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Abstract

We present a new coupled discretization approach for species transport in
an incompressible fluid. The Navier-Stokes equations for the flow are discretized
by the divergence-free Scott-Vogelius element on barycentrically refined meshes
guaranteeing LBB stability. The convection-diffusion equation for species transport
is discretized by the Voronoi finite volume method. In accordance to the continuous
setting, due to the exact integration of the normal component of the flow through
the Voronoi surfaces, the species concentration fulfills discrete global and local
maximum principles. Besides of the the numerical scheme itself, we present impor-
tant aspects of its implementation. Further, for the case of homogeneous Dirichlet
boundary conditions, we give a convergence proof for the coupled scheme. We re-
port results of the application of the scheme to the interpretation of limiting current
measurements in an electrochemical flow cell with cylindrical shape.

1 Introduction

We describe an algorithm which uses the Voronoi box based finite volume method in
order to calculate solute transport in a given flow field~v. In the case of an incompress-
ible, dilute solution, local mass conservation and maximum principles for this problem
are directly connected to the condition ∇ ·~v = 0. If the flow field is given as the re-
sult of a numerical computation, a discrete analogon of that condition is required in
order to guarantee mass conservation. A possible resort for this problem is the Scott-
Vogelius element Pk-Pdisc

k−1 with polynomial order k ≥ 1 which guarantees a pointwise
divergence-free discrete flow field. This mixed finite element is LBB stable on regu-
lar, barycentrically refined simplicial meshes with a polynomial order of k ≥ d, d the
space dimension[30, 20]. Different aspects of this discretization method for the incom-
pressible Navier-Stokes equations have been studied in more detail in [18, 4]. In this
paper we present a numerical scheme which couples the Scott-Vogelius element for
the incompressible flow problem and the Voronoi finite volume method for the species
concentrations in a straightforward manner by using exact integration of the normal
component of the discrete flow through the faces of the Voronoi control volumes.

In [19] different strategies are proposed in order to obtain a mass conservative cou-
pling between Navier-Stokes flow and solute transport using finite element methods
for both problems. Additional conditions on the Navier-Stokes discretization are neces-
sary in order to obtain mass conservation in discretized convection-diffusion equations.
With these strategies, at least global mass conservation can be achieved, but features
of the original continuous problem like maximum principles and positivity are not pre-
served. The failure of discrete maximum principles is typical for stabilized finite element
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methods for convection-diffusion equations [14, 15], but occurs in general also for point-
wise divergence-free flow fields. On the other hand, on boundary conforming Delaunay
meshes, upwinded Voronoi finite volume methods always fulfill these qualitative prop-
erties [26, 11].

In [5] a similar coupling approach is studied. The authors present a scheme for density
driven flow based on a Taylor-Hood finite element method for the flow and on a Donald
box based finite volume method for the hyperbolic transport equation. Coupling is per-
formed by postprocessing the finite element velocity by defining an auxiliary discretely
divergence-free velocity for use in the finite volume scheme. They consider instationary
problems and take special care of the influence of the density variations on the flow.
They verify their method by different numerical experiments.

In section 2, we present the weak formulation of the problem. Section 3 is devoted to
the description of the discretization scheme. Based on compactness arguments, we
give a convergence proof for the coupled scheme in the case of Dirichlet boundary
conditions. In section 4, we discuss a method to calculate boundary fluxes based on
volume integration and we discuss maximum principles for the transport equation. In
section 5, we elaborate on several implementation issues. In section 6, we apply the
presented method to the interpretation of a limiting current experiment in an electro-
chemical flow cell [12]. In particular, we demonstrate the consequences of the violation
of the discrete divergence condition when using the same coupling approach with the
Taylor-Hood element.

2 Problem formulation

Let Ω⊂Rd be a simply connected Lipschitz domain with d ∈ {2,3}. We regard the sta-
tionary, incompressible Navier-Stokes equations coupled to the equation of stationary
transport of a dissolved species under the assumption that the solution is dilute which
allows to ignore the influence of density variations on the fluid flow. Therefore, the flow
is described using the steady, incompressible Navier-Stokes equations:

(~v ·∇)~v+∇p−η∆~v = ~f , ∇ ·~v = 0. (2.1)

Here, ~v is the fluid velocity, p is the pressure, η is the viscosity of the fluid, and ~f is a
force vector. The steady transport of a species dissolved in the fluid is described by the
system

∇ ·~q = s, ~q =−(D∇c− c~v) (2.2)

Here,~q is the species molar flux, c is the species molar concentration, D is the diffusion
coefficient,~v is the fluid velocity which is a solution of (2.1), and s is a given source term.

The boundary conditions correspond to a physical problem under investigation – the
limiting current problem in a flow cell [13, 12]. For a thorough description of this back-
ground, we refer to section 6. Let IΓ = {A, I,O,S,W} be a set of labels for boundary
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sections. We assume that the boundary Γ = ∂Ω =
⋃

i∈IΓ
Γi is subdivided into an inlet

ΓI , an outlet ΓO, an anode ΓA, and a symmetry boundary on ΓS. The remaining part
of Γ is assumed to consist of inert, impermeable walls ΓW . We further assume that
ΓA,ΓI,ΓO are separated from each other by sections belonging either to ΓW or ΓS. We
impose the following boundary conditions:

Section c (~v, p)
Inlet ΓI c = cI(x) ~v =~vI(~x)

Anode ΓA c = 0 ~v =~0
Outlet ΓO

∂c
∂~n = 0 η

∂~v
∂~n = p~n

Symmetry ΓS
∂c
∂~n = 0 ~v ·~n = 0, ∂ (~v ·~t)

∂~n = 0
Wall ΓW

∂c
∂~n = 0 ~v =~0.

(2.3)

Let ΓNS
D = ΓI ∪ΓA∪ΓW denote the Dirichlet boundary for the Navier-Stokes equations

and let
V = {~v ∈ [H1(Ω)]d|~v =~vD onΓ

NS
D ,~v ·~n = 0onΓS},

where vD is defined by corresponding boundary values in (2.3). We derive a new right
hand side ~f from the extension of ~vD into Ω and then assume that the solution ~v is in
V , thus removing all integrals over ΓD.

After multiplication of (2.1) with a sufficiently smooth test function (~w,q), all boundary
integrals cancel out, and the weak formulation of (2.1) is given as follows: Find (~v, p) ∈
V ×L2(Ω) such that for all (~w,q) ∈V ×L2(Ω)∫

Ω

η∇~v : ∇~wdx+
∫

Ω

((~v ·∇)~v) ·~wdx+
∫

Ω

p∇ ·~wdx =
∫

Ω

~f ·~wdx;
∫

Ω

q∇ ·~vdx = 0.

(2.4)

The weak formulation of (2.2) relies on the particular choice of boundary conditions
for ~v. Let ΓT

D = ΓA ∪ΓI be the Dirichlet boundary for the transport equation, and let
s be the right hand side containing the Dirichlet boundary conditions. Let W = {c ∈
H1(Ω)| c|

ΓT
D

= 0}. Then we look for c ∈W such that for all φ ∈W ,∫
Ω

(D∇c− c~v) ·∇φ dx+
∫

ΓO

~v ·~ncφ ds =
∫

Ω

sφdx. (2.5)

The existence of the solution of (2.5) can be proven by the Lax-Milgram lemma. For
coercivity, it is essential that~v ·~n≥ 0 a.e. on ΓO which we can expect if we assume that
~v ·~n≤ 0 a.e. on ΓI .

