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1 Introduction 
A prerequisite for mesh generation is the availability of a geometry descrip-
tion. This description usually defines the boundary of the computational 
domain. But, this domain often consists of different regions with different 
material properties. In this case, also inner boundaries have to be defined. 
These boundaries also often have to be subdivided into different boundary 
faces with different boundary conditions. These boundary faces, again, have 
boundaries, and so on. In principle, the geometry description has to define 
all these regions and boundary parts. 

The most interesting application of geometry descriptions is the three-
dimensional space. Often 2D and lD simplifications will be used. But there 
are also interesting higher dimensional applications: 4D for space-time, 6D 
for the phase space, 7D for the phase space in. time. Thus, it makes sense to 
consider the general, n-dimensional problem. 

The purpose of this paper is to define a new type of geometry description 
called covariant geometry description or shortly cogeometry. 1 It allows to 
create and modify even very comple.x geometrical configurations in an easy 
and natural way, in principle for arbitrary dimension. It was successfully 
implemented in the 3D geometry description package IBGD which is part of 
the grid generator IBG. 

The current situation in 3D geometry modeling was summarized in [3] in 
the following words: "The state-of-the-art in commercial geometric modeling 
technology is solid modeling. Topologically, a solid model is a two-manifold 
object. [ ... ] There is a growing awareness in the 'CAD /CAM/CAE commu-
nity of the importance of providing systems which can model and represent 
non-manifold objects. Unfortunately, this functionality is not yet a commer-
cial reality." Here, "non-manifold object" refers to a geometry with inner 
boundaries, boundary lines and so on. 

1The notion cogeometry we have formed in analogy to the pair cohomology - ho-
mology. Indeed, our cogeometry is a variant of the dual construction of the standard 
geometry description by a cell complex. From point of view of category theory, it will be 
more accurate to use the notion contravariant instead of covariant, but outside this theory 
(f.e. in general relativity) it is widely distributed to use covariant as for covariant, as 
for contravariant objects, to emphasize that there is a natural transformation behaviour. 
We also want to emphasize that our geometry description has the natural transformation 
behaviour of a geometry, in contrast to the cell complex. 
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The geometry description proposed in this (and other like [4]) papers is 
based on a separate "topology description" developed by Weiler [5] which 
lists all regions and boundaries and the neighbourhood relations between 
them, and "geometric entity data" which are usually functions from the 
basic boundary entities into the space. They are usually taken from some 
special function space, the current favorite seems to be NURBS (non-uniform 
rational B-splines). See also [8], [10], [9]. From pure mathematical point of 
view, this may be considered as an implementation of a 3D cell complex. 

Contrary, our covariant geometry description consists of functionsFk 
which find intersections of k-dimensional simplices with segments of the re-
lated codimensions - one function for each dimension. The first function F0 

is simply a function which defines the region containing a given point, the 
second allows to find intersections of an edge with boundary faces and so on. 

The major difference between these two types of geometry description is 
their functional behaviour. Assume we have a smooth mapping f : X -7 Y 
and a geometry on Y. In general, this allows to define an induced geometry 
on X, defining the regions on X as the pre-images of the regions on Y. In 
the other direction, there is no such natural possibility. A geometry on X in 
general does not allow to define a natural geometry on Y. 

Considering the behaviour of the standard geometry description, we see 
that a cell complex on X defines a natural cell complex on Y. But this is 
the wrong direction, the cell complex on Y may not be used in general to 
define a geometry. Our cogemetry has the correct transformation behaviour. 
A cogeometry on Y allows to define the induced cogeometry on X. 

There are a lot of interesting possibilities to create or modify geometries 
which may be considered as special applications of induced geometries: 

• Higher dimensional extension of a lower dimensional geometry. 

• Restriction of a higher-dimensional geometry to a surface. 

• Intersection of different geometries on a given space. 

• Boundary description by an equation f ( x) = 0. 

See [11], [12] about some problems which occur using standard geometry 
descriptions. In the cogeometry it becomes much easier to define these op-
erations. We consider algorithms which may be used to define cogeometries: 
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• the "default" for the functions Fk if the related boundary has no non-
trivial subdivision into different segments. 

• the geometry induced by a mapping. 

• the intersection of geometries. 

• the geometry described by the standard form - by a cell complex. 

Thus, there are algorithms for almost every input possibility. These al-
gorithms are fast enough to be used in complex grid generation algorithms. 
We also have a "fast prototyping" strategy which allows to implement a 
complicate geometry step by step. 

