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Abstract

A simple and commonly used method to approximate the total claim distribution of a
(possible weakly dependent) insurance collective is the normal approximation. In this ar-
ticle, we investigate the error made when the normal approximation is plugged in a fairly
general distribution-invariant risk measure. We focus on the rate of the convergence of the
error relative to the number of clients, we specify the relative error’s asymptotic distribution,
and we illustrate our results by means of a numerical example. Regarding the risk measure,
we take into account distortion risk measures as well as distribution-invariant coherent risk
measures.

1 Introduction

In insurance practice, a simple and fast way to approximate the distribution of the total claim amount
Sn := ∑n

i=1 Xi of a homogeneous (possibly weakly dependent) insurance collective
{X1, . . . ,Xn} is the normal approximation. According to the CLT we have that the distribution of Sn is
“close” (relatively to n) to the normal distribution with mean µn := E[Sn] = nE[X1] and variance σ2

n :=
Var[Sn], provided the latter is finite. Practitioners then often plug this normal distribution Nµn,σ2

n
in some

distribution-invariant risk measure ρ to approximate the collective’s premium ρ(Fn) by ρ(Φn), where
Fn and Φn := Φµn,σ2

n
refer to the distribution functions (df) of Sn and Nµn,σ2

n
, respectively. Actually, the

values of µn and σn have to be estimated by some suitable estimators µ̂n = µ̂n,mn and σ̂n = σ̂n,mn (based
on a sample of size mn) and the resulting (random) df Φ̂n := Φµ̂n,σ̂2

n
is plugged in the risk measure to

approximate the collective’s premium. Notice that for positively homogeneous and cash-invariant risk
measures, the approximation ρ(Φ̂n) can be expressed as

ρ(Φ̂n) = σ̂n ρ(Φ)− µ̂n (1)

where Φ refers to the standard normal df. The representation (1) provides an extremely simple tool
for the approximation of the collective’s premium ρ(Fn), so that this (normal) approximation is quite
popular in practice.

In this article we focus on how the error distance between ρ(Φ̂n) and ρ(Fn) behaves asymptotically,
relatively to n, as the number n of clients increases. For a large class of distribution-invariant positively
homogeneous and cash-invariant risk measures ρ (in the sense of [1, 2, 8, 13]) we will show that under
fairly mild assumptions

n1/2−ε ρ(Φ̂n)−ρ(Fn)

n
a.s.−→ 0, n→ ∞ (2)

for each ε ∈ (0,1/2), and

law
(

n1/2 ρ(Φ̂n)−ρ(Fn)

n

)
w−→N , n→ ∞ (3)
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for a certain normal distribution N . Notice that ρg(Φ̂n)/n can be seen as an approximation of the
individual premium ρg(Fn)/n.

Regarding ρ we will at first focus on so called distortion risk measures introduced by Wang [36]. Given
a distortion function g, i.e. a nondecreasing function g on [0,1] satisfying g(0) = 0 and g(1) = 1,

ρg(F) :=
∫ 0

−∞
g(F(t))dt−

∫ ∞

0
[1−g(F(t))]dt (4)

provides a positively homogeneous distribution-invariant monetary risk measure on the class Fg of all
df F for which the integrals in (4) exists. It is subadditive (hence coherent) if and only if g is concave
(cf. [37]). As usual we refer to ρg as distortion risk measure with distortion function g. If g is a càdlàg
function then we have the alternative representation ρg(F) = −∫

R
xdg(F(x)). Notice that most of the

popular risk measures in practice can be represented as in (4), so that this class of risk measures
has been studied extensively in the last decade, see [16, 19, 20, 36, 37, 38] and references cited
therein. For instance, the Value-at-Risk VaRα at level α ∈ (0,1), the Average Value-at-Risk AVaRα
at level α ∈ (0,1), and the Wang transform WTθ with parameter θ ∈ R, correspond to the distortion
functions g(x) = 1[α ,1](x), g(x) = (x/α)∧ 1, and g(x) = Φ(Φ−1(x)− θ ), respectively. For details and
other examples see, e.g., [19, 38].

In Section 2.1, we will establish (2) and (3) for ρ = ρg. We will see in particular that the goodness of the
approximation of ρ(Fn)/n by ρ(Φ̂n)/n is typically ruled by the goodness of the estimate µ̂n/n of E[X1]

(cf. Corollary 2.9 and its proof). In Section 2.2 we will see that the results of Section 2.1 can easily
be extended to partially more general distribution-invariant risk measures. The key will be a robust
representation (similar to results in [13]) of distribution-invariant coherent risk measures by distortion
risk measures. In Section 3, we will illustrate our analysis by means of a numerical example, and in
Section 4 we will give the proofs of our main results. Finally, in the Appendix A we will present some
examples for risk measures that match the setting of Section 2.2.

2 Results

Let X1,X2, . . . be identically distributed square-integrable random variables on some probability space
(Ω,F ,P). The random variable Xi can be regarded as the claim of the ith client, where a negative value
corresponds to a payout to the client. We denote by Fn the df of the total claim amount Sn := ∑n

i=1 Xi,
let µ̂n and σ̂n be some estimates of µn := E[Sn] = nE[X1] and σn := Var[Sn]

1/2 (based on a sample of
size mn), and let Φ, Φn and Φ̂n denote the standard normal df, the df of Nµn,σ2

n
and the (random) df of

Nµ̂n,σ̂2
n
, respectively.

Throughout this article we will assume that the sequence (Xi) is “(λ ,γ)-Berry-Esseen”. We say that (Xi)

is (λ ,γ)-Berry-Esseen if there is some constant cλ ,γ > 0 such that ‖Gn−Φ‖λ ≤ cλ ,γ n−γ for all n ∈ N,
where Gn denotes the df of the random variable Zn := (Sn−µn)/σn, and ‖ ·‖λ := ‖(·)φλ‖∞ refers to the
nonuniform sup-norm based on the weight function φλ (x) := (1+ |x|)λ , x ∈ R. In Example 2.1 we will
give three examples for Berry-Esseen sequences. Two of them involve the notion of φ - and α-mixing
introduced in [18] and [32], respectively. Recall that (Xi) is said to be φ - or α-mixing according to as
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φ(n)→ 0 or α(n)→ 0, respectively, where

φ(n) := sup
k≥1

sup
A∈F k

1 ,B∈F∞
n+k

|P[B|A]−P[B]|

α(n) := sup
k≥1

sup
A∈F k

1 ,B∈F∞
n+k

|P[A∩B]−P[A]P[B]|

with Fm
n := σ(Xi : n≤ i≤m)⊂F . For an overview on mixing conditions see, e.g., [4, 9]. In [5], one can

find several examples for strictly stationary φ -mixing sequences (noting that φ -mixing sequences are
also β -mixing, cf. [4, (1.11)]). For examples for strictly stationary α-mixing sequences see, e.g., [24].

