
Weierstra6-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e. V.

Covariant geometry description

Ilj a Schmelzer

submitted: 7th June 1995

Weierstrass Institute
for Applied Analysis
and Stochastics
MohrenstraBe 39
D - 10117 Berlin
Germany

Preprint No. 152
Berlin 1995

Edited by
Weierstrafi-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafie 39
D - 10117 Berlin
Germany

Fax: + 49 30 2004975
e-mail (X.400): c=de; a=d 400 ;p=iaas-berlin; s=preprint
e-mail (Internet): preprint@iaas-berlin.d400.de

Covariant Geometry Description

Contents

Ilja Schmelzer

June 2, 1995

1 Introduction 3

2 Definition of a Cogeometry 6
2.1 The Continuous Case 6
2.2 The Codimension of a Cogeometry 8
2.3 Connection to Morse Theory 9
2.4 The Implementation in Finite Precision Arithmetics . . 9

2.4.l Affine Simplices 9
2.4.2 Finite Distances Instead of Infinitesimal Directions 10
2.4.3 Rounding Error Handling 10
2.4.4 Subdivision into Two Different Functions . 11
2.4.5 Nonorthogonal Flag Directions 11
2.4.6 C++ Interface and OOP 12

2.5 Attribute Handling 12

3 Algorithms for Covariant Geometry Descriptions 14
3.1 Simplex Subdivision . . . 14
3.2 The Default Function 15
3.3 The Induced Cogeometry. . . . 15
3.4 The Intersection of Geometries 16
3.5 Using a Simplicial Grid 16
3.6 Using a Boundary Grid 17
3. 7 Other Possibilities . . 17
3.8 Time Requirements . . . 18

1

3.9 Topological Errors and Convexity 19

4 Results 21

,_,

2

1 Introduction
A prerequisite for mesh generation is the availability of a geometry descrip-
tion. This description usually defines the boundary of the computational
domain. But, this domain often consists of different regions with different
material properties. In this case, also inner boundaries have to be defined.
These boundaries also often have to be subdivided into different boundary
faces with different boundary conditions. These boundary faces, again, have
boundaries, and so on. In principle, the geometry description has to define
all these regions and boundary parts.

The most interesting application of geometry descriptions is the three-
dimensional space. Often 2D and lD simplifications will be used. But there
are also interesting higher dimensional applications: 4D for space-time, 6D
for the phase space, 7D for the phase space in. time. Thus, it makes sense to
consider the general, n-dimensional problem.

The purpose of this paper is to define a new type of geometry description
called covariant geometry description or shortly cogeometry. 1 It allows to
create and modify even very comple.x geometrical configurations in an easy
and natural way, in principle for arbitrary dimension. It was successfully
implemented in the 3D geometry description package IBGD which is part of
the grid generator IBG.

The current situation in 3D geometry modeling was summarized in [3] in
the following words: "The state-of-the-art in commercial geometric modeling
technology is solid modeling. Topologically, a solid model is a two-manifold
object. [...] There is a growing awareness in the 'CAD /CAM/CAE commu-
nity of the importance of providing systems which can model and represent
non-manifold objects. Unfortunately, this functionality is not yet a commer-
cial reality." Here, "non-manifold object" refers to a geometry with inner
boundaries, boundary lines and so on.

1The notion cogeometry we have formed in analogy to the pair cohomology - ho-
mology. Indeed, our cogeometry is a variant of the dual construction of the standard
geometry description by a cell complex. From point of view of category theory, it will be
more accurate to use the notion contravariant instead of covariant, but outside this theory
(f.e. in general relativity) it is widely distributed to use covariant as for covariant, as
for contravariant objects, to emphasize that there is a natural transformation behaviour.
We also want to emphasize that our geometry description has the natural transformation
behaviour of a geometry, in contrast to the cell complex.

3

The geometry description proposed in this (and other like [4]) papers is
based on a separate "topology description" developed by Weiler [5] which
lists all regions and boundaries and the neighbourhood relations between
them, and "geometric entity data" which are usually functions from the
basic boundary entities into the space. They are usually taken from some
special function space, the current favorite seems to be NURBS (non-uniform
rational B-splines). See also [8], [10], [9]. From pure mathematical point of
view, this may be considered as an implementation of a 3D cell complex.

Contrary, our covariant geometry description consists of functionsFk
which find intersections of k-dimensional simplices with segments of the re-
lated codimensions - one function for each dimension. The first function F0

is simply a function which defines the region containing a given point, the
second allows to find intersections of an edge with boundary faces and so on.

