one element ofGP has a negative x2-component ifD# ≥ 3.

However, this is impossible sinceGPκ
∩GP = ∅ and only Pκ ∈ GPκ

⊂ P has a negative x2-component,
−β. 2

We proceed to investigate D#. Denote the straight line which passes through the origin and makes the
angle ϕ with the positive x1-axis by

Lϕ := {(t cosϕ, t sinϕ) : t ∈ R, ϕ ∈ [0, 2π)}.

Lemma 10. (i) In the case of the boundary conditions of the third kind, 2 ≤ D# ≤ 4.

(ii) In the case of the boundary conditions of the fourth kind, D# = 2.

Proof. (i) If D# ≥ 5, then P = GPκ
by Lemma 9 (ii), and thus there are at least two elements of GPκ

,
each of which has a negative x2-component. However, this contradicts Remark 4 and proves the lemma
in the case of the third kind boundary conditions.

(ii) Under the boundary conditions of the fourth kind, we exclude the casesD# = 3 andD# = 4, using
the fact that Rl(P) 6= P for any P ∈ P, l ∈ D (see Lemma 6 (iii)), i.e., each line of D does not pass
through a point of P .

If D# = 3, then by Lemma 9, P = {Pκ,Rot 2π
3
(Pκ),Rot 4π

3
(Pκ)}. Since Rl(P) = P for all l ∈ D, we

obtain that

D = {Lθ−π
2
, Lθ+ π

6
, Lθ+ 5π

6
}, (40)

noting that the angle formed by the vector
−−→
OPκ and the positive x1-axis is θ − π

2
. This implies that each

line of D goes through a point of P , which is impossible.
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IfD# = 4, thenP = {Pκ,Rotπ
2
(Pκ),Rotπ(Pκ),Rot−π

2
(Pκ)}. Since only one element, Pκ = (α,−β) =

kp(sin θ,− cos θ), has a negative x2-component, we have

θ = 0, P = {(0, kp), (−kp, 0), (kp, 0), (0,−kp)}, (41)

which together with Lemma 5 and Lemma 6 (i) gives that

D = {L0, Lπ
4
, L−π

4
, Lπ

2
}. (42)

Hence, the elements belonging to P are all located on the equi-angular system formed by the lines in D.
This is again a contradiction. The proof of the lemma is thus complete. 2

Remark 6. Under the boundary conditions of the third kind, the elements of D are already given in (40)
for D# = 3, and in (42) for D# = 4, respectively. An argument similar to the proof of Lemma 10 (ii)
can be employed to determine the elements ofD whenD# = 2. More precisely, in the case ofD# = 2,
we deduce from Lemma 9 (i) and RL(P) = P , ∀L ∈ D, that

D =

{ {Lθ, Lθ+ π
2
} if P = {(α,−β), (−α, β)},

{L θ
2
+ π

4
, L θ

2
−π

4
} if P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}. (43)

6.2 Uniqueness under the boundary conditions of the fourth k ind

Define a class of unidentifiable polygonal grating profiles D2(θ, kp) by

D2(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined
by x2 = x1 tanϕ+ 2π

kp cos θ
n, ∀x1 ∈ R, for some n ∈ Z

with ϕ ∈ { θ
2

+ π
4
, θ

2
− π

4
}.







if kp(1 ± sin θ) ∈ Z, and by D2(θ, kp) := ∅ otherwise. Suppose A1A2 is a line segment of Λ ∈
D2(θ, kp) connecting two corner points A1 and A2, and ϕ ∈ [−π

2
, π

2
) is the angle formed by A1A2 and

the positive x1-axis. It follows from the definition of D2(θ, kp) that either ϕ = θ
2

+ π
4

or ϕ = θ
2
− π

4
.

If ϕ = θ
2
± π

4
, then it can be derived that |A1A2| = π

k cos( θ
2
±π

4
)
n± for some n± ∈ N. Moreover,

D2(θ, kp) 6= ∅ for all kp and θ satisfying kp(1 ± sin θ) ∈ Z (see Lemma 11), and a Rayleigh frequency
of the compressional part always occurs in this case.

Let us now give the main theorem for the fourth kind boundary conditions.

Theorem 4. Let Λ1,Λ2 ∈ A such that one corner point of Λ1 or Λ2 is located at the origin. Assume the
boundary conditions of the fourth kind are imposed on Λj, j = 1, 2. If the relation

u1(x1, b; θ) = u2(x1, b; θ), ∀ x1 ∈ (0, 2π) (44)

holds for one incident pressure wave with incident angle θ ∈ (−π
2
, π

2
), then one of the following cases

must occur:

(i) Λ1 = Λ2.