Example 2.1 (i) If X1,X2, . . . are independent and E[|X1|2+δ ] < ∞ for some δ > 0, then Michel’s nonuni-
form Berry-Esseen inequality [25, Theorem 3] shows that (Xi) is (λ ,γ)-Berry-Esseen with λ = 2+ δ
and γ = min{δ ;1}/2.

(ii) If (Xi) is strictly stationary and φ -mixing with mixing coefficients φ(n) satisfying
φ(n)≤ ce−κn for all n∈N and some c,κ > 0, E[|X1|2+δ ] < ∞ for some δ ≥ 1, and limn→∞ σn/

√
n = σ for

some σ > 0, then Schneider’s nonuniform Berry-Esseen inequality [34, Theorem 4] shows that (Xi) is
(λ ,γ)-Berry-Esseen for λ = 2+δ and γ ∈ (0,1/2). Notice that under the assumptions imposed on φ(n)

we have that σn/
√

n converges to σ := (Var[X1]+2∑∞
j=2Cov(X1,X j))

1/2, cf. Example 2.5(ii) below.

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying ∑∞
n=1 α(n)ε < ∞ for

all ε > 0, E[|X1|q] < ∞ for all q > 0, and limn→∞ σn/
√

n = σ for some σ > 0, then Hipp’s nonuniform
Berry-Esseen inequality [17, Theorem 2.5] shows that (Xi) is (λ ,γ)-Berry-Esseen for every λ > 0 and
γ ∈ (0,1/2). Notice that under the assumptions imposed on α(n) we have that σn/

√
n converges to

σ := (Var[X1]+2∑∞
j=2Cov(X1,X j))

1/2, cf. Example 2.5(iii) below. 3

2.1 Distortion risk measures

In this subsection we focus on distortion risk measures ρg as introduced in (4). We first investigate the
distance between ρg(Φn) and ρg(Fn). As usual, a∧b and a∨b denote the minimum and the maximum
of a,b ∈ R, respectively. Moreover we set a+ := a∨0 and a− := (−a)∨0 for a ∈ R.

Theorem 2.2 Let g be a distortion function, and suppose that

(a) there are L,β > 0, k ∈ N0, and 0 = d0 < d1 < .. . < dk+1 = 1, such that g is Hölder-β -continuous
with Hölder constant L on each of the intervals (di,di+1), i = 0, . . . ,k,

(b) (Xi) is (λ ,γ)-Berry-Esseen for some γ > 0 and λ ≥ 1 satisfying λ β > 1,

(c) limn→∞ σn/
√

n = σ for some σ > 0,

(d) Fn ∈ Fg and Φn ∈ Fg for all n ∈ N.

Then there is some finite constant C = Ck,L,λ ,γ,β ,σ > 0, and some n0 ∈ N (depending only on the distri-
bution of X1), such that

|ρg(Fn)−ρg(Φn)| ≤ C n1/2−(β∧1)γ ∀n≥ n0. (5)
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If g is Hölder-β -continuous on all of [0,1], i.e. if k = 0, then in (b) the assumption λ ≥ 1 can be replaced
by λ > 0, in the exponent on the right-hand side of (5) the expression β ∧1 can be replaced by β , and
inequality (5) holds for all n ∈ N.

The proof of Theorem 2.2 is relegated to Section 4.1. Assumption (d) in Theorem 2.2 is imposed to
guarantee that the left-hand side of (5) is well-defined. In the following Examples 2.3–2.6 we illustrate
conditions (a)–(d), respectively.

Example 2.3 Condition (a) on g in Theorem 2.2 is fulfilled for, e.g., g1(x) = 1[α ,1](x) (Value-at-Risk),
g2(x) = (x/α)∧1 (Average Value-at-Risk) and g3(x) = Φ(Φ−1(x)−θ ) (Wang transform) with any β > 0,
β = 1 and β ∈ (0,1), respectively. 3

Example 2.4 (i) If X1,X2, . . . are independent and E[|X1|(2+δ )∨(1/β )] < ∞ for some δ > 0∨ (1/β − 2),
then according to Example 2.1(i) the sequence (Xi) satisfies condition (b) in Theorem 2.2 with λ = 2+δ
and γ = (δ ∧1)/2.

(ii) If (Xi) is strictly stationary and φ -mixing with mixing coefficients φ(n) satisfying ∑∞
n=1φ(n)1/2 < ∞,

and E[|X1|2+δ ] < ∞ for some δ > 1∨ (1/β −2), then according to Example 2.1(ii) the sequence (Xi)

subject to condition (c) in Theorem 2.2 satisfies condition (b) in Theorem 2.2 with λ = 2+ δ and
γ ∈ (0,1/2).

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying ∑∞
n=1α(n)ε < ∞

for every ε > 0, and E[|X1|q] < ∞ for every q > 0, then according to Example 2.1(iii) the sequence
(Xi) subject to condition (c) in Theorem 2.2 satisfies condition (b) in Theorem 2.2 with λ > 1/β and
γ ∈ (0,1/2). 3

Example 2.5 (i) If X1,X2, . . . are independent then the sequence (Xi) clearly satisfies condition (c) in
Theorem 2.2 for σ := Var[X1]

1/2.

(ii) If (Xi) is strictly stationary and φ -mixing with mixing coefficients φ(n) satisfying ∑∞
n=1φ(n)1/2 < ∞,

and E[|X1|2+δ ] < ∞ for some δ > 0, then the sequence (Xi) satisfies condition (c) in Theorem 2.2 for
σ := (Var[X1]+2∑∞

j=2Cov(X1,X j))
1/2, see the proof of Lemma 4.2.2 in [29].

