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1 Introduction and notation 1

Abstract

We introduce an electronic model for solar cells including energy resolved defect
densities. The resulting drift-diffusion model corresponds to a generalized van Roos-
broeck system with additional source terms coupled with ODEs containing space and
energy as parameters for all defect densities. The system has to be considered in
heterostructures and with mixed boundary conditions from device simulation. We
give a weak formulation of the problem. If the boundary data and the sources are
compatible with thermodynamic equilibrium the free energy along solutions decays
monotonously. In other cases it may be increasing, but we estimate its growth. We
establish boundedness and uniqueness results and prove the existence of a weak solu-
tion. This is done by considering a regularized problem, showing its solvability and
the boundedness of its solutions independent of the regularization level.

1 Introduction and notation

In this paper we deal with the analysis of electronic models for solar cells which take into
account energy resolved defect (trap) densities.

Groger [13] investigated semiconductor models with varying densities of ionized impuri-
ties. But there the impurities are associated to fixed energy levels. Also in this context,
we studied in [12] stationary energy models for semiconductor devices with incompletely
ionized impurities. There, additionally to the continuity equations and the Poisson equa-
tion an energy balance equation is contained in the model, such that the equations are
strongly coupled.

Our equations are based on models proposed by engineers working on solar cells (see e.g.
[20, Sect. 4.2]). Let Q C R? denote the solar cell domain. For the analysis we rescale
the quantities, such that energies are counted in units of kg1, where kp is Boltzmann’s
constant and 7' is the temperature. In the new energy scale for F € Eg = [F1, E| we
take into account [ different types of defects with given defect distributions Nj;(z, E),
j =1,...,1. To include also measure valued distributions of traps on the energy scale
we use finite nonnegative measures jioj11 = p2j42 = N;dE on G := Q x Eg proposing
Young measure type properties such that p;(z,-) are Radon measures on Eg a.e. on (2
and z — | 5. 9(E)pi(z, dE) is measurable for all continuous functions g : Eg — R.

This setting allows for p;(z,-) = Zszl 0x(2)0 g, (2)(-) such that the case of point-like
distributed traps at single energies Ej.q, € Eg as discussed in [13] result as special case
of our investigations, too.

We use the abbreviation

(g)): = /E 9(E)us(z, dE).

Besides the densities of electrons u; and holes us depending only on the spatial position
x we have to balance the following densities: The probability that the defect states with
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defect distribution N;(x, E') are occupied by an electron can be interpreted as the density
of defects occupied by electrons on G = € x Eg with respect to the measure pgj411. We
denote it by ugjy1, and ugjiyo = 1 — ugjy1 corresponds to the density of non occupied
defect states with respect to the measure pg;4o.

Moreover, we introduce

—1 for acceptor like traps

AM=-1, X=1, )\2j+1 = {0 2j+2 = )\2j+1 +1,

for donator like traps ’

7 =1,...,1, the charge numbers of the different species.

The electronic model for bulk material proposed in [20] is a drift-diffusion model for the
charge carriers coupled with ODEs for usjy1(z, E), (z,E) € G, j = 1,...,l. The light,
generating pairs of electrons and holes is treated as a given source term Gppe. The
resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with
additional source terms coupled with ODEs for the defects. In scaled form, let z denote
the electrostatic potential and let (1, (s be the electrochemical potentials of electrons and
holes. In our notation the model for bulk material proposed in [20, Sect. 4.2] can be
written in the form

2[+2
—V-(eVz) = f—ur+ug+ > N{(w))i inRy x €,
=3
d .
—Uur — V- (Dlulvcl) = phat —R— Z 2]+1 m R+ X Q7

ot

0 :
5712 = V- (DauaV (o) = Gphor — B = Z Vojra in Ry xQ,

and the ODEs

0

ol = R} — R on Ry x supp pigj1,

0 0 .
Hrl%+2 = T U2+ o0 Ry xsupp pgjt2, j=1,...,1L

The right-hand sides of the evolution equations are given by

R = R(uy,u2) = r(uy, uz)(uius — k),
R} = R} (B, uy, ugjs1, ugjp2) = 1} urugjro — (k) (E) + €] P'(E))ugj1], (1.1)

R = RY(E, uz, uzji1, ugjez) = 18 [ugugjsr — (K (E) + € 7 (E))usja],

where the positive coefficients r, k are allowed to depend in a nonsmooth way on the
spatial position and the positive coefficients 7, p k: k: and the nonnegative coefficients

ej ot pom, j=1,...,1, depend on (z, F). Moreover, the coefficients &, &}, &, fulfill

k= E?E? pojyi-a.e. on G, j=1,...,1
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We introduce positive reference densities @y, Uy such that @ ue = k and choose 19, 1-
p ) 25+
positive reference quantities uo; 11, U2;42 with the property

-—n

_ U _ i .

U2j42 = ?u2j+1 = au2j+1 >0 H2j+1-a.€. on G, 7=1,...,1
J

Note that the reference quantities uy, g, Ugj41, U2j42, j = 1,...,[, are taken in such a
way that the reaction rates R, RY and R? in (1.1) are zero if the optical coefficients e? opt

popt
€

9

vanish (if no optical effects would occur).

For an analytical investigation we introduce the chemical activities b; = %, 1=1,...,2042,
so that in the considered case of Boltzmann statistics the electrochemical potentials (7, (o
being the driving forces of the fluxes in the continuity equations for electrons and holes
have the form (; = Inb; + \;z, ¢ = 1,2. Using the reaction coeflicients

n opt popt
ko= rk. k%= "k o kP =PI, n._ € D._ €
0 =TK, j o= Tj ju2j+17 j o rj ju2]+27 6]' = En , 6j = 7
J J

the reaction rates in (1.1) take the form

R = ko(ble - 1)7
R} =k} (bibaja — (1 + €7)b2j11),
R = K (babajr1 — (1 + €])bgj42).

The boundary 02 of 2 splits up into a part I'p, representing the contacts of the device and
a part 'y, where the device is insulated. We complete the model equations by boundary
conditions for the Poisson equation and the continuity equations for electrons and holes

z2=2P bj=bP on Ry xI'p, v (eVz)=0, v-(Diu;VG)=0on R, xTy, i=1,2,
and by initial conditions for the densities of all species

wi(0)=Us, i=1,...,21+2.

Remark 1.1 The scaled quantities z, b;, (; = Inb;+ \;z, called in our mathematical model
the electrostatic potential, chemical activity, and electrochemical potential, result from the
original physical quantities ¢ — electrostatic potential, Er,, EFr, — quasi Fermi energies of
electrons and holes, q — electron charge, kg — Boltzmann’s constant, T — temperature by

q Er, —qy

Inby =

B —EF, +qp
kpT© kT

kT

z = 5 h’l b2 -
(see e.g. [2, 20, 21]). Moreover, we use € = %k‘BT, Dy = punkpT, Dy = pp,kpT, where
€0, €r are the absolute and relative dielectric constant and jiy, p, are the electron and hole
mobilities.