(ii) Λ1,Λ2 ∈ D2(θ, kp), πp = ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂) − θ̂ exp(−ikpx · θ̂) − e1 exp(ikpx1) + e1 exp(−ikpx1) in R
2, (45)

where u = uj (j = 1, 2), e1 = (1, 0)⊤.
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Proof of Theorem 4. Assuming Λ1 6= Λ2 and relying on the reflection principle and the rotational in-
variance of the propagating directions of the compressional part, we shall prove the second assertion. It
follows from Lemma 8 that S = ∅, and from Lemmas 9 and 10 and Remark 6 that πp 6= ∅, D# = 2
under the fourth kind of boundary conditions. More specifically, we have

D = {L θ
2
+ π

4
, L θ

2
−π

4
} and P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}. (46)

Furthermore, by Lemmas 5 and 6, we obtain that each line of D does not pass through a point of P ,
Rl(P) = P for all l ∈ D, and that L θ

2
+ π

4
⊥L θ

2
−π

4
, implying

{Rl(Pκ) : l ∈ D} = {Rl(−Pκ) : l ∈ D} = {(kp, 0), (−kp, 0)}, Rotπ(Pκ) = −Pκ. (47)

Note that Pκ = (α,−β) = (α0,−β0) = kpθ̂. In view of Lemma 3 (ii) and Lemma 6 (ii), the identities
in (47) give rise to the desired explicit representation (45) for both u1 and u2. It remains to prove Λ1,Λ2 ∈
D2(θ, kp).

Denote by l := {x ∈ R2 : x2 = kx1 + c} a straight line extending some line segment of Λ (Λ = Λ1

or Λ2). Then the solution u defined in (45) satisfies the boundary conditions of the fourth kind on l, and
thus by the reflection principle,

u(x) + Rl′(u(Rl(x))) = 0 in R
2,

where l′ := {x ∈ R2 : x2 = kx1}. By a coordinate translation, we find that the function v(x) :=
u(x1, x2 + c) satisfies the Navier equation with the fourth kind boundary conditions on l′, and thus

v(x) + Rl′(v(Rl′(x))) = 0 in R
2.

This together with Lemma 14 gives the relation Rl′(P) = P . Recalling the elements in P , we obtain that
l′ coincides with one of the lines L θ

2
+ π

4
, L θ

2
−π

4
. On the other hand, since v can be written as

v(x) = θ̂ exp(ikpx · θ̂) exp(−iβc) − θ̂ exp(−ikpx · θ̂) exp(iβc)

−e1 exp(ikpx1) + e1 exp(−ikpx1),

combining the first identity in (47) and Lemma 6 (ii) yields that exp(iβc) = exp(−iβc) = 1, or
equivalently,

c =
2π

β
n =

2π

kp cos θ
n, for some n ∈ Z.

To summarize, we have deduced that l can be represented as

l =

{

x ∈ R
2 : x2 = x1 tanϕ+

2π

kp cos θ
n for some n ∈ Z with ϕ ∈ {θ

2
+
π

4
,
θ

2
− π

4
}
}

.

Finally, it is seen from Lemma 4 and (46) that kp(1 ± sin θ) ∈ Z, which finishes the proof of Λ1,Λ2 ∈
D2(θ, kp). The proof of the theorem is complete. 2

It is seen from the proof of Theorem 4 that each element of D2(θ, kp) generates the same total field
of the form (45). In the following, we will show that, for each angle θ satisfying kp(1 ± sin θ) ∈ Z,
D2(θ, kp) contains at least two elements, and thus the corresponding counterexample to uniqueness
with one incident pressure wave can be constructed .
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Lemma 11. For all kp and θ satisfying kp(1 ± sin θ) ∈ Z, D2(θ, kp) is not empty and contains at least
two different grating profiles.

Proof. Let ϕ1 = θ
2

+ π
4

, ϕ2 = θ
2
− π

4
, and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2)

defined by

Λ1 : x2 =

{

x1 tanϕ1 x1 ∈ (0, T1),
(x1 − 2π) tanϕ2 x1 ∈ [T1, 2π)

with T1 =
2π tanϕ2

tanϕ2 − tanϕ1
,

Λ2 : x2 =

{

x1 tanϕ2 x1 ∈ (0, T2),
(x1 − 2π) tanϕ1 x1 ∈ [T2, 2π)

with T2 =
2π tanϕ1

tanϕ1 − tanϕ2
.