(iii) If (Xi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying ∑∞
n=1α(n)δ/(2+δ ) <

∞ for some δ > 0, and E[|X1|2+δ ] < ∞, then the sequence (Xi) satisfies condition (c) in Theorem 2.2
for σ := (Var[X1]+2∑∞

j=2Cov(X1,X j))
1/2, see [27, Corollary 1.1]. 3

Example 2.6 If there are 0 < x0 ≤ x1 < 1 so that g(x) = 0 for x ∈ [0,x0) and g(x) = 1 for x ∈ (x1,1]

(which is the case, e.g., for g1 in Example 2.3), then condition (d) in Theorem 2.2 is always fulfilled.
Moreover, if F1 ∈ Fg and Φ ∈ Fg then condition (d) is also fulfilled whenever g is concave (which is the
case, e.g., for g2 and g3 in Example 2.3). Indeed in this case ρg may be viewed as a Choquet integral
w.r.t. the set function g(P[·]) (cf. [13]), and the space of random variables on (Ω,F ,P) with df in Fg is
a vector subspace of the space of all random variables on (Ω,F ,P) (cf. [7]). 3
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We emphasize that in the setting of Example 2.4(i), for each of the risk measures ρgi in Example 2.3
the right-hand side of (5) is strictly positive and bounded below. This is also true for every coherent
distortion risk measures since the concavity of g implies β ≤ 1. For g1 and g2 in Example 2.3, and for
all other distortion functions g for which we can choose β = 1, the right-hand side of (5) can even be
chosen to be constant (provided γ ≥ 1/2, e.g., if δ ≥ 1 in the setting of Example 2.4). So in this case
the relative error |ρg(Fn)− ρg(Φn)|/n converges at least at rate 1. On the other hand, in general, no
matter how small β ,γ > 0 are, the relative error converges always faster than at rate 1/2.

As indicated in the introduction, in practice one is actually interested in statements as (2) where µn and
σn are estimated by some suitable estimators µ̂n and σ̂n based on random variables Y1, . . . ,Ymn having
the same distribution as X1. We will assume throughout the rest of this section that

n−(1/2+ε)(µ̂n− µn)
a.s.−→ 0 (6)

for some ε ∈ (0,1/2), and that
n−1/2(σ̂n−σn)

a.s.−→ 0. (7)

The following two examples show that the conditions (6)–(7) are not too restrictive. Throughout theses
examples we shall assume mn ∼ n, i.e. that there is some constant c > 0 such that mn/n→ c as n→∞.

Example 2.7 (i) If Y1,Y2, . . . are independent, then (6) holds for µ̂n := n
mn

∑mn
i=1Yi and every ε ∈ (0,1/2)

by the Marcinkiewicz-Zygmund SLLN (cf. [11, 35]) and Slutzky’s lemma.

(ii) If (Yi) is strictly stationary and φ -mixing with mixing coefficients φ(n) satisfying ∑∞
n=1φ(2n)1/2 < ∞,

then (6) holds for µ̂n := n
mn

∑mn
i=1Yi and every ε ∈ (0,1/2) by Peligrad’s Marcinkiewicz-Zygmund type

SLLN for strictly stationary φ -mixing sequences [26, Theorem 2] and Slutzky’s lemma.

(iii) If (Yi) is strictly stationary and α-mixing with mixing coefficients α(n) satisfying the inequality

∑∞
n=1 n(1−4ε)/(2ε)α(n) < ∞ for some ε ∈ (0,1/2), then (6) holds for µ̂n := n

mn
∑mn

i=1Yi (with the same ε) by
Rio’s Marcinkiewicz-Zygmund type SLLN for strictly stationary α-mixing sequences (cf. [31, Theorem
1 along with (1.10) with r = 2]) and Slutzky’s lemma. 3

Example 2.8 (i) If X1,X2, . . . are independent and Y1,Y2, . . . are independent, then (7) holds for σ̂n :=
( n

mn
∑mn

i=1(Yi− 1
mn

∑mn
i=1Yi)

2)1/2 by the classical Kolmogorov SLLN and Slutzky’s lemma.

(ii) If the sequences (Xi) and (Yi) coincide in law, (Xi) is strictly stationary and α-mixing with mixing
coefficients α(n) satisfying ∑∞

n=1 α(n)δ/(2+δ ) < ∞ for some δ > 0, and E[|X1|2+δ ] < ∞, then (7) holds

for σ̂n :=
√π

2

√
n

logmn
∑mn

i=1
1√

i
|1i ∑i

j=1Yj− 1
mn

∑mn
i=1Yi| by Corollary 1.1 in [27] and Slutzky’s lemma. 3

Corollary 2.9 (Rate of convergence) Suppose that the assumptions of Theorem 2.2 and the condi-
tions (6) and (7) hold. Then we have (2) with ρ = ρg (and ε as in (6)), i.e.

n1/2−ε ρg(Φ̂n)−ρg(Fn)

n
a.s.−→ 0, n→ ∞.

5



Proof By the triangle inequality, the representation (1) for ρg(Φn) (recall that ρg is the positively homo-
geneous and cash-invariant), the analogous representation for ρg(Φn), and (5), we have

|ρg(Φ̂n)−ρg(Fn)|
n

≤ |ρg(Φ̂n)−ρg(Φn)|
n

+
|ρg(Φn)−ρg(Fn)|

n

≤ |σ̂n−σn| |ρg(Φ)|+ |µn− µ̂n|
n

+C n−1/2−(β∧1)γ (8)

with Φ the standard normal df. By (6) we have that |µn− µ̂n|/n converges to 0 at least at rate 1/2− ε.
By (7) we have that |σ̂n−σn|/n converges to 0 at least at rate 1/2. Moreover we obviously have that
the latter summand on the right-hand side of (8) converges to 0 at rate 1/2+(β ∧1)γ . The statement
of Corollary 2.9 then follows from (8). 2

Corollary 2.9 and its proof show that the rate of the convergence of (ρg(Φn)− ρg(Fn))/n to 0 is not
smaller than the rate of the convergence of the estimator µ̂n/n to E[X1]. We realize that in this case the
relative approximation of ρg(Fn) by ρg(Φn) is asymptotically not worse than the estimation of the mean
E[X1]. We can also deduce that if

law
(√

n
µ̂n− µn

n

)
w−→N , n→ ∞ (9)

for some distribution N on (R,B(R)), then the asymptotic error distribution N in (3) is given by the
same N , cf. Corollary 2.10. Notice that assumption (9) is not too restrictive. Indeed: For µ̂n := n

mn
∑mn

i=1Yi

the Examples 2.1 and 2.5 provide standard settings where (9) holds for N = N0,σ2 (just replace (Xi)

by (Yi)), and Example 2.8 shows that in some situations it is even possible to estimate the asymptotic
standard deviation σ consistently.