The major difference between these two types of geometry description is
their functional behaviour. Assume we have a smooth mapping f : X -7 Y
and a geometry on Y. In general, this allows to define an induced geometry
on X, defining the regions on X as the pre-images of the regions on Y. In
the other direction, there is no such natural possibility. A geometry on X in
general does not allow to define a natural geometry on Y.

Considering the behaviour of the standard geometry description, we see
that a cell complex on X defines a natural cell complex on Y. But this is
the wrong direction, the cell complex on Y may not be used in general to
define a geometry. Our cogemetry has the correct transformation behaviour.
A cogeometry on Y allows to define the induced cogeometry on X.

There are a lot of interesting possibilities to create or modify geometries
which may be considered as special applications of induced geometries:

• Higher dimensional extension of a lower dimensional geometry.

• Restriction of a higher-dimensional geometry to a surface.

• Intersection of different geometries on a given space.

• Boundary description by an equation f (x) = 0.

See [11], [12] about some problems which occur using standard geometry
descriptions. In the cogeometry it becomes much easier to define these op-
erations. We consider algorithms which may be used to define cogeometries:

4

• the "default" for the functions Fk if the related boundary has no non-
trivial subdivision into different segments.

• the geometry induced by a mapping.

• the intersection of geometries.

• the geometry described by the standard form - by a cell complex.

Thus, there are algorithms for almost every input possibility. These al-
gorithms are fast enough to be used in complex grid generation algorithms.
We also have a "fast prototyping" strategy which allows to implement a
complicate geometry step by step.

The cogeometry allows also an easy handling of attributes - application-
dependent data which describe the properties of the segments and functions
defined on these segments. The functionsFk may be interpreted as methods
of the related class "cogeometry", that means, the concept is very natural
from object-oriented point of view.

Some parts of our dual concept have already been used. The idea of the
first of our intersection functions F0 which returns the region containing a
given point is very simple, and often this information is the only available.
That's why in many applications this function will be used to describe the
geometry. If necessary, the boundary position .will be approximated by a
simple iteration. But i:O. this way it is not possible to describe the geometry
of the boundary itself. Thus, usually such a geometry description will be
considered only as a poor substitute of a complete geometry description.

To obtain a unique, modular interface for different geometry descriptions
which use a lot of different type~ of elementary cells and mappings of these
cells (spline types) it is a natural idea to use intersection functions instead of
the explicit mapping functions. This idea was also already used for geometry
description, for example in [4]. But, for the description of the topological
neighbourhood relations, the classical cell-complex concept was used.

5

2 Definition of a Cogeometry
There are a lot of different technical realizations of the dual concept. So,
a simple dualization leads to a function which returns for a given simplex
and a segment of the related codimension their intersection index. Such a
realization may be easier to use in theoretical considerations, but not for
implementation. We try to find here a variant which allows easy implemen-
tation and usage.

2.1 The Continuous Case
At first, we introduce the definition of a cogeometry for exact real arithmetics.

The notion in general we use to distinguish between the "general situ-
ation" of "transverse intersection", which define an open, dense subset in
an appropriate topology, and "degenerated situations". Related results and
techniques you can find in [6]. We consider only the smooth case and don't
try to establish the number of derivatives which is necessary.

There will be different possibilities to handle the degenerate cases. But
this strategy is not relevant for the problems of implementation, because the
problem of degenerate cases will be covered by another serious problem -
the rounding errors. That's why we simply use the strategy to define the
cogeometry only for the general case.

Let's now introduce the basic object. The required properties of these
objects we define later.

A k-simplex is a smooth mapping from the standard k-dimensional refer-
ence simplex into X.

A side of a k-simplex is a (k-1)-simplex defined by the mapping of the
related side of the reference simplex. To avoid exceptions we define the
side of a 0-simplex as the empty object.

A k-flag consists of a point p (called position), a sequence of (k+l) seg-
ments (So, ... ,Sk) and k orthogonal directions (v1, ... ,vk)· To avoid ex-
ceptions we define the flag also for k == -1 as the empty object.

An intersection of a k-simplex may be a k-flag with position in the sim-
plex - an inner intersection - or a (k-1)-flag on a side of the simplex
- a boundary intersection.

6

A cogeometry G(X) is a sequence of functions Fk fork;::: 0 so that:

The function Fk allows to find intersections of k-simplices. Input is a
k-simplex and an inititial intersection of the simplex. The result is
another intersection of the same simplex which we call the continuation
of the first intersection through the simplex.

Before we define the properties required for these objects, let's define
them for the case of an n-dimensional geometry described by a smooth cell
complex. We consider only smooth simplices and general position.