Remark 1.2 As already mentioned, our model is a generalization of the classical van
Roosbroeck system [23] describing the motion of electrons and holes in a semiconductor
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device due to drift and diffusion within a self-consistent electrical field. Semiconductor
device simulation is based on this model. First mathematical analysis for the transient
system was done in [18], for more references see [6]. Recently [24] investigated existence
and asymptotic behavior of solutions for the whole space situation. Global existence and
uniqueness of weak solutions under physically realistic conditions in two space dimensions
is achieved in [7]. In [15] the van Roosbroeck system is reformulated as an evolution
equation for the potentials. In this setting a unique, local in time solution in Lebesque
spaces is available and leads to classical solutions to the drift-diffusion equations in the
two-dimensional case.

To handle the electronic model for solar cells including space and time resolved defect
densities we profit from techniques approved for the van Roosbroeck system and combine
them with new ideas.

The paper is organized as follows: In Section 2 we collect some notation, formulate our
general assumptions and give a weak formulation (P) of the electronic model for solar
cells including energy resolved defect densities. Section 3 contains analytical results and
their proofs. Subsection 3.1 is devoted to the Poisson equation, in Subsection 3.2 we
prove first properties of the solutions to (P), and Subsection 3.3 contains the uniqueness
result. Energy estimates are presented in Subsection 3.4 and Subsection 3.5 deals with
L*>°-estimates for the solution to (P). Section 4 is devoted to the existence proof for (P).
For a regularized problem (Pjs) introduced in Subsection 4.1 we show its solvability in
Subsection 4.2. After establishing energy estimates (Subsection 4.3) and L*°-estimates for
solutions to (Pys) (Subsection 4.4) which are independent on the regularization level M, we
prove in Subsection 4.5 the existence of a solution to (P). The Appendix collects analytical
results from the literature being relevant in the treatment of our model equations.

2 Assumptions and weak formulation

2.1 Assumptions

Some notation. The notation of function spaces in the present paper corresponds to that
in [16]. For a Banach space B we denote by B, the cone of non-negative elements and by
B* its dual space. We write ut (u™) for the positive (negative) part of a function w. If
u € R™ m=2l+2, then u > 0 (u > 0) is to be understood as u; > 0 Vi (u; > 0 Vi). If
u, w € R™ then uw = {ujw; }i=1,. m, and u/w is defined analogously, " is to understand
as {€"}i—1 .m. If u € (0,00)™ then Inu = {Inw;}i—1,. m. The abbreviation a.e. means
L%a.e., for the measures j; we write p-a.e. The scalar product in R? is indicated by
a centered dot. Positive constants which depend only on the data of our problem are
denoted by c.

Now we collect the general assumptions our analytical investigations are based on.
(A1) Q C R?is a bounded Lipschitzian domain, I'p, I'y are disjoint open subsets
of 9Q, 00 =TpUI'yU(TpNTy), mes I'p >0, Tp NIy consists of finitely

many points (2 U 'y is regular in the sense of Groger [14]);
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(A2) Nj generates Young like measures fioj41 = poj42 = N;dE on G, j=1,...,1.
fEG iz, dE) <ca.e. inQ,i=3,...,2l +2;

(A3)  Gphot € L¥(R4, L()), |Gphot (t)|| Lo < c faa. t € Ry,
ko : Q2 x Ri — Ry, ko(x, ) Lipschitzian, uniformly w.r.t. « € Q,
ko(-,y) measurable for all y € Ri, ko(-,0) € L>(Q),
ke, k2 e € LY(Gydugjvr), j=1,....1;

VR R R
(Ad) € L®(Q),e>c>0,fecL?Q),u € L>®Q),u >e >0ae onQ i=12,
u; € L*(G;dp;), u; > €9 > 0 p-ae. on G, 1 =3,...,21 4+ 2,

bP = (bP,b2.0,...,0), nbP, 2P e Whe(Q), uP =uw;bP, i =1,2;
A5) D; € LY(Q), D;u; >e>0ae on,i=1,2;
( =+ )
(A6) U, € L(f(Q), 1=1,2, U2j+1, U2j+2 S LOO(G;dugj_H),

0 < Uzjy1, Ugjyo <1, Ugjp1 +Uzjra =1 pgjy1-ae. on G, j = 1,... 1.

Remark 2.1 The assumptions in (A3) concerning ko allow it to include Shockley-Read-
Hall as well as Auger generation/recombination processes. The assumptions (A2) - (A6)
are well suited to cover the situation of model equations given in [20, Sect. 4.2] in the case
of Boltzmann statistics for all species.

2.2 Weak formulation

We introduce the function spaces

2042 2142
Y = LX(Q)” x [[ L*(G; dw) V= L2(Q)% x [[ L®(G; dw),
i=3 1=3

X::{bEY:biEH&(QUFN),i:1,2}, Z::H&(QUFN)

and define the operators B: Y — Y, A: [(X +bP) N V4] x (Z + 2P)] — X*,
R:[X+bP]NVy — X* and P: (Z +2P) xY — Z* by

Bb := (Ui b;)i=1,...21+2,

2
<A<b, Z),B>X :—/ Z Diﬂi(Vbi + )\ibiVZ) . Vgi dz, be X,
iz
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l
(R(b),b)x == /G k7 (b1bojya — (14 €7)bgjr1) (b1 + bajra — bojy1) dugjpa
j=1

l
+ Z /G k? (b2b2j+1 — (1 + 6§)b2j+2)(52 + 52]‘4_1 — 52j+2) du2j+1
7j=1

+ / {ko(blbg — 1)(61 —i—gg) — Gphot(gl +Bg)} dz, be X,
Q
2[+2

Z/)\iuizdui, ZEZ.
i=3 /G

Then the weak formulation of the electronic model for solar cells with energy resolved
defect densities reads as

2
(P(z,u),2)z ::/Q {&?Vz -VZ — [f + Z )\iui] E} dz —
i=1

u' () +Ab(t), (1) +R(b(t)) =0, P(z(t),u(t))=0, u(t)=Bb(t) fa.a. t>0,
u(0)=U, uweHL (Ry, X*)NLE (R, Y)N LY (Ry, Vy), (P)

loc loc
b—bPel? Ry, X), z—2Pcl? (Ry,Z)NLE (R, L>®(Q)).

loc loc loc

3 Results

3.1 The Poisson equation

Lemma 3.1 We assume (Al),(A2),(A4). For any u € Y there exists a unique solution
2 € Z+ 2P to P(z,u) = 0. Moreover there are constants ¢ > 2 and ¢ > 0 such that

|z —Z2llz <cllu—ul|y Yu,ueY, P(z,u)="P(zu) =0, (3.1)

2 2042
lelwre < e {1+ 3 Tl aman + 3 lill oo @ | Vi€ Y, Pzu) =0,
=1 =3

Let S =[0,T], T > 0. Then for everyu € L%(S,Y) there exists a unique z € L*(S, Z)+ 2P
such that P(z(t),u(t)) =0 f.a.a. t €S. Ifu € C(S,Y) then z € C(S, Z) + 2P follows and
the last equation is fulfilled for allt € S.

Proof. 1. We define the operator Py: Z — Z* and set for u € Y the quantity g(u) as
follows

(Poys )z = / Yy Vyde, ez,
Q

204-2

(g(u),y>z—/Q{(f—l—i/\iui)y—EVzD-Vy} dx + Z)\i/ﬂ<(ui>>iydx, Y€ Z.