Corollary 2.10 (Asymptotic error distribution) Suppose the assumptions of Theorem 2.2 and the
conditions (7) and (9) hold. Then we have (3) with ρ = ρg, i.e.

law
(√

n
ρg(Φ̂n)−ρg(Fn)

n

)
w−→N , n→ ∞.

Proof The statement of Corollary 2.10 follows immediately from (8) (without absolute values and with
“≤” replaced by “=”), condition (9) and Slutzky’s lemma. 2

Remark 2.11 It is worth mentioning that the normal approximation makes sense also for parametric
models for the distribution of X1 since the convolution is typically non-determinable. For parametric
models the estimators µ̂n and σ̂n might be chosen according to the particular model (and might possess
partially better statistical properties compared to the nonparametric estimators considered in Examples
2.7 and 2.8), but the asymptotic behavior of the estimators exploited in the corollaries is typically the
same. 3
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2.2 Extension to partially more general distribution-inva riant risk measures

In this section, we focus on distribution-invariant coherent risk measures ρ that are not necessarily dis-
tortion risk measures but that can be robustly represented by distortion risk measures (more precisely
by concave distortion functions). That is, we suppose that there exists a set Gρ of concave distortion
functions such that

ρ(F) = sup
g∈Gρ

ρg(F) (10)

for every admissible df F, where ρg denotes the distortion risk measure with distortion function g (cf.
(4)). So we have in particular

|ρ(Fn)−ρ(Φn)| = | sup
g∈Gρ

ρg(Fn)− sup
g∈Gρ

ρg(Φn)| ≤ sup
g∈Gρ

|ρg(Fn)−ρg(Φn)|.

Now, observe that the constant C in the basic Theorem 2.2 depends only on β and L (other properties
of g do not play any role). Therefore the result of Theorem 2.2 carries over to ρ in (10) if, for some
β > 0 fixed, all distortion functions g ∈ Gρ are Hölder-β -continuous with a common Hölder constant L.
Of course, in this case the Corollaries 2.9 and 2.10 carry over to ρ in (10) as well. In Theorem 2.12 we
will see that under some assumptions on ρ the robust representation (10) holds. In Lemma 2.14 we
will obtain a criterion to check whether the distortion functions in Gρ are all Hölder-β -continuous with a
common Hölder constant L.

We first discuss the existence of the representation (10). Such a representation result is already known
from [13] but we will give a generalized version; notice that (10) differs from the celebrated Kusuoka
representation (see [23], and [28] for an extension). The basic setting is the following. Let (Ω,F ,P) be
a probability space that is rich enough to support a random variable with continuous distribution (which
is equivalent to (Ω,F ,P) being atomless in the sense of [13, Definition A.26]). Let X be a subspace
of L 1(Ω,F ,P) such that L ∞(Ω,F ,P) ⊂ X and X ∧Y,X ∨Y ∈ X for all X ,Y ∈ X, and let X+ be the
class of all nonnegative random variables of X. We denote by F the set of all df FX of random variables
X ∈ X, and we consider a distribution-invariant coherent risk measure ρ : F→R. Finally we denote by
Bx any random variable distributed according to the Bernoulli distribution with parameter x. Recall that
every nondecreasing concave function on [0,1] is continuous on (0,1].

Theorem 2.12 (Robust representation) If the cutting condition

lim
n→∞

ρ(F−λ (X−n)+) = 0 ∀X ∈ X+, λ > 0 (11)

holds then there is some set Gρ of concave distortion functions satisfying (10) for all F ∈ F. If in addition

lim
x→0+

ρ(F−Bx) = 0, (12)

then all functions g ∈ Gρ are continuous at 0 (and therefore continuous on [0,1]).

The proof of Theorem 2.12 is relegated to Section 4.2. In Lemma A.1 in the Appendix A we will see that
if X is chosen to be an Orlicz space with continuous Young function, then every coherent risk measure
ρ satisfies the conditions (11)–(12). In the Appendix A we will also give examples of particular coherent
risk measures on Orlicz spaces satisfying (11)–(12). Further, we note that it is an easy consequence

7



of (14) below that condition (12) ensures that the functions g ∈ Gρ are continuous at 0 (i.e. that the
second part of Theorem 2.12 holds true), where

g̃ρ(x) := sup
g∈Gρ

g(x), x ∈ [0,1]. (13)

Notice that the function g̃ρ is again a distortion function which we refer to as distortion function associ-
ated with ρ . We reasonably denote the corresponding distortion risk measure by ρg̃ρ .

Remark 2.13 (i) If ρ is known to be a distortion risk measure (as defined in (4)) then its distortion
function gρ can clearly be recovered from ρ by gρ(x) = ρ(F−Bx), x ∈ [0,1], where as above Bx refers to
any random variable distributed according to the Bernoulli distribution with parameter x.

(ii) If the risk measure ρ satisfies (10) for all F ∈ F, then ρ will degenerate to a distortion risk measure
if and only if ρ = ρg̃ρ with g̃ρ as in (13). The necessity is obvious, and the sufficiency can be seen
as follows. If ρ is a distortion risk measure then according to (i) its distortion function gρ is given by
gρ(x) = ρ(F−Bx), x ∈ [0,1]. The identity (14) in Lemma 2.14 below then shows that gρ must coincide
with the distortion function g̃ρ associated with ρ . 3

The following lemma gives a criterion for the distortion functions g ∈ Gρ to be all Hölder-β -continuous
with a common Hölder constant.

Lemma 2.14 Suppose (10) holds for all F ∈ F for some set Gρ of concave distortion functions, and let
g̃ρ denote the distortion function associated with ρ (cf. (13)). Then we have

g̃ρ(x) = ρ(F−Bx), x ∈ [0,1], (14)

where as above Bx refers to any random variable distributed according to the Bernoulli distribution with
parameter x. Moreover, if every g ∈ Gρ is continuous at 0, and if for some β > 0 the condition

L := sup
x∈(0,1]

g̃ρ(x)

xβ < ∞ (15)

holds, then every g ∈ Gρ is Hölder-β -continuous with Hölder constant L.