It is easy to verify by using tan ϕ
2

= (1 − cosϕ)/ sinϕ that

kp cos θ tan(
θ

2
± π

4
) = kp cos θ

1 − cos(θ ± π
2
)

sin(θ ± π
2
)

= kp(1 ± sin θ) ∈ Z,

which implies that both Λ1 and Λ2 belong to D2(θ, kp). Thus there exist at least two grating profiles in
D2(θ, kp) if both kp(1 + sin θ) and kp(1 − sin θ) are integers. 2

Essentially, given kp and θ satisfying kp(1 ± sin θ) ∈ Z, if Λ is 2π-periodic with respect to x1-direction
and lies on the rectangular grids generated by the 2π-periodic extensions of x2 = x1 tan( θ

2
± π

4
), then

Λ ∈ D2(θ, kp) (see Figure 1). The elements in D2(θ, kp) provide non-uniqueness examples for the
inverse problem with the fourth kind boundary conditions.

−4*pi −2*pi 0 2*pi 4*pi

−10

−5

0

5

10

Figure 1: D2(θ, kp) with θ = −π
6
, kp = 2.

Counterexample 1 Under the boundary conditions of the fourth kind, one incident pressure wave is not
enough to uniquely determine Λ ∈ A.

Let Λ1 and Λ2 be the grating profiles defined in the proof of Lemma 11 with θ = −π/6 and kp = 2; see
Figure 1. Then the total fields

u1(x) = u2(x) =

( −1/2

−
√

3/2

)

ei(−x1−
√

3x2) +

(

1/2√
3/2

)

ei(x1+
√

3x2) −
(

−1
0

)

e−2ix1 −
(

1
0

)

e2ix1
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satisfy the fourth kind boundary conditions on both Λ1 and Λ2, the α-quasi-periodicity condition with
α = kp sin θ = −1 and the Rayleigh expansion (10). Thus the near-field data u(x1, b) from one incident
plane pressure wave is not sufficient to determine Λ ∈ A uniquely.

Remark 7. Let Λ ∈ A have one corner point at the origin. The following results can be obtained directly
from Theorem 4.

(i) Given the a priori information that Λ does not belong to D2(θ, kp), the data of the total field on Γb from
one incident pressure wave (with the incident angle θ) are always enough to uniquely determine
Λ.

(ii) Consider a fixed incident angle θ ∈ (−π
2
, π

2
). If D2(θ, kp) = ∅, then one incident pressure wave with

the incident angle θ uniquely determines Λ ∈ A. Note that D2(θ, kp) = ∅ if one of the numbers
kp(1 + sin θ), kp(1 − sin θ) is not an integer. In particular, if πp = ∅, then both kp(1 + sin θ)
and kp(1− sin θ) are not integers. Thus, one incident pressure wave is always enough if Rayleigh
frequencies of the compressional part are excluded.

(iii) Two incident pressure waves are sufficient to uniquely determine Λ ∈ A since

D2(θ1, kp) ∩ D2(θ2, kp) = ∅, θ1 6= θ2.

6.3 Uniqueness under the boundary conditions of the third ki nd

Before stating the main theorem for the third kind boundary conditions, we define the following three
classes of polygonal periodic structures. If 2kp sin θ ∈ Z, N2(θ, kp) is defined by

N2(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined by
x2 = x1 tan θ + π

kp cos θ
n, ∀x1 ∈ R, for some n ∈ Z, or

x2 = x1 tan(θ + π
2
) + c for some c ∈ R.







,

and if 2kp sin θ /∈ Z, N2(θ, kp) := ∅. The set N3(θ, kp) is defined by

N3(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined by
x2 = x1 tanϕ+ 2π

kp

√
3 cos ϕ

n, ∀x1 ∈ R, for some n ∈ Z

with ϕ ∈ {θ + 5π
6

, θ + π
6
, θ − π

2
}.







,

if θ ∈ [−π
6
, π

6
] and kp

√
3 sin(π

6
± θ) ∈ Z, and by N3(θ, kp) := ∅ otherwise. Finally,

N4(0, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined by
x2 = ±x1 + 2π

kp
n, ∀x1 ∈ R, for some n ∈ Z or x2 = π

kp
m

for some m ∈ Z.







if θ = 0 and kp ∈ Z, and N4(0, kp) := ∅ otherwise.

Theorem 5. Let Λ1,Λ2 ∈ A be such that one of the profiles Λ1,Λ2 has a corner point at the origin.
Assume the third kind boundary conditions are imposed on Λj, j = 1, 2. If the relation (44) holds for one
incident pressure wave with incident angle θ ∈ (−π

2
, π

2
), then one of the following cases must occur:
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(i) Λ1 = Λ2.