In this case, the position of a k-flag is inside the segmentSk and boundary
point for all Si with i < k, Si is part of the boundary of S; for i > j, the
direction Vi is in p tangential to S; for j < i, orthogonal to S; . It points into
si-1·

For an inner intersection, we require not only that the position of the
flag is inside the simplex, but also that the projections of the flag directions
into the plane of the simplex define a non-degenerate volume. This allows to
define an orientation of the intersection.

Now let's define the intersection function Fk. The input flag defines a
point on some (k-1)-segment Sk-l · Consider the intersection of the k-simplex
with this segment, especially the component containing the initial point. In
the general situation we obtain a smooth 1-dimensional manifold, and the
initial intersection is one of the two ends of this curve. The position of the
return value is the second end of this curve. The related flag we obtain using
the continuation of the flag along the curve. For degenerate cases we do not
define the function.

This description may fail, if it is not possible to continue the flag because
of a change of the neighbourhood relations in some intermediate point of the
curve. To avoid this effect we have to require that such intermediate points
must be part of some boundary of codimension k. For an arbitrary geometry,
this may be obtained by further subdivision of the related boundaries into
parts with identical neighbourhood relations.

Let's define now the properties of a cogeometry. The strategy we use to
fix these properties is to find properties which are f~lfilled for our example.
Let's list at first the most obvious properties:

• At first, we have a list of "transversality and orthogonality conditions"

7

- the directions of a flag have to be orthogonal, their projection on
the tangential plane of the simplex not degenerated.

• We have a symmetry in the definition of Fk. The output of a first call
may be used as the input with the same simplex. Then the result has
to be the input of the fi:rst call.

• The (k-1)-part of the list of segments of the two flags is identical.

• Usually the positions of the two flags are different. Only in the case of
inner intersections, the position may be the same. But in this case the
directions must be different.

• The result for a simplex may be derived from the results for smaller
simplices obtained by subdivision of the initial simplex.

Obviously these properties make sense for every geometry. Especially the
last allows to localize the problem: The geometry will be completely defined
by the results of Fk for arbitrary small simplices.

To complete the definition, we have to add a local regularity condition
which describes the local behaviour of the geometry. This may be a condition
of the following type:

• For every point there is a small neighbourhood so that there is a dif-
feomorphism which allows to transfer the.local situation into the linear
reference situation.

2.2 The Codimension of a Cogeometry
The codimension of a cogeometry is the highest codimension of a segment
of the cogeometry. For a cogeometry of codimension k it is not possible
to define input values for Fz with 1 > k+l. So, such a cogeometry will be
completely defined by the sequence of the Fz between 0 and k+l. Becaus~
of this simplification it is useful to have information about the codimension.
We have the following obvious properties of the codimension:

• The codimension of a cogeometry in an n-dimensional space is :::; n.

• The codimension of the induced cogeometry is the same as of the orig-
inal.

8

• The codimension of the intersection of two cogeometries is ::; the sum
of the codimensions of these cogeometries.

2.3 Connection to Morse Theory
There is a natural connection between the cogeometry and Morse functions
(see [7]):

Lemma 1 A Morse function on a space X defines a cogeometry.

Proof: Each segment of this cogeometry will be related to a singularity
of the Morse function. The segment may be defined as the set of points so
that the limit of the gradient flow is the related singularity. The codimension
of the segment is obviously the index of the singularity. qed.

This connection shows that a cogeometry is a very natural object from
mathematical point of view. It also shows that a cogeometry may he defined
also for spaces of infinite dimension and can have infinite codimension. A
space which allow to define a Morse function on it, allows also to define a
cogeometry. This shows that the class of spaces which allow a cogeometry is
greater than the class of spaces which allow a standard geometry description.

2.4 The Implementation in Finite Precision Arith-
metics

Now let's consider some modifications of the concept for the continuous case
which will be necessary or useful for an implementation of the concept.

2.4.1 Affine Simplices

Usually in applications we consider only the n-dimensional Euclidean space,
so we have some well-defined global affine structure. To use only affine sim-
plices makes the interface much more simpler to use. Instead of the definition
of a mapping we have to define only the coordinates of the corners of the
simplex.

This seems to be a restriction, but for a manifold without affine structure
we can simply use the affine structure of some local coordinates. The usage
of other coordinates does not influence the limit of arbitrary small simplices
which defines the geometry.

9

2.4.2 Finite Distances Instead of Infinitesimal Directions

To define a flag, we have to define a sequence of segments and infinitesimal
directions. In finite precision arithmetics, we use instead a sequence of points
(Pk, Pk-1, ... ,po) so that:

• Each point Pi is inside the segment Si of the fl~g.