The system (2.4), (2.5) can be analyzed and solved in a decoupled manner. The first
step is the treatment of (2.4) yielding a steady velocity field~v. In a second step using this
velocity field, we treat (2.5) resulting in a steady solute distribution c. The convergence
analysis in section 3 in this paper will be delivered for the “all Dirichlet” case ΓI = Γ

which we then can assume as a special case of the boundary conditions (2.3).

For the flow cell example in section 6, we will assume cI(~x) = ĉI to be constant, and
~vI(~x) to be derived from a Hagen Poiseuille like profile, and that the source terms ~f ,s
in (2.1), (2.2) are zero.
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3 Coupled finite volume and finite element discretiza-
tion

The coupled discretization scheme is based on two independent discretization meshes,
one for the Navier-Stokes equations, and another one for the transport equation. The
coupling is achieved by the calculation of the normal projection of the velocity from the
finite element scheme onto the facets of the control volumes. In the sequel, we give an
independent description of both schemes.

3.1 Finite element discretization

We introduce two different conforming Galerkin mixed finite element discretizations
for the incompressible Navier-Stokes equations. They are derived directly from the
weak formulation in (2.4) by choosing finite-dimensional function spaces Vh ⊂ V and
Ph ⊂ L2(Ω) which serve as trial and test function spaces. The main focus of the paper
will be on the Scott-Vogelius mixed finite element, which delivers pointwise divergence-
free, discrete velocity approximations. The convergence proof of the coupling scheme
is elaborated for the Scott-Vogelius element, With small changes, it could also be ex-
tended to the Taylor-Hood element.

Let T̄h denote a regular finite element triangulation of the domain Ω in the sense of
[6]. The mesh T̄h is called a macro triangulation and we derive a second triangulation
Th from T̄h. For each simplex T̄ ∈ T̄h we connect its barycenter with its vertices, and
we thereby get three new triangles from each macro triangle, or four new tetrahedra
from each macro tetrahedron. This new triangulation Th is also locally shape regular
and locally quasi-uniform, although the constants for interpolation estimates are worse,
because we get larger angles. In the following, such a shape-regular and barycentrically
refined mesh will be called an admissible mesh for the Scott-Vogelius element.

For the Taylor-Hood element and the Scott-Vogelius element in space dimension d, we
define Vh as the space of continuous elementwise vector functions of polynomial order
d +1 on the triangulation Th

Vh :=
{
~vh ∈ [C(Ω)]d ∩V :~vh|T ∈ [Pd+1(T )]d, for all T ∈Th

}
.

Though these two mixed finite elements have the same discrete velocity space, they
differ in the discrete pressure space. For the Taylor-Hood element we define

PTH
h :=

{
q ∈ L2(Ω)∩C(Ω) : q|T ∈ Pd−1, for all T ∈Th

}
,

while the pressure space of the Scott-Vogelius element is defined by

PSV
h :=

{
q ∈ L2(Ω) : q|T ∈ Pd−1, for all T ∈Th

}
.

Therefore the Taylor-Hood element and the Scott-Vogelius element have elementwise
linear pressure functions in two dimensions and elementwise quadratic pressure func-
tions in three dimensions, but for the latter the pressure functions are discontinuous.
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The above derivation of the triangulation Th from a macro-triangulation T̄h assures that
the Scott-Vogelius element is LBB stable on Th [20, 2, 30]. Also the LBB stability of the
Taylor-Hood element is assured on such triangulations [3].

The discretization of the problem in equation (2.4) is now given as follows: find (~vh, ph)∈
Vh×Ph with Ph ∈ {PTH

h ,PSV
h } such that∫

Ω

(~vh ·∇)~vh ·~wh dx−
∫

Ω

ph∇ ·~wh dx+
∫

Ω

η∇~vh : ∇~wh dx =
∫

Ω

~f ·~wh dx

−
∫

Ω

qh∇ ·~vh dx = 0,
(3.1)

which holds for all test functions (~wh,qh) ∈Vh×Ph.

The Scott-Vogelius element is interesting for our investigation below, since its discrete
velocity space and its discrete pressure space fulfill an important property, namely

∇ ·Vh ⊂ PSV
h . (3.2)

This property enforces exact mass conservation of the Scott-Vogelius element in the
L2 sense, since we can choose the special test function qh :=−∇ ·~vh in equation (3.1)

0 =−
∫

Ω

qh∇ ·~vh dx =
∫

Ω

(∇ ·~vh)
2 dx.

In general, the same pressure test function cannot be used in the Taylor-Hood case,
since ∇ ·Vh 6⊂ PTH

h . Hence the Taylor-Hood element only delivers discretely divergence-
free approximations~vh, and this will arise below as the proper origin of violations in the
discrete maximum principle for a coupled transport equation.

3.2 Voronoi Finite Volumes on boundary conforming Delaunay meshes
for solute transport

In order to describe the finite volume scheme, we first introduce some notations. As-
sume that ∂Ω is the union of planar polygons. Let P = {~xK} ⊂ Ω̄ a set of points which
includes all the vertices of the polygons constituting ∂Ω. A simplicialization of this point
set has the Delaunay property if no circumball of any simplex contains a point ~xK of
P . For a given point ~xK ∈ P , the Voronoi cell V 0

K ⊂ Rd around ~xK is defined as the
set of points ~x ∈ Rd which are closer to ~xK than to any other point ~xL of P . The set
of Voronoi cells is called Voronoi diagram. The duality of the Voronoi diagram and the
Delaunay simplicialization allows to calculate the Voronoi cell around ~xK by joining the
circumcenters of the simplices having~xK in common.

We define as the control volume around ~xK the Voronoi box VK associated with ~xK as
VK = V 0

K ∩Ω. For a proper construction, the simplicialization of the point set in addition
to the Delaunay property has to be boundary conforming [26]. In the present context
this means that

1 Ω is the union of all simplices;
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~xK

~xM

~xL

LK

DKL

σ
K

L

~xK
σKL

~xL
σKL

Figure 1: A control volume K around the node of the simplicial mesh ~xK , the Voronoi
box face σKL and the diamond set DKL coresponding to two neigboring control volumes
K,L.

2 no simplex circumball contains any other discretization vertex;

3 all simplex circumcenters are contained in Ω̄;

4 the boundary sections Γi (i ∈IΓ) are the unions of simplex faces, and all circum-
centers of boundary simplices from Γi are contained in Γ̄i.

In this situation, it is possible to explicitely construct the boundaries ∂VK of the Voronoi
boxes, see section 5.1.1.

The set of Voronoi boxes generates an admissible finite volume partition in the sense
of [8] (where in the latter, one needs to replace “edge” by “face”). In order to simplify
notations and to get them synchronized with [8], in the sequel, we will use K in order to
denote the the Voronoi boxes VK .

Let K denote the set of control volumes K, and Ki denote the set of control volumes K
which share facets with Γi. Let KD = (KI ∪KA) denote the set of Dirichlet control vol-
umes and K 0 = K \KD denote the set of non-Dirichlet control volumes. We assume
that the set of control volumes is ordered linearly by a relation ≺.