(ii) (a) Λ1,Λ2 ∈ N2(θ, kp), πp = ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂) − θ̂ exp(−ikpx · θ̂) in R
2. (48)

(b) Λ1,Λ2 ∈ D2(θ, kp), πp 6= ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂) − θ̂ exp(−ikpx · θ̂) + e1 exp(ikpx1) − e1 exp(−ikpx1) in R
2. (49)

(iii) Λ1,Λ2 ∈ N3(θ, kp) with θ ∈ [−π
6
, π

6
]. In this case, πp 6= ∅ if θ = π

6
or θ = −π

6
, and the total

field takes the following form in R2 :

u(x) = θ̂ exp(ikpx · θ̂) + Rot 2π
3
(θ̂) exp(ikpx · Rot 2π

3
(θ̂)) + Rot 4π

3
(θ̂) exp(ikpx · Rot 4π

3
(θ̂)). (50)

(iv) Λ1,Λ2 ∈ N4(0, kp), θ = 0, πp 6= ∅, and the total field takes the form

u(x) = −e2 exp(−ikpx2) + e2 exp(ikpx2) + e1 exp(ikpx1) − e1 exp(−ikpx1) in R
2. (51)

Here u = uj (j = 1, 2), e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Proof. Assuming Λ1 6= Λ2, we shall prove that one of the cases (ii), (iii) and (iv) must happen. It is
seen from Lemma 8 and Lemma 10 that S = ∅ and 2 ≤ D# ≤ 4. Moreover, combining Lemmas 9 and
10 and Remark 6, we obtain the following results.

1. If D# = 2 and πp = ∅, then

D = {Lθ, Lθ+ π
2
}, P = {(α,−β), (−α, β)} = {Pκ,−Pκ}

with the relations

RLθ
(Pκ) = Pκ, RLθ+ π

2

(Pκ) = −Pκ.

From Lemma 6 (ii) and Lemma 4, it follows that the total field takes the form (48) and 2kp sin θ ∈
Z.

2. If D# = 2 and πp 6= ∅, then an argument similar to the case of the fourth kind boundary conditions
yields the same relations as in (46) and (47), which together with Lemma 6 (ii) and Lemma 4 give
the explicit expression of u in (49) as well as the relation kp(1 ± sin θ) ∈ Z.

3. If D# = 3, it follows from (40) and Lemma 9 (ii) that

D = {Lθ−π
2
, Lθ+ π

6
, Lθ+ 5π

6
}, P = {Pκ,Rot 2π

3
(Pκ),Rot 4π

3
(Pκ)}

with the relations

RL
θ+5π

6

(Pκ) = Rot 2π
3
(Pκ), RLθ+ π

6

(Pκ) = Rot 4π
3
(Pκ), RLθ−π

2

(Rot 4π
3
(Pκ)) = Rot 2π

3
(Pκ). (52)

By Lemma 6 (ii), we know that the identity (50) holds in R2.
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4. If D# = 4, by (42) we have that θ = 0, and

D = {L0, Lπ
4
, L−π

4
, Lπ

2
}, P = {(0, kp), (−kp, 0), (kp, 0), (0,−kp)},

which implies that

RL
−

π
4

{(0,−kp)} = {(kp, 0)}, RL π
4

{(0,−kp)} = {(−kp, 0)}, RL0
{(0,−kp)} = {(0, kp)}.

Applying Lemma 6 (ii) again gives (51).

The assertions (ii)(a), (ii)(b), (iii) and (iv) of Theorem 5 are direct consequences of the above as-
sertions 1 − 4. We next prove assertion (iii) in the case of D# = 3. To do this, we need to prove that
Λ1,Λ2 ∈ N3(θ, kp).

Firstly, we note that the elements of P can be written as

Pκ = kp(cos(θ − π

2
), sin(θ − π

2
)), (53)

Rot 2π
3
(Pκ) = kp(cos(θ +

π

6
), sin(θ +

π

6
)), (54)

Rot 4π
3
(Pκ) = kp(cos(θ +

5π

6
), sin(θ +

5π

6
)). (55)

Since the second Cartesian components of Rot 2π
3
(Pκ),Rot 4π

3
(Pκ) are all non-negative, we derive that

θ + π
6
≥ 0 and θ + 5π

6
≤ π, or equivalently, −π

6
≤ θ ≤ π

6
. Obviously, πp 6= ∅ if θ = π

6
or θ = −π

6
.

Secondly, by the kp sin θ-quasi-periodicity condition imposed on u, we need to check that

kp cos(θ +
π

6
) = kp sin θ + n, for some n ∈ Z,

kp cos(θ +
5π

6
) = kp sin θ +m, for some m ∈ Z,

from which kp

√
3 sin(π

6
± θ) ∈ Z follows.