=3
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Clearly, g(u) € Z*, for the last summands we argue as follows: Because of (A2) we have

/Q (i)} g da = /G wi dpss < osll 22 g 7 2 Gt
< clluill 2 can T2 < clusllzzan 7z 7€ Z

For u € Y the problem P(z,u) = 0 may be written equivalently by Po(z —2”) = g(u). The
operator Py is Lipschitz continuous and strongly monotone. Therefore, for all right-hand
sides g(u) € Z* there is a unique solution to Po(z — z”) = g(u) and (3.1) follows immedi-
ately. As a direct consequence we obtain the result for the time dependent functions.

2. According to Groger’s regularity result for elliptic equations with mixed boundary
conditions [14, Theorem 1] and (A4), (A1) we can fix a ¢ = ¢(£2,€) > 2 such that, if

V@ € H&(QUFN) : <P0y7§>Z = <g7y>a g€ W_Lq(QUFN)v Y€ H&(QUFN)
then y € W, 9(QUTy). We set

2q / 2q

T:ﬁ’ r :(1‘1‘72. (3.2)
Note that g(u) € W=14(QUT ). For the last summands we use again (A2):
[ twgae = [ i < sl g 19 i)
< CH“Z‘”y’(Q;dui)”?HU < CHUZ‘”LT’(Qdui)”?leyq’-
Groger’s regularity result for elliptic equation thus implies
2 2142
Iz = 2Pllysa < ellg@)lh—ra < (143 fuillr + D il gap )
i=1 i=3
Especially, due to (A4) we can estimate
2 2042
IV2llzo < 112 = 2P o + 1V22 e < e(1+ D uill e + 3 Il )s - (39)
i=1 =3

which finishes the proof. [

3.2 First properties of solutions to (P)

Remark 3.1 If (u,b, z) is a solution to (P) then u, b € C(Ry,Y). Thus, by Lemma 3.1
z—2P € C(Ry,Z). These properties ensure for all t € R

Pz(t),u(t)) =01in Z%, wui(t) =u; bi(t) in L=(Q), wu;i(t) >0 ae on, i=1,2;

ui(t) = w; bi(t) in L°(G; dui),  wi(t) >0 pi-a.e. on G i =3,...,2l+ 2.
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Lemma 3.2 We assume (Al) — (A6). If (u,b,2) is a solution to (P) then
Vte R, : U2541 (t) + U2j+2(t) = U2j+1 + U2j+2 =1 pgji1-a.e. on G,
0 < wugjti(t), ugjqa(t) <1 pojpi-ace. on G, j=1,...,L
Proof. Let BS(y) denote the intersection of G' and the ball centered at y with radius s.
Let xpc(y) be the characteristic function of B%(y), and let i = 25+ 1, where j € {1,...,1}
is arbitrarily chosen. Then we obtain for p;-a.a. y = (x, F) in G by using for (P) the

test function being p; (B (y)) ™! XBG(y) in the ith and (i + 1)th component and all other
components being zero

! 1
wi(BG(y)) /Bg;(y) (wit, 2) + wisa (t, 2)) dpi = (BG() /Bg(y) (Ui(2) + Uia(2)) dpss.

Taking the limit s | 0 gives the first desired result. Remark 3.1 guarantees us that
uj, wir1 > 0 p-a.e. on G. Together with the first invariance result we obtain that
ui, wip1 <1, b < ﬂi_l, biy1 < ﬂzjrll i-a.e. on G. [l

3.3 Uniqueness
Theorem 3.1 Under the assumptions (A1) — (A6) there exists at most one solution to (P).
Proof. 1t suffices to prove uniqueness on every finite time interval S := [0,7]. Let
(uk, bk, 2F), k = 1,2, be solutions to (P). Then there exists a constant ¢ such that
[ @)llv, [0, IV ()]pe < ¢ faa te S, k=1,2,
where ¢ > 2 (cf. (3.3)). Let Z := 2! — 22, b:= b' — b2 Due to (3.1) we obtain
IZ) g < clb(t)]ly  faa. teS. (3.4)

We use b € L2(S, X) as test function for (P) and take into account that the reaction

rates are uniformly locally Lipschitz continuous in the state variable. With the Gagliardo-

Nirenberg inequality [|bs|| - < HEH%THEZH;W " for r from (3.2) and i = 1,2, with inequality

(3.4), and with Young’s inequality we conclude as follows

~ 2 et
TOEESS / B2
=1

t
SC/ {

0

t
s/{

0

t T ~ ~
< [ {3 {80+ V= e Bl + Bl s

=1
t 2 _ B
S/ {2 dlbiliz + clbly s vees.
0 =1

Gronwall’s lemma yields b = 0 on S. With (3.4) the assertion follows. [

NE

{132 192 oI VBl + 121 12 VBl 2 } + 511} ds
1

7 T n2/r T 2=2/r e
{31803+ elBll 2219 oalall 32} + elB1 | ds

s.
o T Mw N
- i
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3.4 Energy estimates

We define the functionals ﬁl, Fy: Y, — R,

Fi(u) = [ S19(: =)
2142

/Z/ ndydz+Z/A n—dyduz

/ Z {uz 20+2

+uD}d1:+ Z/ {uz n— -1) Jrﬁi}dui,
where z is the solution to P(z,u) = 0 (see Lemma 3.1). The value F}(u) 4+ Fy(u) can be
interpreted as free energy of the state u. Because of (A4) we find the estimate

i

2042

Fy(u)+Fy(u) > c(Hz — 2|5+ ZHul In w1 + Zuuz Inwi| 21 dp )) ¢, ueY,.
=1

Let w,u € Y, and P(z,u) = P(Z,4) = 0. Using that (P(z,u),Z — 2P)z = 0 and
(P(z,u),z — 2P) 7 = 0 we calculate

20+2

Fi(u) — Fi(0) = /{ ]z—z|2—|-Z)\ i — ui)( }dx—i—Z)\ i — i) (Z—2P) dp
ZcHz—ZDHZ—I-<)\(z—zD),u—u>y2<)\(z—zD),u—u)y.

The functional F1 is convex and continuous on the convex set Y. Due to the properties
of the integrand in Fj (see [4]) the same is true for Fy. By setting Fj(u) = +oco for u €
Y\Y+ we extend F) % to Y and obtain proper, convex and lower semicontinuous functionals
Fp:Y — R, k=1,2. F| is subdifferentiable in all v € Y and A(z — zP) € 0F, (u) where

P(u,z) = 0. Since xlng—x—i—y >0 for x > 0, y > 0 we find for u,u € Yy with u > ¢
that

Fg( Z/ { —l—ulln ui+ﬂi}d$

2142

+Z/{ i — U;) lnb +ulln —uz+ul}d,ul (3.5)

214-2

2
2/ L~ ) dx—irZ/ s — i) In s dp.

1=3

Therefore, in arguments u € Y, with u > 4 the functional F, is subdifferentiable and
(In ;’,5 ,In lf,g JInbs, ..., Inby o) € OF,(u) where u = Bb.