The proof of Lemma 2.14 is relegated to Section 4.3. Condition (15) provides a transparent condition
in order to obtain a common Hölder constant. Equation (14) in turn provides a useful tool for the
calculation of g̃ρ(x); the values g̃ρ(x), x∈ [0,1], are needed for checking condition (15). In the Appendix
A, we will give examples for distribution-invariant coherent risk measures satisfying condition (15).
Examples are Haezendonck risk measures and risk measures based on one-sided moments.

3 Numerical example

In this section, we are going to illustrate Theorem 2.2 as well as the Corollaries 2.9 and 2.10 by
means of a numerical example. We consider an i.i.d. insurance collective of size n and assume that
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the individual claim df F1 is given by the Gamma df on R− (i.e., −X1 ∼ Γ(a,b)) with parameters a = 4
and b = 0.004. We note that the Gamma distribution is often used in insurance practice to model small
to moderate individual claims (as for instance in third party car insurance or home contents insurance).
The mean and the standard deviation of F1 are given by −a/b =−1′000and

√
a/b2 = 500. The n-fold

convolution Fn of F1 is known to be the Gamma df on R− with parameters na = 4n and b = 0.004, and
the mean and the standard deviation of Fn are given by −1′000n and

√
na/b2 = 500

√
n, respectively.

As underlying “premium principle” we consider the Value-at-risk at level α = 0.05which is the distortion
risk measure ρg with distortion function g = 1[α ,1].

As already mentioned subsequent to Example 2.6, Theorem 2.2 indicates that under some assump-
tions (which are fulfilled in the present setting) the right-hand side of (5) can be chosen to be constant.
The second row in Figure 1 shows that in our example the difference ρ(Φn)−ρ(Fn) is indeed nearly
constant as n increases. That is, relative to the number of clients n, the approximation of ρ(Fn) by
ρ(Φn) is of order n−1. Hence the approximation is pretty good, see also the first row in Figure 1.

However, in practice the exact mean and the exact standard deviations are unknown and have be to
estimated. So, in fact, for practical purposes it is more interesting to study the asymptotic behavior of
the difference ρ(Φ̂n)− ρ(Fn). The Corollaries 2.9 and 2.10 show that the approximation of ρ(Fn) by
ρ(Φ̂n) relative to the number of clients n is of order n−1/2+ε and that the relative difference (ρ(Φ̂n)−
ρ(Fn))/n weighted by n1/2 is asymptotically normal. Figure 2 shows that in our example the relative
error (ρ(Φn)−ρ(Fn))/n indeed converges to 0, and that the relative error weighted by n1/2 is indeed
subject to a random fluctuation. Figure 2 also shows that the approximation of ρ(Fn) by ρ(Φ̂n) is
“aggressive”, which might be due to the fact that the tail of the Gamma distribution is “heavier” than the
tail of a normal distribution.

4 Proofs

4.1 Proof of Theorem 2.2

The proof of Theorem 2.2 relies on the following lemma which involves the left-continuous inverse
H←(x) := inf{t ∈ R : H(t)≥ x} of a df H.

Lemma 4.1 ([38, Theorem 2]) Let g be a distortion function, and suppose that

(i) there are β ,L > 0, k ∈ N0, and 0 = d0 < d1 < .. . < dk+1 = 1, such that g is Hölder-β -continuous
with Hölder constant L on each of the intervals (di,di+1), i = 0, . . . ,k,

(ii) H,H1,H2, . . . ∈ Fg,

(iii) H is differentiable at H←(di), and H ′(H←(di)) > 0, for i = 1, . . . ,k,

(iv) ‖Hn−H‖∞→ 0.

For every λ ≥ 1 satisfying λ β > 1 there is a finite constant c = ck,H,L,λ β > 0, and some n0 ∈ N (for
which ‖Hn−H‖∞ is sufficiently small for all n≥ n0), such that

|ρg(Hn)−ρg(H)| ≤ c‖Hn−H‖β∧1
λ ∀n ≥ n0. (16)
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If g is Hölder-β -continuous on all of [0,1], i.e. if k = 0, then condition (iv) can be skipped, the assumption
λ ≥ 1 can be replaced by λ > 0, in (16) the exponent β ∧1 can be replaced by β , and inequality (16)
holds for all n ∈ N.

Notice that under the assumptions of Lemma 4.1, the expression ‖Hn−H‖λ might be infinite when
λ > 1. Also, ‖Hn−H‖λ → 0 implies condition (iv).

In order to prove Theorem 2.2 we set Zn := (Sn−µn)/σn and write Nn for any random variable distributed
according to the normal law Nµn,σ2

n
. We further define Z := (Nn− µn)/σn which is N0,1-distributed. As

ρg is distribution-invariant, we may and do use without risk of ambiguity ρg(Y ) and ρg(FY ) as synonyms,
where Y is any admissible random variable. By the positive homogeneity and the translation invariance
of ρg we obtain

|ρg(Fn)−ρg(Φn)| = |ρg(Sn)−ρg(Nn)| (17)

= |ρg(σnZn + µn)−ρg(σnZ + µn)|
= |σnρg(Zn)− µn− (σnρg(Z)− µn)|
= σn|ρg(Zn)−ρg(Z)|
= σn|ρg(Gn)−ρg(Φ)|,

where Gn denotes the df of Zn, and Φ is the standard normal df. Now, we intend to apply Lemma 4.1.
We are going to show that the assumptions (i)–(iv) of Lemma 4.1 are fulfilled for H := Φ and Hn := Gn.
Condition (i) is ensured by assumption (a) of Theorem 2.2, the validity of condition (ii) was already
discussed subsequent to Theorem 2.2, and condition (iii) is obvious since Φ is strictly increasing and
smooth. By assumption (b) of Theorem 2.2 we moreover have

‖Gn−Φ‖λ ≤ cλ ,γ n−γ ∀n ∈ N (18)

for some constant cλ ,γ > 0, so that condition (iv) of Lemma 4.1 holds too. Therefore the lemma implies

|ρg(Gn)−ρg(Φ)| ≤ ck,Φ,L,λ β ‖Gn−Φ‖β∧1
λ ∀n≥ n0

for some constant ck,Φ,L,λ β > 0. Along with assumption (c) of Theorem 2.2 as well as (17) and (18),
this implies (5).

4.2 Proof of Theorem 2.12

The verification of the second part of Theorem 2.12 was already given subsequent to Theorem 2.12.
The proof of the first part relies on the following lemma.