Denote by l := {x ∈ R2 : x2 = x1 tanϕ + c} a straight line extending some line segment of Λ, on
which the solution u defined in (50) satisfies the boundary conditions of the third kind. Finally, it remains
to prove that ϕ ∈ {θ + π

2
, θ + π

6
, θ + 5π

6
} and c = 2π

kp

√
3 cos ϕ

n for some n ∈ Z.

Analogously to the proof of Theorem 4, we claim that the function v(x) := u(x1, x2 + c) satisfies the
Navier equation with the boundary conditions of the third kind on l′. By the reflection principle, we have

v(x) − Rl′(v(Rl′(x))) = 0 in R
2, (56)

where l′ := {x ∈ R2 : x2 = x1 tanϕ}. This together with Lemma 1 leads to the relation Rl′(P) = P ,
and thus ϕ ∈ {θ + π

2
, θ + π

6
, θ + 5π

6
}. By (53)-(55), v can be written as

v(x) = θ̂ exp(ikpx · θ̂) exp(ickp sin(θ − π

2
))

+ Rot 2π
3
(θ̂) exp(ikpx · Rot 2π

3
(θ̂)) exp(ickp sin(θ +

π

6
))

+ Rot 4π
3
(θ̂) exp(ikpx · Rot 4π

3
(θ̂)) exp(ickp sin(θ +

5π

6
)).
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Without loss of generality, we can assume that ϕ = θ+ 5π
6

, or equivalently, l′ = Lθ+ 5π
6

. Then, combining

(52), (56) and Lemma 6 (ii) yields that

exp(ickp sin(θ − π

2
)) = exp(ickp sin(θ +

π

6
)),

which implies that c = 2π
kp

√
3 cos(θ+ 5π

6
)
n for some n ∈ Z . Analogously, we can deduce from the previous

argument that

c =
2π

kp

√
3 cos(θ + π

6
)
n for some n ∈ Z, if l′ = Lθ+ π

6
,

c =
2π

kp

√
3 cos(θ − π

2
)
m for some m ∈ Z, if l′ = Lθ−π

2
.

This proves assertion (iii) when D# = 3. The other cases when D# = 2 or D# = 4 can be treated
similarly. Special attention should be paid to the caseD# = 4, for which we obtain that each line segment
of Λ lies on one of the following straight lines,

x1 =
π

kp
n1, x2 =

π

kp
n2, x2 = x1 +

2π

kp
n3, x2 = x1 +

2π

kp
n4

for nj ∈ Z with j = 1, 2, 3, 4. Since all the profiles in A can be represented by the graph of a piecewise
linear function, Λ does not contain those line segments which are parallel to the x2-axis. This leads to
the class N4(0, kp) defined at the beginning of Section 6.3 for D# = 4. 2

We next give several non-uniqueness examples of (IP) by describing the elements inN2(θ, kp),N3(θ, kp)
and N4(0, kp), and answer the question in Section 2 of how many incident elastic waves are sufficient to
uniquely determine a grating profile from A.

Counterexample 2 If a Rayleigh frequency of the compressional part occurs, two incident pressure waves
are not sufficient to uniquely determine a grating profile Λ ∈ A.

Set kp = 2, θ1 = π
6

and θ2 = −π
6

. Let Λ1|(0,2π) and Λ2|(0,2π) be defined by the following piecewise
linear functions

Λ1|(0,2π) : x2 =







√
3x1 x1 ∈ (0, 2

3
π),

2
√

3π/3 x1 ∈ [2
3
π, 4

3
π],

−
√

3x1 + 2
√

3π x1 ∈ (4
3
π, 2π),

Λ2|(0,2π) : x2 =







−
√

3x1 x1 ∈ (0, 2
3
π),

−2
√

3π/3 x1 ∈ [2
3
π, 4

3
π],√

3x1 − 2
√

3π x1 ∈ (4
3
π, 2π),

and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2). One can check that Λ1,Λ2 lie on the

grid generated by the lines x2 = ±
√

3x1 + 2π√
3
n, x2 = π√

3
m with n,m ∈ Z (see Figure 2, left), and

thus Λ1,Λ2 ∈ N3(
π
6
, 2) ∩N3(−π

6
, 2). Furthermore, the finite Rayleigh expansions

u
(1)
1 = u

(1)
2 =

(

1/2

−
√

3/2

)

ei(x1−
√

3x2) +

(

1/2√
3/2

)

ei(x1+
√

3x2) +

(

−1
0

)

e−2ix1,

u
(2)
1 = u

(2)
2 =

( −1/2

−
√

3/2

)

e−i(x1+
√

3x2) +

(−1/2√
3/2

)

e−i(x1−
√

3x2) +

(

1
0

)

e2ix1

all satisfy the Navier equation and the boundary conditions of the third kind on both Λ1 and Λ2.
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Figure 2: Left: N3(θ, kp) with θ = π
6

or −π
6

, kp = 2. Right: the grid on which the profiles of N4(0, kp)
with kp = 4 are located.