Next, we extend ﬁk, k =1,2, to the space X* by the definition

Fp=(Fflx): X* >R, k=12
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Here the star denotes the conjugation (see [4]). Following the ideas of a precise derivation
(for a slightly different situation) in [9, Lemma 8.12] we find that the free energy functional
F := F) + F» is proper, convex and lower semicontinuous. For u € Y, the relation
F(u) = Fi(u) + Fy(u) is fulfilled, Fly, is continuous. Moreover, if u € Y, u > 0 and
(ln%,ln;’j,%,lnbg, ...,Inby o) € X, then

b b
Az — ZD) + (ln bzlwl b;,lnbg, e ,lnbgl”) € 0F(u), where u = Bb.
1

Theorem 3.2 We assume (A1) — (A6). Let (u,b,z) be a solution to (P) and T € R;..
Then
Flu(t) < (F(U) + co)e it € [0,T),

where ¢y > 0 is a constant independent of U and T. Moreover, if In biD—l—)\Z-zD, 1=1,2, are
spatially constant, if Gphot = 0, and if bPuP =1, 1+ ey = =P 1+ e? =D, j=1,...,1,
then co can be chosen as zero.

Proof. 1. Let

0<0< mm{ mln {ess inf E ,es8 ] inf bD} {ess inf u—}} (3.6)
Us = (ENT 7

and b = max{b,d}. Analogously to Fy and F, we define functionals F¥: Y, — R and
F: X* — R by

2042

/Z/ lnmax{— 5} —nb?) dydw—i—Z// lnmax{ - O dydu,

and FY := (F5*|X) . One calculates for u € Y, that

b b3
w’ := (In b}),ln bD,l nb}, ..., Inby ,) € OFS (u).
Due to the choice of § we have F9(U) = Fy(U). Let (u, b, z) be a solution to (P), S = [0, T].
Then u, b > 0, u € HY (S, X*), 2 — 2P € L*(S,Z), Inb} — InbP € L2(S,H}(Q UTy)),

1=1,2, and lnbf € L*(G,du;), i =3,...,2l + 2. Moreover, f.a.a. t € S

AMz(t) — 2P) € OF (u(t)), w(t) € OFY(u(t)).

By Lemma 5.1 in the Appendix we conclude that the mappings ¢ — Fy (u(t)), t +— F9(u(t))
are absolutely continuous on .S and

d

— Py (u(t) = (' (£), M(=(1) — 27))x,

i —F(u(t)) = (u/'(t),w’(t))x faa. teS

dt

and we obtain with ¢° = w® + \(z — 2P) that

Fi(u(t) + F3 (u(t)) — Fy(U) = F>(U) :/0< (5):¢°()) x ds. (3.7)
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2. In view of the evolution equation we find for the integrand in (3.7)

(u'(5),¢°(5))x = —(A(b(s), 2(s)) + R(b(5)), ¢’ (s))x
—(Ab°(5), 2(s)) + R(B(5)), ¢ () x +6°(s)

where

0° == (A(b°,2) — A(b, z) + R(°) — R(), (%) x — 0 for & | 0.

The convergence FY(u) — Fp(u) for § | 0 if u € Y, ensures that

C r=/ 6°(s) ds — Fi(u(9)lh — F3 (u(s)ly — —F(u(s))ly for & | 0.

0

Additionally, because of (A4), (A5) we have
2
(AB,2), 0V x = Z/ Dy (Vb 4+ \bdVz) - V(In b + Nz — InbP — X\;2P) dz
= ZD u;b {\V Inbd 4 Xiz)|? — V(Inb + \z) - V(lnblp—i—)\izD)} dz

z<—c§jH®Hvaonb?+—&zDN&m-
=1

Concerning the reaction terms, using (z — y)(Inz —Iny) > 0 for x, y > 0, using (A3),
(A4), Lemma 3.2 and a case by case analysis for iii) we obtain

. b b 1+e™ .
1) kn (bébg]JrQ (1 +e; )bg]Jrl) bDb26J+2 _C(|b(ls| + 1)’ 11’1 le] |? J= 1> cee 7l7
.. b3bs 1+ef .

11) kp(b6bg]+1 <1+€ )bg]+2) nbf’b%t; = _C(’bg’ + 1)‘11’1?‘, J= 17"'7l7
i) (%8 — 1)1n ,,bDbD > —c|InbPr2),

) Conor (10 2 4 M= — =2)) < Gyl (1] + [ 1062 1 |2 — P1), = 1,2,
Taking additionally into account the Lipschitz continuity of kg we find
(R(V), w’ +A(z = 2°))x >

2 l
5 1+e 1+e
= o4 1) (1628 e + D7 {0 5t e iy ) + 1 552 2 (i o })
=1 =1

2
N Gopotllz= { S (I8 + 0P 2) + 12 = 2P 1}
=1
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3. In summary, according to the previous discussions, the limit 6 | 0 in (3.7) leads to

Fu(t)) - F(U)

t 2
< | S+ Il (I96P + 2Pl + b0 1<
=1

l
1+e” 14€?
3 {0 S5 e gy ) + M0 S5 (G ) } )
j=1
2

t
+ [ MGtz
0

If In bZD +\;zP, i = 1,2, are spatially constant, if Gphot = 0, and if b{jbg =1,1+4¢€} = b{j,
1+ e? = bP, j = 1,...,1, then the right-hand side of the previous estimate is zero.
Therefore the last assertion of the theorem follows immediately.

(Ibill 2 + 0 BPlIge) + 11z = 2Pl } dis.
1

1

In the more general case we proceed as follows: Using (A3), (A4) the last line in the
previous estimate can be majorized by

t 2
¢ [ (bl + = P13+ 1) s
0 i—1

Additionally, since 32 ||billz1 + ||z — 22|13 < eF(u) + ¢ for u = Bb, P(z,u) = 0 and
since (A3) and (A4) guarantee that the L>°-norms on the right-hand side in the estimate
for F(u(t)) — F(U) are bounded, we can apply Gronwall’s lemma to finish the proof. [

Remark 3.2 Theorem 3.2 guarantees that the weak formulation (P) of the electronic
model for a solar cell with energy resolved defect densities is thermodynamically correct.
The free energy functional F is something like a Lyapunov function for the solution (u,b, z)
to (P). Namely, under the special assumptions on the data that Gpper = 0 and In bZD—i—/\izD,
i = 1,2, are spatially constant and bPbP =1, 1+e7 = vP, 1—|—e§-’ =bP j=1,....1, (mean-
ing the absence of external sources) the function t — F(u(t)) is monotonously decreasing.
For the more general case of data which is of interest in the treatment of realistic solar
cells, the free energy may be increasing, but its growth can be estimated by Theorem 3.2.

3.5 L*®-estimates of the solution

Lemma 3.2 provides global upper and lower bounds for w; and b;, ¢ = 3,...,2l + 2. To
achive upper bounds for densities and chemical activities of electrons and holes we proceed
in two steps. We start with estimates of the L?(R, L?)-norm of the chemical activities
b;, i = 1,2. Then the final estimate results from Moser iteration arguments.

Lemma 3.3 Let (Al) — (A6) be satisfied. Then there exists a monotonous function d :
Ry — Ry depending only on the data (but not on T') such that

2
Do lui®)lz < d(IF(w)llegs) Ve s =[0,1]
i=1
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for any solution (u,b, z) to (P).