Lemma 4.2 Condition (11) implies

ρ(FX) = sup
m∈N

inf
k∈N

ρ(F[X+∧k]−[X−∧m]) ∀X ∈ X.

Proof In view of Proposition 6.6 in [22], condition (11) allows to apply Lemma 6.5 in [22]. Assertion .1 of
this lemma gives supm∈N ρ(FX+−[X−∧m])= ρ(FX), and the application of assertion .2 of this lemma yields
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infk∈N ρ(F[X+∧k]−[X−∧m]) = ρ(FX+−[X−∧m]) for every m∈N. The statement of Lemma 4.2 is obvious now.
2

We will combine Lemma 4.2 with known representation results (mentioned above) for distribution-
invariant coherent risk measures defined on the set F∞ of all df FX of random variables X from
L ∞(Ω,F ,P) in order to prove Theorem 2.12.

Proof (of Theorem 2.12) Possibly changing to a suitable probability space, we may assume that
L2(Ω,F ,P) is separable. Then in the specified setting, Corollary 4.72 in [13] along with Theorem 2.1
in [21] yields the existence of some set G of concave distortion functions such that (10) holds for all
F ∈ F∞. Now set

ρ̃(F) := sup
g∈G

ρg(F), F ∈ F.

We are going to show that ρ̃ provides a distribution-invariant coherent risk measure on F which co-
incides with ρ . We will proceed in two steps: First we will show that ρ̃ is well-defined and defines a
distribution-invariant coherent risk measure on F (which obviously satisfies ρ̃ = ρ on F∞). Second we
will show that ρ̃ = ρ on F.

Step 1. If we can show that ρg(F) ∈R (for all g ∈ G ) and supg∈G ρg(F) < ∞ for all F ∈ F, then it follows
easily that ρ̃ defines a distribution-invariant coherent risk measure on F, since every distortion risk
measure ρg with concave distortion function g is coherent and distribution-invariant. Of course, in view
of (4), the mentioned conditions hold if we can show

sup
g∈G

∫ 0

−∞
g(F(t))dt ≤ ρ(F−X−) and ∀g ∈ G :

∫ ∞

0
[1−g(F(t))]dt < ∞ (19)

for all F ∈ F. To verify the first statement in (19), we pick X ∈ X (corresponding to FX ∈ F). For every
g ∈ G we have

g(F−X−(t)) ≤ lim inf
m→∞

g(F−[X−∧m](t))

at every continuity point t < 0 of F−X− , since g as a concave function is lower semi-continuous. Using
this and applying Fatou’s lemma, we obtain

sup
g∈G

∫ 0

−∞
g(FX(t))dt ≤ sup

g∈G

∫ 0

−∞
g(F−X−(t))dt

≤ sup
g∈G

∫ 0

−∞
lim inf

m→∞
g(F−[X−∧m](t))dt

≤ sup
g∈G

lim inf
m→∞

∫ 0

−∞
g(F−[X−∧m](t))dt

= sup
g∈G

lim inf
m→∞

ρg(F−[X−∧m])

≤ lim inf
m→∞

ρ(F−[X−∧m])

≤ ρ(F−X−).

Hence the first statement in (19) holds indeed. To verify the second statement in (19), we pick X ∈ X

(corresponding to FX ∈ F) and we denote by g′ the right-sided derivative of g. As g is a nondecreasing
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concave function, it is continuous on (0,1], so that

1−g(FX(t)) = g(1)−g(FX(t)) ≤ g′(FX(t0))[1−FX(t)] ∀t ≥ t0,

for any t0 > 0 such that FX(t0) > 0. Moreover, the integral
∫ ∞

0 [1−FX(t)]dt exists since X ∈L 1(Ω,F ,P).
Hence, ∫ ∞

0
[1−g(FX(t))]dt ≤

∫ t0

0
[1−g(FX(t))]dt + g′(FX(t0))

∫ ∞

t0
[1−FX(t)]dt < ∞.

This shows that the second statement in (19) holds, too.

Step 2. Condition (11) on ρ ensures that the right-hand side of

0 ≤ ρ̃(F−λ (X−r)+) ≤ ρ(F−λ (X−r)+)

converges to 0, as r→ ∞, for every X ∈ X+ and λ > 0. Therefore condition (11) is also fulfilled by ρ̃,
and Lemma 4.2 applied to ρ̃ implies ρ = ρ̃ on F. 2

4.3 Proof of Lemma 2.14

Due to (10), Remark 2.13(i) and the definition of g̃ρ , we have

ρ(F−Bx) = sup
g∈Gρ

ρg(F−Bx) = sup
g∈Gρ

g(x) = g̃ρ(x), x ∈ [0,1],

i.e. (14) holds.

In order to prove the second part of Lemma 2.14, we let 0 < x < x′ ≤ 1. Since the underlying probability
space (Ω,F ,P) was assumed to be rich enough to support a random variable with continuous distri-
bution, we may pick a measurable decomposition Ω1∪Ω2∪Ω3 of Ω such that P[Ω1] = x, P[Ω2] = x′−x
and P[Ω3] = 1− x′. We now define random variables Bx := 1Ω1, Bx′ := 1Ω1∪Ω2 and Bx′−x := 1Ω2, and
note that they are distributed according to the Bernoulli distribution with parameters x, x′ and x′− x,
respectively. Moreover we clearly have Bx′ = Bx + Bx′−x on Ω. Thus we obtain by Remark 2.13(i) as
well as the subadditivity and the distribution-invariance of ρg that

g(x′)−g(x) = ρg(F−Bx′ )−ρg(F−Bx)

≤ ρg(F−Bx′−x
)

≤ ρ(F−Bx′−x
)

≤ sup
y∈(0,1]

ρ(F−By)

yβ (x′− x)β .

for every g ∈ Gρ . Therefore condition (15) implies that every g ∈ Gρ is Hölder-β -continuous on (0,1]

with Hölder constant L. Since every g is also continuous at 0, we conclude that every g ∈ Gρ is Hölder-
β -continuous even on [0,1] with Hölder constant L.
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A Examples for distribution-invariant coherent risk measu res on
Orlicz spaces

Here we intend to illustrate conditions (11), (12) and (15) by means of examples. At the beginning we
will see that the cutting condition (11) and condition (12) are already satisfied if the domain X of the
coherent risk measure ρ is chosen to be an Orlicz space. Thereafter, in Sections A.1 and A.2, we
will give examples for risk measures on Orlisz spaces that satisfy also condition (15). We will show in
particular that some of these examples are not covered by the results of Section 2.1 (which justifies
Section 2.2).