For two control volumes K,L, let σKL = ∂K ∩ ∂L. If |σKL| > 0, then K,L are called
neighbours and~xK~xL is an edge of the boundary conforming Delaunay simplicialization
which is known to be orthogonal to σKL. Let DKL =~xKσKL ∪~xLσKL denote the union
of the pyramides spanned by σKL and ~xK,~xL, respectively, also called diamond. Let
E = {K|L | K ≺ L and |∂K∩∂L|> 0} denote the set of all pairs of neighbouring control
volumes. Let NK = {L ∈K | K|L ∈ E } denote the set of neighbours of K. For i ∈IΓ,
let G i

K be the set of facets of K with nonempty intersection with the boundary part Γi.
Then ∂K∩Γi =

⋃
σ∈G i

K
σ and

∂K =

 ⋃
K|L∈NK

σKL

∪( ⋃
i∈IΓ

(∪
σ∈G i

K
σ)

)
.
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Let ∂E =
⋃

K∈K ,i∈IΓ
G i

K denote the set of boundary facets, and Ē = E ∪ ∂E . For the
definition of the regularity of a finite volume discretization we refer to [8].

For any facet σ ∈ Ē we define the scaled normal

~hσ =

{
~hKL =~xL−~xK, σ = σKL,K|L ∈ E

~nout
Ω

, σ ∈ ∂E

and the transmission coefficients

τσ =

{
τKL = |σKL|

|~hKL|
σ = σKL,K|L ∈ E

|σ |, σ ∈ ∂E .

Let hσ = |~hσ |.
Obviously, Ω =

⋃
K|L∈E DKL, therefore

d|Ω|= d ∑
K|L∈E

|DKL|= d ∑
K|L∈E

|DKL|= d ∑
K|L∈E

|σKL|hKL

d
= ∑

K|L∈E

|σKL|hKL (3.3)

Let ~v ∈ [H1(Ω)]d fulfill the boundary conditions (2.3) and ∇ ·~v = 0. We note that every
solution ~v of (2.4) and every Scott-Vogelius solution ~vh of (3.1) fulfills this criterion. For
any σ ∈ Ē , the H1-regularity of~v allows to define the scaled flux projection

vσ =
1
|σ |

∫
σ

~v ·~hσ ds. (3.4)

These flux projections are discretely divergence-free in the sense that for all K ∈ K
holds

∑
L∈NK

τKLvσKL + ∑
i∈I

∑
σ∈G i

K

τσ vσ = 0. (3.5)

We introduce the space of functions

Wh = {ch ∈ L2(Ω): ch|K = cK},

consisting of scalar functions which are piecewise constant on each control volume.
Here, cK = ch|K is an approximation of c(~xK) in the control volume K, see [8]. Further,
we define the discrete right-hand side of the discrete convection-diffusion equation by
the average value of the continuous right-hand side over the control volume K

sK =
1
|K|

∫
L

s(~x)dx.

Then, the finite volume scheme for the transport equation (2.5) reads as: we look for
ch ∈Wh such that{

∑L∈NK τKLg(cK,cL,vσKL)+∑σ∈G O
K

τσ g(cK,cK,vσ ) = sK K ∈K 0

cK = cD(~xK), K ∈KD,
(3.6)
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where the treatment of the outflow boundary conditions is taken from [11].

The scheme is motivated by an approximation of∫
K

∇ ·~qdx = ∑
L∈NK

τKL
1
|σ |

∫
σK|L

~q ·~hσKL ds+ ∑
σ∈GK

τσ

∫
σ

~q ·~hσ ds

i.e., the flux function g(cK,cL,vσKL) is an approximation of the average normal flux

1
|σKL|

∫
σKL

~q ·~hσKLds

through the facet σKL scaled by hσKL . Like in [11], for a given function U(z), we set

g(cK,cL,v) = D
(

U
( v

D

)
cK −U

(
− v

D

)
cL

)
, (3.7)

For U(z) = Udcd(z) = 1 + z
2 we yield the sum of the standard finite difference for the

diffusion part and the central difference scheme. As Udcd(z) < 0 for z < −2, the such
generated numerical flux g does not fulfill the monotonicity conditions necessary for
stability [11]. Therefore, we demand that he function U(z) is positive for all z ∈ R. The
simple upwind discretization is given by the upwind function

Udsu(z) =

{
1+ z z≥ 0
1 z < 0

.

A preferable choice for the function U going back to Allen and Southwell [1] is the
Bernoulli function

Uexp(z) = B(z) =
z

1− e−z . (3.8)

leading to the the so-called exponential fitting scheme which delivers exact flux ap-
proximations for linear, one-dimensional convection-diffusion equations with constant
coefficients and a constant right hand side.

In the following, we will use the even and the odd part of a given function U(z) which is
defined by

Ueven(z) :=
1
2

(U(z)+U(−z)) , Uodd(z) :=
1
2

(U(z)−U(−z)) .

We have by definition U(z) = Ueven(z) + Uodd(z). For all the three functions Uodd(z)
above, we obtain

Uodd(z) =
z
2
. (3.9)

Therefore, the flux between two control volumes K and L is only convective, when
cK = cL, i.e.,

g(cK,cK,v) = D
(

U
( v

D

)
cK −U

(
− v

D

)
cK

)
= 2DUodd

( v
D

)
cK = cKv.

This fact motivates the treatment of the outflow boundary.
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The even parts are given by

Udcd,even(z) = 1,

Udsu,even(z) = 1+
|z|
2

,

Uexp,even(z) =
z
2

coth
( z

2

)
= 1+O(z2).

Altogether, for all three functions Ueven(z) we have the important relations

1≤Ueven(z)≤ 1+
|z|
2

and lim
z→0

Ueven(z) = 1. (3.10)

With these functions we can write (3.7) as

g(cK,cL,v) = DUeven

( v
D

)
(cK − cL)+

cK + cL

2
v. (3.11)

The convergence proof below relies mainly on the relations (3.9) and (3.10). It is imag-
inable, of course, to use other approximations U(z) for the flux with similar properties.

3.3 Convergence of the coupled FVM-FEM scheme

In the following we deliver a convergence analysis for the coupled scheme with the
Scott-Vogelius element for the fluid flow discretization, and the Voronoi finite volume
method for the transport equation. Our proof is based on compactness arguments.

In order to limit the complexity of the convergence analysis, we introduce homogeneous
Dirichlet boundary conditions on Γ = ∂Ω:

c|Γ = 0 ~v|Γ =~0 (3.12)

Generalization to inhomogeneous Dirichlet boundary conditions is straightforward us-
ing the standard technique of subtracting an extension of the boundary value to the
domain, and thus moving the treatment of the inhomogeneous boundary conditions to
the right hand sides ~f , s. As a consequence, in the weak formulations (2.4) and (2.5),
we assume that Γ = ΓI with the consequence that~v ∈V = [H1

0 (Ω)]d and c ∈ H1
0 (Ω).

For the proof of the coupled scheme, we investigate a sequence of mesh pairs (Th,Vh)
which is indexed by the mesh parameter h. Th denotes a sequence of regular, barycen-
tric refined simplicial meshes in the sense above, Vh denotes a sequence of regular
Voronoi meshes. The only geometrical assumption which relates both sequences of
meshes is that their respective mesh parameters hFEM(h) and hFVM(h) go uniformly to
zero, i.e., there are constants C1 and C2 which are independent of h and the relation

C1hFEM(h)≤ hFVM(h)≤C2hFEM(h)

holds. We further assume that both mesh sequences possess uniform bounds for their
mesh regularities.
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3.3.1 Convergence of the Scott-Vogelius finite element method

Lemma 3.1. The Scott-Vogelius discretization (3.1) has at least one discrete solution
(~vh, ph) on every grid, which is admissible in the sense above.