Proof. We use the test function % (vq,v,0,...,0),

vi == (b — K)*, where K > K := max (1, ||U/U||V,m51n§ ||biD||Loo) (3.8)
=1,

will be fixed later. Due to the choice of K we have v;(0) = 0, vilr, =0,1=1,2.

2t

2
€ = 2
— u;v; () dx
2;/9 (®

t 2
/ e2s{ / { Z (mvf — Diu(Vv; + A\ibiVz) - Vvl-) + Gpot(v1 + )
0 L

+ k?[)(-, bl, bg)(l — blbg)(vl + Uz)} dzx

l
+ Z/ {’f?((l +€5)bajt1 — bibajr2)vr + k(1 + €f)bojio — b2sz+1)v2} du2j+1}d8
j=17¢

t 2
< / e? > " { —ellvillin + cllbill - V2l Lallvill g + cllvill7> + K2} ds.
0 i=1

Here the exponent ¢ > 2 is taken from Lemma 3.1. Concerning the reaction terms we refer
to (A3) and Lemma 3.2. Additionally, we exploited that, due to (A2), |vil|r2(q,dpum, 1) <

cllvillr2y, 7 =1,2,5 =1,...,1. Now we use (3.3) and the three variants of the Gagliardo-
Nirenberg estimate

1 1/r 1/r 1
lvillZe < lvillpallvillgrs loaller < vl lvillin s loill g < loall 37 oill2r,

where r and 7’ are defined in (3.2). Then Young’s inequality leads to

2 2 t 2 2
e € ~
50 iz < /0 3 {(=5+EX loslles) il
i=1 i=1 j=1

+ e(B) (Juil2: + 1) s

(3.9)

for all ¢ € S with a monotonously increasing function ¢(K). For K fulfilling the inequality
In K > max;—1 2 ||InbP| 1~ + 1 we can estimate

2
F(u) > Z/Q {ui(Inb; —InbdP — 1) + b? } dw
=1

2
>

/ ui(In K — max [|In b2 ||z — 1) dz
{z0i=(bi—K)+>0} K=12

=1

2
>(InK — max I bg || oo — 1)eo z; l[vill L2
1=
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with €y from (A4). Fixing now K > K as a monotonously increasing function of 15 ()l s
fulfilling

DN

60(1HK — maXg=12 Hln kaHLoo — 1)

2

_ c||F(uw)llecs

&> lill s < (%) <
=1

(see Theorem 3.2), the term in front of the H'-norm in (3.9) is negative. We obtain

2
S ui®)22 < o ce(K)(1F () [3s) + 1.
i=1
Together with u; < @;(v; + K) this proves the lemma. O

Remark 3.3 Applying Lemma 3.1, Lemma 3.3 and Lemma 3.2, we find that for solutions
(u,b,2) to (P) for all t € S the norm ||2(t)|lw1.a(q) s bounded by a continuous function
of |[F'(u)llc(s) depending on the data but not on T'. The exponent q > 2 is guaranteed by
Lemma 3.1.

We use the abbreviation )
= (HvzHLw(s,Lq(Q)) + 1) - (3.10)

Theorem 3.3 Let (Al) — (A6) be satisfied. Then there exist constants ¢ > 0 and a
continuous function d of ||[F'(u)||c(s) depending only on the data (but not on T) such that

ZH% e, ZHb HLoo<mZ(supHuz< s +1),
l20)lz~ < d(IF@llo) Vs

for any solution (u,b, z) to (P).

Proof. 1. The proof uses Moser iteration techniques. Such techniques are e.g. applied in
[7] to the classical van Roosbroeck system, in [10] to spin-polarized drift-diffusion systems
and in [11] to problems from semiconductor technology. Let v; == (b — K)*, i = 1,2,
with K from (3.8). By the test functions ﬁeﬁt( vY fug_l,O, ...,0) € L3S, X), B =2m,
m > 1, we obtain

2
et Z/uivi(t)ﬂ dx
i=1 Y
2
/ ge{ / > (@0 — Diwi(Voi + AibiV2) - Vo ™) + Gpor(v] ™ + 05 7)
i=1
kol b ba)(1 = brbo) (0 7+ 057 b

(R (e Vbagan—bibaga)of ™ + K2 ((14+€0)ba 4o —babos1)05 b duagin bds.
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2. Having in mind (A3), (A4), (A2) and Lemma 3.2, applying Holder’s, Gagliardo-
Nirenberg’s and Young’s inequality we proceed as follows

2 t 2 2
e Sl < [ [ 57 {ebIvaITel 4l + (3 bt 1007
i=1 =1 h=1

— 6|va/2|2} dz ds

t 2
< [ e S {7 aNun oo + D

1=1
2
+ eB(|lv] 3 + 1) = elle* 3 } ds
t 2
< [ {mes S + 1 as)
0 i=1
with & from (3.10). This guarantees the estimate

2

Z Hvi(t 5 < cﬂQTfiZsup (|lvi(s HLB/2 +1) Vit e S. (3.11)

3. With the definition

2
o =3 {sup fus(s) [ + 1}, m=0.1....
=1

ses

(3.11) leads to

_ m+1__o__ m__ m
amgcmﬁa%,1§0m+2(m 1)n1+2afn,2§-~§c2 2-m 2" =1 (2"

and we continue estimate (3.11) by

Zum ||L2m<m2{suprm i+ 1}

Taking the limit m — oo, we find

Z s (8) || e < mz{sup vi ()| 12 + 1} vt e S.

Since u; < w;(v; + K ), by < v; + K this supplies the desired estimate for u; and b;,
i = 1,2. The result for z is a direct consequence of Remark 3.3 and the Sobolev embedding
Wha(Q) < L°°(€) in two space dimensions for ¢ > 2. [

4 Existence result for (P)

4.1 The regularized problem (P,,)

To prove the solvability of (P) we consider a regularized problem which is defined on
an arbitrarily fixed time interval S = [0,7]. For M > M* := max{1,||U/u||v} let
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par : R?%2 [0, 1] be a Lipschitz continuous function with the properties

0 if |bleo > M,
b) = , |b|eo = bil,...,|b .
pa(b) {1 if bl < M/2 || max{ b | |bor2}

Moreover, we use the projection

—-M for y<-—M,
om(y) = y for ye|[-M,M], yER,
M for y>M,

and define the operators Rys: [X +bP]NVy — X*, Ay (X +0P) x (Z + 2P) — X* by
— l p— p— p—
(R (b),b)x = Z/ prr (D) k5 (bibajia — (1 + €§)bajr1) (b1 + bzjiz — bajs) dpzjn
j=1"¢

l
+ Z/ pu(b) k?(be2j+1 —(1+ €§)sz+2)(52 + boj1 — bojy2) dugji
j=1"¢
+/ {pM(b) ko(blbg — 1)(51 +52) — Gphot(gl + 52)} dzx,
Q

2
(Ans(b,2).T)x = / S D (Vbi + Nilows (0)]FV2) - Vhide, be X,
Q=1

We consider the regularized problem

o' (t) + Ap(b(t), 2(t)) + Ry (b7 (¢)) =0 faa. tes,
P(z(t),ut(t)) =0, wu(t)=Bb(t) faa.tcs, (Par)
w(0)=U, u€ HY(S, X*)NL*S,Y), b—bP € L*(S,X), z— 2P € L(S, Z).