• The direction Vi is defined by the vector from Pi to Pi-1 ·

• The distance between the points is small: lvi I<£

• The position of the flag is the position of Pk·

The main reason are the functions which are discontinuous near the
boundary. Their value on Pi can be used as boundary limits. Thus, we
need no special handling for such discontinuous functions.

2.4.3 Rounding Error Handling

The greatest problem of rounding errors is connected with the degenerate
cases which we have not considered in the previous considerations. If we
have a degeneration f = 0, it is not the problem what we do - the same as
for f > 0 or as for f < 0. A problem occurs if a value which is really (in exact
arithmetics) > 0, but in finite precision arithmetics < 0, or, much worse,
different parts of the program use slightly different formulas which leads to
different results.

Our way to avoid this is to make a small modification of the result if the
exact result is in such a dangerous neighbourhood of a degeneration. The
modification must be small enough compared with the required accuracy
of boundary computation, but it must be big enough to avoid an incorrect
classification if it will be used later as input.

Thus, if the required accuracy is big enough compared with the possible
rounding errors, this technique allows to avoid fatal errors. It also does not
require a special handling for the degenerated situations there the result is
not defined in the exact, continuous case, because the "input" is always not
degenerated.

Remark that the case of a degenerated simplex is not dangerous, if the
side containing the input flag itself is not degenerated. There will be simply

10

a smaller set of possible output - there may be no k-flag inside the simplex
and no (k-1)-flag on degenerated sides.

2.4.4 Subdivision into Two Different Functions

For a theoretical consideration it looks very nice if we have only one function
for every dimension. But in the real implementation it becomes easier two
distinguish two functions:

• The first variant of /i_'k for the case of a (k-1)-flag as input.

• The other variant of Fk for the case of a k-flag as input.

The idea of the simplification is that for the first variant we implement
only one special case - the flag on the first side of the simplex. This makes
the implementation simpler and faster. For the other variant, we can use a
default implementation: .

Subdivide the simplex into smaller simplices so that the k-flag lies
on the border between the sub-simplices. Reinterpret this k-flag
as a (k-1)-flag on this border. Use the first variant of Fk to find
the continuation. While the continuation was found on the inner
border between the two sub-simplices, we have to continue the
search in the other sub-simplex.

2.4.5 N onorthogonal Flag Directions

The orthogonality condition for the flag directions require a special consid-
eration.

• The orthogonality may not be exactly fulfilled in finite precision arith-
metics caused by rounding errors. Thus, in reality we will not have
exactly orthogonal flag directions.

• There are algorithms which do not include the computation of the
related orthogonal directions. Usually they allow to create only some
set of directions with non-degenerated projection on the simplex plane.

• For a non-smooth boundary, it will not be possible to define the tan-
gential and orthogonal directions required for the definition of a flag.

11

These problems may be solved using the convention that the directions
must not be orthogonal, but only. their projections have to be not degen-
erated. But in this case we o~tain a new problem - the projection of the
directions on the simplex plane may lead to an incorrect result for the ori-
entation of the intersection. This problem may be solved by the following
convention:

• The flag directions of the result must define a set of nqn-degenerated
projection on the related simplex plane so that it's orientation coincides
with the projections of the orthogonal flag directions.

• If a flag will be used as input, the plane of the simplex containing this
flag must coincide (approximately) with the plane which has contained
the flag as output.

2.4.6 c++ Interface and OOP

The covariant geometry description is very natural from object-oriented point
of view:

• The cogeometry is a class.

• The intersection functions Fk are the methods of this class.

This leads to a natural C++ implementation. The cogeometry will be
defined as an abstract class, the functions Fk will be virtual methods. A con-
crete geometry description will b.e a derived class which contains all necessary
data of the geometry.

For simplicity, in the implementation the functions F0 and F1 will be im-
plemented in a slightly modified way, not as the specialisation of the general
definition given here.

2.5 Attribute Handling
Necessary part of the description of a physical situation is the attribute de-
scription. An attribute may be an arbitrary application-dependent informa-
tion. An attribute has a result type (scalar, vector, integer) and can depend
on geometrical data (points, segments). The physical sense of the attribute is

12

defined by the application and hidden from the geometry description. That's
why it is a good idea to separate the geometry description and the attribute
description whenever possible. For many types of attributes this is possible.
But often there are attributes which defined on the segment and depending
on the point of the segment (f.e. functions which are discontinuous on the
boundary, or boundary concentrations).