Proof. This is a classical result, see e.g. [28]. In order to obtain the result, we introduce
the subspace of divergence-free functions for the Scott-Vogelius finite element method

V0,h = {~vh ∈Vh: ∇ ·~vh = 0} (3.13)

and we reformulate the above weak problem (3.1) as a problem without the pressure
ph: we look for~vh ∈V0,h such that∫

Ω

η∇~vh : ∇~wh dx+
∫

Ω

(~vh ·∇)~vh ·~wh dx =
∫

Ω

~f ·~wh dx (3.14)

holds for all ~wh ∈ V0,h. Then, we apply Brouwer’s fixed point theorem, see [28], and
obtain at least one solution ~vh ∈ V0,h such that (3.14) holds. Then, for each solution
~vh ∈V0,h there is a unique, corresponding discrete pressure ph which exists due to the
discrete LBB stability of the Scott-Vogelius element on admissible meshes.

In the following, we are only interested in discrete velocity solutions of the steady
Navier-Stokes problem in (3.14) without the pressure, since the pressure does not oc-
cur in the coupling procedure.

Lemma 3.2. For a sequence of Scott-Vogelius solutions (~vh) in (3.14) we can extract a
subsequence which converges weakly in V = [H1

0 (Ω)]d to some ~v ∈ V . Moreover, this
convergence is strong in [L2(Ω)]d and the limit~v is divergence-free.

Proof. Testing with ~wh =~vh in (3.14) and using the Poincaré inequality yields

‖∇~vh‖0 ≤
CF

η

∥∥∥~f∥∥∥
0

with the Poincaré constant CF . By Rellich’s theorem we obtain that a subsequence of
(~vh) converges weakly in [H1

0 (Ω)]d to some~v ∈V . This subsequence is denoted again
as (~vh). Moreover, we know by Rellich’s theorem that the sequence converges strongly
in [L2(Ω)]d to~v. For any regular test function ψ ∈C∞

0 (Ω) it holds further∫
Ω

~v ·∇ψ dx = lim
h→0

∫
Ω

~vh ·∇ψ dx = 0.

Therefore, the limit~v is divergence-free.

Theorem 3.1. The limit~v of the sequence of Scott-Vogelius solutions (~vh)h from Lemma
3.2 is a solution of the steady Navier-Stokes problem (2.4), and we obtain

~vh
H1

0→~v.
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Proof. Since we know from Lemma 3.2 that ~v is divergence-free, we have to prove
only that ~v fulfills the momentum equation of (2.4). For that we choose an arbitrary,
divergence-free velocity test function ~ϕ ∈ [C∞

0 (Ω)]d and we must check that~v fulfills∫
Ω

(~v ·∇)~v ·~ϕ dx+
∫

Ω

η∇~v : ∇~ϕ dx =
∫

Ω

~f ·~ϕ dx.

We choose an approximating sequence of test functions (~ϕh) ∈Vh with ~ϕh
H1

0→ ~ϕ, which
are not divergence-free, but converge strongly in [H1

0 (Ω)]d to the divergence-free func-
tion ~ϕ . Since we can construct such a sequence by Lagrange interpolation, we can
further assume that the norms ‖~ϕh‖L∞(Ω) and ‖∇~ϕh‖L∞(Ω) converge to ‖~ϕ‖L∞(Ω) and
‖∇~ϕ‖L∞(Ω), and are uniformly bounded.

The discrete solution~vh fulfills∫
Ω

(~vh ·∇)~vh ·~ϕh dx−
∫

Ω

ph∇ ·~ϕh dx+
∫

Ω

η∇~vh : ∇~ϕh dx =
∫

Ω

~f ·~ϕh dx.

For the right hand side holds

lim
h→0

∫
Ω

~f ·~ϕh dx =
∫

Ω

~f ·~ϕ dx,

since ~ϕh converges strongly in [L2(Ω)]d to ~ϕ .

Similarly, we obtain

lim
h→0

∫
Ω

η∇~vh : ∇~ϕh dx =
∫

Ω

η∇~v : ∇~ϕ dx,

since ~ϕh converges strongly in [H1
0 (Ω)]d to ~ϕ , and ~vh converges weakly in [H1

0 (Ω)]d to
~v. The result follows by weak-strong convergence of the entire integral.

For the distributional pressure gradient we recall that ph is uniformly bounded by

‖ph‖0 ≤
1
βh

(∥∥∥~f∥∥∥+η ‖∇~vh‖0 + c‖∇~vh‖2
0

)
≤C,

where βh is the discrete LBB constant of the Scott-Vogelius element. Therefore, we
obtain ∣∣∣∣∫

Ω

ph∇ ·~ϕh dx
∣∣∣∣≤C‖∇ ·~ϕh‖0 → 0,

for h→ 0.

For the nonlinear term we adapt the argument from [28]. The identity∫
Ω

(~vh ·∇)~vh ·~ϕh dx =−
∫

Ω

(~vh ·∇)~ϕh ·~vh dx

holds, and since ∇~ϕh is bounded by assumption and~vh converges strongly in [L2(Ω)]d

to~v, we obtain finally

lim
h→0

∫
Ω

(~vh ·∇)~vh ·~ϕh dx =
∫

Ω

(~v ·∇)~v ·~ϕ dx.

11



Therefore, for the weak limit~v holds∫
Ω

(~v ·∇)~v ·~ϕ dx+
∫

Ω

η∇~v : ∇~ϕ dx =
∫

Ω

~f ·~ϕ dx,

i.e., it is indeed a solution of the steady Navier-Stokes equations. Finally, we obtain for
‖∇~vh‖0

lim
h→0

η ‖∇~vh‖2
0 = lim

h→0

∫
Ω

~f ·~ϕh dx =
∫

Ω

~f ·~ϕ dx = η ‖∇~v‖2
0 ,

and from the weak convergence~vh
H1

0⇀~v, together with the norm convergence ‖∇~vh‖0 →

‖∇~v‖0 follows also the strong convergence~vh
H1

0→~v.

3.3.2 Convergence of the convection-diffusion equation

Essential for the convergence proof of the coupled scheme is the definition of two
reconstructions of the vector ~vh on the Voronoi grid Vh similar to the definition of the
scaled velocity (3.4) in the discretization of the coupled scheme. First, we define the
vector~vh,vol , which is constant on each diamond Dσ and its value is given by the volume
average of~vh on Dσ , i.e.,

~vh,vol|Dσ
=

1
|Dσ |

∫
Dσ

~vh dx. (3.15)

Second, we define the vector ~vh,face, which is also constant on each diamond Dσ , but
its value is given by the face average of~vh on σ , i.e.,

~vh,face|Dσ
=

1
|σ |

∫
σ

~vhds. (3.16)

For these reconstructions, the following results hold:

Lemma 3.3. For any sequence (~vh) ∈ [H1
0 (Ω)]d which converges strongly in [H1(Ω)]d

to some~v ∈ [H1
0 (Ω)]d , the sequences (~vh,vol) and (~vh,face) converge strongly in [L2(Ω)]d

to~v.

Proof. The strong L2-convergence of ~vh,vol to ~v is obvious. The convergence of ~vh,face
can be traced back to the convergence of~vh,vol by∥∥~vh,face−~v

∥∥
0 ≤

∥∥~vh,face−~vh,vol
∥∥

0 +
∥∥~vh,vol−~v

∥∥
0 .

We obtain

∥∥~vh,face−~vh,vol
∥∥2

0 = ∑
σ∈E

|Dσ |
(

1
|σ |

∫
σ

~vhds− 1
|Dσ |

∫
Dσ

~vh dx
)2

≤C ∑
σ∈E

|Dσ |
hσ

|σ |

∫
Dσ

‖∇~vh‖2
0 dx,

12



which is true according to [8], pp. 777. Moreover, the constant C does depend only on
the regularity of the Voronoi grid Vh. Using |Dσ |= |σ |hσ

d , we obtain finally∥∥~vh,face−~vh,vol
∥∥

0 ≤Ch‖∇~vh‖0 ,

and~vh,face converges strongly in [L2(Ω)]d to~v.