Note that solutions (u,b, z) to (Pys) possess the regularity properties u, b € C(S,Y) and
z—2Pe0(S,2).

4.2 Existence result for (Py)
The existence proof for (Pys) is inspired by [11]. In this subsection the constants may
depend on M and S. First we give an equivalent formulation of (Pys). We write b in the
form b = (v, w), where v = (b1, b2), w = (b3, ..., by2) and introduce the spaces

Y2 =12Q)?, Y = [ L2(Gs dw), X% = HY(QUTy)?, X2 = (X?)*,
and the operators B,: L2(S,Y?) — L2(S,Y?), By: L?(S,Y?) — L2(S,Y?),

Byv = (Ui vi)i=1,2,  Buww = (Uit2 w;i)i=1,.. 21
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Additionally, we define operators A% : L2(S, X2) — L2(S, X?), Ry: (L2(S, X?%) +vP) x
L*(S,Y?) — L2(S,X%), A,: (LQ(S X2) +oP) x (L%(S, )—l—z ) — L%(S, X?*) and
Ru: (L2(S, X%) +vP) x L2(S,Y#) — L%(S,Y?) by

2
(AY(v — v"), D) 125, x2) :://ZDiuiV(vi—viD)~Vvidxds,
SJQ

2
(Au(v,2),0) 12(5,x2) 22/ / ZDim(VviD + i [oam (v)]TV2) - Vo dz ds,
S

(Rufwr ), B s oy 1= [ (Rarlw®u), (5,0)xds, € L(5,X7,
S

(Rup(0,0), ) 25y 21 ::/(RM(U+,w+),(0,w)>de, w e L2(S, Y2,
S

For all given v € L?(S,Y?), w € L?(S,Y?) the vector (B,v, B,w) lies in L?(S,Y). Thus,
by Lemma 3.1 there is a unique solution z with z — 2P € L2(S, Z) N (L>(S, L>®(R))) of

Pla(t), (Byv)T (1), Buow)t () =0 faa. teS.

Let 7.: L%(S,Y?)x L?(S,Y?) — L%(S, Z)+2zP denote the corresponding solution operator
such that z = 7,(v,w). Since (B,vP) = 0 and (B,w) = B,w', problem (Py) can be
formulated equivalently as follows:

(By(v —vP)) + A%(v —vP) = =Ry (v, w) — Ay (v, T2 (v, w)),

(By(v — vD))(O) = (U1,Us) — BoP, v—0oP eWw?, (41)

w/—i—B;l[Rw(v,w)] =0, ’LU(O) :8;1(U37'~-7U2l+2)7 w e Hl(S7Y2l)7 (42)

where

W? = {ve L*S,X?): (Bw) € L*(S,X*)} c C(S,Y?).

The existence result for (Pys) is shown by proving that the system (4.1), (4.2) can be solved.
We start with a short overview of this proof. At the beginning we fix some ¥ € W2 + v
and solve the initial value problem

w' 4+ B Ry(@,w)] =0, w(0) =B, (Us,...,Usysa), we HYS,Y?), (4.3)

obtain w = 7,0 with a solution operator 7,,: W2 4+ v? — H(S,Y?) (see Lemma 4.1).
Next we treat the problem

(By(v — vP)) + A%(v — vP) = =Ry (T, Tu0) — Ao(0, T.(0, TiyD)),

4.4

(By(v —vP))(0) = (U, U2) — BwP, v—ovP e W2 (44)
According to Lemma 5.3 there is a unique solution v = QU to this problem. The oper-
ator Q is completely continuous (see Lemma 4.2). Using Schauder’s fixed point theorem
we obtain a fixed point v of Q (see Lemma 4.3). Then (v, 7,,v) is a solution to (4.1), (4.2).
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Lemma 4.1 We assume (A1) — (A6). Then for all v € W2 + v there is exactly one
solution to (4.3). Moreover

178" =T 0? | sy < o' =0l r2(sy2), 1T osyny < ¢ Vo', 0% € W24oP.
Proof. Since for w € L?(S,Y?") the map w — B'[R. (¥, w)] is Lipschitz continuous
uniformly w.r.t. v, by [8, Chapt. V, Theorem 1.3] problem (4.3) has a unique solution w =
7,0 with a solution operator T, : W2 +vP — H'(S,Y?!). Moreover, taking into account

that [[Ra (0 w') (1) — Ru (0% w?)(t) [y < e([01(t) = 0%(t)[ly=2 + [lw!(t) — w?(t)[ly=) faa

t € S, for all (%, w'), (v2,w?) € L?(S,Y), testing (4.3) (for (v%,w') and (v%,w?)) by

w! — w? and using Gronwall’s lemma we derive the estimates of Lemma 4.1. [

Lemma 4.2 Under the assumptions (A1) — (A6) the mapping Q: W? +vP — W2 4¢P
1s completely continuous.

Proof. Let {v,} € W2+ v” be bounded. Because of Lemma 5.2 we may assume that
there exists an element ¥ € W2 + v such that v, — o in L?(S,Y?). Let

Up = Q/l}m v = Q@\a Wnp = Twi)\m w = Tw@\a Zn = z(amwn)’ z = ,Tz('/U\aw)

By Lemma 4.1, Lemma 3.1 it follows that w, — w in L?(S,Y?) and z,—z — 0 in L?(S,2).
Testing (4.4) for ¥, and ¥ by v, — v € L?(S, X?) we obtain according to Lemma 5.2

Do — ) )3 +/0 ellvn — vl ds
t 2
¢ o0 (Uni)] (o0 (0:)] 7| V2 Uni — Vi Zn—2 Vi — Vs x
= /0{/92{![ w (0nd) [T =loar (U IV 2] IV (i = vi)| + [V (20 =2)||V (v 1)|}d

+ (|Un — lly2 + ||lwn — w||y2) |Jvn — U||y2} ds VteS.
Applying Holder’s inequality and Lemma 4.1 we arrive at
lon — vl Z2(s x2)

< cllvn = vllz2s,x2) { B = Bllz2gs o) + 120 = 2225 2

2 T 1/2
+[[ [llow@l ~ lon @ (9P azas] .
i=1 Y0 JQ
Properties of superposition operators ensure that the last square bracket term tends to
zero if n — oo. Thus in summary we find that v, — v — 0 in L?(S, X?). Next we obtain
1(Bu(on — )Y (s x20
< 1R (B, ) =R (@, ) | 25,29 1AL wn—0) | 2(5,x29 | Ao B 20) = Aul@, 2l 125522

< C{Ilvn = llzags.x2) + [[on = 0ll2(sy2) + llwn = wllp2(s vy + 20 = 2l 12(5,2)

2 T 1/2
+ [/ / [ons ()] — [0 ()] 2 [V 2[2 da ds} } 0 for n — o0,
— tJo Ja

)
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and we arrive at v, — v — 0 in W?2. The continuity of the operator Q can be shown by
similar arguments. [

Lemma 4.3 Under the assumptions (A1) — (A6) the mapping Q has a fized point.