Because of this deep interaction with the geometry description it is nec-
essary to have a general scheme to manage such attributes. Let's consider
now this interaction. At first, remark that we have also a natural functional
behaviour for the attributes. Indeed, for the geometry induced by a mapping
f : X -7 Y on X and for given attributes of the original geometry on Y related
induced attributes may be defined in a natural way: The attribute value of
a point in X is simply the attribute value of it's image in Y.

We manage such attributes using the following simple technique:

We use a data type for the point which contains also the attribute
values of the point. The function Fk has to compute also these
attribute values for the output points.

In principle, this technique may be considered as a special case of an in-
duced geometry: We have to consider the embedding of a lower-dimensional
space into a higher-dimensional space defined by the graphic of the attribute
functions. This interpretation shows that it is possible to combine this tech-
nique with other operations using the composition of mappings. For example,
the attribute values of some geometry may be used to define a mapping which
may be used to define an induced geometry.

Our scheme leads to a natural implementation for the interpolation of
function values for a given grid. The functionsFk have to find the intersections
of a simplex with the related boundary. Using our technique, this function
also has to evaluate the function values. But this is a very natural place to
interpolate the function values, because the majority of data we need for the
interpolation of the function values in the grid (especially the element which
contains the point) we need also if we have to find only the intersection point

. in the grid.

13

3 Algorithms for Covariant Geometry De-
scriptions

In this part we consider different algorithms which allow to define cogeome-
tries.

3.1 Simplex Subdivision
Assume we have an algorithm which works correctly only for small simplices.
The subdivision algorithm allows to obtain the correct result also for greater
simplices. It works so:

• If the simplex is smaller thane, the given algorithm will be called.

• Else, the k-simplex will be subdivided into 2k sub-simplices of the half
size.

• It must be detected which simplex contains the initial flag. In this
step, degenerate cases have to be handled if the initial flag 1s m a
neighbourhood of a boundary between sub-simplices.

• Then a cycle over the sub-simplices has to be considered. For the
given sub-simplex, the same algorithm will be called recursively. If the
result is a k-flag inside the sub-simplex or a (k-1)-flag on the outer
boundary, this result will be returned. Else, the result is a (k-1)-flag on
a boundary between two sub-simplices. In this case, in the next step
we consider the related neighbour sub-simplex and use the result flag
of the previous step as input.

Is it possible to get an infinite loop in this algorithm? In the general case,
there will be only a finite number of intersections of the related boundaries
with the inner boundaries between the sub-simplices. So, an infinite loop
may be only a cycle between a finite set of flags. If the initial algorithm is
really symmetric, this is not possible. Thus, usually there will be no infinite
loops, but degenerated situations and errors of the initial algorithm may lead
to such infinite loops.

In a typical regular situation, the number of intersections with inner
boundaries will be small. Thus, if the number of steps will be great, an

14

erroneous infinite loop may be assumed. Thus, it seems useful to break the
loop after a maximal number of step which may be not very large. The .last
(k-1)-flag after a break lies inside the simplex. The value may be returned
as a k-flag on some artificial "error boundary". This allows to continue the
computation.

Another idea for the error handling is to restart the computation with a
temporary smaller value of e. This seems useful, because an incorrect value
fore seems to be the most probable error.

3.2 The Default Function
Assume we have defined the first (k-1) functions Fi. Is there a default im-
plementation which may be used for Fk?

There are two useful variants: The first creates a unique k-boundary on
places where we have different (k-1)-boundaries. The second variant creates
it also where the higher-dimensional parts of the flag change. In principle,
only the second variant is consistent. The first violates the condition that
the (k-1)-part of the list of segments of the input- and output-flag has to
be identical. But the first variant may be used as a "fast prototype". It
has the advantage, that their usage for Fk and Fk+l will not lead to any
(k+l)-boundary, that means Fk+2 must not be implemented.

The idea of the algorithm is straightforward: A search loop over the
boundary of the simplex using the previously defined functionFk-l until
a continuation is found. If the continuation is "correct" (this correctness
definition is the difference between the two variants), it will be returned.
Else, further subdivision up to the required accuracy will be used to find
a k-boundary intersection inside the simplex. For a simplex which is small
enough, it's centre will be returned as this intersection.

If there are multiple intersections, this algorithm may work incorrect, for
example without the required input-output symmetry.

3.3 The Induced Cogeometry
As we have already mentioned, if we have a smooth mapping f : X ---+ Y and
a cogeometry G(Y) on Y, we can define on X an induced cogeometry G(X).
In the case of affine mapping, there is a straightforward algorithm. We have

15

to call Fk for the image of the input on Y. For the resulting Y flag we define
a related flag in X using the same barycentric coordinates.