Recall that a continuous Young function is a convex function ψ : R+ → R+ satisfying ψ(0) = 0, be-
ing continuous at 0, and converging to ∞ as x→ ∞. Every continuous Young function is in particular
nondecreasing. For any continuous Young function ψ , the set

L
ψ(Ω,F ,P) :=

{
Y ∈L

0(Ω,F ,P) : E[ψ(|Y |/c)] < ∞ for some c > 0
}

is known as Orlicz space associated with the Young function ψ , whereas the subset

M
ψ(Ω,F ,P) :=

{
Y ∈L

0(Ω,F ,P) : E[ψ(|Y |/c)] < ∞ for all c > 0}

is sometimes called Orlicz heart associated with the Young function ψ (cf. [6]). For any continuous
Young function ψ we have L ∞(Ω,F ,P)⊂M ψ (Ω,F ,P)⊂L ψ(Ω,F ,P)⊂L 1(Ω,F ,P). For the par-
ticular continuous Young function ψ(x) = xp with p∈ [1,∞), the spaces M ψ(Ω,F ,P) and L ψ(Ω,F ,P)

coincide with L p(Ω,F ,P). For details the reader is kindly referred to [30] or [10, Section 2].

Lemma A.1 If X is one of the spaces M ψ (Ω,F ,P) or L ψ(Ω,F ,P) for some continuous Young func-
tion ψ , then every coherent risk measure ρ : X→ R satisfies the cutting condition (11) as well as
condition (12).

Proof The sets Lψ (Ω,F ,P) and Mψ (Ω,F ,P) of all equivalence classes of P-almost everywhere
equal elements of L ψ(Ω,F ,P) and M ψ (Ω,F ,P) (respectively) are known to be vector spaces. The
(Luxemburg) norm,

‖Y‖ψ := inf {c > 0 : E[ψ(|Y |/c)]≤ 1} , Y ∈ Lψ (Ω,F ,P),

makes Lψ (Ω,F ,P) a Banach space with Mψ (Ω,F ,P) being norm-closed. (Notice that for ψ(x) = xp,
with p ∈ [1,∞), the Luxemburg norm coincides with the classical Lp-norm ‖ · ‖p.) As a consequence
(Lψ (Ω,F ,P),‖ · ‖ψ) and (Mψ (Ω,F ,P),‖ · ‖ψ ) are Banach lattices (with respect to the P-almost sure
ordering �), i.e. Banach spaces such that ‖Y‖ψ ≥ ‖X‖ψ whenever Y � X . Therefore every real-
valued coherent risk measure ρ on L ψ (Ω,F ,P) or M ψ (Ω,F ,P) is continuous w.r.t. the seminorm
on L ψ(Ω,F ,P) associated with ‖ · ‖ψ (cf. [33, Proposition 3.1]).

Below we will show that
lim
r→∞
‖Yr‖ψ = 0 (20)

for every decreasing sequence (Yr)r≥0 ⊂ Lψ (Ω,F ,P) (resp. ⊂ Mψ (Ω,F ,P)) converging P-almost
surely to 0 as r → ∞. On the one hand, (20) implies limr→∞ ‖λ (X − r)+‖ψ = 0 for every X ≥ 0 in
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Lψ(Ω,F ,P) (resp. in Mψ (Ω,F ,P)) and λ > 0. Along with the seminorm-continuity of the risk measure
ρ established above, this would imply that the cutting condition (11) holds. On the other hand, (20)
also implies limx→0+ ‖F←Bx

(U)‖ψ = 0, where F←Bx
denotes the left-continuous inverse of the df FBx of

the Bernoulli distribution with parameter x, and U is a random variable on (Ω,F ,P) which is uniformly
distributed on (0,1). Along with the seminorm-continuity of the risk measure ρ established above, this
would imply that condition (12) holds.

It remains to show (20). For any decreasing sequence (Yr)r≥0 ⊂ Lψ(Ω,F ,P) (resp. ⊂ Mψ (Ω,F ,P))
converging P-almost surely to 0, the sequence (‖Yr‖ψ)r≥0 is decreasing as well. Moreover, for any
0 < c ≤ infr ‖Yr‖ψ the decreasing sequence (ψ(|Yr|/c))r≥0 converges P-almost surely to 0 due to the
continuity of ψ . By dominated convergence we deduce limr→∞ E[ψ(|Yr|/c)] = 0, which in turn implies
infr ‖Yr‖ψ = 0. This yields in particular (20). 2

In the following Sections A.1 and A.2, we will present some customary distribution-invariant coherent
risk measures on Orlisz spaces that satisfy also condition (15) (apart from conditions (11) and (12)).

A.1 Haezendonck risk measures

Let ψ be a strictly increasing continuous Young function satisfying ψ(1) = 1, and let X be the Orliz
heart M ψ(Ω,F ,P) associated with ψ . Moreover fix α ∈ (0,1). It was shown in [14] that for every
X ∈M ψ (Ω,F ,P) and every x ∈ R with P[X > x] > 0 there exists a unique real number πψ

α (X ,x) > x
such that

E

[
ψ

( (X− x)+

πψ
α (X ,x)− x

)]
= 1−α.

Therefore we may define a functional ρH,ψ
α on the set Fψ of all df FX of random variables X from

L ψ(Ω,F ,P) by
ρH,ψ

α (FX ) := inf
{

πψ
α (−X ,x) : x ∈ R with P[−X > x] > 0

}
.

The functional ρH,ψ
α provides a distribution-invariant positively homogeneous risk measure (cf. [14,

Theorem 3.2]) known as Haezendonck risk measure w.r.t. ψ and level α . The restriction of ρH,ψ
α to the

set of all df of P-essentially bounded random variables has been established to be subadditive in Propo-
sition 12 of [3]. The proof given there can be transferred verbatim to the functional on L ψ(Ω,F ,P)

itself. So, in fact, ρH,ψ
α provides a distribution-invariant coherent risk measure. According to Lemma A.1

it also satisfies the cutting condition (11) and condition (12). By the way, there is an intimate relationship
with Orlicz premiums as introduced in [15]. Indeed: The number πψ

α (X ,x)−x can be seen as the Orlicz
premium of (X− x)+ w.r.t. ψ .