The cogeometry allows also an easy handling of attributes - application-
dependent data which describe the properties of the segments and functions 
defined on these segments. The functionsFk may be interpreted as methods 
of the related class "cogeometry", that means, the concept is very natural 
from object-oriented point of view. 

Some parts of our dual concept have already been used. The idea of the 
first of our intersection functions F0 which returns the region containing a 
given point is very simple, and often this information is the only available. 
That's why in many applications this function will be used to describe the 
geometry. If necessary, the boundary position .will be approximated by a 
simple iteration. But i:O. this way it is not possible to describe the geometry 
of the boundary itself. Thus, usually such a geometry description will be 
considered only as a poor substitute of a complete geometry description. 

To obtain a unique, modular interface for different geometry descriptions 
which use a lot of different type~ of elementary cells and mappings of these 
cells (spline types) it is a natural idea to use intersection functions instead of 
the explicit mapping functions. This idea was also already used for geometry 
description, for example in [4]. But, for the description of the topological 
neighbourhood relations, the classical cell-complex concept was used. 
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2 Definition of a Cogeometry 
There are a lot of different technical realizations of the dual concept. So, 
a simple dualization leads to a function which returns for a given simplex 
and a segment of the related codimension their intersection index. Such a 
realization may be easier to use in theoretical considerations, but not for 
implementation. We try to find here a variant which allows easy implemen-
tation and usage. 

2.1 The Continuous Case 
At first, we introduce the definition of a cogeometry for exact real arithmetics. 

The notion in general we use to distinguish between the "general situ-
ation" of "transverse intersection", which define an open, dense subset in 
an appropriate topology, and "degenerated situations". Related results and 
techniques you can find in [6]. We consider only the smooth case and don't 
try to establish the number of derivatives which is necessary. 

There will be different possibilities to handle the degenerate cases. But 
this strategy is not relevant for the problems of implementation, because the 
problem of degenerate cases will be covered by another serious problem -
the rounding errors. That's why we simply use the strategy to define the 
cogeometry only for the general case. 

Let's now introduce the basic object. The required properties of these 
objects we define later. 

A k-simplex is a smooth mapping from the standard k-dimensional refer-
ence simplex into X. 

A side of a k-simplex is a (k-1 )-simplex defined by the mapping of the 
related side of the reference simplex. To avoid exceptions we define the 
side of a 0-simplex as the empty object. 

A k-flag consists of a point p (called position), a sequence of (k+l) seg-
ments (So, ... ,Sk) and k orthogonal directions (v1, ... ,vk)· To avoid ex-
ceptions we define the flag also for k == -1 as the empty object. 

An intersection of a k-simplex may be a k-flag with position in the sim-
plex - an inner intersection - or a (k-1)-flag on a side of the simplex 
- a boundary intersection. 
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A cogeometry G(X) is a sequence of functions Fk fork;::: 0 so that: 

The function Fk allows to find intersections of k-simplices. Input is a 
k-simplex and an inititial intersection of the simplex. The result is 
another intersection of the same simplex which we call the continuation 
of the first intersection through the simplex. 

Before we define the properties required for these objects, let's define 
them for the case of an n-dimensional geometry described by a smooth cell 
complex. We consider only smooth simplices and general position. 

In this case, the position of a k-flag is inside the segmentSk and boundary 
point for all Si with i < k, Si is part of the boundary of S; for i > j, the 
direction Vi is in p tangential to S; for j < i, orthogonal to S; . It points into 
si-1· 

For an inner intersection, we require not only that the position of the 
flag is inside the simplex, but also that the projections of the flag directions 
into the plane of the simplex define a non-degenerate volume. This allows to 
define an orientation of the intersection. 

Now let's define the intersection function Fk. The input flag defines a 
point on some (k-1 )-segment Sk-l · Consider the intersection of the k-simplex 
with this segment, especially the component containing the initial point. In 
the general situation we obtain a smooth 1-dimensional manifold, and the 
initial intersection is one of the two ends of this curve. The position of the 
return value is the second end of this curve. The related flag we obtain using 
the continuation of the flag along the curve. For degenerate cases we do not 
define the function. 

This description may fail, if it is not possible to continue the flag because 
of a change of the neighbourhood relations in some intermediate point of the 
curve. To avoid this effect we have to require that such intermediate points 
must be part of some boundary of codimension k. For an arbitrary geometry, 
this may be obtained by further subdivision of the related boundaries into 
parts with identical neighbourhood relations. 