A special, piecewise constant reconstruction on diamonds for gradients is also funda-
mental for the convergence proof.

Lemma 3.4. For a function ϕ ∈C∞
0 (Ω), we define a reconstruction ∇hϕ of its gradient

∇ϕ on a diamond Dσ for σ = K|L by

∇hϕ|Dσ
= d

ϕ(~xL)−ϕ(~xK)
dKL

·~nKL,

for ~nKL :=~hKL/dKL. This discrete gradient converges to ∇ϕ ∈ [L∞(Ω)]d in the weak*
topology, i.e., for every function ~f ∈ [L1(Ω)]d holds∫

Ω

~f ·∇hϕ dx→
∫

Ω

~f ·∇ϕ dx.

Proof. For this result in the convergence theory for finite volume methods, we refer to
[8].

For ϕ ∈ C∞
0 (Ω), we multiply the left hand side of the finite volume scheme (3.6) with

ϕK = ϕ(~xK) and sum over all control volumes. Using

g(cL,cK,v) =−g(cK,cL,−v),

which is due to (3.7), we obtain

∑
K∈K

ϕK ∑
L∈NK

τKLg(cK,cL,vσKL) = ∑
K|L∈E

τKL g(cK,cL,vσKL)(ϕK −ϕL) =: ah(ch,ϕh)

(3.17)

We introduce the space W 0
h =

{
ch ∈Wh|ch|K = 0∀K ∈KI

}
. We obtain an equivalent

description of (3.6) for the homogeneous Dirichlet case: Find ch ∈W 0
h such that

ah(ch,ϕh) = ∑
K∈K

|K|sKϕK (3.18)

holds for all test functions ϕh ∈W 0
h .

The convergence proof relies heavily on the proof given in [8]. Therefore, we will only
sketch it. We will focus mainly on the points, where we have slightly different arguments.
The natural norm for the space W 0

h is defined as the following discrete gradient norm

‖ch‖1,h :=

(
∑

K|L∈E

τKL (cK − cL)
2

) 1
2

.

13



Lemma 3.5 (Existence and uniqueness of a discrete solution). The finite volume scheme
(3.6) has a unique solution on every boundary conforming Delaunay grid.

Proof. Existence and uniqueness of the scheme will be proved by demonstrating the
coercivity of the discrete bilinear form ah in (3.17). Therefore, we test the bilinear form
ah with ϕh := ch ∈W 0

h and obtain

ah(ch,ch) =

∑
K|L∈E

τKL g(cK,cL,vσKL)(cK − cL) =

∑
K|L∈E

τKL

(
DUeven

(vσKL

D

)
(cK − cL)+

cK + cL

2
vσKL

)
(cK − cL) =

∑
K|L∈E

τKL

(
DUeven

(vσKL

D

)
(cK − cL)

2 +
c2

K − c2
L

2
vσKL

)
≥

D ∑
K|L∈E

τKL (cK − cL)
2 + ∑

K∈K

c2
K ∑

L∈NK

τKLvσKL = D‖ch‖2
1,h .

The last estimate holds, since we have Ueven(z) ≥ 1, and the velocity projections vσKL

are discretely divergence-free.

Lemma 3.6 (Stability and weak convergence). We assume that (~vh,ch) is a sequence
of discrete solutions of (3.1) and (3.6) such that the sequence (~vh) converges strongly
in [H1

0 (Ω)]d to a solution ~v of (2.4). Then, from the sequence (ch) we can extract a
subsequence which converges strongly in L2(Ω) to some c ∈ H1

0 (Ω).

Proof. Again, testing the scheme (3.17) by ϕh := ch yields

D‖ch‖2
1,h ≤ ∑

K|L∈E

τKL g(cK,cL,vσKL)(cK − cL) = ∑
K∈K

|K|sKcK.

By the Cauchy-Schwarz and the discrete Poincaré inequalities, see [8], we obtain the
uniform stability estimate

‖ch‖1,h ≤
diam(Ω)

D
‖s‖0 .

By a discrete version of Rellich’s theorem [9] we conclude that a subsequence of (ch)
converges strongly in L2 to some c ∈ H1

0 (Ω).

Theorem 3.2 (Convergence of the coupled scheme). We assume that (~vh,ch) is a
sequence of discrete solutions of (3.1) and (3.6) such that (~vh) converges strongly
in [H1

0 (Ω)]d to a solution ~v of (2.4), and such that a subsequence of (ch) converges
strongly in L2 to some c ∈ H1

0 (Ω) according to Lemma 3.6. Then, the accumulation
point c ∈ H1

0 (Ω) of (ch) is the unique solution of the continuous problem (2.5), where
the solution ~v of (2.4) drives the convection. Therefore, also the entire sequence (ch)
from Lemma 3.6 converges strongly in L2 to the unique c, and not only a subsequence.
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Proof. In the following, we denote the subsequence of (ch) also as (ch). For the proof
we choose an arbitrary test function ϕ ∈C∞

0 (Ω) and use a projection of ϕh ∈W 0
h onto

the Delaunay grid as a discrete test function, i.e., we have ϕh|K = ϕK = ϕ(~xK). Then,
we obtain for the right hand side of the discrete scheme (3.17) that

lim
h→0

∑
K∈Kh

|K|sKϕK →
∫

Ω

sϕ dx,

since (sK) and ϕh converge strongly in L2 to s and ϕ .

Now, we investigate the convergence of the discrete diffusion in (3.17)

Tdiffusive := D ∑
K|L∈E

τKLUeven

(vσKL

D

)
(cK − cL)(ϕK −ϕL)

= D ∑
K|L∈E

τKL (cK − cL)(ϕK −ϕL)

+D ∑
K|L∈E

τKL

(
Ueven

(
|vσKL |

D

)
−1
)

(cK − cL)(ϕK −ϕL)

=: Tnatdiff +Tartdiff,

where Tnatdiff describes an approximation of the natural diffusion of the continuous prob-
lem and Tartdiff describes the artificial diffusion of the numerical scheme.

First, we investigate the behavior of Tnatdiff for h → 0, and introduce the consistency
error of the diffusive flux

RKL :=
1

|σKL|

∫
K|L

∇ϕ ·~nKLds− ϕL−ϕK

dKL
.

Since the discrete approximation of these directional gradients is first order accurate
[8], we have an estimate for the consistency error by

|RKL| ≤Cϕh, (3.19)

where Cϕ depends on the regularity of ϕ and on the mesh regularity of the Voronoi grid,
but not on the mesh size. We compute∣∣∣∣Tnatdiff +

∫
Ω

Dch∆ϕ dx
∣∣∣∣=
∣∣∣∣∣Tnatdiff + ∑

K∈K

∫
K

Dch∆ϕ dx

∣∣∣∣∣
=

∣∣∣∣∣Tnatdiff +D ∑
K|L∈E

(cK − cL)
∫

K|L
∇ϕ ·~nKLds

∣∣∣∣∣
= D

∣∣∣∣∣ ∑
K|L∈E

σKL (cK − cL)RKL

∣∣∣∣∣
≤ D‖ch‖1,h

(
∑

K|L∈E

σKLdKLR2
KL

) 1
2

≤ D‖ch‖1,h d
1
2 |Ω|

1
2 max

σ=K|L
|RKL|.
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The estimate in the last line is due to (3.3). By (3.19), we now obtain that∣∣∣∣Tnatdiff +D
∫

Ω

ch∆ϕ dx
∣∣∣∣≤Cϕd

1
2 |Ω|

1
2 ‖s‖0 h

holds, and we arrive at

lim
h→0

Tnatdiff →−D lim
h→0

∫
Ω

ch∆ϕ dx =−D
∫

Ω

c∆ϕ dx,

since ch converges strongly in L2 to c.