For nonlinear mappings we can use the standard subdivision algorithm
until the simples is so small that the affine algorithm may be used.

3.4 The Intersection of Geometries
The intersection of geometries is another example of a natural operation
which is hard to implement for the standard geometry description but
straightforward in the concept of cogeometry.

The general scheme will be analogical to the case of an induced geom-
etry. We can use subdivision until the simplices are small enough to be
approximated by the affine situation. To consider the affine situation for
some fixed pair (k, i) is straightforward, but the implementation becomes
complex for higher values of k and i. But, because for the first functions the
implementation is more trivial, we have a useful fast prototyping strategy for
implementation.

For some variants, a special implementation may be useful:

• In the case of partial intersection, only one "basic" segment of the first
cogeometry and it's bound~ry will be subdivided.

·- . , , . <~~D
Remark that the basic segment is not necessarily a region. It may be
also a boundary segment of arbi~ary codimension.

• Using as the second ge~metry the geometry induced by a smooth "char-
acteristic function" from X to the real line, we obtain a powerful variant
of the intersection which is much simpler to implement because we can
use the fact that the second geometry has codimension 1.

3.5 Using a Simplicial Grid
Consider now the algorithms which may be used if the geometry will be
described by a simplicial grid. That means, we assume that for every codi-
mension the segments are defined as the union of simplices of the related
dimension.

The algorithm is straightforward. A lot of code to handle degenerate cases
will be necessary in the implementation, but our general strategy to handle

16

these cases is sufficient. The only problem is to find the related simplices in
the simplex grid data structure. To make the related search fast enough, an
appropriate data structure is necessary. Possible variants are a search octree
or a grid with neighbourhood relations between the elements.

In the last case, a small modification of the interface of F0 leads allows
higher speed. If we allow to transfer the "nearest previously searched point",
this point may be used as the start point for the search.

3.6 Using a Boundary Grid
The most usual way to describe a geometry - the boundary grid - is
similar to the previous case, but does not contain simplices of codimension
0. Instead, we have the information about the left and the right region for
segments of codimension 1. This requires the modification of the algorithm
for F0 and F1. We can implement F0 as a variant of F1 with a fixed start point
far away, and for F1 make a search over all codimension 1 simplices which may
have an intersection with the edge to find the first of these intersections. A
search tree seems necessary to make the related algorithms fast enough. The
main problem of such an intersection algorithm is how to handle rounding
errors and degenerate intersections.

Another possibility is to add a grid in the regions, f.e. using Delaunay
techniques, and to use the previously described algorithm.

Thus, in principle it is possible to implement a fast algorithm for a bound-
ary grid, but this type of input may be considered as the "worst case" for
the cogeometry.

3. 7 Other Possibilities
There will be also other natural possibilities to create and modify cogeome-
tries. They usually may be easily implemented, at least for the region func-
tion F0 • For example:

• The union of different segments of a cogeometry.

• Different manipulations Of attribute values do not immediately change
the cogeometry, but it is useful to implement them as operations on
the cogeometry.

17

• If there is an order relation between the segments of each codimension,
the minimum or maximum of different cogeometries may be defined.

• The usage of graphical input. There will be different possibilities:

- defining different regions by the principle one color - one region.

- consider the picture as a function into the "color space". Define
the geometry as induced by some geometry in this color space.

The real power of the covariant geometry description is that it allows to
combine all these separate methods. A 3D cogeometry defined by a grid may
be intersected with a 3D cogeometry induced by some mapping. Attributes
may be used to define mappings. To switch between different dimensions
is trivial. The elevation profile of a region may be used to define the 3D
surface geometry of this region. This may be combined with other maps of
this region to subdivide the surface into parts.

3.8 Time Requirements
Let's consider the question of time dependence of the previous algorithms.
We consider a fixed geometry and, for simplicity, the following simple grid
generation algorithm: We create a regular (rectangular) grid, call F0 for every
node, F1 for every edge, F2 for every side there we have found an intersection
on the boundary, and so on. .

The main result is that for all algorithms we have considered before the
time requirement for geometry calls is linear in the number of nodes in the
grid.

All what we need is some regularity assumption for the geometry which
allows to consider it for simplices which are small enough as nearly affine. For
the affine geometry and a sufficiently small ~implex we can find for all these
algorithms some straightforward constant estimate. For greater simplices, we
can always use the standard subdivision aigorithm. For the finer grid, the
number of the calls of Fk for k> 1 increases, but not so fast as the number of
calls of F6, and the dimension of the simplices also becomes smaller. Thus,
the number of calls of the higher Fk becomes irrelevant.