Remark 8. Analogously to Counterexample 2, a non-uniqueness example for illustrating that one inci-
dent pressure wave is not enough to uniquely identify Λ ∈ A can be constructed from the elements in
N4(0, kp). In fact, if Λ1,Λ2 ∈ A lie on the solid grid indicated in Figure 2 (right), then Λ1,Λ2 ∈ N4(0, kp)
with kp = 4, and thus the total fields for Λ1 and Λ2 both take the form (51) with kp = 4 and θ = 0.

Counterexample 3 A grating profile Λ ∈ A cannot be uniquely determined by two incident pressure
waves, in general, even if Rayleigh frequencies of the compressional part for each incident angle are
excluded.

It follows from the proof of Theorem 5 (ii) (a) that if Λ1,Λ2 ∈ N2(θ, kp) ∩ N2(θ + π
2
, kp) for some

θ ∈ (−π
2
, 0) satisfying 2kp sin θ ∈ Z and 2kp cos θ ∈ Z, then, for θ1 = θ, uin = θ̂1 exp(ikpx · θ̂1) =

θ̂ exp(ikpx · θ̂), the total fields u
(1)
1 and u

(1)
2 corresponding to Λ1 and Λ2 take the form

u
(1)
1 = u

(1)
2 = θ̂ exp(ikpx · θ̂) − θ̂ exp(−ikpx · θ̂) in R

2;

and for θ2 = θ + π
2

, uin = θ̂2 exp(ikpx · θ̂2) = θ̂⊥ exp(ikpx · θ̂⊥), the total fields u
(2)
1 and u

(2)
2

corresponding to Λ1 and Λ2 take the form

u
(2)
1 = u

(2)
2 = θ̂⊥ exp(ikpx · θ̂⊥) − θ̂⊥ exp(−ikpx · θ̂⊥) in R

2.

This implies that two incident pressure waves are not enough to uniquely determine Λ ∈ A under
the third kind boundary conditions. Take kp = 5

2
, choose θ satisfying sin θ = −3

5
, cos θ = 4

5
, and

let the grating profiles Λ1 and Λ2 lie on the grid generated by the 2π-periodic extensions of the lines
x2 = −3

4
x1, x2 = 4

3
x1. Then, one may check that Λ1,Λ2 ∈ N2(θ, kp) ∩ N2(θ + π

2
, kp) with the

previously specified θ and kp, and thus obtains a non-uniqueness example for (IP).

Counterexample 4 If a Rayleigh frequency of the compressional part occurs, three incident pressure
waves are not sufficient to uniquely determine a grating profile Λ ∈ A.

It can be derived from the definitions of D2(θ, kp),N2(θ, kp) that

N2(θ1, kp) ∩ N2(θ2, kp) ∩ D2(θ3, kp) 6= ∅
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if and only if θ1 ∈ (0, π
2
), θ2 ∈ (−π

2
, 0), θ3 ∈ (−π

2
, π

2
) satisfy

θ2 = θ1 −
π

2
, θ3 = 2θ1 −

π

2
, 2kp sin θ1 ∈ Z, 2kp sin θ2 ∈ Z, kp(1 ± sin θ3) ∈ Z.

Thus, if Λ1,Λ2 ∈ N2(θ1, kp)∩N2(θ1 − π
2
, kp)∩D2(2θ1 − π

2
, kp) for some incident angle θ1 ∈ (0, π

2
)

satisfying
2kp sin θ1 ∈ Z, 2kp cos θ1 ∈ Z, 4kp(cos2 θ1 − 1) ∈ Z, with 2kp ∈ Z,

then, for the incident pressure wave uin = exp(ikpx · θ̂j) (j = 1, 2), the total fields u
(j)
1 and u

(j)
2

(j = 1, 2) corresponding to Λ1 and Λ2 take the form (48) with θ = θj (j = 1, 2); and for uin =

θ̂3 exp(ikpx · θ̂3), the total fields u
(3)
1 and u

(3)
2 can be expressed by (49) with θ = θ3. Note that πp 6= ∅

for the incident angle θ3 = 2θ1 − π
2

.