In the second step, we show that the artificial diffusion Tartdiff vanishes for h→ 0 in an
appropriate sense. Due to the assumptions on Ueven(z) we have

|Tartdiff|=

∣∣∣∣∣D ∑
K|L∈E

τKL

(
Ueven

(
|vσKL |

D

)
−1
)

(cK − cL)(ϕK −ϕL)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
K|L∈E

τKL
|vσKL |

2
(cK − cL)(ϕK −ϕL)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
K|L∈E

σKLdKL

2
|vσKL |

cK − cL

dKL

ϕK −ϕL

dKL

∣∣∣∣∣
≤ ‖∇ϕ‖L∞(Ω) ∑

K|L∈E

σKLdKL

2
|vσKL |

|cK − cL|
dKL

≤ 1
2
‖∇ϕ‖L∞(Ω) ‖ch‖1,h

(
∑

K|L∈E

σKLdKL|vσKL |
2

) 1
2

.

Since ‖∇ϕ‖L∞ and ‖ch‖1,h are bounded, we have to show that the last term in the last
line converges to zero for h→ 0. We estimate it by

∑
K|L∈E

σKLdKL|vσKL |
2 = ∑

K|L∈E

σKLdKL

∣∣∣∣vσKL

dKL

∣∣∣∣2 d2
KL

= ∑
K|L∈E

σKLdKL|~vh,face ·~nKL|2d2
KL

≤ ∑
K|L∈E

σKLdKL|~vh,face|2d2
KL

≤ dh2∥∥~vh,face
∥∥2

0 . (3.20)

Since
∥∥~vh,face

∥∥
0 converges to ‖~v‖0 for h → 0 according to Lemma 3.3, we obtain that

the contribution of the artificial diffusion Tartdiff indeed vanishes for h→ 0.

In the last step, we investigate the convergence of the discrete convection in (3.17). We
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define

Tconvective := D ∑
K|L∈E

τKLUodd

(vσKL

D

)
(cK + cL)(ϕK −ϕL)

= ∑
K|L∈E

τKL
cK + cL

2
vσKL (ϕK −ϕL)

= ∑
K∈K

ϕK ∑
L∈N (K)

τKL
cK + cL

2
vσKL

= ∑
K∈K

ϕK ∑
L∈N (K)

τKL
cK + cL

2
vσKL − ∑

K∈K

ϕK ∑
L∈N (K)

τKLcKvσKL ,

because (vσ )σ is discretely divergence-free. Therefore, we obtain

Tconvective = ∑
K∈K

ϕK ∑
L∈N (K)

τKL
cL− cK

2
vσKL

=− ∑
K|L∈E

τKL
cK − cL

2
vσKL (ϕK −ϕL)

=− ∑
K∈K

cK ∑
L∈N (K)

(
σKLdKL

2d

)
vσKL

dKL

(
d

ϕK −ϕL

dKL

)
=−

∫
Ω

ch~vh,face ·∇hϕ dx

Now, ch converges strongly to c in L2, and ~vh,face converges strongly to ~v in [L2(Ω)]d

according to Lemma 3.3. Therefore, ch~vh,face converges strongly to c~v in [L1(Ω)]d . Fur-
ther, according to Lemma 3.4 we have weak* convergence of ∇hϕ to ∇ϕ ∈ [L∞(Ω)]d ,
and finally

lim
h→0

−
∫

Ω

ch~vh,face ·∇hϕ dx =−
∫

Ω

c~v ·∇ϕ dx

holds, i.e.,

Tconvective →−
∫

Ω

c~v ·∇ϕ dx.

Now we can conclude that the accumulation point c ∈ H1
0 (Ω) fulfills the equation

−D
∫

Ω

c∆ϕ dx−
∫

Ω

c~v ·∇ϕ dx =
∫

Ω

sϕ dx

for all ϕ ∈ C∞
0 (Ω) and it is the unique solution of (2.5). Further, for a given velocity

solution ~v of the steady Navier-Stokes equations, the entire sequence (ch) converges,
since every accumulation point of (ch) is the unique limit c.

Remark 3.1. When it is known a-priori that~v has the regularity H1
0 ∩L∞, then the conver-

gence proof can be simplified, since the local Péclet number
|vσKL |

D vanishes uniformly
in this case. In the general case, the local Péclet number can exceed every bound, but
the L2 norm of the local Péclet number vanishes, see (3.20).

Of course, the artificial diffusion is entirely zero for the central difference approximation
of the convection, i.e., for U(z) = Udcd(z), and then this issue does not exist, either.
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Remark 3.2. When, in addition, it is known a-priori that~v is continuous, then the proof
becomes even simpler, because then the strong convergence~vh,face →~v in [L2(Ω)]d is
trivial.

4 Boundary fluxes and maximum principles

4.1 Calculation of the anode fluxes

The application below of the proposed coupling scheme requires the accurate compu-
tation of the total current over the anode, which is given by

QA :=
∫

ΓA

~q ·~nds.

For s ∈ L2(Ω), the flux ~q is in [L2(Ω)]d , and also its divergence is in L2(Ω). Therefore,
we can apply the Gauss theorem, in order to replace the integral over the surface by a
volume integral using appropriate test functions. Let T ∈H1(Ω) be a test function such
that

T |ΓA = 1, T |ΓI = 0, T |ΓO = 0 (4.1)

E.g., T can be the weak solution of a Laplace problem with the corresponding Dirichlet
boundary conditions, and we then obtain

QA =
∫

ΓA

T~q ·~nds+
∫

ΓW

T~q ·~nds+
∫

ΓI

T~q ·~nds+
∫

ΓO

T~q ·~nds

=
∫

Γ

T~q ·~nds =
∫

Ω

∇ ·(T~q)dx =
∫

Ω

∇T ·~qdx+
∫

Ω

T sdx.

Remark 4.1. Similar procedures can be used to calculate the fluxes qI , qO through the
inflow and outflow boundaries. Choosing as particular test functions the weak solutions
TA,TI,TO of the corresponding Laplace equations, one establishes that TA +TI +TO = 1
which implies the physically meaningful flux balance

qA +qI +qO = 0. (4.2)

Now the calculation of the discrete fluxes follows:

Lemma 4.1 (Definition and convergence of discrete boundary flux integrals). Let Th ∈
Wh be a discrete test function fulfilling (4.1). Define the weak discrete flux as

qA,h = ∑
K|L∈E

τKL

dKL
(TK −TL)gKL(ck,cK,vσKL)

Then, we have
lim
h→0

qA,h = qA.
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Proof. We choose T ∈ C∞(Ω) fulfilling (4.1) and set Th,K = T (~xK) which then fulfills
the discrete equivalent of (4.1). Then the convergence of the flux integral follows from
weak-strong convergence in a similar way, as above. For that, we must interpret the
discrete sum as an integral over the product of strongly converging approximations to
∇T , and weakly converging approximations of ~q.

4.2 Maximum principles

In order to illustrate the significance of the incompressibility of the vector field~v in (2.5)
for maximum principles and the role of the outflow boundary conditions, we give a short
proof for weakly differentiable species concentrations. The approach is based on con-
siderations in [17, 7]. For the corresponding discrete results including the introduction
of the outflow boundary conditions, we refer to [11].