Let's define now the properties of a cogeometry. The strategy we use to 
fix these properties is to find properties which are f~lfilled for our example. 
Let's list at first the most obvious properties: 

• At first, we have a list of "transversality and orthogonality conditions" 
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- the directions of a flag have to be orthogonal, their projection on 
the tangential plane of the simplex not degenerated. 

• We have a symmetry in the definition of Fk. The output of a first call 
may be used as the input with the same simplex. Then the result has 
to be the input of the fi:rst call. 

• The (k-1 )-part of the list of segments of the two flags is identical. 

• Usually the positions of the two flags are different. Only in the case of 
inner intersections, the position may be the same. But in this case the 
directions must be different. 

• The result for a simplex may be derived from the results for smaller 
simplices obtained by subdivision of the initial simplex. 

Obviously these properties make sense for every geometry. Especially the 
last allows to localize the problem: The geometry will be completely defined 
by the results of Fk for arbitrary small simplices. 

To complete the definition, we have to add a local regularity condition 
which describes the local behaviour of the geometry. This may be a condition 
of the following type: 

• For every point there is a small neighbourhood so that there is a dif-
feomorphism which allows to transfer the.local situation into the linear 
reference situation. 

2.2 The Codimension of a Cogeometry 
The codimension of a cogeometry is the highest codimension of a segment 
of the cogeometry. For a cogeometry of codimension k it is not possible 
to define input values for Fz with 1 > k+l. So, such a cogeometry will be 
completely defined by the sequence of the Fz between 0 and k+l. Becaus~ 
of this simplification it is useful to have information about the codimension. 
We have the following obvious properties of the codimension: 

• The codimension of a cogeometry in an n-dimensional space is :::; n. 

• The codimension of the induced cogeometry is the same as of the orig-
inal. 
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• The codimension of the intersection of two cogeometries is ::; the sum 
of the codimensions of these cogeometries. 

2.3 Connection to Morse Theory 
There is a natural connection between the cogeometry and Morse functions 
(see [7]): 

Lemma 1 A Morse function on a space X defines a cogeometry. 

Proof: Each segment of this cogeometry will be related to a singularity 
of the Morse function. The segment may be defined as the set of points so 
that the limit of the gradient flow is the related singularity. The codimension 
of the segment is obviously the index of the singularity. qed. 

This connection shows that a cogeometry is a very natural object from 
mathematical point of view. It also shows that a cogeometry may he defined 
also for spaces of infinite dimension and can have infinite codimension. A 
space which allow to define a Morse function on it, allows also to define a 
cogeometry. This shows that the class of spaces which allow a cogeometry is 
greater than the class of spaces which allow a standard geometry description. 

2.4 The Implementation in Finite Precision Arith-
metics 

Now let's consider some modifications of the concept for the continuous case 
which will be necessary or useful for an implementation of the concept. 

2.4.1 Affine Simplices 

Usually in applications we consider only the n-dimensional Euclidean space, 
so we have some well-defined global affine structure. To use only affine sim-
plices makes the interface much more simpler to use. Instead of the definition 
of a mapping we have to define only the coordinates of the corners of the 
simplex. 

This seems to be a restriction, but for a manifold without affine structure 
we can simply use the affine structure of some local coordinates. The usage 
of other coordinates does not influence the limit of arbitrary small simplices 
which defines the geometry. 
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2.4.2 Finite Distances Instead of Infinitesimal Directions 

To define a flag, we have to define a sequence of segments and infinitesimal 
directions. In finite precision arithmetics, we use instead a sequence of points 
(Pk, Pk-1, ... ,po) so that: 

• Each point Pi is inside the segment Si of the fl~g. 

• The direction Vi is defined by the vector from Pi to Pi-1 · 

• The distance between the points is small: lvi I<£ 

• The position of the flag is the position of Pk· 

The main reason are the functions which are discontinuous near the 
boundary. Their value on Pi can be used as boundary limits. Thus, we 
need no special handling for such discontinuous functions. 

2.4.3 Rounding Error Handling 

The greatest problem of rounding errors is connected with the degenerate 
cases which we have not considered in the previous considerations. If we 
have a degeneration f = 0, it is not the problem what we do - the same as 
for f > 0 or as for f < 0. A problem occurs if a value which is really (in exact 
arithmetics) > 0, but in finite precision arithmetics < 0, or, much worse, 
different parts of the program use slightly different formulas which leads to 
different results. 