Let the grating profiles Λi|(0,2π) (i = 1, 2) be defined by the following functions:

Λ1 : x2 =

{

−3
4
(x1 − 2π) x1 ∈ [T1, 2π),

4
3
x1 x1 ∈ [0, T1)

with T1 =
18

25
π, (57)

Λ2 : x2 =

{

4
3
(x1 − 2π) x1 ∈ [T2, 2π),

−3
4
x1 x1 ∈ [0, T2)

with T2 =
32

25
π, (58)

and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2). Take kp = 25
2

, choose θj satisfying

sin θ1 =
4

5
, sin θ2 = −3

5
and sin θ3 =

7

25
.

It can be verified that Λ1 and Λ2 lie on the grid generated by the lines x2 = x1 tan θj + π
kp cos θj

n for

n ∈ Z, j = 1, 2. Thus we have Λ1,Λ2 ∈ N2(θ1, kp) ∩ N2(θ2, kp) ∩ D2(θ3, kp) with θj (j = 1, 2, 3)
and kp chosen above. Set

u(1)(x) =

(

4/5
−3/5

)

ei(10x1− 15
2

x2) +

(

−4/5
3/5

)

ei(−10x1+ 15
2

x2),

u(2)(x) =

(

−3/5
−4/5

)

ei(− 15
2

x1−10x2) +

(

3/5
4/5

)

ei( 15
2

x1+10x2),

u(3)(x) =

(

7/25
−24/25

)

ei( 7
2
x1−12x2) +

(

−7/25
24/25

)

ei(− 7
2
x1+12x2) +

(

1
0

)

ei 25
2

x1 +

(

−1
0

)

e−i 25
2

x1.

Then each vector function u(j) (j = 1, 2, 3) satisfies the Navier equation in the whole plane, the quasi-
periodicity condition and the boundary conditions of the third kind on both Λ1 and Λ2.

Corollary 6. Suppose that the assumptions of Theorem 5 are satisfied. Then we have

(i) If (44) holds for three incident pressure waves with distinct incident angles, then either Λ1 = Λ2, or

Λ1,Λ2 ∈ N2(θ, kp) ∩ N2(θ −
π

2
, kp) ∩ D2(2θ −

π

2
, kp),

where θ ∈ (0, π
2
) is one of the three incident angles. Moreover, 2kp sin θ ∈ Z, 2kp cos θ ∈

Z, 4kp(cos2 θ−1) ∈ Z and 2kp ∈ Z. In addition, a Rayleigh frequency of the compressional part
occurs for the incident angle 2θ − π

2
.
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(ii) If (44) holds for four incident pressure waves with distinct incident angles, then Λ1 and Λ2 must be
identical, while three incident waves are always enough to imply Λ1 = Λ2 if Rayleigh frequencies
of the compressional part for each incident angle are excluded.

(iii) Given the a priori information that Λ ∈ A has one corner point at the origin and is not an element
of N2(θ, kp) ∪ D2(θ, kp) ∪ N3(θ, kp) ∪N4(0, kp), the near field data u(x1, b; θ), x1 ∈ (0, 2π),
from one incident pressure wave with the incident angle θ are enough to identify Λ uniquely.

We refer to [14, Corollary 5] for additional conditions on the incident angles θj and the compressional
wave number kp guaranteeing that each grating profile Λ ∈ A can be uniquely determined by three
incident pressure waves under the third kind boundary conditions.

7 Inverse scattering of incident shear waves

In this section, we consider uniqueness for the inverse scattering of the incident shear wave uin :=
θ̂⊥ exp(iksx · θ̂) defined in (2). Recalling the representation (35) in Section 6, we introduce the following
notations:

(α,−γ) := (α0,−γ0) = (ks sin θ,−ks cos θ) = ksθ̂
⊤.

P := {n ∈ Z : |αn| ≤ kp, Ap,n 6= 0}, S := {n ∈ Z : |αn| ≤ ks, As,n 6= 0} ∪ {κ}.

Pn = (αn, βn)⊤ for n ∈ P , Sn = (αn, γn)⊤ for n ∈ S\{κ}, Sκ = (α,−γ)⊤ = ksθ̂, As,κ = 1
ks
.