Lemma 4.2.

1 Global minimax principle: 0≤ c≤ cI a.e.

2 Local minimax principle: For almost every x ∈ Ω and any neighborhood B ⊂ Ω

containing x,
ess inf

∂B
c≤ c(x)≤ esssup

∂B
c

Proof. Let w = (c− k)+,⇒ (c− k)+ ∈ H1
D where k = supcd . Then, we have

0 =
∫

Ω

(D∇c−~vc) ·∇(c− k)+ dx+
∫

ΓO

~v ·~nc(c− k)+ ds

=
∫

Ω

(D∇(c− k)+−~v(c− k)+) ·∇(c− k)+ dx+
∫

ΓO

~v ·~n(c− k)+(c− k)+ ds

− k
∫

Ω

~v ·∇(c− k)+ dx+ k
∫

ΓO

~v ·~n(c− k)+

=
∫

Ω

(D∇(c− k)+−~v(c− k)+) ·∇(c− k)+ dx+
∫

ΓO

~v ·~n(c− k)+(c− k)+ ds− k
∫

Ω

(c− k)+∇ ·~vdx

≥ µ||(c− k)+||2

due to coercivity, divergence-free ~v, and boundary conditions for c and ~v. Therefore,
(x− k)+ = 0 and c≤ k. We remark that this maximum principle includes the bounds of
the values on the outflow boundary as well. For the minimum part, reasoning is similar.

The local maximum principle is derived from the fact that on a subdomain B, we can
derive a boundary value problem with Dirichlet boundary conditions for which in turn,
the global maximum principle applies.

Lemma 4.3 (A-priori estimate and local maximum principle for the finite volume solu-
tion). For any solution (cK)K∈K of the discrete problem (3.6) with (sK) = 0, we have
the following estimates:
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1 Global minimax principle:

0≤ cK ≤ cI ∀K ∈K (4.3)

2 Local minimax principle:

min
L∈NK

cL ≤ cK ≤ max
L∈NK

cL ∀K ∈K 0 (4.4)

Proof. According to (3.6)

0 = ∑
L∈NK

τKLg(cK,cL,vσKL)+ ∑
σ∈G O

K

τσ g(cK,cK,vσ )

= ∑
L∈NK

τKL (g(cK,cL,vσKL)−g(cK,cK,vσKL))+ ∑
L∈NK

τKLg(cK,cK,vσKL)+ ∑
σ∈G O

K

τσ g(cK,cK,vσ )

= ∑
L∈NK

τKLDU
(
−vσKL

D

)
(cK − cL)+ ∑

L∈NK

τKLvσKL + ∑
σ∈G O

K

τσ vσ

= cK ∑
L∈NK

τKLDU
(
−vσKL

D

)
− ∑

L∈NK

τKLDU
(
−vσKL

D

)
cL

Therefore cK = ∑L∈NK ξKLcL with

0 < ξKL =
τKLU

(
−vσKL

D

)
∑M∈NK τKMU

(
−vσKM

D

) < 1

and ∑L∈NK ξKL = 1, resulting in (ii). (i) is easily derived from (ii).

Lemma 4.4. The discretization matrix has the M-Property.

Proof. The system matrix is easily derived from (3.6). As the domain Ω is connected,
the graph of the matrix consisting of the edges with τKL > 0 is connected. Upwinding
ensures positivity of main diagonal entries and nonnegativity of the off diagonal entries.
Due to the existence of at least one Dirichlet node, from the proof of previous lemma,
we derive weak diagonal dominance, see also [11].

Finite element assembly for the Navier-Stokes equation has been implemented in Al-
berta [22]. Finite volume assembly has been implemented in pdelib2 [27]. The solution
of the linear systems has been done with Pardiso [21]. In the sequel, we elaborate on
particular issues of the presented method.

4.3 Mesh generation

Mesh generation is essential to the numerical approach we have chosen. Besides the
necessity to fit into the given geometry, the proposed method depends on the availabil-
ity of meshes with certain properties.
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Figure 2: Voronoi box facet corresponding to the interior edge XAXB. It is planar and the
convex hull of the circumcenters Ci of the tetrahedra surrounding this edge spanned
by points XA,XB,Xi,Xi+1, respectively. A canonical triangulation of this facet is obtained
using the edge midpoint as a common vertex. Note that the circumcenter C2 of the
tetrahedron XA,XB,X2,X3 lies outside its defining tetrahedron, nevertheless the Voronoi
box facet and its triangulation can be obtained due to the Delaunay property.

In order to allow the definition of the Voronoi-box based finite volume method, the finite
volume simplex mesh has to have the boundary conforming Delaunay property [26].
Furthermore, as in [13], it is necessary to resolve the boundary layer at the anode,
such that the grid becomes anisotropic close to the electrode, and the main directions
of anisotropy are aligned with the normal resp. tangential directions of the electrode
surface. As three-dimensional state-of-the-art mesh generators [23, 25] are not able to
fulfill this demand in an automatic fashion, we have chosen the following approach: a
two-dimensional boundary conforming Delaunay grid is created using the mesh gener-
ator TRIANGLE [24]. Using this as a base, a prismatic grid with adaptive spacing in the
direction orthogonal to the anode is created, from which all elements not correspond-
ing to the geometry are removed. Finally, the prisms are subdivided into tetrahedra,
resulting in a three-dimensional boundary conforming Delaunay grid.

Due to its higher order, for the mixed finite element method, we use a coarser grid than
for the calculation of the concentration profile. In order to be able to apply the Scott-
Vogelius element in this case, each tetrahedron is subdivided into four tetrahedra by
adding its barycenter.

5 Implementation issues

5.1 Practical realization of the coupling scheme

So far, it was only stated that coupling is realized by the calculation of the flux projec-
tions (3.4). While this seems simple and obvious, the implementation of this coupling
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Figure 3: Voronoi box facet corresponding to the boundary edge XAXB shared by the
boundary triangles XAXBX1 and XAXBX5. It is planar and the convex hull of the cir-
cumcenters Fi of these two triangles and Ci of the tetrahedra surrounding this edge
spanned by points XA,XB,Xi,Xi+1, respectively. A canonical triangulation of this facet
is obtained using the edge midpoint as a common vertex. The fact that all tetrahedron
circumcenters lie inside the domain is due to boundary conformality.

scheme is connected with considerable technical effort. For the sake of the complete-
ness of the paper, we provide these algorithmic issues with some detail.

5.1.1 Calculation of the Voronoi diagram

The usual way to implement the Voronoi finite volume scheme is based on an assem-
bly loop similar to that of a finite element method. For each simplex in the mesh, the
local contributions to the system matrix are calculated locally and added into the corre-
sponding entries of the global matrix. If the calculation of the flux integrals (3.4) is not
necessary, only the edge length and area of the Voronoi surface are needed.

In the present case it is necessary to explicitely calculate the Voronoi surfaces. As this
is connected with some technicalities at the boundaries, it is described here.

Let us assume to be given a boundary conforming Delaunay simplex mesh of the com-
putational domain Ω. Assume Γ = ∂Ω =

⋃
i∈IΓ

Γi is the union of non-intersecting sec-
tions. Let N be the set of nodes of the partition and E the set of edges. Let NI = Ω∩N
the set of interior nodes, and NB = Γ∩N the set of boundary nodes.