Our way to avoid this is to make a small modification of the result if the 
exact result is in such a dangerous neighbourhood of a degeneration. The 
modification must be small enough compared with the required accuracy 
of boundary computation, but it must be big enough to avoid an incorrect 
classification if it will be used later as input. 

Thus, if the required accuracy is big enough compared with the possible 
rounding errors, this technique allows to avoid fatal errors. It also does not 
require a special handling for the degenerated situations there the result is 
not defined in the exact, continuous case, because the "input" is always not 
degenerated. 

Remark that the case of a degenerated simplex is not dangerous, if the 
side containing the input flag itself is not degenerated. There will be simply 

10 



a smaller set of possible output - there may be no k-flag inside the simplex 
and no (k-1)-flag on degenerated sides. 

2.4.4 Subdivision into Two Different Functions 

For a theoretical consideration it looks very nice if we have only one function 
for every dimension. But in the real implementation it becomes easier two 
distinguish two functions: 

• The first variant of /i_'k for the case of a (k-1 )-flag as input. 

• The other variant of Fk for the case of a k-flag as input. 

The idea of the simplification is that for the first variant we implement 
only one special case - the flag on the first side of the simplex. This makes 
the implementation simpler and faster. For the other variant, we can use a 
default implementation: . 

Subdivide the simplex into smaller simplices so that the k-flag lies 
on the border between the sub-simplices. Reinterpret this k-flag 
as a (k-1)-flag on this border. Use the first variant of Fk to find 
the continuation. While the continuation was found on the inner 
border between the two sub-simplices, we have to continue the 
search in the other sub-simplex. 

2.4.5 N onorthogonal Flag Directions 

The orthogonality condition for the flag directions require a special consid-
eration. 

• The orthogonality may not be exactly fulfilled in finite precision arith-
metics caused by rounding errors. Thus, in reality we will not have 
exactly orthogonal flag directions. 

• There are algorithms which do not include the computation of the 
related orthogonal directions. Usually they allow to create only some 
set of directions with non-degenerated projection on the simplex plane. 

• For a non-smooth boundary, it will not be possible to define the tan-
gential and orthogonal directions required for the definition of a flag. 
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These problems may be solved using the convention that the directions 
must not be orthogonal, but only. their projections have to be not degen-
erated. But in this case we o~tain a new problem - the projection of the 
directions on the simplex plane may lead to an incorrect result for the ori-
entation of the intersection. This problem may be solved by the following 
convention: 

• The flag directions of the result must define a set of nqn-degenerated 
projection on the related simplex plane so that it's orientation coincides 
with the projections of the orthogonal flag directions. 

• If a flag will be used as input, the plane of the simplex containing this 
flag must coincide (approximately) with the plane which has contained 
the flag as output. 

2.4.6 c++ Interface and OOP 

The covariant geometry description is very natural from object-oriented point 
of view: 

• The cogeometry is a class. 

• The intersection functions Fk are the methods of this class. 

This leads to a natural C++ implementation. The cogeometry will be 
defined as an abstract class, the functions Fk will be virtual methods. A con-
crete geometry description will b.e a derived class which contains all necessary 
data of the geometry. 

For simplicity, in the implementation the functions F0 and F1 will be im-
plemented in a slightly modified way, not as the specialisation of the general 
definition given here. 

2.5 Attribute Handling 
Necessary part of the description of a physical situation is the attribute de-
scription. An attribute may be an arbitrary application-dependent informa-
tion. An attribute has a result type (scalar, vector, integer) and can depend 
on geometrical data (points, segments). The physical sense of the attribute is 
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defined by the application and hidden from the geometry description. That's 
why it is a good idea to separate the geometry description and the attribute 
description whenever possible. For many types of attributes this is possible. 
But often there are attributes which defined on the segment and depending 
on the point of the segment ( f.e. functions which are discontinuous on the 
boundary, or boundary concentrations). 

Because of this deep interaction with the geometry description it is nec-
essary to have a general scheme to manage such attributes. Let's consider 
now this interaction. At first, remark that we have also a natural functional 
behaviour for the attributes. Indeed, for the geometry induced by a mapping 
f : X -7 Y on X and for given attributes of the original geometry on Y related 
induced attributes may be defined in a natural way: The attribute value of 
a point in X is simply the attribute value of it's image in Y. 