Proof. Let v € W2 +oP, 2 = T,(v, T,,0) and v = Qv. We use v° := v —vP as test function
for (4.4), take into account that (B,(v —v?)) = (B,v)’, (A4) and (A6) and the Lipschitz
continuity of R, and apply Lemma 3.1, Lemma 4.1 and Young’s inequality. Then

t
ol Ol + 2 [ 101 ds
0

t
et [ Q10+ 15 0PI + 2l ) ds (4.5)

t
< c+/0 (6||v0||§<2 +c(1+ 001132 + |0 — vDH%g) )ds VteS.
Therefore we find a constant ¢ > 0 such that for all £k > 0

t
(O + [ 11 ds)

t s
§c+ce—kt/ {{||v°||§2+||a—vD||§,2+/ (10°)1%2 + |9 — vP|1%2) dT}e_kseks}ds
0 0

o N s R 3 ekt_l
< e o sup { {[00(6) Ba+1005) = 02 + | (10 tlo=0P ) dr e} .
s€ 0

Choosing now k > 3¢ we obtain
t
supe (0O B+ [ 10°(5) e ds)

tesS

3_ .1 kit (1~ D2 b D2

< 5o+ goup{ e (156) ~ 0P B+ [ 110s) - oP e ds) }.
2 24es 0

Again using Lemma 3.1 and Lemma 4.1 we estimate

I(Bov®) 25 x2) = sup (=Ry(, Tu0) — Ay(v”) = Av(¥, 2),0) £2(5,x2)

”E”L2(S,X2)§1
sc (HUOHL‘Z(S,X?) + 12l 2 (s, a1y + [0 = UDHLQ(S,W) +1)

< ¢ (I llz2qs.x2) + 115 = 0P 25y +1)

[ 112° —kt (1 D2 . D2 w7 1/2

(1 zzqsxen + [sup {e (1900 B + [ [906) =0 [ ds) JeiT] " 1).
€ 0

Now we define the set

t
M= {U eW? 4P sup {e_kt<||vo(t)||§/2 +/ 10012 ds)} < 3¢,
tesS 0

IN

1(Bot®) || 2s.x2) < 5(2\/3@” + 1) }
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This set is a non-empty, bounded, closed and convex subset of W2+ v with the property
that Q(M) C M. Since the mapping Q is completely continuous the assertion follows
from Schauder’s fixed point theorem. [

Theorem 4.1 Under the assumptions (A1) — (A6) there exists a solution (u,b, z) to (Pr).

Proof. Because of Lemma 4.3 there exists a solution v of the problem

(By(v —vP)) + A (v — vP) = Ry (v, Typv) — Ay (v, T, (v, Tv)),
(By(v —vP))(0) = (U1, Us) — BpoP, v—oP e W2,

We set w = T,v € H'(S,Y?). Then the pair (v, w) fulfills the equations (4.1) and (4.2)
which represent an equivalent formulation of problem (Py). O

4.3 Energy estimates for solutions to (Py,)

Lemma 4.4 We assume (Al) — (A6). Then, for any solution (u,b,z) to (Py) and for
every t € S the inequalities b;(t), u;i(t) > 0 a.e. on Q, i = 1,2, u;(t) € [0,1] p;-a.e. in G,
1=3,...,2l+ 2, are fulfilled.

Proof. Let (u,b,z) be a solution to (Pps). We use the test function —b~. Taking into
account that

(Vb + Mo ()] TV2) - Vb, <0, —Gprotb; <0 i=1,2, (b5 —1)(b] +b5) <0,
(N@FQ @+e)@ﬁﬁ@ + 05540 — byiq) <0,
(byby;y — (L+eby; o) (by + by, —byjio) <0, J=1,...,1

we find that |[b=(¢)||3 < 0 for all t € S. Arguing now as in the proof of Lemma 3.2 we
verify the remaining results of the lemma. O

We introduce a regularized free energy functional Fj; which is compatible with the regu-
larizations done in problem (Pjs). Using the function

Iny if 0<y<M,

In(y) =
mM—1+% if y>M,

we define the functional ﬁMg :Y — R by

2042

FM2 /Z/ lM ﬂi lan dydx—i—Z// % dydp; ifueYy,

and Fypa(u) = +oo for u € Y\ Y4. Moreover, we set

Farz = (Fipolx)" : X* =R, Fy=F + Fug: X* - R,
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where F; was introduced in Subsection 3.4. Since the function [j; has the same essential
properties as the In-function which occurs in the definition of F5 we obtain the following
results. Fy is proper, convex and lower semicontinuous. For u € Y, it can be evaluated as
F1 () + Faa(uw). Due to the choice of M we have Fiy(U) = F(U). The restriction Fuly,
is continuous. If u € Y, then A\(z — 2P) € OF;(u) where z is the solution of P(z,u) = 0. If
w€Y,u>6>0then (In(by) — InbP, la(ba) — Inb, L (b3), ..., I (bars2)) € OFna(u).
By the definition of Fy and Ij; especially it follows for u € Yy and b, z with b = B~ u,
P(z,u) =0 that

Iz — 2202, (16 1nbil| 11, luillr < cFar(w) +¢ i=1,2. (4.6)

Lemma 4.5 Let (A1) — (A6) be satisfied. Then there exist constants c1(T) > 0, co(T) > 0
not depending on M such that

Fy(u(t)) <e(T), ||bi(t) Inbi(t)]|z <eoT), i=1,2, VteS§

for any solution (u,b, z) to (Pyr).

Proof. 1. We take ¢ as in (3.6), define v := max{b,d} and introduce the functional
Fy: Y — R,

Foo(u / Z / (Inr(max{Z, 6}) — Inb) dy dx

2l+2

+Z//u n(max{Z,o})dydu;, ueYy

and ﬁ]‘fn( ) = +oo if u € Y\ Yy, and the functional F§,, = (F]‘\S;IKQIX) : X* — R. Note
that for u € Y we have F9,(u) — Fara(u) as § | 0.

2. Let (u,b,2) be a solution to (Py). Then u € H'(S, X*), u, b >0, z — 2P € L2(S, Z),
why o= () — b2, 1y (68) — b, (b8, ..., (b)) € L3(S, X)

(note that Ip/(b)) = InbP ae. on S x T'p, i = 1,2) and A(2(t) — 2P) € OF(u(t)),
wl,(t) € OFY,(u(t)) fa.a. t € S. Thus, according to Lemma 5.1, we obtain that the
functions ¢ +— Fy(u(t)), t — F$;,(u(t)) are absolutely continuous on S and

%Fl( () = (' (t), \(z(t) — 2P)) x, %Ffﬂ(u(t)) = (W/(t),w (1)) fa.a. t€S.
3. We set (3, = w$; + A(z — 2P) and obtain

t

[Fuu() + Fipp®)] | = /0 ((5), G (s) x ds

0

_ /0 (Rar(b(s)) + Anr(b(5), 2(5)). (3 () x ds
== [ (R0 () + A ((5) (). () + 05 s,

0
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where 0° = (Ry;(b%) — Rar(b) + A (0°,2) — Anr(b, 2),¢3,)x — 0 for 6 | 0. Since all the
reaction terms containing the factor pys become zero if |b|o > M, we have for these terms
only to discuss the situation bf < M, and here is [ M(bg) =In bf such that we can argue as
in Step 2 of the proof of Theorem 3.2 to arrive at

_<RM<b5)7 C?V[)X

2 2
< e+ DN P68 e + IGnorllzoe{ 3 (1201 + 10 bPlIge) + flz== 10 }
=1 =1

l
1+e?