To find a constant estimate for F0 and for F1 with small distances is
usually not a problem.

18

It is interesting, that the same result we obtain also in a much worse
situation: Assume, the geometry is also defined by a grid, and this grid
has approximately the same node density as the grid we want to create.
A typical example is the grid for the next time step in a time-dependent
process, which is based on a slightly modified geometry of the previous time
step. A neighbourhood search algorithm allows even in this situation a linear
dependence of the number of nodes. A search tree technique leads to an
additional logarithmic factor.

3.9 Topological Errors and Convexity
Another very interesting·question for the cogemetry is the following:

If we create a grid using the covariant geometry description, is it
possible to guarantee that there will be no topological errors?

The answer to this question seems to be the greatest problem of the
covariant geometry description:

In general, it is not possible to avoid topological errors without
having any additional information.

Indeed, there may be very thin subregions inside a region. If we find such
a subregion depends on the grid density and accident. If the subregion is
so thin that no point of the finest grid will be inside, we have no chance to
detect that there is such a subregion.

Remark that this is a consequence of the possibility to define cogeometries
with an infinite number of regions and other cogeometries with such infinite
properties like Julia set's or the Mandelbrot set. Such geometries obviously
have to be simplified by any finite grid.

On the other hand, this description shows that dangerous situations have
some special structure. We can classify such dangerous subregions by a
"codimension" which is simply the number of the "very thin directions". For
codimension 1, we have a crack. For codimension 2 a channel, for the maximal
codimension an enclave. There may be also segments of higher codimension
which may be dangerous. They all have some common properties:

• They are small.

19

• Their environment is highly non-convex.

This leads to two strategies to avoid errors:

• Further refinement.

• To remove highly non-convex situations using artificial subdivision of
the related non-convex segments.

The second strategy is universal:

Theorem 1 There is a grid generation algorithm which allows to define the
cogeometry in a given region without topological errors (in exact real arith-
metics} for an arbitrary finite cogeometry consisting only of convex segments.

The proof may be found in [2]. In reality, it is not necessary to subdivide
all segments into approximately convex parts. Only small, very non-convex
parts have to be modified. Usually, if all details of the geometry are coarse
enough, it is not necessary to make such subdivisions.

Subdivision of non-convex segments is also useful to help to avoid the
"rounding" of sharp edges and corners.

20

4 Results
The idea of covariant geometry description was used in the implementation
of the "intersection-based geometry description" package IBGD which is part
of the grid generation package IBG.

There are some differences between 3D package IBGD and the general,
n-dimensional concept described here. Especially, i;n IBGD there are no
flags and orthogonal directions, but only intersection points. But, even in
this form, IBGD shows the advantages of the concept of covariant geometry
description and the possibility of implementation of the algorithms described
here.

Let's consider some examples of grids created by IBG. The first example
shows a two-dimensional mesh of the region around the island Riigen in
Germany.

The island Riigen (Baltic. coast of Germany)

The grid was created using a simple picture of the region with blue colors
for the water and brown colors for land. To avoid topological errors, some
artificial subdivision of water and land has been used.

21

This example shows the intersection of two simple geometries:

Partial intersection of two simple geometries

The two parts have been described simply by their characteristic functions
f1 == a:: 2 + (z - z1) 2 - r~ and f2 == y 2 + (z - z 2) 2 - r~. To define the cogeometry
it was not necessary to compute explicitly the intersection line.

22

It is also easy to include external data. Using elevation data obtained from
the 1-degree USGS Digital Elevation Models we have created the following
elevation profile:

Surface of the Grand Canyon (USA)

The related 3D cogeometry has been simply defined by the characteristic
function f (x, y, z) = z - e(x, y) where e is the elevation of the surface in the
point (x, y).

23

References
[1] Schmelzer I. (1993), 3D anisotropic grid generation with

intersection-based geometry interface IMA Preprint Series Nr.1180,
Univ. of Minnesota

[2] Schmelzer I. (1995), Grid Generation with Covariant Geometry De-
scription.

PhD Thesis - to be published.