We manage such attributes using the following simple technique: 

We use a data type for the point which contains also the attribute 
values of the point. The function Fk has to compute also these 
attribute values for the output points. 

In principle, this technique may be considered as a special case of an in-
duced geometry: We have to consider the embedding of a lower-dimensional 
space into a higher-dimensional space defined by the graphic of the attribute 
functions. This interpretation shows that it is possible to combine this tech-
nique with other operations using the composition of mappings. For example, 
the attribute values of some geometry may be used to define a mapping which 
may be used to define an induced geometry. 

Our scheme leads to a natural implementation for the interpolation of 
function values for a given grid. The functionsFk have to find the intersections 
of a simplex with the related boundary. Using our technique, this function 
also has to evaluate the function values. But this is a very natural place to 
interpolate the function values, because the majority of data we need for the 
interpolation of the function values in the grid (especially the element which 
contains the point) we need also if we have to find only the intersection point 

. in the grid. 
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3 Algorithms for Covariant Geometry De-
scriptions 

In this part we consider different algorithms which allow to define cogeome-
tries. 

3.1 Simplex Subdivision 
Assume we have an algorithm which works correctly only for small simplices. 
The subdivision algorithm allows to obtain the correct result also for greater 
simplices. It works so: 

• If the simplex is smaller thane, the given algorithm will be called. 

• Else, the k-simplex will be subdivided into 2k sub-simplices of the half 
size. 

• It must be detected which simplex contains the initial flag. In this 
step, degenerate cases have to be handled if the initial flag 1s m a 
neighbourhood of a boundary between sub-simplices. 

• Then a cycle over the sub-simplices has to be considered. For the 
given sub-simplex, the same algorithm will be called recursively. If the 
result is a k-flag inside the sub-simplex or a (k-1 )-flag on the outer 
boundary, this result will be returned. Else, the result is a (k-1 )-flag on 
a boundary between two sub-simplices. In this case, in the next step 
we consider the related neighbour sub-simplex and use the result flag 
of the previous step as input. 

Is it possible to get an infinite loop in this algorithm? In the general case, 
there will be only a finite number of intersections of the related boundaries 
with the inner boundaries between the sub-simplices. So, an infinite loop 
may be only a cycle between a finite set of flags. If the initial algorithm is 
really symmetric, this is not possible. Thus, usually there will be no infinite 
loops, but degenerated situations and errors of the initial algorithm may lead 
to such infinite loops. 

In a typical regular situation, the number of intersections with inner 
boundaries will be small. Thus, if the number of steps will be great, an 
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erroneous infinite loop may be assumed. Thus, it seems useful to break the 
loop after a maximal number of step which may be not very large. The .last 
(k-1)-flag after a break lies inside the simplex. The value may be returned 
as a k-flag on some artificial "error boundary". This allows to continue the 
computation. 

Another idea for the error handling is to restart the computation with a 
temporary smaller value of e. This seems useful, because an incorrect value 
fore seems to be the most probable error. 

3.2 The Default Function 
Assume we have defined the first (k-1) functions Fi. Is there a default im-
plementation which may be used for Fk? 

There are two useful variants: The first creates a unique k-boundary on 
places where we have different (k-1 )-boundaries. The second variant creates 
it also where the higher-dimensional parts of the flag change. In principle, 
only the second variant is consistent. The first violates the condition that 
the (k-1 )-part of the list of segments of the input- and output-flag has to 
be identical. But the first variant may be used as a "fast prototype". It 
has the advantage, that their usage for Fk and Fk+l will not lead to any 
(k+l)-boundary, that means Fk+2 must not be implemented. 

The idea of the algorithm is straightforward: A search loop over the 
boundary of the simplex using the previously defined functionFk-l until 
a continuation is found. If the continuation is "correct" (this correctness 
definition is the difference between the two variants), it will be returned. 
Else, further subdivision up to the required accuracy will be used to find 
a k-boundary intersection inside the simplex. For a simplex which is small 
enough, it's centre will be returned as this intersection. 

If there are multiple intersections, this algorithm may work incorrect, for 
example without the required input-output symmetry. 

3.3 The Induced Cogeometry 
As we have already mentioned, if we have a smooth mapping f : X ---+ Y and 
a cogeometry G(Y) on Y, we can define on X an induced cogeometry G(X). 
In the case of affine mapping, there is a straightforward algorithm. We have 
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to call Fk for the image of the input on Y. For the resulting Y flag we define 
a related flag in X using the same barycentric coordinates. 