In this case, S consists of finitely many upward propagating directions of the shear part of u, {Sn : n ∈
S\{κ}}, as well as the incident direction Sκ, while P consists of the directions of the compressional part,
{Pn : n ∈ P}. Since the plane shear wave of the form (2) is taken as an incident wave, all elements in
P and S but Sκ have a non-negative second component. There are at most two elements in S, (ks, 0)
and (−ks, 0), that have vanishing x2-components if πs 6= ∅, while (kp, 0) or (−kp, 0) belongs to P if
πp 6= ∅. Based on these facts and the reflection principle, the set D, which consists of the third or fourth
kind lines that pass through the origin, also forms an equi-angular system of lines in R2, and the rotational
invariance of P and S can be proved by an argument similar to that used in Section 6. In addition, the
relation P = ∅ can be derived from the rotational invariance and the geometric assumption that Λ ∈ A
is given by the graph of a function. Thus, with necessary modifications related to the incident shear wave,
all the arguments in Section 6 can be carried over to the case of inverse scattering of incident shear
waves. This leads to the following lemma, which can be used to determine the propagating directions of
the shear part as well as the structure of the grating profile around a corner point.

Lemma 12. Let the incident wave be the incident shear wave defined in (2), and suppose the assumptions
(A2) and (A3) at the beginning of Section 6 hold. We have

(i) Under the boundary conditions of the third kind,

D# = 2, πs 6= ∅, D = {L θ
2
+ π

4
, L θ

2
−π

4
}, S = {(α,−γ), (−α, γ), (ks, 0), (−ks, 0)}.

(ii) Under the boundary conditions of the fourth kind, 2 ≤ D# ≤ 4. Furthermore,
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if D# = 2 and πs = ∅, then

D = {Lθ, Lθ+ π
2
}, S = {(α,−γ), (−α, γ)};

if D# = 2 and πs 6= ∅, then

D = {L θ
2
+ π

4
, L θ

2
−π

4
}, S = {(α,−γ), (−α, γ), (ks, 0), (−ks, 0)};

if D# = 3, then

D = {Lθ−π
2
, Lθ+ π

6
, Lθ+ 5π

6
}, S = {Sκ,Rot 2π

3
(Sκ),Rot 4π

3
(Sκ)};

if D# = 4, then

θ = 0, D = {L0, Lπ
4
, L−π

4
, Lπ

2
}, S = {(0, ks), (−ks, 0), (ks, 0), (0,−ks)}.

We finally summarize the uniqueness results in the following theorems.

Theorem 7. Let Λ1,Λ2 ∈ A such that one corner point of Λ1 or Λ2 is located at the origin. Assume
the boundary conditions of the third kind are imposed on Λj, j = 1, 2. If the relation (44) holds for one
incident shear wave with incident angle θ ∈ (−π

2
, π

2
), then one of the following cases must occur:

(i) Λ1 = Λ2.

(ii) Λ1,Λ2 ∈ D2(θ, ks), πs = ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂) − θ̂⊥ exp(−iksx · θ̂) + e2 exp(iksx1) − e2 exp(−iksx1) in R
2,

where u = uj (j = 1, 2), e2 = (0, 1)⊤.

Theorem 8. Let Λ1,Λ2 ∈ A be such that one of the profiles Λ1,Λ2 has a corner point at the origin.
Assume the fourth kind boundary conditions are imposed on Λj, j = 1, 2. If the relation (44) holds for
one incident shear wave with incident angle θ ∈ (−π

2
, π

2
), then one of the following cases must occur:

(i) Λ1 = Λ2.

(ii) (a) Λ1,Λ2 ∈ N2(θ, ks), πs = ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂) − θ̂⊥ exp(−iksx · θ̂) in R
2.

(b) Λ1,Λ2 ∈ D2(θ, ks), πs 6= ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂) − θ̂⊥ exp(−iksx · θ̂) − e2 exp(iksx1) + e2 exp(−iksx1) in R
2.

(iii) Λ1,Λ2 ∈ N3(θ, ks) with θ ∈ [−π
6
, π

6
]. In this case, πs 6= ∅ if θ = π

6
or θ = −π

6
, and the total

field takes the following form in R2:

u(x) = θ̂⊥ exp(iksx · θ̂) + (Rot 2π
3
(θ̂))⊥ exp(iksx · Rot 2π

3
(θ̂))

+(Rot 4π
3
(θ̂))⊥ exp(iksx · Rot 4π

3
(θ̂)).
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(iv) Λ1,Λ2 ∈ N4(0, ks), θ = 0, πs 6= ∅, and the total field takes the form

u(x) = e1 exp(−iksx2) − e1 exp(iksx2) + e2 exp(iksx1) − e2 exp(−ikpx1) in R
2.

Here u = uj (j = 1, 2), e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Note that the two basic results presented in the introduction follow from Remark 7 (ii) and (iii), Corollary
6 (ii) and the above Theorems 7 and 8. The counterexamples in the case of the incident shear wave can
be constructed similarly as those in Sections 6.2 and 6.3.
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