[3) Saxena M., Finnigan P.M., Graichen C.M., Hathaway A.F.
and Parthasarathy V.N. (1995), Octree-based Automatic Mesh
Generation for Non-Manifold Domains Engeneering with Computers
nr.11, pp.1-14

[4) Shepard Shepard M.S., Finnigan P.M. (1987), toward automatic
model generation SCOREC Report nr.9, Rensselaer Polytechnic In-
stitute, Troy, New York, 1987

[5] Weiler K.J. (1986), Topological structures for geometric modeling
PhD Dissertation, Department of Computer and Systems Engeneer-
ing, Rensselaer Polytechnic Institute, Troy, New York

[6] Hirsch M.W. (1976), Differential Topology Springer-Verlag NY,
Heidelberg Berlin

[7) Milnor J. (1963), Morse Theory Princeton University Press, Prince-
ton

[8] Barnhill R.E., ed. (1992), Geometry Processing for Design and
Manufactoring edited by R.E. Barnhill. SIAM, Philadelphia

[9) Hagen H., ed. (1992), Curve and Surface Design SIAM, Philadelphia

[10] Hagen H., ed. (1992), Topics in Surface Modelling SIAM, Philadel-
phia

[11) Stoyanov Tz.E. (1992), Marching along surface/surface intersection
curves with an adaptive step length Computer Aided Geometric De-
sign 9 pp. 485-489

24

[12] Helmsen J.J., Scheckler E.W., Neureuther A.W., Sequin
C.H. (1992), An Efficient Loop Detection and Removal Algorithm
for 3D Surface-based Lithography Simulation In Proc. of NUPAD
IV, pp.3-8

25

Recent publications of the
Weierstrafi-lnstitut fiir Angewandte Analysis und Stochastik

Preprints 1994

123. Grigori N. Milstein, Michael V. Tret'yakov: Weak approximation for stochas-
tic differential equations with small noises.

124. Gunter Albinus: N onlinear Galerkin methods for evolution equations with
Lipschitz continuous ~trongly monotone operators.

125. Andreas Rathsfeld: Error estimates and extrapolation for the numerical so-
lution of Mellin convolution equations.

126~ Mikhail S. Ermakov: On lower bounds of the moderate and Cramer type large
deviation probabilities in statistical inference.

127. Pierluigi Colli, Jurgen Sprekels: Stefan problems and the Penrose-Fife phase
field modeL

128. Mikhail S. Ermakov: On asymptotic minimaxity of Kolmogorov and omega-
square tests.

129. Gunther Schmidt, Boris N. Khoromskij: Boundary integral equations for the
biharmonic Dirichlet problem on nonsmooth domains.

130. Hans Babovsky: An inverse model problem in kinetic theory.

131. Dietmar Hornberg: Irreversible phase transitions· in steel.

132. Hans Gunter Bothe: How 1-dimensional hyperbolic attractors determine their
basins.

133. Ingo Bremer: Waveform iteration and one-sided Lipschitz conditions.

134. Herbert Gajewski, Klaus Zacharias: A mathematical model of emulsion poly-
merization.

135. J. Theodore Cox, Klaus Fleischmann, Andreas Greven: Comparison of inter-
acting diffusions and an application to their ergodic theory.

136. Andreas Juhl: Secondary Euler characteristics of locally symmetric spaces.
Results and Conjectures.

137. Nikolai N. Nefedov, Klaus R. Schneider, Andreas Schuppert: Jumping beha-
vior in singularly perturbed systems modelling bimolecular reactions.

138. Roger Tribe, Wolfgang Wagner: Asymptotic properties of stochastic particle
systems with Boltzmann type interaction.

Preprints 1995

139. Werner Horn, Jan Sokolowski, Jiirgen Sprekels: Control problems with state
constraints for the Penrose-Fife phase-field model.

140. Hans Babovsky: Simulation of kinetic boundary layers.

141. Ralf Kornhuber: A posteriori error estimates for elliptic variational inequali-
ties.

142. Johannes Elschner, Youngmok Jeon, Ian H. Sloan, Ernst P. Stephan: The
collocation method for mixed boundary value problems on domains with
curved polygonal boundaries.

143. Johannes Elschner, Ernst P. Stephan: A discrete collocation method for
Symm's integral equation on curves with corners.

144. Dietmar Hornberg: A numerical simulation of the Jominy end-quench test.

145. Sabine Hengst: On the existence of classical solutions for a two phase flow
through saturated porous media.

146. Anton Bovier, Veronique Gayrard: An almost sure large deviation principle
for the Hopfi.eld model.

147. Hans Babovsky: Limit theorems for deterministic Knudsen flows between two
plates.

148. Bjorn Sandstede: Stability of multiple-pulse solutions.

149. Bjorn Sandstede: Constructing dynamical systems possessing homoclinic bi-
furcation points of codimension two.

150. Boris N. Khoromskij, Siegfried Prossdorf: Multilevel preconditioning on the
refined interface and. optimal boundary solvers for the Laplace equation.

151. Anton Bovier, Christo£ Kiilske: There are no nice interfaces in 2+1 dimen-
sional SOS-models in random media.