For nonlinear mappings we can use the standard subdivision algorithm 
until the simples is so small that the affine algorithm may be used. 

3.4 The Intersection of Geometries 
The intersection of geometries is another example of a natural operation 
which is hard to implement for the standard geometry description but 
straightforward in the concept of cogeometry. 

The general scheme will be analogical to the case of an induced geom-
etry. We can use subdivision until the simplices are small enough to be 
approximated by the affine situation. To consider the affine situation for 
some fixed pair (k, i) is straightforward, but the implementation becomes 
complex for higher values of k and i. But, because for the first functions the 
implementation is more trivial, we have a useful fast prototyping strategy for 
implementation. 

For some variants, a special implementation may be useful: 

• In the case of partial intersection, only one "basic" segment of the first 
cogeometry and it's bound~ry will be subdivided. 

·- . , , . <~~D 
Remark that the basic segment is not necessarily a region. It may be 
also a boundary segment of arbi~ary codimension. 

• Using as the second ge~metry the geometry induced by a smooth "char-
acteristic function" from X to the real line, we obtain a powerful variant 
of the intersection which is much simpler to implement because we can 
use the fact that the second geometry has codimension 1. 

3.5 Using a Simplicial Grid 
Consider now the algorithms which may be used if the geometry will be 
described by a simplicial grid. That means, we assume that for every codi-
mension the segments are defined as the union of simplices of the related 
dimension. 

The algorithm is straightforward. A lot of code to handle degenerate cases 
will be necessary in the implementation, but our general strategy to handle 
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these cases is sufficient. The only problem is to find the related simplices in 
the simplex grid data structure. To make the related search fast enough, an 
appropriate data structure is necessary. Possible variants are a search octree 
or a grid with neighbourhood relations between the elements. 

In the last case, a small modification of the interface of F0 leads allows 
higher speed. If we allow to transfer the "nearest previously searched point", 
this point may be used as the start point for the search. 

3.6 Using a Boundary Grid 
The most usual way to describe a geometry - the boundary grid - is 
similar to the previous case, but does not contain simplices of codimension 
0. Instead, we have the information about the left and the right region for 
segments of codimension 1. This requires the modification of the algorithm 
for F0 and F1. We can implement F0 as a variant of F1 with a fixed start point 
far away, and for F1 make a search over all codimension 1 simplices which may 
have an intersection with the edge to find the first of these intersections. A 
search tree seems necessary to make the related algorithms fast enough. The 
main problem of such an intersection algorithm is how to handle rounding 
errors and degenerate intersections. 

Another possibility is to add a grid in the regions, f.e. using Delaunay 
techniques, and to use the previously described algorithm. 

Thus, in principle it is possible to implement a fast algorithm for a bound-
ary grid, but this type of input may be considered as the "worst case" for 
the cogeometry. 

3. 7 Other Possibilities 
There will be also other natural possibilities to create and modify cogeome-
tries. They usually may be easily implemented, at least for the region func-
tion F0 • For example: 

• The union of different segments of a cogeometry. 

• Different manipulations Of attribute values do not immediately change 
the cogeometry, but it is useful to implement them as operations on 
the cogeometry. 
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• If there is an order relation between the segments of each codimension, 
the minimum or maximum of different cogeometries may be defined. 

• The usage of graphical input. There will be different possibilities: 

- defining different regions by the principle one color - one region. 

- consider the picture as a function into the "color space". Define 
the geometry as induced by some geometry in this color space. 

The real power of the covariant geometry description is that it allows to 
combine all these separate methods. A 3D cogeometry defined by a grid may 
be intersected with a 3D cogeometry induced by some mapping. Attributes 
may be used to define mappings. To switch between different dimensions 
is trivial. The elevation profile of a region may be used to define the 3D 
surface geometry of this region. This may be combined with other maps of 
this region to subdivide the surface into parts. 

3.8 Time Requirements 
Let's consider the question of time dependence of the previous algorithms. 
We consider a fixed geometry and, for simplicity, the following simple grid 
generation algorithm: We create a regular (rectangular) grid, call F0 for every 
node, F1 for every edge, F2 for every side there we have found an intersection 
on the boundary, and so on. . 

The main result is that for all algorithms we have considered before the 
time requirement for geometry calls is linear in the number of nodes in the 
grid. 