The following lemma shows that under some additional assumptions on ψ the Haezendonck risk mea-
sure ρH,ψ

α also satisfies condition (15), so that it meets the requirements discussed subsequent to
(10).

Lemma A.2 If there are some x0 ∈ (0,1−α) and β ∈ (0,1] such that

xψ(x−β )≤ 1−α ∀x ∈ (0,x0], (21)
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then the Haezendonck risk measure ρH,ψ
α satisfies condition (15). For instance, condition (21) is satis-

fied for ψ(x) = xp with p ∈ [1,∞).

Proof We have for x ∈ (0,1)

ρH,ψ
α (F−Bx) ≤ 1∧πψ

α (Bx,x) = 1∧
(

x +
1− x

ψ−1((1−α)/x))

)
.

where ψ−1 denotes the inverse of ψ (recall that we assumed the Young function ψ to be strictly in-
creasing). Under assumption (21) we can easily deduce with the help of (14) that

sup
x∈(0,1]

g̃ρH,ψ
α

(x)

xβ = sup
x∈(0,1]

ρH,ψ
α (F−Bx)

xβ ≤ max{2;x−β
0 }.

That is, (15) holds. In the case ψ(x) = xp, with p ∈ [1,∞), condition (21) is easily seen to hold for
β := (2p)−1 and x0 := (1−α)2. This verifies the second statement of the lemma. 2

Now, choose ψ(x) = xp for any p ∈ [1,∞). For some choices of p the corrsesponding Haezendonck
risk measure degenerates to a distortion risk measure, so that also the results of Section 2.1 could be
applied. For instance, for p = 1 the Haezendonck risk measure ρH,ψ

α is just the Avarage Value-at-Risk
at level 1−α (see [13, Lemma 4.46] and [3, Section 3.1]). For other choices of p, the coherent risk
measure ρH,ψ

α does not degenerate to a distortion risk measure (cf. Example A.3). This justifies the
investigations of Section 2.2.

Example A.3 For ψ(x) = x2 and α ∈ (1
3, 3

8) the Haezendonck risk measure ρH,ψ
α is not a distortion risk

measure.

Proof According to Remark 2.13(ii) it suffices to show that ρ := ρH,ψ
α does not coincide with the

distortion risk measure ρg̃ρ , where g̃ρ denotes the distortion function associated with ρ (cf. (13)). We
will show that ρ(−Y ) 6= ρg̃ρ (−Y ) for every random variable Y which is uniformly distributed on {0;1;2}.
On the one hand, for the Haezendonck risk measure we obtain

ρ(−Y ) ≤ πψ
α (Y,1/3) = 1/3+

(
E[((Y −1/3)+)2]

(1−α)

)1/2

< 5/3.

On the other hand, for the associated distortion function g̃ρ we obtain by straightforward calculations

g̃ρ(x) =





x +

(
α

1−α x(1− x)
)1/2

: x < 1−α

1 : x≥ 1−α

and thus

ρg̃ρ (−Y ) = g̃ρ(1/3)+ g̃ρ(2/3) =
2
3

( 2α
1−α

)1/2
+1 ≥ 5

3
.

Therefore we indeed have ρ(−Y ) 6= ρg̃ρ (−Y ). 2
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A.2 Risk measures based on one-sided moments

Let X be L p(Ω,F ,P) for some p ∈ [1,∞) and let a ∈ [0,1]. Then

ρp,a(FX) := −E[X ]+ a
(
E[((X −E[X ])−)p]

)1/p

defines a distribution-invariant coherent risk measure on the set Fp of all df FX of random variables
X ∈L p(Ω,F ,P) (cf. [12, Lemma 4.1]). The risk measure ρp,a has been introduced in [12] as a building
block for the problem of risk allocation (actually it was studied earlier in [8] on L ∞(Ω,F ,P) in a different
context). In view of Lemma A.1 it also satisfies the cutting condition (11) and condition (12). Moreover,
the following lemma tells us that it also fulfills condition (15), so that it meets the requirements discussed
subsequent to (10).

Lemma A.4 The risk measure ρp,a satisfies condition (15) for every β ∈ (0,1/p).

Proof It can be easily verified that the associated distortion function g̃ρp,a of ρp,a satisfies g̃ρp,a(x) =

x + a(1− x)x1/p, which immediately yields the statement of the lemma. 2

In the case a = 0 the risk measure ρp,a degenerates to the negative mean which is a distortion risk
measure with the identity on [0,1] as distortion function. A similar statement does not hold for a > 0, as
will be shown in the following lemma.

Lemma A.5 If a > 0, then the risk measure ρp,a is not a distortion risk measure.

Proof According to Remark 2.13(ii) it suffices to show that ρ := ρp,a does not coincide with the
distortion risk measure ρg̃ρ , where g̃ρ denotes the distortion function associated with ρ (cf. (13)).
We will show that ρ(−Y ) 6= ρg̃ρ (−Y ) for every random variable Y which is uniformly distributed on

{0;1;2}. One the one hand, we have ρp,a(−Y ) = 1+ a(1/3)1/p. On the other hand, we easily obtain
g̃ρp,a(x) = q + a(1− x)x1/p, and so

ρg̃ρ (−Y ) = g̃ρ(1/3)+ g̃ρ(2/3) = 1+ a(1/3)1/p(2+2
1
p )/3.

That is, ρ(−Y ) 6= ρg̃ρ (−Y ). 2
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Figure 1: In each column the curves n 7→ (ρ(Φn)−ρ(Fn))/n and n 7→ (ρ(Φn)−ρ(Fn)) are displayed,
where ρ is the Value-at-Risk at level α = 0.05, and F1 is the Gamma df on R− with parameters
a = 4 and b = 0.004.
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Figure 2: Sample paths of n 7→ (ρ(Φ̂n)−ρ(Fn))/n, n 7→ (ρ(Φ̂n)−ρ(Fn))/
√

n and n 7→ (ρ(Φ̂n)−ρ(Fn)),
where ρ is the Value-at-Risk at level α = 0.05, F1 is the Gamma df on R− with parameters
a = 4 and b = 0.004, and Φ̂n is based on n simulated i.i.d. F1 random variables (the two
columns mirror two different Monte Carlo simulations).
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