Z{ Hb(SHLl +1 Hln bD ||L°°(G dpojy1) + (Hb(SHLl + )(HIH?D]HLOO(G,dHQj-{»I)}'
Having in mind that on solutions [0 (b)Y = oar(b9) < b2, Vi () = V(B9) /o (b?),
i = 1,2, using (A4), (A5) and Young’s inequality, and leaving out nonpositive terms we
find

—(Au (0, > Chr)x
/ ZD wion (b {|V(zM(b5) + Xi2) > = V(I () + Niz) - V(In bZD—)\izD)} dz
< CZ 169 ]| IV (InbP + X;2P)||2  a.e. on S.
i=1

Taking ¢ | 0 in the estimates of Step 3 and using (A3), (A4) and (4.6) we end up with

Fu(u(t) — Fy(U) < ¢ /O (1 + Far(u(s))) ds.

where ¢ depends on the data, but not on M. The choice of M guarantees that Fi/(U) =
F(U). So Gronwall’s lemma supplies the first assertion of the lemma. The remaining
assertion of the lemma is a consequence of (4.6). O

4.4 Further estimates for solutions to (P,/)

Theorem 4.2 We assume (A1) — (A6). Then there is a constant ¢*(T") > 0 not depending
on M such that for any solution (u,b, z) to (Par)

16l oo (5,v) < ¢(T). (4.7)

Proof. 1. Let (u, b, z) be a solution to (Pas). Let ¢ > 2,r and ' be chosen as in Lemma 3.1
and (3.2). Due to Lemma 4.4 and Lemma 3.1 we get

le@®llwra <c[1+ D lu@l] <et+ Y I@le] vtes @48

i=1,2 i=1,2
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2. We test (Pys) by 2(v1,v2,0,...,0), where v; = (b; — K)*, i = 1,2, with K given in
(3.8). Estimating [ops(b;)]T by v; + K, using Lemma 4.4, (4.8), (5.1), Young’s inequality,
Lemma 4.5 and (4.6) we find that

> collvi(®)

i=1,2

/ > {=2ellvill + clllvill e llzllwralloil s + =2l lloill e+ oill7e +1)} ds

i=1,2
<[5 {= et +alodurlalin 3 ol + e} s
1=1,2 k=1,2

2
Using [|vg | .o < floxl| 27"

_ €
e Y il ol 2 loell e < 37 {5 Hulldn + clloliZe 37 llonli:}

i=1,2 k=12 i=1,2 k=1,2

2
< > {5l + [ \f sl ol + elfollza |} < 37 elll + e
i=1,2 i=1,2

llv ’fHL? , the inequality (5.2) for p = 2 and Lemma 4.5 we have

The previous estimates and the inequality (4.8) ensure the existence of positive constants
¢(T), % independent of M such that

loi®)ll2 < es(T), i =12, [2(t)lFrq + 1 <E(T) VEeES. (4.9)

3. Following the estimates in the proof of Theorem 3.3, but estimating [o37(b;)] 1 by vi+ K
and using k(7)) from (4.9) instead of xk we find that ||v;(¢)||z~ < ¢(T) for all ¢t € S which
gives the desired upper bounds for b;, i = 1,2, on S. Since by Lemma 4.4 it is b; < 1/u;
wi-a.e. in G forall t € S, ¢ =3,...,20 + 2, the proof is finished. [

4.5 Existence result for (P)

Theorem 4.3 We assume (A1) — (A6). Then there exists at least one solution to (P).

Proof. 1t suffices to prove the existence of a solution to (P) on any finite time interval
S = [0, T]. Such problems are denoted by (Pg). We choose M = 2 ¢*(T) (cf. Theorem 4.2).
Then according to Theorem 4.1 there is a solution (u,b,z) to (Pg7). The choice of M
guarantees that the operators Ry and R as well as the operators A3; and A coincide on
this solution. Therefore (u, b, z) is a solution to (Pg), too. O

5 Appendix

We suppose that  C R? is a bounded Lipschitzian domain. We use Sobolev’s imbedding
results (see [16]) and we apply the Gagliardo-Nirenberg inequality

wllzr < e w2 w]i: " Vw e HY(Q), 1<p < oo (5.1)
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(see [5, 19]). As an extended version of this inequality one obtains that for any § > 0 and
any p € (1,00) there exists a c5, > 0 such that

ol < 6w fwl| g lwllfn’ + csp ol Vw e HY(S). (5:2)

This inequality is verified in [1] for bounded smooth domains and p = 3. But (5.2) is
true for bounded Lipschitzian domains and p € (1, 00) since (5.1) is valid in this situation,
too. Additionally, we make use of the following chain rule, which can be obtained from
[3, Lemma 3.3].

Lemma 5.1 Let X be a Hilbert space, X* its dual, S = [0,T]. Let F : X* — R be
proper, convexr and semicontinuous. Assume that u € HY(S,X*), f € L*(S,X) and
f(t) € OF (u(t)) f.a.a. t € S. Then Fou:S — R is absolutely continuous, and

d};tou( )= <%(t)’f(t)>x fa.a. tE€S.

Let u € L*°(Q), essinfyequ(x) > ¢ > 0. We define B: L*(Q) — L?*(Q) by Bw :=
aw, w € L?(Q). For S = [0,T], T < oo, the extended operator B: L?(S, L*(Q)) —
L?(S,L?()) is given by (Bw)(t) := B(w(t)) fa.a. t € S. For the set

Wg ={we L*(S,H}(QUTIxN): (Bw) € L*(S,Hy(QUT'n)*)}
the following assertions can be verified as in [8, 17, 22].
Lemma 5.2 Fquipped with the scalar product
(W, @)y, = (W, W) 25,1300y + (Bw)s (BO)) 1205 g1 ur )

the linear space Wg is a Hilbert space, which is continuously embedded in C(S, L?(52)).
The operator B: Wy — C(S,L*(Q)) is continuous. For w € Wg and t1,ts € S the
formula

| (B 9 0(9) i ds = 5 (Budta),w(ta)) 2 — 5 (B)(t), w(tn)s

t1

holds. The imbedding of Wg in L?(S, L*()) is compact.

—_

The following existence result can be proved as in [8, Chap. IV].

Lemma 5.3 Let A: L?(S, H}(QUTy)) — L?(S, H}(QUTN)*) be the operator

T
<Aw,w>L2(S7Hé(QUFN)) = / / aVw -V de ds, w, W< L*(S, HY(QUTy)),
0o Ja
where a € L>®(S x Q) with a(t,x) > ¢ > 0 fa.a. (t,x) € S x Q. Then for every
f € L?(S,HY(QUTN)*) and every U € L*(Q) there exists a unique solution to
(Bw) + Aw = f, (Bw)(0)=U, we€ Wg.
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