All what we need is some regularity assumption for the geometry which 
allows to consider it for simplices which are small enough as nearly affine. For 
the affine geometry and a sufficiently small ~implex we can find for all these 
algorithms some straightforward constant estimate. For greater simplices, we 
can always use the standard subdivision aigorithm. For the finer grid, the 
number of the calls of Fk for k> 1 increases, but not so fast as the number of 
calls of F6, and the dimension of the simplices also becomes smaller. Thus, 
the number of calls of the higher Fk becomes irrelevant. 

To find a constant estimate for F0 and for F1 with small distances is 
usually not a problem. 
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It is interesting, that the same result we obtain also in a much worse 
situation: Assume, the geometry is also defined by a grid, and this grid 
has approximately the same node density as the grid we want to create. 
A typical example is the grid for the next time step in a time-dependent 
process, which is based on a slightly modified geometry of the previous time 
step. A neighbourhood search algorithm allows even in this situation a linear 
dependence of the number of nodes. A search tree technique leads to an 
additional logarithmic factor. 

3.9 Topological Errors and Convexity 
Another very interesting·question for the cogemetry is the following: 

If we create a grid using the covariant geometry description, is it 
possible to guarantee that there will be no topological errors? 

The answer to this question seems to be the greatest problem of the 
covariant geometry description: 

In general, it is not possible to avoid topological errors without 
having any additional information. 

Indeed, there may be very thin subregions inside a region. If we find such 
a subregion depends on the grid density and accident. If the subregion is 
so thin that no point of the finest grid will be inside, we have no chance to 
detect that there is such a subregion. 

Remark that this is a consequence of the possibility to define cogeometries 
with an infinite number of regions and other cogeometries with such infinite 
properties like Julia set's or the Mandelbrot set. Such geometries obviously 
have to be simplified by any finite grid. 

On the other hand, this description shows that dangerous situations have 
some special structure. We can classify such dangerous subregions by a 
"codimension" which is simply the number of the "very thin directions". For 
codimension 1, we have a crack. For codimension 2 a channel, for the maximal 
codimension an enclave. There may be also segments of higher codimension 
which may be dangerous. They all have some common properties: 

• They are small. 
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• Their environment is highly non-convex. 

This leads to two strategies to avoid errors: 

• Further refinement. 

• To remove highly non-convex situations using artificial subdivision of 
the related non-convex segments. 

The second strategy is universal: 

Theorem 1 There is a grid generation algorithm which allows to define the 
cogeometry in a given region without topological errors (in exact real arith-
metics} for an arbitrary finite cogeometry consisting only of convex segments. 

The proof may be found in [2]. In reality, it is not necessary to subdivide 
all segments into approximately convex parts. Only small, very non-convex 
parts have to be modified. Usually, if all details of the geometry are coarse 
enough, it is not necessary to make such subdivisions. 

Subdivision of non-convex segments is also useful to help to avoid the 
"rounding" of sharp edges and corners. 
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4 Results 
The idea of covariant geometry description was used in the implementation 
of the "intersection-based geometry description" package IBGD which is part 
of the grid generation package IBG. 

There are some differences between 3D package IBGD and the general, 
n-dimensional concept described here. Especially, i;n IBGD there are no 
flags and orthogonal directions, but only intersection points. But, even in 
this form, IBGD shows the advantages of the concept of covariant geometry 
description and the possibility of implementation of the algorithms described 
here. 

Let's consider some examples of grids created by IBG. The first example 
shows a two-dimensional mesh of the region around the island Riigen in 
Germany. 

The island Riigen (Baltic. coast of Germany) 

The grid was created using a simple picture of the region with blue colors 
for the water and brown colors for land. To avoid topological errors, some 
artificial subdivision of water and land has been used. 
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This example shows the intersection of two simple geometries: 

Partial intersection of two simple geometries 

The two parts have been described simply by their characteristic functions 
f1 == a:: 2 + (z - z1) 2 - r~ and f2 == y 2 + ( z - z 2 ) 2 - r~. To define the cogeometry 
it was not necessary to compute explicitly the intersection line. 
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It is also easy to include external data. Using elevation data obtained from 
the 1-degree USGS Digital Elevation Models we have created the following 
elevation profile: 

Surface of the Grand Canyon (USA) 

The related 3D cogeometry has been simply defined by the characteristic 
function f ( x, y, z) = z - e( x, y) where e is the elevation of the surface in the 
point (x, y). 
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