The algorithm proceeds as follows:

1 For each interior edge, obtain the circumcenters of the simplices adjacent to it.
The common facet of the Voronoi boxes corresponding to both endpoints of the
edge is orthogonal to this edge and consists of the union of triangles which are
generated by the edge midpoint and the respective circumcenters of two cells
adjacent to the edge sharing a common face, see Fig. 2.
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Figure 4: Voronoi box facets corresponding to the boundary node XA. This part of the
Voronoi box boundary is not necessarily planar. It is defined by the triangles XAFiEi
and XAFiEi+1 where Fi are the circumcenters of the triangles XA,Xi,Xi+1, and Ei are
the midpoints of the line FiFi+1 in the case the corresponding triangles are coplanar,
or the midpoints of the edge XAXi, otherwise. This construction is forced by a case like
that of the circumcenter F2 which lies outside of its triangle. The line X1XAX4 separates
different boundary conditions

2 For each boundary edge, obtain the circumcenters of the adjacent simplices and
the two circumcenters of the adjacent boundary triangles. The common facet of
the Voronoi boxes belonging to the both endpoints of the edge is orthogonal to
this edge and contains as a subset the union of triangles which are generated
by the edge midpoint and the respective circumcenters of two cells adjacent to
the edge sharing a common face. In order to obtain the full facet, this union is
joined by the two triangles set up by the edge circumcenter, one of the facet
circumcenters and the simplex circumcenter of the simplex containing that face,
see Fig. 3.

3 For each boundary node, obtain the adjacent boundary triangles. The intersec-
tion of the “raw” Voronoi box (which may extend to infinity) with the boundary
consists of all triangles generated by the boundary node, one of the circumcen-
ters of a triangle and a pseudo edge point corresponding to an edge of the tri-
angle containing the boundary node. The pseudo edge point is defined as the
edge midpoint if the two adjacent triangles are not coplanar or belong to different
boundary conditions. Otherwise, the pseudo edge midpoint is calculated as the
midpoint of the line connecting the circumcenters of the two triangles, see Fig. 4.
The reason for this construction is that for coplanar triangles, the Delaunay con-
dition allows a triangle circumcenter outside of the triangle if the corresponding
edge does not belong to a different boundary condition.

4 For each boundary triangle, calculate the intersection with the boundary sections
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Γi. After the previous construction, this intersection either is empty, or consists of
the triangle itself.

As it consists of a fixed number of grid loops without search, this algorithm is O(n).
However in addition to the straightforward implementation, a number of additional inci-
dence information needs to be generated in its course.

5.1.2 Calculation of the flux integrals

Given the Voronoi facets subdivided into triangles, in order to calculate the flux inte-
grals (3.4), it remains to devise an algorithm to calculate the integrals over an arbitrary
triangle contained in the domain. Therefore, we search all intersecting tetrahedra in the
FEM mesh. Given a tetrahedron and a triangle in three-dimensional space, we obtain
their intersection as the convex hull of the following points:

1 All triangle nodes contained in the tetrahedron

2 All tetrahedron edges intersecting the triangle

3 All triangle edges intersecting a tetrahedron face.

Using the mass center of this set of points as a common vertex, a triangulation of
this convex set is readily obtained. The calculation of the point set needs two atomic
operations: detection if a given point is located within a given simplex, and detection if a
given line intersects a given triangle. These predicates are calculated with ε-accuracy
allowing for false positives resulting in nearly zero area intersections. The flux integrals
then are calculated on each subtriangle of the intersection using exact quadrature rules.

This approach allows for completely independent simplicial partitions for velocity and
transport. The remaining challenge then is a proper search algorithm on which we will
not elaborate.

6 Interpretation of a limiting current experiment

We report the results of [12] and discuss some issues.

The physical interpretation of the boundary conditions (2.3) is the calculation of the lim-
iting current of a heterogeneous electrochemical reaction. The setting of the example
discussed here is taken from [12].

At the inlet (ΓI), a sulphuric acid (H2SO4) based electrolyte with given velocity profile
vI(~x) is injected with a concentration cI of dissolved hydrogen H2. At a certain poten-
tial applied between the anode ΓA covered with a platinum catalyst, the part of the
hydrogen reaching ΓA reacts immediately according to

H2 → 2H+ +2e−.
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Figure 5: Schematic of a thin layer flow cell [16]. Diameter of working chamber: 6 mm.
Diameter of inlet: 1.0 mm. Diameter of the six connecting capillaries between the two
compartments: 0.5 mm. By geometrical symmetry, the problem is reduced to the 30
degrees (gray) circular arc shown

The electrons e− enter an external electrical circuit, and recombine with the protons
H+ at a counter electrode outside of the domain of consideration. The amount of H+

generated during this reaction is marginal in comparison to the protons delivered with
the electrolyte, and so we can assume that the reaction products “vanish” from the
system. The flow containing the unreacted hydrogen leaves the cell at the outlet. Due
to the assumed fast reaction, homogeneous Dirichlet boundaries are assumed at the
anode ΓA. The geometry is depicted in Figure 5. The symmetry of the cell allows to
reduce the computational domain to one twelfth of the original problem. The anode
current

IE = 2F
∫

ΓE

∂c
∂~n

ds

is called the limiting current.

Experimental devices with special configurations which allow to avoid the calculation of
the Navier-Stokes flow are well known by electrochemists [10] and have been modeled
using the finite volume method discussed in the present paper in [13]. But cylindrical
flow cells have the advantage that they can be rather easily manufactured, and they
are well suited to the measurement on single crystal electrodes [12].

Corresponding to the experimental situation, calculations have been performed with
varying inlet velocities.

Figures 6 and 7 show isosurfaces of the concentration in the volume and isolines of
the concentration on the symmetry boundary for different velocities of the input which
are all in the range of experimental measurements. We observe a transition between a
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Figure 6: Concentration (in mol/m3) for flow rates 0.5 mm3/s (left), 10 mm3/s (middle)
and 80 mm3/s (right). Isosurfaces (c = 1.0,2.0 . . .6.0) are shown in the interior of the
working chamber. The anode is situated on the top. Isolines and grayscale color code
at surfaces are shown at the inlet (left) and the outlet (right), and the bottom of the
working chamber. For the purpose of better visualization, the graphical representation
has been stretched by a factor around 10 in z direction compared to the original device.

prevalence of diffusion to a behavior with a Lévêque type boundary layer. The flow is
discretized by the Scott-Vogelius element.

Figure 8 compares the concentration isosurfaces obtained with the Scott-Vogelius and
Taylor-Hood Elements, respectively. We clearly see a striking difference concerning the
maximum principle.

In order to give a more precise idea about the maximum principle, Figure 9 shows in the
left the maximum concentration vs. flow rate for the different finite element discretiza-
tions. In the case of the Taylor-Hood element, we are unable to control the violation of
the maximum principle. If we base the calculation on the Scott-Vogelius element, we
see that the a-priori bound for the concentration given by the inlet velocity is observed.

The right plot in Figure 9 compares the values of the limiting current for different grids
and discretizations with those measured in [29]. A first observation tells us that grid
dependency of this value is well below the accuracy of the experimental data – in
[12] it is discussed that the height of the cell is known with an accuracy around 30%,
and differences in the cell height in this range influence the measured values far more
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Figure 7: Concentration (in mol/m3) for flow rates For the explanation of the visualiza-
tion settings, see Fig. 6.

Figure 8: Concentration profile for flow rate 80mm3/s on coarse grid: Scott-Vogelius
(top) and Taylor-Hood (bottom). For the explanation of the visualization settings, see
Fig. 6.

than the influence of the grid shown in Figure 9. At the same time one observes that
the violation of the maximum principle does not significantly influence the value of the
limiting current.
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